
ESCALATE: Boosting the Efficiency of Sparse CNN Accelerator
with Kernel Decomposition

Shiyu Li
Duke University
Durham, NC, USA
shiyu.li@duke.edu

Edward Hanson
Duke University
Durham, NC, USA

edward.t.hanson@duke.edu

Xuehai Qian
University of Southern California

Los Angeles, CA, USA
xuehai.qian@usc.edu

Hai “Helen” Li
Duke University
Durham, NC, USA
hai.li@duke.edu

Yiran Chen
Duke University
Durham, NC, USA

yiran.chen@duke.edu

ABSTRACT
The ever-growing parameter size and computation cost of Convolu-
tional Neural Network (CNN) models hinder their deployment onto
resource-constrained platforms. Network pruning techniques are
proposed to remove the redundancy in CNN parameters and pro-
duce a sparse model. Sparse-aware accelerators are also proposed to
reduce the computation cost and memory bandwidth requirements
of inference by leveraging the model sparsity. The irregularity of
sparse patterns, however, limits the efficiency of those designs.
Researchers proposed to address this issue by creating a regular
sparsity pattern through hardware-aware pruning algorithms. How-
ever, the pruning rate of these solutions is largely limited by the
enforced sparsity patterns. This limitation motivates us to explore
other compression methods beyond pruning. With two decoupled
computation stages, we found that kernel decomposition could
potentially take the processing of the sparse pattern off from the
critical path of inference and achieve a high compression ratio with-
out enforcing the sparse patterns. To exploit these advantages, we
propose ESCALATE , an algorithm-hardware co-design approach
based on kernel decomposition. At algorithm level, ESCALATE reor-
ganizes the two computation stages of the decomposed convolution
to enable a stream processing of the intermediate feature map. We
proposed a hybrid quantization to exploit the different reuse fre-
quency of each part of the decomposed weight. At architecture
level, ESCALATE proposes a novel ‘Basis-First’ dataflow and its
corresponding microarchitecture design to maximize the benefits
brought by the decomposed convolution.

We evaluate ESCALATE with four representative CNN models
on both CIFAR-10 and ImageNet datasets and compare it against
previous sparse accelerators and pruning algorithms. Results show
that ESCALATE can achieve up to 325× and 11× compression ratio
for models on CIFAR-10 and ImageNet, respectively. Comparing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MICRO ’21, October 18–22, 2021, Virtual Event, Greece
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8557-2/21/10. . . $15.00
https://doi.org/10.1145/3466752.3480043

with previous dense and sparse accelerators, ESCALATE accelera-
tor averagely boosts the energy efficiency by 8.3× and 3.77×, and
reduces the latency by 17.9× and 2.16×, respectively.

CCS CONCEPTS
• Computer systems organization → Neural networks; Spe-
cial purpose systems; • Computing methodologies → Neural
networks.

KEYWORDS
Convolutional Neural Networks, Kernel Decomposition, Neural
Network Compression, Sparse Accelerators

ACM Reference Format:
Shiyu Li, Edward Hanson, Xuehai Qian, Hai “Helen” Li, and Yiran Chen.
2021. ESCALATE: Boosting the Efficiency of Sparse CNN Accelerator with
Kernel Decomposition. In MICRO’21: 54th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO ’21), October 18–22, 2021, Virtual
Event, Greece. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/
3466752.3480043

1 INTRODUCTION
Convolutional Neural Networks (CNNs) have been widely used in
a vast range of applications, such as computer vision, robotics, and
medical science. However, most CNNmodels are both computation-
and memory-intensive. Thus, the execution of CNN models re-
quires high computation power and memory bandwidth, making
it difficult to achieve high throughput and energy efficiency on
general-purpose platforms like CPUs or GPUs. These concerns lead
to the proliferation of domain-specific accelerators for CNNs. Vari-
ous custom architectures [5–8] have been proposed to capture the
parallelism and data reuse opportunities for boosting the inference
efficiency.

Previous works [13] successfully identified the redundancy in
CNN parameters: A large portion of unimportant weights in the
convolutional layer can be removed to produce sparse weights
with minor or no impacts on model accuracy. Moreover, the widely
adopted ReLU activation function filters out all non-positive values
in the output feature maps, leading to sparse activations. Multipli-
cations involving zero-valued (or sparse) activations or weights
produce zero products. By avoiding storing, transferring, and com-
puting these zeros, the computation and bandwidth requirements

992

https://orcid.org/0000-0002-1990-7150
https://doi.org/10.1145/3466752.3480043
https://doi.org/10.1145/3466752.3480043
https://doi.org/10.1145/3466752.3480043

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Shiyu Li, Edward Hanson, Xuehai Qian, Hai “Helen” Li, and Yiran Chen

of inference can be reduced. The potential benefit triggers the emer-
gence of sparse-aware accelerators. Cambricon-X [40], for example,
skips all computations related to zero weights, while Cnvlutin [2]
eliminates all the zero activations. SCNN [30] captures the spar-
sity in both weights and activations with the Cartesian product.
SparTen [12] performs efficient inner-join between sparse vectors
to address the inefficiency under certain layer shapes. ExTensor [15]
performs efficient intersection operations to remove zero-involved
computations. However, the irregular sparse pattern of convolu-
tional weight and activations prevents these hardware solutions
from fully utilizing the sparsity.

Researchers propose hardware-aware optimizations of the ex-
isting pruning algorithms to address the irregularity. Cambricon-
S [43] uses coarse-grained pruning to alleviate the irregularity
in sparsity patterns. ADMM-NN [33] jointly performs pruning
and quantization while adjusting the layer-wise sparsity ratios to
achieve an optimal tradeoff between accuracy and runtime speedup.
PatDNN [28] and ADMM-NN-S [26] further enforce specific spar-
sity patterns during pruning to enable more efficient processing
of the regular sparse models. Due to the degraded flexibility of
pruning, these optimizations limit the overall compression rate.

The limitations of individually optimizing hardware and algo-
rithm motivate us to seek an integrated solution. In particular, we
hope to explore an alternative computation formulation of con-
volution operations to take the processing of irregular sparsity
patterns off from the critical path of inference. Thus, the hardware
that supports this formulation can eliminate the negative impact of
irregularity. We may also achieve a high compression rate since no
sparsity pattern is enforced during pruning.

Our recent work, PENNI [25], proposes a new CNN compression
method based on kernel decomposition. It decomposes a weight ten-
sor into two parts – a small number of basis kernels and a coefficient
tensor that determines the linear combination of the basis kernels.
With the decomposition, the forward pass can be performed in
two decoupled stages: basis convolution and weighted accumula-
tion. Sparsity only appears in the weighted accumulation stage,
the execution of which overlaps with the basis convolution stage.
Thus, compared with previous weight pruning methods, [25] can
potentially remove the processing of irregular sparsity pattern from
the critical path and obtains a more hardware-friendly computation
pattern. Moreover, compared with the hardware-aware pruning
methods, such kernel decomposition does not enforce the structure
constraints and can potentially achieve a higher pruning rate.

It is natural to design corresponding CNN accelerators for the
above kernel decomposition method to maximize its advantages.
However, directly applying the kernel decomposition incurs some
challenges to the hardware design: First, while the computational
cost is reduced with a small number of basis kernels, the algorithm
creates a large number of intermediate feature maps with inflated
channels. These intermediate feature maps become a new compu-
tation bottleneck. Moreover, the existing dataflows in mainstream
CNN accelerators do not support the two-stage computation of the
decomposed convolution. The distinct parameter reuse frequen-
cies of the two decomposed stages also impact the performance
differently. Finally, the frequently reused basis kernels require a
higher precision, while the unique coefficient of each input-output

channel can bear a lower precision. The different precisions must
be handled by different hardware configurations.

To tackle these challenges, we propose ESCALATE, an algorithm-
hardware co-design framework based on kernel decomposition. At
algorithm level, we reorganize the two computation stages of the
decomposed convolution based on distributive property to enable
streaming processing of the large intermediate feature maps and
eliminate the computational bottleneck. Based on the observation
that the coefficients are unique to each pair of input-output channels
and the basis kernels are reused by all output channels, we propose
a hybrid quantization scheme to maximize the benefit on both
accuracy and compression ratio. At architecture level, we propose
a novel Basis-First dataflow to increase the parallelism of inference
and exploit the reuse opportunities of the decomposed convolution.
ESCALATE accelerator is equipped with an efficient sparse skipping
scheme, namely, ‘Dilution-Concentration’, based on the compact
weight structure created by the decomposed convolution.

We evaluate ESCALATE framework with four representative
CNN models on both CIFAR-10 [22] and ImageNet [10] datasets.
Results show that ESCALATE algorithm achieves 11-325× compres-
sion ratio for CIFAR-10 models, and 9-11× for ImageNet models. On
average, ESCALATE accelerator boosts the energy efficiency by 8.3×
and 3.77×, and reduce the latency by 17.9× and 2.13× compared to
previous dense and sparse accelerator designs, respectively.

The remainder of our paper is organized as follows. Section 2
presents the background and the motivation of our work; Section 3
introduces the proposed ESCALATE algorithm; Section 4 presents
the ESCALATE accelerator design; Section 5 provides the evaluation
results of both algorithm and accelerator; Section 6 provides dis-
cussions on design trade-offs; Section 7 summarizes related works,
and Section 8 concludes this work.

2 BACKGROUND AND MOTIVATION
2.1 Convolution Operation
We present essential notations and define the terminologies used in
our discussion. We refer to each individual element of the input fea-
ture maps (IFM) as the activation and the convolution parameters
as weight. We use kernel to denote a 2D convolution kernel corre-
sponding to one input-output channel pair and use filter to denote
a 3D filter corresponding to one output channel. The computation
of a regular convolution operation involves 7 dimensions, including
input batch (N), input channels (C), output channels (or filter, K),
filter row (R), filter column (S), input row (X), and input column
(Y). The index of the output row/column can be deduced from the
input and filter indices. For inference tasks, we focus on the perfor-
mance of a single input sample, thus we ignore N in our discussion.
We use uppercase letters to denote the size of the dimension and
use lowercase letters to denote the index. The computation of one
element in the k-th output channel can be represented as,

OFM
(x+ ⌊r/2⌋,y+ ⌊s/2⌋)
k =

C−1∑
c=0

R−1∑
r=0

S−1∑
s=0

W (k,c,r,s)IFM(c,x+r,y+s),

(1)

993

ESCALATE: Boosting the Efficiency of Sparse CNN Accelerator with Kernel Decomposition MICRO ’21, October 18–22, 2021, Virtual Event, Greece

whereW ∈ RK×C×R×S is the weight tensor, IFM ∈ RC×X×Y and
OFM ∈ RK×X ′×Y ′

are the input and output feature maps, respec-
tively. For simplicity, we only show the unit stride situation and
assume the input feature maps are padded.

2.2 Processing Sparse CNN
The redundancy in CNN models comes from two sources: activa-
tions and weights. The widely adopted ReLU activation function
filters out all non-positive values in the output feature maps, leading
to sparse activations. Pruning unimportant weight values produces
sparse weights. Typically, the sparsity introduces on average 2-5×
model size reduction and 4-20× computational cost reduction. How-
ever, leveraging sparsity poses new challenges to the accelerator
design. Specifically, the accelerator needs to identify non-zero pairs
of weights and activations from the compressed data and dispatch
those pairs correctly to processing elements (PEs). Current sparse-
aware accelerators [2, 12, 30, 40] propose various mechanisms to
efficiently process sparse CNN. Due to the irregular distribution
of the non-zero elements, all these mechanisms incur considerable
hardware and energy overheads that significantly offset the ben-
efits brought by sparsity [26]. This challenge can be mitigated by
algorithm-hardware co-designed approaches which can perform
pruning by taking hardware efficiency into consideration. For exam-
ple, Cambricon-S [43] proposes a coarse-grained pruning method to
alleviate the irregularity. ADMM-NN [33] introduces a joint weight
pruning and quantization framework to select a proper layer-wise
compression ratio and maximize the overall hardware efficiency.
PatDNN [28] and ADMM-NN-S [26] further enforce specific spar-
sity patterns during pruning to enable more efficient processing of
the regular sparse models.

2.3 Kernel Decomposition in CNN
Kernel decomposition utilizes the low-rank assumption of weight
matrices to compress the model size for reducing the computa-
tional complexity. Decomposition can be performed at different
levels of the weight structure. Previous works utilize the matrix
decomposition [42] or tensor decomposition [19, 24] to decompose
each convolutional filter into two or more lower rank structures.
PENNI [25] proposes to conduct the decomposition at the kernel
level, i.e., projecting each 2D kernel into a subspace. With the same
notations, the 4-D weight tensor can be reshaped into a matrixW ′

in the shape of KC × RS . The decomposition can be formulated as
W = CeB where Ce ∈ RKC×M , B ∈ RM×RS andM < RS . The two
factor matrices are obtained using singular value decomposition
(SVD). Further retraining steps may be required to recover the ac-
curacy of the model. Here, each row of B can be reshaped into R×S
and can be seen as a kernel. Thus, theM basis kernels are shared
across the entire layer and the original kernels can be approximated
by the linear combinations of the basis kernels. This decomposition
creates two imbalanced parameters: a small set of kernels shared
across all convolution operations and a large coefficient matrix.
Apart from reducing the computation and parameters, the decom-
position also makes it much easier to sparsify the coefficient matrix
compared with directly pruning the original weights.

2.4 Motivation
This work is motivated by the drawbacks of the existing non-
structured and structured pruning. Non-structured (or element-
wise) pruning can achieve the highest compression ratio on CNNs
among different types of compression methods. However, the ir-
regularity of the sparsity pattern leads to a huge gap between the
algorithm-level computation reduction and the actual hardware
speedups. For example, Eyeriss v2 [8] only achieve 1.2× speedup on
sparseMobileNet. ADMM-NN [33] demonstrates only 3.9× speedup
for the pruned convolutional layers in AlexNet with a 25.5× prun-
ing ratio. In essence, non-structured pruning leads to inefficient
and expensive hardware implementations which largely offset the
benefits of the large compression ratio. On the other side, structured
pruning maintains the regularity of weights so that the pruning
ratio can be almost fully converted to the speedup. However, the
structured constraint limits its pruning ratio. For example, struc-
tured pruning on ResNet50 only achieves 2.64× pruning ratio [11]
while non-structured pruning could reach 17.4× [33]. In summary,
none of the two types of pruning method sufficiently translate
the elimination of redundancy in CNNs to the higher inference
performance.

To tackle the challenge, we decide to explore the potential of
the alternative computation formulation of convolution operation
with kernel decomposition. As discussed in Section 2.3, kernel de-
composition creates two imbalance parts to approximate the origi-
nal weight tensor, which naturally form two computation stages.
The stage involving coefficient matrix only requires scalar matrix
product and reduction. It opens the opportunity of utilizing the
sparsity in coefficients in a structured way. Compared to the non-
structured pruning, kernel decomposition alleviates the irregularity
in the sparsity-aware computation and provides better hardware
efficiency. Compared to the structured pruning, without the need
to enforce sparsity pattern when pruning the coefficient matrix, we
can achieve a higher pruning ratio. Motivated by the potential of
obtaining both a high pruning ratio and hardware efficiency, we
build an algorithm-hardware co-design framework based on kernel
decomposition.

3 ESCALATE ALGORITHM
In this section, we first analyze the computational bottleneck in
kernel decomposition algorithm. Then, we propose a reformulated
ESCALATE algorithm to alleviate the bottleneck. Based on kernel
decomposition, ESCALATE utilizes the distributive property of the
convolution operation to create an efficient computation flow. Then,
we present the hybrid quantization which selects the quantization
precision based on the reuse frequency of each part of the weights.
Moreover, we show that ESCALATE can expand the application
of the decomposition technique to depth-wise separable convolu-
tion (DSC) and unify the computation of both regular convolution
and DSC.

3.1 Computation Reorganization
PENNI[25] introduced a kernel level decomposition of the weights.
As we discussed in Section 2.3, this decomposition scheme creates
two imbalanced weight components that respectively correspond to
two computation stages—shared kernel convolution and weighted

994

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Shiyu Li, Edward Hanson, Xuehai Qian, Hai “Helen” Li, and Yiran Chen

…

Input Feature Maps

𝑎𝑎1

𝑎𝑎2
𝑎𝑎3

…
𝑎𝑎𝐶𝐶−1

𝑎𝑎𝐶𝐶

Coefficients

𝐶𝐶𝑒𝑒
(𝑘𝑘,:,1) 𝐶𝐶𝑒𝑒

(𝑘𝑘,:,2) 𝐶𝐶𝑒𝑒
(𝑘𝑘,:,3)

Scaling

+

𝑀𝑀 Intermediate
Feature Maps

𝑀𝑀 Basis
Kernels

∗

k-th
Output

Figure 1: The computation process of one output feature
map of the reorganized decomposed convolution. For sim-
plicity, we assumeM = 3 here.

accumulation. Using the notations defined in Section 2.1 and Section
2.3, if we reshape the coefficients into K ×C ×M , the k-th output
channel can be computed by

OFMk =

C−1∑
c=0

M−1∑
m=0

C
(k,c,m)
e IFMc ∗ Bm , (2)

where IFMc is the c-th input feature map, Bm is them-th basis ker-
nel, and ∗ denotes the 2D convolution operation. The shared kernel
convolution (i.e., the inner summation) is conducted in a depthwise
fashion (i.e., there is no reduction across input channels) and gen-
erates M times more feature maps than the input. The weighted
accumulation (i.e., the outer summation) of these feature maps be-
comes the computational bottleneck. While the decomposition can
achieve a high compression rate on CNN models, it is difficult to
translate the compression rate into the actual speedup. From Equa-
tion (2), we can tell that each pixel of the produced feature maps is
only reused across output channels. We either need to frequently
read and write the output channels to maximize the input reuse,
or we have to build a large buffer to hold all intermediate feature
maps. Both designs are energy-consuming. In addition, although
the coefficients are highly sparse, the irregularity of the sparsity
pattern makes it difficult to skip the zeros without degrading the
parallelism of the computation.

Based on the above analysis, more efficient computation can
be achieve with: (1) reducing of the total number of input feature
maps; (2) reducing of the number of input feature maps related to
each output channel; and (3) increasing the reuse possibilities of
each input feature map in the weighted accumulation stage. These
desirable goals can be achieve with an simple observation: since
the convolution operator follows the distributive property, the two
stages of the computation are interchangeable. Specifically, we can
exchange the order of the summations in Equation (2). With such
reorganization, we first compute the weighted accumulation of
the input feature maps, then conduct the convolution on the accu-
mulated feature maps. The same output channel can be computed
by

OFMk =

M−1∑
m=0

(C−1∑
c=0

C
(k,c,m)
e IFMc

)
∗ Bm . (3)

The reorganized convolution is illustrated in Figure 1. With the
new computation order, we only need to compute the weighted
accumulation of C input feature maps. Each input feature map
can be reused for CM times and each basis kernel can be reused

for K times. In general, the number of output channels is larger
than or equal to the number of the input channels. Hence, this
reorganization can explore more reuse opportunities and reduce
the buffer size and data movements. We note that converting the
convolution from the depthwise-like convolution into the normal
convolution with M channels also improves the parallelism and
data reuse opportunities.

3.2 Hybrid Quantization
In kernel decomposition, the weight sparsity mainly exists in the co-
efficients since they constitute the main part of the parameters. We
observe that the coefficients are unique to each pair of input-output
channel, while the basis kernels are reused by all output channels.
Selecting the same quantization precision for coefficients and basis
kernels will waste the opportunity—a high precision is redundant
for coefficients, while a low precision for basis kernels will severely
affect the accuracy. The results are discussed in Section 5.1. Based
on this observation, we propose a hybrid quantization scheme to
maximize the benefit on both accuracy and compression rate. The
basic idea is to use high precision for the frequently reused basis
kernel while using low precision for the coefficients. We choose to
quantize the basis kernels to 8 bits and the coefficients to ternary
values. Directly quantizing the whole coefficients into ternary value
will cause a severe accuracy drop. We observe that, for a given out-
put channel k , only the C(k, :, :)

e slice is involved in the computation.
Thus, we apply the filter-wise quantization and allow different posi-
tive and negative scaling factors for each slice. The output feature
maps can be re-quantized to match the range of each output chan-
nel.

To obtain the ternarized value of the coefficients, we adopt a
quantization-aware training scheme. We use a similar method as
described in [44]. Specifically, we store the full precision coeffi-
cients during the quantization. During the forward pass, we select
a threshold for each coefficient slice corresponding to one output
channel. The quantized value of the k-th slice is obtained by

C̃e
(k, :, :)

=

w
pos
k , C

(k, :, :)
e > t ·max (|C(k, :, :)

e |)

0, |C
(k, :, :)
e | ≤ t ·max (|C(k, :, :)

e |)

−w
neд
k , C

(k, :, :)
e < −t ·max (|C(k, :, :)

e |)

, (4)

where max |(C(k, :, :)
e)| is the maximum magnitude of the k-th coef-

ficient slice, t is a hyper-parameter controlling the threshold, and
w
pos
k and w

neд
k are the scaling factors for positive and negative

values, respectively. We use different scaling factors for each slice
of the coefficient matrix Ce , i.e., each accumulation operation, and
obtain the scaling factor through training. We use the gradient of
quantized coefficients to update the full precision parameters as
well as the scaling factors. To simplify the hardware design, we
divide the negative scaling factor by the positive one and quantize
the quotient into 2 bits. During inference, we can attach the coef-
ficient as a sign bit to each activation, and shift the negative one
by the quotient. With these optimizations, we completely remove
the multiplication in the first stage and enable arbitrary reordering
of the activations without worrying about the relative order of the
activations and weights. We claim those benefits in the microarchi-
tecture design developed in section 4. Since the first layer of CNNs

995

ESCALATE: Boosting the Efficiency of Sparse CNN Accelerator with Kernel Decomposition MICRO ’21, October 18–22, 2021, Virtual Event, Greece

usually only has a very small number of channels (e.g., 3 channels
for color image-related tasks), quantizing the first layer will incur
a severe loss of information. Moreover, since k is normally larger
than the number of the input channels in the first layer, applying
decomposition will not bring any benefit to improve the compu-
tational efficiency. Thus, we do not apply compression to the first
layer.

3.3 Decomposing the Compact Model
Depthwise separable convolution (DSC) splits the normal convolu-
tion into two steps: depthwise convolution and pointwise convolu-
tion. The depthwise convolution (DW) assigns an exclusive kernel
to each input channel and eliminates the cross-channel interactions
to reduce the computational cost. Since the input feature maps are
not shared by different kernels in the depthwise stage, DW leads
to under-utilization of PEs on the accelerators optimized for nor-
mal convolution. The lack of input reuse also results in a lower
computation-to-memory ratio and the demand for a higher on-chip
buffer bandwidth. To efficiently support both DSC and normal con-
volution, we unify the computation flow of both types of convolu-
tion with ESCALATE algorithm. We apply the same decomposition
scheme to DSC and use the same decomposed form as described
in Equation (3). With the unified computation flow, our design can
efficiently support both types of convolution (see Section 4). With
the notations defined before, the weights of DSC can be represented
by the kernels in the depthwise convolutionWDW ∈ RC×RS and
the coefficients in pointwise convolutionWPW ∈ RC×K . We can de-
compose the weights of the depthwise convolution asWDW = C

′
eB

where C ′
e ∈ RC×M and B ∈ RM×RS . Then, we can combineWPW

and C ′
e into the coefficient matrix by computing the Hadamard

product of each column of C ′
e andWPW , which can be represented

as:

C
(c,k,m)
e =W

(c,k)
PW C

′(c,m)
e . (5)

Thus, we have a unified representation with Section 2.3. Although
this decomposition increases the number of convolution operations
byk times, the convolution kernels are shared across input channels.
This kernel sharing allows us to efficiently support both types of
convolution on the same architecture.

4 ESCALATE ARCHITECTURE
We illustrate the ESCALATE accelerator design in Figure 4(a). ES-
CALATE presents a hierarchical PE design by splitting each PE into
slices (lines). Each PE slice has two parts, corresponding to the two
stages of the decomposed convolution. The first part, namely chan-
nel accumulator (CA), uses the Dilution-Concentration mechanism
to efficiently eliminate ineffectual computations. The second part
consists of multiply-accumulate (MAC) units organized in a row.
Each MAC has a small FIFO to hold one basis kernel. The basis
kernels are loaded into the FIFO before the computation begins
and remain in the FIFO. The MAC row design actively exploits the
channel parallelism of the intermediate feature maps and the reuse
of the basis kernels. We build separate buffers to store each slice of
the input feature maps to process multiple rows of input feature
maps in parallel. The PE slices of the same position in different PE
blocks are connected to the same input buffer. Since the coefficients

are unique to the computation of each PE Block, we build individual
coefficient buffers in each PE Block.

ESCALATE makes three contributions. First, ESCALATE accel-
erator features a novel Basis-First dataflow to exploit the unique
parallelism and data reuse opportunities brought by kernel decom-
position. Second, we propose a Dilution-Concentration scheme to
efficiently eliminate ineffectual computation with bit gather. Lastly,
ESCALATE provides an efficient input buffer design to support asyn-
chronously running PE slices to alleviate the impact of workload
imbalance.

4.1 Basis-First Dataflow
Existing CNN accelerator dataflows are designed for regular con-
volution. Those dataflows do not fit the two-stage computation
of the decomposition convolution. We propose the Basis-First (BF)
dataflow for decomposed convolution. Our objectives are to max-
imize the reuse of each batch of inputs, reduce the global buffer
accesses, and avoid stalling the MACs. The BF dataflow is illustrated
in Figure 3.

BF dataflow confines the computation of one output channel to
one PE block so that we can fully utilize the distributed coefficient
buffer and avoid cross-PE communication. We spatially map one
row of the output feature map to one PE slice with the offset of
the total number of PE slices. Inside each PE slice, we process one
position of all input feature maps at one time and spatially map each
intermediate channel (i.e., indexm) to each CA-MAC pair. Based
on the same observation with [30], we multiply each element of
the intermediate feature maps by all weights in the corresponding
kernel (partial weights for the elements on the edge). The product is
sent to the partial sum buffer and accumulated to the corresponding
output position through the read-modify-write operation. Since the
output accumulation is not at the critical path of the processing and
is less sensitive to the latency, we do not attempt to reduce bank
conflicts at the partial sum buffer with additional optimizations.

We also support regular convolution in ESCALATE as a fallback
for those layers that cannot be compressed (e.g., the first convo-
lutional layer). For those layers, we employ the input stationary
dataflow to align with the objective of maximizing input reuse for
decomposed convolution. We directly bypass the channel accumula-
tor and only use the MACs for these layers. For the fully connected
layer, we convert it into 1×1 convolution with 1×1 input feature
maps to maintain a unified mapping. We do not build separate units
to support the sparsity in those layers because: 1) they only take up
a small portion of the overall computation (< 5%); 2) those layers
usually have a low sparsity ratio and the overhead of supporting
sparsity for those layers can outweigh the computation reduction.
For example, as shown in [33], the pruning ratio of the first layer
is only 1.2-1.6× and the sparse weight even causes performance
degradation comparing with its dense version.

4.2 Dilution-Concentration
4.2.1 Sparse Encoding. The sparsity in weights and activations can
reduce the storage and bandwidth consumption. However, we need
a proper encoding scheme to index the non-zero values. Previous
works [30, 40] adopt the Compressed Sparse Row (CSR) or Com-
pressed Sparse Column (CSC), which use separate arrays to store

996

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Shiyu Li, Edward Hanson, Xuehai Qian, Hai “Helen” Li, and Yiran Chen

…

MAC

Masks
Generation

SparseMap

Chunks
Activation
Buffer

Channel
AccumulatorChannel

Accumulator
Channel

Accumulator

𝑀𝑀

…

𝑀𝑀

…

MAC MAC MAC

PE Line 1

Kernel
FIFO

…

Partial Sum Buffer
Output
Buffer

PE Block 1

…
𝑁𝑁𝑃𝑃𝑃𝑃

SUM

PE Line 2

PE Line 𝒍𝒍

Coefficient Buffer

Input Buffer 1

Input Buffer 2

Input Buffer 𝒍𝒍

D
RAM

…

Coefficients

Coef.
SparMap

Act. SparMap

Dilution

Act. Chunk

Sign Mask

Filter Mask

Concentration
Buffer

Adder
TreeChannel Accumulator

Circular Chunk BufferRequest Queue

Broadcast to
all Blocks

2 1 0

10 6 1
Chunk ID

Count

31 12 1
Ref. Count

012

31 12 0
Ref. Count

01
Update ID

(a)

(b)

(c)

Figure 2: (a) Themicroarchitecture of ESCALATE.M corresponds to the hyperparameter in the decomposed convolution, while
l andNPE is the design space parameter. (b) The design of channel accumulator. (c) The design of input buffer. Each input buffer
is implemented as a circular queue and use the reference count to evict the finished chunks.

for(k=blk_id; k<K; k+=Npe) //Each PE Block
for(y=line_id; y<Y; y+=l) //Each PE Slice

for(x=0; x<X; x++)
for(m=ca_id; m<M; m++) // Each CA-MAC pair

for(c=0; c<C; c++) //Channel Accumulator
mid[m][x][y] += I[c][x][y] * Ce[k][c][m]

for(r=0; r<R; r++) //MAC
for(s=0; s<S; s++)

O[k][x-R/2+r][y-S/2+s] += mid[m][x][y] * B[m][r][s]

IFM

X

1 2

1 2

1 2

𝐶𝐶𝑒𝑒 𝑘𝑘, : , :

M

C

Mid_FM

2 1

Basis Kernels OFM

X

1 2

1 2

1 2

M

C 2 1

X

R

S

Step 1

Step 2

(b)

(a)

Figure 3: The Basis-First Dataflow. (a) The nested-loop ex-
pression. Npe and l are design space parameters correspond-
ing to number of PE blocks and number of slices per block.
(b) The illustration of BF dataflow in one PE slice of the k-th
PE Block. The number represents the index of CA-MAC pair.
We assumeM = 2,C = 3 and current PE slices is the first one.
We assume a unit-stride convolution for simplicity.

the row/column index of the non-zero element. As discussed in [12],
CSR and CSC are not efficient when the sparsity ratio is relatively
low. Making it worse, the cost of storing one index is much higher
than storing multiple ternary values, making the indexing overhead
outweigh the benefits brought by sparsity.

We adopt the same SparseMap encoding of [12]. As shown in
Figure 4(a), we slice the input feature map along the X dimension
(i.e., row dimension) and store the rows of stride l in a contiguous
array, where l is the number of concurrent accumulations in the first
stage. The coefficients are sliced along the K dimension and stored
in separate arrays for each output channel. We store a separate
bit mask for each array indicating whether each position has non-
zero values. Both activations and coefficients are stored in C-order

to match the computation in the first stage of the decomposed
convolution. To maintain the space efficiency under high sparsity
situation, we also introduce a 2-level SparseMap encoding. We split
the sparse map into 16 bit chunks and use one bit per chunk to
indicate whether the chunk is all zero. The all zero chunks are not
stored. Apart from the space efficiency, SparseMap encoding also
simplifies the processing of the compressed arrays. We are able
to match the index of non-zero elements in activation and weight
arrays with bit-wise AND and bit gather operation, which has a
low energy cost. Moreover, SparseMap allows us to fully utilize
the on-chip bandwidth since we can implicitly extract the number
of processed elements through the index-matching process. We
can insert a barrier indicating moving to a new position, so we do
not need to split and pad the input as fixed-length chunks or have
varied access lengths.

4.2.2 Dilution. The purpose of the dilution process is to match the
input chunk of activations with the coefficients and filter out the
activations corresponding to the zero coefficients. The activations
are kept in high-precision (e.g., 8 or 16 bits) and the shuffling cost
is relatively high. Thus, we keep the “holes” in the filtered chunks
and leave it for the concentration step. Since the coefficients are
quantized to ternary, we only need to generate two masks, one for
filtering out the activations and the other for the sign. The gen-
eration of these two masks can be implemented with bit gather
operations, which has been well-studied [16]. In the gather opera-
tion, we use a mask to indicate the valid elements. We collect all
bits corresponding to the valid bits of the mask to the same side of
the array while keeping their original order.

We show an example of bit gather implementation with an in-
verse butterfly network of loд2(n) steps in Figure 4(b). With the
bit gather operator, we depict the dilution process in Figure 4(c).
Specifically, we calculate the intersection of input activations and
coefficients by bit-wise AND. The filtering mask is generated by
gathering the intersection with the activation sparse map as the
mask. To obtain the sign mask, we first generate a coefficient mask
by gathering the intersection with the sparse map of coefficients.

997

ESCALATE: Boosting the Efficiency of Sparse CNN Accelerator with Kernel Decomposition MICRO ’21, October 18–22, 2021, Virtual Event, Greece

b e
i

p

c
j

l n

a d
h

k m
o
c=1 c=2 c=3

𝑙𝑙=2

Encoding
a b c d e k m l n

h i j o p

1 1 0 0 0 1 1 1 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 1

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0

1 0 0 1 0 1 1 0 0 0 0 1 0 1 1 0

Mask Target

1 0 0 1 1 0 0 1

1 1 0 0 0 0 1 1

0 0 0 0 1 1 1 1

0 0 0 1 1 0 0 1

0 1 0 0 0 0 1 1

0 0 0 0 0 1 1 1
1 2

3
k=1

4
5

k=2

M

C
Encoding6 7

8
k=3

1 2 3

1 0 1 0 1 0

4 5

1 0 0 0 1 0

6 7 8

1 1 0 0 1 0
k=1 k=2 k=3

0 1 1 0

0 0 1 1 0 1 1 0

Sparse Map

1 0 0 1 0 1 1 0

0 0 0 1 0 1 1 0

GatherMask

0 1 1 1

0 1 1 1
Attach 0 2 17 9

Activations

Coefficients
&

Target

GatherMask

Target

Gather

Coefficients

Mask

Target

<< OR

+

Rolling Mask
Sign
Mask

Shamt

Bincount

<< OR

+

Rolling Mask

ShamtBincount -3 2 17 -9
Activations

&

(a) (b)

(c)

Figure 4: The illustration of sparse encoding and the dilution process. (a) The SparseMap encoding of the activations and
coefficients. we assume C = 3,M = 2,K = 3 for this example. (b) Bit gather operation with an inverted butterfly network. (c)
Dilution process. We generate activation masks and coefficient masks through bit gather, and use the masked coefficients as a
sign-mask to obtain the sign-extended activations for concentration process. We omit the higher 4-bits during process in the
figure for simplicity.

The coefficient mask indicates whether the corresponding non-zero
value of coefficients appears in the intersection. Then, we gather
the non-zero value (i.e., the sign bit of ternary coefficients) with
the coefficient mask and generate the sign mask. With the filtering
mask and sign mask, we can filter the input chunks and change
the sign of each filtered activation. The sign bit is also attached to
each activation for the concentration step to apply proper scaling.
Since the sparse map is transferred and stored separately with the
non-zero values, we can start the generation of the masks ahead of
the reading of the chunks. The whole process can be pipelined to
satisfy the timing constraints without impacting the throughput.

Since the distribution of non-zero elements could vary between
activations and coefficients, the size of the mask generated through
one pass might not be able to cover the current input chunk. We
address this issue by keeping a rolling mask, which is shown in
Figure 5. The newly generatedmasks are left-shifted by the length of
the current rolling masks and attached to the rolling mask through
bit-wise OR. Once the size of the rolling mask is large enough to

0 0 0 0 0 1 1 0
Mask_length=3

0 0 1 1 1 0 1 0

OR

<<
1

1 1 0 1 0 1 1 0

5 12 13 16 -3 -5 2 10
Input Chunks with Edge

X=1X=2

1 0 1 1 0 1 1 0
Rolling Mask

0 0 1 1 0 1 1 0

1 0 0 0 0 0 0 0

Partial Masks

Figure 5: Rolling mask and implicit barrier.

10

0

3

15

10

20

0

5

-8

3

23

-6

1

0

3

0

10

20

3

15

10

3

23

5

-8

1

3

-6

0

0

0

0

10 20 0 5 10 0 3 15
1 0 3 0 -8 3 23 -6

Figure 6: Concentration through look-ahead and look-aside.

cover the current chunk, the corresponding part is evicted from
the buffer. This scheme also supports the implicit barrier between
consecutive input positions. We keep a counter for the rolling mask.
If the count indicates that all elements that correspond to the current
position have been processed, we break the current mask into two
partial masks and separately apply them to the current input chunk.
In other words, the rolling mask creates a barrier to separate the
activations corresponding to different positions. With the barrier,
we can avoid the expensive element rotation operation and fully
utilize the bus bandwidth at the cost of two partially utilized cycles.

4.2.3 Concentration. With the “diluted” and signed chunks of acti-
vations, the concentration process is relatively simple. As shown in
Figure 6, we collect the chunks produced by the dilution process,
folding each of the chunks into multiple columns, and trying to
fill all zeros with the column-wise “look-ahead” and “look-aside”.
This process is equivalent to reorder the activations. Since we have
attached the coefficients as the sign bit, we can permute the activa-
tions in arbitrary order. We use double buffers in this step. When

998

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Shiyu Li, Edward Hanson, Xuehai Qian, Hai “Helen” Li, and Yiran Chen

one buffer is used to feed the activations to the reduction tree, we
collect and concentrate the processed chunks in the other buffer.
The functionalities of the two buffers swap when the adder tree
has processed all non-zero chunks. The concentration process is
performed in both buffers until the buffer is full or there’s no more
possible movement of the elements. The aforementioned barrier
results in an immediate flush of the buffer, which guarantees that
the chunks from different positions will not get mixed up.

We implement the Dilution-Concentration mechanism in Chan-
nel Accumulator Unit (CA), which is depicted in Figure 2(b). Since
the SparseMaps are stored and processed separately with the input
chunks, we can start the mask generation in advance and over-
lap the process with other parts of the computation. The parallel-
running mask generation could process the sparse pattern in ad-
vance and avoid blocking the major datapath.

4.3 Buffer Design
Unlike previous sparse accelerators, ESCALATE does not require a
reduction across PE slices. The load imbalance can be mitigated by
asynchronously running PE slices. However, it could also reduce
the reuse opportunities of the input feature maps and result in a
higher cost of data movement. We address this issue by altering the
input buffer design. Instead of using a large, unified input buffer, we
break it into multiple individual buffers. Each buffer is connected
to the PE slices of the same position in all PE blocks since they
process the same lines of the input feature map. Inside the buffer,
we organize the non-zero elements of the input feature maps into
chunks. Since the chunks are accessed strictly in order, we store
those chunks in a circular queue. We use registers to keep the
head and tail pointers to the queue. For each chunk, we keep a
chunk ID as well as a counter to count the number of PE slices
that have not processed this chunk. The buffer access requests are
collected through an H-Tree connecting each PE slice. The node of
the tree is an arbitrator that will also calculate the number of PE
slices which the current winning requests could cast to. A separate
request queue in the buffer stores all outstanding access requests.
The chunk as well as its ID corresponding to the head of the request
queue is broadcast to all PE slices. The counter of the accessed
chunk is updated by subtracting the count in the current request. If
the counter is decreased to zero, the corresponding chunk will be
evicted from the queue. A signal will be sent to all slices to update
the ID of the chunk. The chunk ID in the request queue will also be
updated. To efficiently utilize the capacity of the buffer, we apply a
greedy policy in each arbitrator. The arbitrator will prioritize the
request to earlier chunks. The design of the input buffer is shown
in Figure 2(c).

5 EVALUATION
To evaluate the effectiveness of the ESCALATE framework, we test
a variety of representative CNN models on both CIFAR-10[22] and
ImageNet[10] datasets. VGG16[36], which is known to be redundant
and easy to compress, is used as a sanity check for the proposed
framework. We select ResNet[14] as the target model for evalu-
ation, including two variants for CIFAR-10: a shallow ResNet18
and deep ResNet152. For ImageNet, we use ResNet50, which is
widely evaluated by previous compression works. We also select

Table 1: Compression result of ESCALATE algorithm.

Model Top-1 CONV Comp. Spar. Prun.1
(Method) (%) (MB) (×) (%) (%)

CIFAR-10
VGG16 93.49 56.12 - - -
STQ 92.38 2.21 25.10 N/A N/A

ADMM-NN-S 93.10 0.54 109 98.3
Ours 92.74 0.71 79.04 89.24 96.1

ResNet18 93.79 42.58 - - -
ADMM-NN-S 93.3 0.33 135 98.6

Ours 93.63 0.4 106.45 97.4 98.21
ResNet152 95.36 221.19 - - -
Naive_L1 94.12 20.452 13.31 92.49
Ours 93.86 0.68 325.27 99.2 99.4

MobileNetV2 94.09 8.40 - - -
ADMM-NN-S3 94.90 0.54 18.8 83.6

Ours 93.32 0.73 11.51 96.98 91.86
ImageNet

ResNet50 76.25 78.03 - - -
STR 74.31 7.622 10.24 90.23

ResRep 75.3 48.164 1.62 N/A 62.1
Ours 73.89 7.17 10.92 88.22 92.16

MobileNet 70.10 26.94 - - -
STR 68.35 6.652 4.05 75.28

ResRep 68.02 13.814 1.95 N/A 73.91
Ours 67.89 3.02 8.92 67.6 63.9

1w.r.t the original weights before decomposition.
2Does not include indices.
3Trained with Mixup augmentation.
4Estimated through FLOPs reduction reported in paper.

MobileNet [17] and MobileNetV2 [34] to evaluate the effectiveness
of our framework on compact models.

5.1 Algorithm
5.1.1 Experiment Settings. OnCIFAR-10, baselinemodels are trained
for 350 epochs using Nestrov accelerated SGD optimizer with 0.9
momentum and 0.0001 weight decay. The learning rate is set to
0.1 initially and multiplied by 0.1 at the 50% and 75% epochs. For
ESCALATE , we select M = 6 for decomposition. The retraining
process lasts for 300 epochs using ADAM [21] optimizer with 0.001
initial learning rate and the same decay policy. We set t = 0.05 in
the ternary quantization process of coefficients . On ImageNet, we
use the pre-trained model provided by PyTorch [31] as the ResNet50
baseline, and train the baseline model of MobileNet with 0.1 initial
learning rate. The retraining process lasts for 60 epochs with ADAM
optimizer with 0.0001 initial learning rate. Other parameters are
the same with CIFAR-10 training.

5.1.2 Analysis. The compression results of ESCALATE algorithm
are summarized in Table 1.We only show the result of convolutional
layers since the ESCALATE algorithm only processes convolutional
layers. Since other layers take up a small portion of the overall com-
putation cost, they have minor impact on the overall performance.
We assume 32bit floating-point precision for the baseline models.

999

ESCALATE: Boosting the Efficiency of Sparse CNN Accelerator with Kernel Decomposition MICRO ’21, October 18–22, 2021, Virtual Event, Greece

0
20
40
60
80
100

0
0.2
0.4
0.6
0.8

1
1.2

8 7 6 5 4 3 2

Ac
cu

ra
cy

 (%
)

M
od

el
 S

ize
 (O

ve
r F

P)

Precision (Bits)

Uniform-Size Hybrid-Size Basis-Size

Uniform-Acc Hybrid-Acc Basis-Acc

Figure 7: The comparison of model size and accuracy with
uniform, hybrid and basis-only quantization. We omit coef-
only since it shows identical behavior with hybrid.

For ESCALATE , we use 8bit for the first convolutional layer and
all the basis kernels and use the SparseMap encoding as mention
in Section 4.2 for the coefficients. We compare our result with the
quantization method STQ[27], the structured prunning method
ResRep [11], non-structured pruning method STR [23], and joint
pruning and quantization method presented in ADMM-NN-S[26].
Although ADMM-NN-S presents the results of both structured and
non-structured pruning methods, its structured pruning is a fine-
grained variant; the hardware still needs to be specialized to skip
the pruned columns in the filters. Since non-structured pruning
shows a higher pruning ratio, we select it as the baseline model
both in algorithm and hardware evaluation. For structured pruning
methods, we ignore the sparse encoding overhead and assume the
parameters are represented using 32bit floating point. The proposed
ESCALATE algorithm approaches the non-structured baselines in
terms of both compression ratio and accuracy. On CIFAR-10, we
achieve a compression rate ranging from 11× to 325×. ESCALATE
algorithm reaches a similar compression rate on all CIFAR-10 mod-
els with the non-structured ADMM-NN-S. The encoding overhead
of SparseMap results in the gap. ESCALATE is also able to effi-
ciently explore the redundancy in a large model like ResNet152
and prune 99.2% of parameters, compressing the orignal model by
325×. Some downsampling layers in ResNet152, especially those
in the last three residual blocks, are completely pruned. These re-
sults indicate that ESCALATE algorithm can effectively identify
and eliminate the redundancy in the CNN models. For the compact
MobileNetV2 model, we can also achieve over 11× compression
ratio. ESCALATE incurs a 1.5% accuracy loss on ResNet152, and less
than 0.8% accuracy loss on the remaining three models compared
to the uncompressed models. On ImageNet, we achieve a similar
sparsity with non-structured pruning method STR with less than
0.5% accuracy gap. For MobileNet, we maintain the accuracy at
67.89% while compressing the original model into 3.02MB.

We also show the advantage of hybrid quantization by perform-
ing post-training quantization on decomposed ResNet18 model.
Uniform quantization policy enforces the same precision on both
basis and coefficients, while hybrid quantization keeps the basis in 8
bits and only further quantizes the coefficients. The result is shown
in Figure 7. Since the basis kernels only occupy a small portion
of the parameters while being frequently reused in computation,
keeping the basis kernels in high precision effectively maintains
model accuracy. These results show that hybrid quantization can

Table 2: Configurations of ESCALATE and baselines.

ESCALATE
M 6 Input Buf. 8KB

NPE 32 Coef. Buf. 512Bytes
l 5 Output Buf. 4KB

Input Bus 16Byte Psum Buf. 2KB
Precision 8bit Act. Buf. 16Byte×4

Other Baselines
Proportional scaling of on-chip SRAM buffer.

1024 8-bit multipliers

Table 3: Unit energy cost per 8-bit integer operation ex-
tracted from commercial TSMC 65nm technology.

DRAM MAC Multiply Add
Energy(pJ/8-bit Int) 100 0.407 0.186 0.036

achieve almost the same compression ratio as uniform quantization
while maintaining accuracy.

5.2 Accelerator
5.2.1 Experiment Settings. To estimate power and area, we imple-
ment the RTL design of ESCALATE and synthesize it using Synopsys
Design Compiler with TSMC 65nm library under the typical cor-
ner, 1V, and 25°C. The design achieved 800MHz frequency. The
power and area estimated from the synthesized result is shown in
Table 4. We then implement a cycle-accurate simulator and verify
it against the RTL implementation. The simulator generates SRAM
and DRAM access traces. For SRAM, we use CACTI 7.0[3] to esti-
mate the power consumption. For DRAM, we simulate the trace
using ramulator[20] and extract the energy consumption from the
command trace with DRAMPower[4]. We only evaluate the con-
volutional layers since ESCALATE does not process other types of
layers, and the SCNN baseline only supports convolutional layers.

For performance baseline, we select a DNN accelerator optimized
for dense networks, Eyeriss[7], and two sparse CNN accelerators,
SCNN[30] and SparTen[12]. We use TimeLoop [29] to simulate
Eyeriss, and use DNNSim [18] to simulate SCNN, respectively. For
SparTen, we implement a cycle-accurate simulator and verify it
against results reported by the original paper. CACTI is used to
estimate the area and energy consumption of on-chip buffers. We
extract the energy consumption of unit operations under the same

Table 4: Power and Area estimation of PE Block(65nm)

Component Area(mm2) Power(mW)
Activation Buffer 0.0098 5.44

MAC Row 0.0159 7.79
Dilution 0.0450 17.77

Concentration 0.0906 46.74
Coef.&Psum Buffer 0.0538 8.33

Total 0.2150 86.07

1000

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Shiyu Li, Edward Hanson, Xuehai Qian, Hai “Helen” Li, and Yiran Chen

CIFAR10 ImageNet

CIFAR10 ImageNet

1 1 1 1 1 1 1
2.8

5.0
2.0

10.8

4.8

12.6

5.1

9.6 9.6

3.2

20.0

6.1
8.8 8.3

17.6
19.0

15.4

8.7

15.5
17.9

0

5

10

15

20

25

30

VGG16 ResNet18 ResNet152 MobileNetv2 ResNet50 MobileNet Geo. Mean

N
or

m
. S

pe
ed

up

Eyeriss SCNN

SparTen ESCALATE

46.31

1 1 1 1 1 1 11.8 1.6
0.7

2.2
1.3

3.1
1.6

4.0
2.8

1.0

6.2

1.5 1.3
2.2

11.7 11.7

15.1

1.7 1.4

8.3

0

5

10

15

20

VGG16 ResNet18 ResNet152 MobileNetv2 ResNet50 MobileNet Geo. Mean

N
or

n.
 E

ne
rg

y
Ef

fic
ie

nc
y Eyeriss SCNN

SparTen ESCALATE

65.17

Figure 8: The normalized speedup and energy efficiency
(over Eyeriss) of ESCALATE and baseline accelerators.

65nm technology node, as shown in Table 3, to estimate the en-
ergy cost of other hardware components. According to [39], the
energy cost of DRAM accesses can be approximated as 100pJ per 8
bits. The configuration of all baseline designs are adjusted to have
the same number of multipliers. For baseline accelerators, we use
the model checkpoints from ADMM-NN-S [26] for all CIFAR-10
models except ResNet152 and the checkpoints from STR [23] for all
ImageNet models. Since no previous work provides a checkpoint
for ResNet152, we use the naïve magnitude-based pruning method
with l1-regularization to build a sparse model. The sparsity of the
models used for baseline accelerators can be found in Table 1. Since
the result is also related to the activation sparsity, the result may
vary with different input samples. We randomly generate 10 input
samples and present the average speedup and energy consumption.
We list the configurations of ESCALATE accelerator and baseline
accelerators in Table 2.

5.2.2 Main Result. Figure 8 showcases the normalized speedup
and energy efficiency of all accelerators over Eyeriss. Compared
with the baseline accelerators, ESCALATE achieves the best perfor-
mance under all evaluated models. Comparing with Eyeriss, which
does not exploit sparsity, we achieve a speedup ranging from 8.7×
to 46.31×. ESCALATE benefits from the computation reduction

CIFAR10 ImageNet

163.1
84.8

18.3

54.1

3.0

0.9

18.1
33.8 24.7 12.3 12.3

1.0

0.2

5.3

41.4 37.7 19.0

10.3

2.3

1.0

9.4

1.0 1.0 1.0 1.0 1.0 1.0 1.0

0.1

1

10

100

1000

VGG16 ResNet18 ResNet152 MobileNetv2 ResNet50 MobileNet Geo. Mean

N
or

n.
 D

RA
M

 A
cc

es
se

s Eyeriss SCNN

SparTen ESCALATE

Figure 9: The normalized DRAM accesses (w.r.t. ESCALATE)
of baseline accelerators on all evaluated models.

CI
FA

R1
0

Im
ag

eN
et

0% 20% 40% 60% 80% 100%

VGG16

ResNet18

ResNet152

MobileNetv2

ResNet50

MobileNet
Act. Buf.
MAC
CA
Input Buf.
Psum Buf.
Coef. Buf.
DRAM

Figure 10: The inference energy breakdown of all evaluated
models. We omit the output buffer since its energy con-
sumption is negligible compared with other hardware com-
ponents.

brought by both sparsity and the decomposed form of convolution.
Since the second stage of the decomposed convolution is dense, the
upper limit for the speedup of each layer is determined by the layer
shape, specifically M/C . For CIFAR-10 models, the high sparsity
(>90%) enables the channel accumulator to produce intermediate
feature maps in time. Thus, if there is no idle MAC, the speedup
is bounded by the layer shape. For ImageNet models, the sparsity
is relatively low. The CA requires more cycles to produce an inter-
mediate element than a MAC needs to consume. The issue of idle
MAC cycles limits the performance, which we discuss in Section
6.2. Comparing with sparse baselines, ESCALATE also respectively
outperforms SCNN and SparTen by 3.5× and 2.16× on average.

As for the energy efficiency, the result diverges based on the
type of CNN models. Input feature maps of CIFAR-10 models are
relatively small. Thus, the off-chip access of weights dominates the
energy consumption. The coefficient compression makes it possible
for ESCALATE to retain most of the weights on-chip during the
whole computation process. ESCALATE can almost eliminate the
expensive DRAM accesses for weights during the computation,
resulting in over 10× improvement in energy efficiency. For Ima-
geNet models, the movement of input feature maps dominates the
DRAM traffic. ESCALATE has a similar energy consumption with
SparTen due to the same channel-first order in processing the input
feature maps. The large activation buffer of SCNN effectively re-
duces this part of the cost, resulting in up to 3.1× energy efficiency
improvement. On average, we achieve an 8.3× energy efficiency
improvement over Eyeriss, 5.19× improvement over SCNN, and
3.78× improvement over SparTen.

Figure 9 illustrates the normalized number of DRAM accesses
over ESCALATE . As we mentioned above, for ImageNet models, the
DRAM accesses for input feature maps dominate the overall energy
consumption. ESCALATE requires a similar or larger number of
DRAM accesses compared to baseline for these models. On CIFAR-
10, ESCALATE effectively reduces the expensive DRAM accesses.
The reduction relative to SCNN results from the eliminated off-chip
weight accesses. Comparing with SparTen, our input buffer design
exhaustively exploits the input reuse without enforcing a large-
scale synchronization barrier. On average, ESCALATE reduces the
DRAM accesses by 18.1× over Eyeriss, 5.3× over SCNN, and 9.4×
over SparTen, respectively.

Figure 10 shows the energy breakdown of ESCALATE accelerator
on all evaluated models. Apart from the DRAM accesses we have
discussed before, the breakdown also reveals a divergence in the

1001

ESCALATE: Boosting the Efficiency of Sparse CNN Accelerator with Kernel Decomposition MICRO ’21, October 18–22, 2021, Virtual Event, Greece

0.8

0.85

0.9

0.95

1

0
10
20
30
40
50
60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Sp
ar

si
ty

N
or

m
. S

pe
ed

up

Layer ID

ESCALATE SCNN SparTen Baseline-Spar ESCALATE-Spar

4×4
512 Channels

32×32
64 Channels

16×16
128 Channels

8×8
256 Channels

Figure 11: Layerwise sparsity and speedup over dense accelerator (Eyeriss) in ResNet-18 model. We also show the width (i.e.,
number of input channels) and the size of the input/output feature map of each layer.

energy consumption of buffers. For shallow models like ResNet18
or VGG16, the partial sum buffer dominates the buffer energy con-
sumption; this is because the output feature maps are kept dense
in the partial sum buffer and require frequent read-modify-write
operations. For deeper models like ResNet152, the cost of reading in-
put activations outweighs the partial sum accumulation. The large
number of 1 × 1 convolutional layers amortize the read-modify-
write cost of other types of layers. Moreover, the ResNet152 model
features more ‘late layers’, which have a large number of input
channels but a relatively small input size. This observation also ap-
plies to MobileNetv2 result since MobileNetv2 quickly downscales
the size of feature maps in early layers that have a small number
of channels. In summary, the reduction in DRAM accesses, espe-
cially off-chip weight accesses, is the main reason for the improved
energy efficiency of ESCALATE .

5.2.3 Layer-wise Analysis. The computational efficiency of ESCA-
LATE accelerator is affected by the layer width and the size of the
input feature maps. To evaluate the impacts of these factors, we
perform a layer-wise analysis. Figure 11 shows the layer-wise nor-
malized speedup of ESCALATE and all baseline sparse accelerators
in ResNet-18. We also mark the layer shape of each residual block
and present the sparsity of each layer. For the first layer, ESCA-
LATE is slower than the dense baseline for the following reasons, (1)
directly mapping the computation into MAC row without skipping
the zero activations or coefficients; (2) the fallback input station-
ary dataflow is not as efficient as the row stationary dataflow in
Eyeriss. Since the first layer only contributes to a small portion of
the overall computational cost, we do not further optimize for the
first layer in ESCALATE to avoid increasing the design complexity
and degrading the efficiency of other layers. For the other layers,
we can tell a clear boundary between SCNN and SparTen—SCNN
effectively utilizes spatial parallelism in early layers, while SparTen
exploits the channel parallelism in late layers. ESCALATE presents
a similar layer-wise speedup pattern to SparTen since both designs
use input channels as the inner-most loop of dataflow. Comparing
with SparTen, the overlapped two computation stages of ESCALATE
further boosts the efficiency. As we mentioned before, due to the
high sparsity in CIFAR-10 models, the performance is bounded by
layer shapes. Within the first three blocks of layers, ESCALATE
almost reaches the C/M limit of speedup. For the last block, the
speedup varies across layers. Since the input feature maps of these
layers are very small, most intermediate results require less than
RS cycles in MAC row, leaving the MACs running idle.

6 DISCUSSION
6.1 Design Trade-off
ESCALATE provides a trade-off between accuracy and latency/energy
by adjusting the number of basis kernelsM in the decomposition
step. With a differentM , we can adjust l to maintain the same num-
ber of MACs and resource consumption. Increasing the number of
basis kernels can effectively increase the model accuracy. However,
it also reduces the number of PE slices per block, leading to a reduc-
tion in row parallelism. We show the trade-off with both ResNet18
and ResNet50 models in Figure 12. ForM = 7, we achieve 93.83%
accuracy on ResNet18 and 74.09% on ResNet50. When increasingM ,
we have a smaller l under the constraints of maintaining the num-
ber of MACs, thus reducing the row parallelism and increasing the
latency. The change in l also affects the number of input buffers. A
larger l requires more input buffers but reduces the cost of off-chip
DRAM accesses. The energy consumption of other components
shows negligible change with the number of basis kernels.

6.2 Overhead Analysis
In ESCALATE design, both CA and MAC can be idle. If CA can-
not produce a new intermediate element before MAC finishes the
current computation, the MAC has to stall. Conversely, if MAC
requires more cycles to consume one element (e.g., a large kernel),
the CA has to stall. We only consider the idle MACs as overhead
since the idle CA can still process masks or perform concentration.
As we mentioned before, in CIFAR-10 models, we did not observe
significant idle MACs (< 0.05% of overall cycles) thanks to the high
sparsity ratio, while the issue of idle MACs limits the speedup of
ImageNet models. We show the layer-wise portion of MAC idle
cycles in Figure 13. The portion of idle cycles is determined by both

92.6

92.8

93

93.2

93.4

93.6

93.8

94

0

5

10

15

20

25

30

4 5 6 7

N
or

m
. S

pe
ed

up
/E

ne
rg

y
Ef

fi.

Basis

Speedup
Energy Effi.
Accuracy

71.5

72

72.5

73

73.5

74

74.5

0

2

4

6

8

10

12

14

4 5 6 7

Ac
cu

ra
cy

Basis

Speedup
Energy Effi.
Accuracy

ResNet-18 ResNet-50

Figure 12: The accuracy and latency/energy trade-off with
different number of basis kernels (M).

1002

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Shiyu Li, Edward Hanson, Xuehai Qian, Hai “Helen” Li, and Yiran Chen

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

1 2 3 4 5 6 7 8 9 10 11 12

Sp
ar

si
ty

M
AC

 Id
le

Layer ID

Figure 13: The MAC idle cycles and sparsity of each layer in
MobileNet.

the sparsity ratio and the distribution of non-zero elements. CA
requires more cycles to process the computation corresponding to
denser coefficients, leading to more idle cycles of MAC.

6.3 Modern Compact CNNs
Through our experiments, we observe that the variation in layer
dimensions could complicate the accelerator design. For sparse
accelerators, it’s difficult to be efficient under all types of layer con-
figurations. Modern compact CNNs, like EfficientNet [37], usually
include a rich set of layer variants, making it hard to be efficiently
deployed to a sparse-aware accelerator. We also noticed that, in our
experiments, sparse VGG16 is 1.5× faster than sparse MobileNetv2,
while they achieve a similar accuracy (0.5% difference). Modern
compact models are mostly designed for general-purpose proces-
sors on the edge. Since these platforms cannot efficiently support
processing sparse data, the compact models do not include the per-
formance of the sparse version into their design considerations.
They are not suitable for sparse-aware accelerators and might even
be outperformed by the sparse version of large and redundant
models. This situation motivates us to explore the possibilities of
jointly designing sparse-aware accelerator and hardware-aware
CNN models in future works.

7 RELATEDWORKS
CNN Compression. Pruning and decomposition are two impor-

tant compression techniques for CNN models. Pruning removes
the redundant structures in the CNN weights. Among all pruning
methods, weight pruning [13, 23, 41] removes individual weight
values based on its magnitude and recovers the accuracy using
different retraining techniques. Previous weight pruning methods
pursuit a high compression ratio, ignoring the hardware efficiency
of the compressed model. Structured pruning[11, 38] eliminates the
whole filter or channel to maintain its original computation flow
and data locality. Although structured pruning can directly benefit
the hardware, it can only achieve a limited compression ratio due to
the limited pruning pattern. Decomposition[24, 42] adopts matrix
decomposition or tensor decomposition to represent the original
weight tensor with multiple low-rank structures. These works did
not exploit the sparsity in the decomposed models. In summary,
previous compression methods focus on algorithm level metrics
or the speedup on existing hardware, ignoring the potential of the
co-optimization.

CNN Accelerators. A vast number of CNN accelerator designs
have been proposed to boost the inference efficiency. Dense accel-
erators [5–7] optimize the inference efficiency by exploring the
reuse opportunities and designing efficient dataflows. Later designs
add the support for sparse CNN models: Cambricon-X [40] and
Cnvlutin [2] only utilize the sparsity from one side. SCNN [30] and
SparTen [12], which we have extensively discussed in our paper,
exploit the two-sided sparsity. The bit-serial accelerators[1, 9, 35]
reduce the computation by removing ineffectual bits during the
multiplication. Since the whole value, other than just effectual bits,
needs to be stored and transferred, these designs may not reduce
the bandwidth cost. Another type of sparsity-aware accelerators
optimizes for sparse tensor or matrix operations and maps CNN
model onto these primitives. ExTensor [15] optimizes for sparse
tensor operations, while SIGMA[32] optimizes for sparse GEMM
operations. These accelerators are not specifically optimized for
the inference of sparse CNN.

8 CONCLUSION
In this paper, we present ESCALATE , a kernel decomposition-based
algorithm-hardware co-design framework to boost the inference
efficiency of sparse CNN models. We reorganize the decomposed
convolution to eliminate the computation bottleneck and apply
hybrid quantization to exploit the discrepancy in parameter reuse
frequencies. We propose ‘Basis-First’ dataflow and corresponding
microarchitecture design to support the ESCALATE -compressed
CNNmodel. Extensive experiments show that ESCALATE algorithm
achieves up to 325× compression rate with negligible additional
accuracy loss compared to previous compression techniques, while
ESCALATE accelerator outperforms previous sparse CNN accel-
erator designs with up to 2.16× reduction in latency and 3.77×
improvement in energy efficiency.

ACKNOWLEDGMENTS
This work was supported in part by NSF-2112562, NSF-1937435,
ARO-W911NF-19-2-0107, NSF-1822085, and NSF IUCRC for ASIC
memberships including Samsung, etc. Any opinions, findings, and
conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of
the grant agencies or their contractors.

REFERENCES
[1] Jorge Albericio, Alberto Delmás, Patrick Judd, Sayeh Sharify, Gerard O’Leary,

Roman Genov, and Andreas Moshovos. 2017. Bit-Pragmatic Deep Neural Net-
work Computing. In 2017 50th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). 382–394.

[2] Jorge Albericio, Patrick Judd, Tayler Hetherington, Tor Aamodt, Natalie Enright
Jerger, and Andreas Moshovos. 2016. Cnvlutin: Ineffectual-Neuron-Free Deep
Neural Network Computing. In Proceedings of the 43rd International Symposium
on Computer Architecture (ISCA ’16). 1–13. https://doi.org/10.1109/ISCA.2016.11

[3] Rajeev Balasubramonian, Andrew B Kahng, Naveen Muralimanohar, Ali Shafiee,
and Vaishnav Srinivas. 2017. CACTI 7: New tools for interconnect exploration
in innovative off-chip memories. ACM Transactions on Architecture and Code
Optimization (TACO) 14, 2 (2017), 1–25.

[4] Karthik Chandrasekar, Christian Weis, Yonghui Li, Sven Goossens, Matthias
Jung, Omar Naji, Benny Akesson, Norbert Wehn, and Kees Goossens. [n. d.].
DRAMPower: Open-source DRAM Power & Energy Estimation Tool. http:
//www.drampower.info.

[5] Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu, Yunji Chen,
and Olivier Temam. 2014. DianNao: A Small-Footprint High-Throughput Accel-
erator for Ubiquitous Machine-Learning. In Proceedings of the 19th International

1003

https://doi.org/10.1109/ISCA.2016.11
http://www.drampower.info
http://www.drampower.info

ESCALATE: Boosting the Efficiency of Sparse CNN Accelerator with Kernel Decomposition MICRO ’21, October 18–22, 2021, Virtual Event, Greece

Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS ’14). 269–284. https://doi.org/10.1145/2541940.2541967

[6] Yunji Chen, Tao Luo, Shaoli Liu, Shijin Zhang, Liqiang He, Jia Wang, Ling Li,
Tianshi Chen, Zhiwei Xu, Ninghui Sun, et al. 2014. DaDianNao: A Machine-
Learning Supercomputer. In 2014 47th Annual IEEE/ACM International Symposium
on Microarchitecture. IEEE, 609–622.

[7] Yu-Hsin Chen, Tushar Krishna, Joel S Emer, and Vivienne Sze. 2016. Eyeriss:
An Energy-Efficient Reconfigurable Accelerator for Deep Convolutional Neural
Networks. IEEE journal of solid-state circuits 52, 1 (2016), 127–138.

[8] Yu-Hsin Chen, Tien-Ju Yang, Joel Emer, and Vivienne Sze. 2019. Eyeriss v2: A
Flexible Accelerator for Emerging Deep Neural Networks on Mobile Devices.
IEEE Journal on Emerging and Selected Topics in Circuits and Systems 9, 2 (2019),
292–308. https://doi.org/10.1109/jetcas.2019.2910232

[9] Alberto Delmas Lascorz, Patrick Judd, Dylan Malone Stuart, Zissis Poulos,
Mostafa Mahmoud, Sayeh Sharify, Milos Nikolic, Kevin Siu, and Andreas
Moshovos. 2019. Bit-Tactical: A Software/Hardware Approach to Exploiting
Value and Bit Sparsity in Neural Networks (ASPLOS ’19). 749–763. https:
//doi.org/10.1145/3297858.3304041

[10] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Im-
ageNet: A large-scale hierarchical image database. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition(CVPR). 248–255.

[11] Xiaohan Ding, Tianxiang Hao, Ji Liu, Jungong Han, Yuchen Guo, and Guiguang
Ding. 2020. Lossless CNN Channel Pruning via Gradient Resetting and Convolu-
tional Re-parameterization. arXiv preprint arXiv:2007.03260 (2020).

[12] Ashish Gondimalla, Noah Chesnut, Mithuna Thottethodi, and TN Vijaykumar.
2019. SparTen: A Sparse Tensor Accelerator for Convolutional Neural Networks.
In Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microar-
chitecture. 151–165.

[13] SongHan, Huizi Mao, andWilliam J Dally. 2016. Deep Compression: Compressing
Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding.
International Conference on Learning Representations (ICLR) (2016).

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual
Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition(CVPR). 770–778.

[15] Kartik Hegde, Hadi Asghari-Moghaddam, Michael Pellauer, Neal Crago, Aamer
Jaleel, Edgar Solomonik, Joel Emer, and Christopher W. Fletcher. 2019. ExTensor:
An Accelerator for Sparse Tensor Algebra. In Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO ’52). 319–333.
https://doi.org/10.1145/3352460.3358275

[16] Yedidya Hilewitz and Ruby B Lee. 2008. Fast Bit Gather, Bit Scatter and Bit
Permutation Instructions for Commodity Microprocessors. Journal of Signal
Processing Systems 53, 1 (2008), 145–169.

[17] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. 2017. MobileNets:
Efficient Convolutional Neural Networks for Mobile Vision Applications. arXiv
preprint arXiv:1704.04861 (2017).

[18] isakedo. [n. d.]. isakedo/DNNsim. [EB/OL]. https://github.com/isakedo/DNNsim.
[19] Yong-Deok Kim, Eunhyeok Park, Sungjoo Yoo, Taelim Choi, Lu Yang, and

Dongjun Shin. 2016. Compression of Deep Convolutional Neural Networks
for Fast and Low Power Mobile Applications. In 4th International Conference
on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016,
Conference Track Proceedings.

[20] Yoongu Kim, Weikun Yang, and Onur Mutlu. 2015. Ramulator: A Fast and
Extensible DRAM Simulator. IEEE Computer Architecture Letters 15, 1 (2015),
45–49.

[21] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-
mization. In 3rd International Conference on Learning Representations, ICLR 2015,
San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings.

[22] A. Krizhevsky and G. Hinton. 2009. Learning Multiple Layers of Features from
Tiny Images.Master’s thesis, Department of Computer Science, University of Toronto
(2009).

[23] Aditya Kusupati, Vivek Ramanujan, Raghav Somani, Mitchell Wortsman, Prateek
Jain, Sham Kakade, and Ali Farhadi. 2020. Soft Threshold Weight Reparameteri-
zation for Learnable Sparsity. In International Conference on Machine Learning.
PMLR, 5544–5555.

[24] Vadim Lebedev, Yaroslav Ganin, Maksim Rakhuba, Ivan V. Oseledets, and Victor S.
Lempitsky. 2015. Speeding-up Convolutional Neural Networks Using Fine-tuned
CP-Decomposition. In 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings.

[25] Shiyu Li, Edward Hanson, Hai Li, and Yiran Chen. 2020. PENNI: Pruned Kernel
Sharing for Efficient CNN Inference. In Proceedings of the 37th International Con-
ference onMachine Learning, ICML 2020, 13-18 July 2020, Virtual Event (Proceedings
of Machine Learning Research), Vol. 119. PMLR, 5863–5873.

[26] Xiaolong Ma, Sheng Lin, Shaokai Ye, Zhezhi He, Linfeng Zhang, Geng Yuan,
Sia Huat Tan, Zhengang Li, Deliang Fan, Xuehai Qian, Xue Lin, Kaisheng Ma,
and Yanzhi Wang. 2021. Non-Structured DNN Weight Pruning–Is It Beneficial
in Any Platform? IEEE Transactions on Neural Networks and Learning Systems
(2021), 1–15. https://doi.org/10.1109/TNNLS.2021.3063265

[27] Grégoire Morin, Ryan Razani, Vahid Partovi Nia, and Eyyüb Sari. 2019. Smart
Ternary Quantization. arXiv preprint arXiv:1909.12205 (2019).

[28] Wei Niu, Xiaolong Ma, Sheng Lin, Shihao Wang, Xuehai Qian, Xue Lin, Yanzhi
Wang, and Bin Ren. 2020. PatDNN: Achieving Real-Time DNN Execution on
Mobile Devices with Pattern-Based Weight Pruning. In Proceedings of the Twenty-
Fifth International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS ’20). 907–922. https://doi.org/10.1145/3373376.
3378534

[29] Angshuman Parashar, Priyanka Raina, Yakun Sophia Shao, Yu-Hsin Chen,
Victor A. Ying, Anurag Mukkara, Rangharajan Venkatesan, Brucek Khailany,
Stephen W. Keckler, and Joel Emer. 2019. Timeloop: A Systematic Approach to
DNN Accelerator Evaluation. In 2019 IEEE International Symposium on Perfor-
mance Analysis of Systems and Software (ISPASS). 304–315. https://doi.org/10.
1109/ISPASS.2019.00042

[30] Angshuman Parashar, Minsoo Rhu, Anurag Mukkara, Antonio Puglielli, Rang-
harajan Venkatesan, Brucek Khailany, Joel Emer, Stephen W. Keckler, and
William J. Dally. 2017. SCNN: An Accelerator for Compressed-Sparse Con-
volutional Neural Networks. In Proceedings of the 44th Annual International
Symposium on Computer Architecture (ISCA ’17). 27–40. https://doi.org/10.1145/
3079856.3080254

[31] PyTorch. [n. d.]. torchvision.models – PyTorch 1.7.0 documentation. [EB/OL].
https://pytorch.org/docs/1.7.0/torchvision/models.html.

[32] Eric Qin, Ananda Samajdar, Hyoukjun Kwon, Vineet Nadella, Sudarshan Srini-
vasan, Dipankar Das, Bharat Kaul, and Tushar Krishna. 2020. SIGMA: A Sparse
and Irregular GEMM Accelerator with Flexible Interconnects for DNN Training.
In 2020 IEEE International Symposium on High Performance Computer Architecture
(HPCA). 58–70. https://doi.org/10.1109/HPCA47549.2020.00015

[33] Ao Ren, Tianyun Zhang, Shaokai Ye, Jiayu Li, Wenyao Xu, Xuehai Qian, Xue
Lin, and Yanzhi Wang. 2019. ADMM-NN: An Algorithm-Hardware Co-Design
Framework of DNNs Using Alternating Direction Methods of Multipliers. In
Proceedings of the Twenty-Fourth International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS ’19). 925–938. https:
//doi.org/10.1145/3297858.3304076

[34] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-
Chieh Chen. 2018. MobileNetV2: Inverted Residuals and Linear Bottlenecks. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR).

[35] Sayeh Sharify, Alberto Delmas Lascorz, Mostafa Mahmoud, Milos Nikolic, Kevin
Siu, Dylan Malone Stuart, Zissis Poulos, and Andreas Moshovos. 2019. Laconic
Deep Learning Inference Acceleration. In Proceedings of the 46th International
Symposium on Computer Architecture (ISCA ’19). 304–317. https://doi.org/10.
1145/3307650.3322255

[36] Karen Simonyan and Andrew Zisserman. 2015. Very Deep Convolutional Net-
works for Large-Scale Image Recognition. In 3rd International Conference on
Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Confer-
ence Track Proceedings.

[37] Mingxing Tan and Quoc V. Le. 2019. EfficientNet: Rethinking Model Scaling
for Convolutional Neural Networks. In Proceedings of the 36th International
Conference onMachine Learning, ICML 2019, 9-15 June 2019, Long Beach, California,
USA (Proceedings of Machine Learning Research), Vol. 97. PMLR, 6105–6114.

[38] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. 2016. Learning
Structured Sparsity in Deep Neural Networks. In Proceedings of the 30th Interna-
tional Conference on Neural Information Processing Systems (NIPS’16). 2082–2090.

[39] Xuan Yang, Mingyu Gao, Jing Pu, Ankita Nayak, Qiaoyi Liu, Steven Emberton
Bell, Jeff Ou Setter, Kaidi Cao, Heonjae Ha, Christos Kozyrakis, et al. 2018. DNN
Dataflow Choice Is Overrated. arXiv preprint arXiv:1809.04070 (2018).

[40] Shijin Zhang, Zidong Du, Lei Zhang, Huiying Lan, Shaoli Liu, Ling Li, Qi Guo,
Tianshi Chen, and Yunji Chen. 2016. Cambricon-X: An accelerator for sparse
neural networks. In 2016 49th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). 1–12. https://doi.org/10.1109/MICRO.2016.7783723

[41] Tianyun Zhang, Shaokai Ye, Kaiqi Zhang, Jian Tang, Wujie Wen, Makan Fardad,
and Yanzhi Wang. 2018. A Systematic DNN Weight Pruning Framework using
Alternating Direction Method of Multipliers. In Proceedings of the European
Conference on Computer Vision (ECCV).

[42] Xiangyu Zhang, Jianhua Zou, Kaiming He, and Jian Sun. 2016. Accelerating Very
Deep Convolutional Networks for Classification and Detection. IEEE Transactions
on Pattern Analysis and Machine Intelligence 38, 10 (2016), 1943–1955. https:
//doi.org/10.1109/TPAMI.2015.2502579

[43] Xuda Zhou, Zidong Du, Qi Guo, Shaoli Liu, Chengsi Liu, Chao Wang, Xuehai
Zhou, Ling Li, Tianshi Chen, and Yunji Chen. 2018. Cambricon-S: Addressing Ir-
regularity in Sparse Neural Networks through A Cooperative Software/Hardware
Approach. In 2018 51st Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO). 15–28. https://doi.org/10.1109/MICRO.2018.00011

[44] Chenzhuo Zhu, Song Han, Huizi Mao, andWilliam J. Dally. 2017. Trained Ternary
Quantization. In 5th International Conference on Learning Representations, ICLR
2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings.

1004

https://doi.org/10.1145/2541940.2541967
https://doi.org/10.1109/jetcas.2019.2910232
https://doi.org/10.1145/3297858.3304041
https://doi.org/10.1145/3297858.3304041
https://doi.org/10.1145/3352460.3358275
https://github.com/isakedo/DNNsim
https://doi.org/10.1109/TNNLS.2021.3063265
https://doi.org/10.1145/3373376.3378534
https://doi.org/10.1145/3373376.3378534
https://doi.org/10.1109/ISPASS.2019.00042
https://doi.org/10.1109/ISPASS.2019.00042
https://doi.org/10.1145/3079856.3080254
https://doi.org/10.1145/3079856.3080254
https://pytorch.org/docs/1.7.0/torchvision/models.html
https://doi.org/10.1109/HPCA47549.2020.00015
https://doi.org/10.1145/3297858.3304076
https://doi.org/10.1145/3297858.3304076
https://doi.org/10.1145/3307650.3322255
https://doi.org/10.1145/3307650.3322255
https://doi.org/10.1109/MICRO.2016.7783723
https://doi.org/10.1109/TPAMI.2015.2502579
https://doi.org/10.1109/TPAMI.2015.2502579
https://doi.org/10.1109/MICRO.2018.00011

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Convolution Operation
	2.2 Processing Sparse CNN
	2.3 Kernel Decomposition in CNN
	2.4 Motivation

	3 ESCALATE Algorithm
	3.1 Computation Reorganization
	3.2 Hybrid Quantization
	3.3 Decomposing the Compact Model

	4 ESCALATE Architecture
	4.1 Basis-First Dataflow
	4.2 Dilution-Concentration
	4.3 Buffer Design

	5 Evaluation
	5.1 Algorithm
	5.2 Accelerator

	6 Discussion
	6.1 Design Trade-off
	6.2 Overhead Analysis
	6.3 Modern Compact CNNs

	7 Related Works
	8 Conclusion
	Acknowledgments
	References

