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A B S T R A C T   

This paper presents an adaptive robust Energy Management (EM) model for an isolated Microgrid (MG) to decide 
for the day-ahead optimal dispatch to effectively manage the MG power sources considering uncertainties in 
Renewable Energy Sources (RESs). The aim of this model is to minimize the operation costs, reactive power costs, 
spinning reserve and load shedding. Usually, fuel consumption costs of diesel generators are considered to be 
dependent on active power generation only. However, neglecting the related reactive power costs might result in 
increased operation costs and deviations from optimal dispatches. Hence, this paper optimizes the costs related to 
both active and reactive powers of diesel generators. Furthermore, simultaneous active/reactive power dispatch 
can lead to accurate operation decisions compared to separate dispatch for active or reactive power alone. In 
addition, this study considers the reactive power capability of inverter-interfaced Distributed Energy Resources 
(DERs) so that reactive powers can be supplied from inverter-interfaced DERs. Moreover, detailed models for the 
different resources are presented, especially for diesel generators and inverter interfaced DERs where actual 
capability curves are used instead of the widely used box constraints. The problem is formulated as nonlinear 
programming problem using GAMS program and solved by the CONOPT solver.   

1. Introduction 

1.1. Motivation and Incitement 

Uncertainty in modern power systems has a salient bad effect on the 
optimal decisions not only in the planning stage but also in the operation 
phase. Recently, the effect of uncertainty increases with more penetra-
tions of renewable energies and increased demands. Uncertainty in 
modern energy systems comes from various sources such as load vari-
ations, failure of components, intermittent behavior of renewable en-
ergy sources (RESs), and energy price changes. Classical optimization 
techniques that prove to be accurate under deterministic conditions 
become insufficient in computational ability in the microgrids (MGs) 
framework due to their wider range of uncertainties in the decision 
variables like component failures and RESs forecast errors [1]. In system 

operation, it is more complex to manage uncertainties than in planning 
stage as if the forecasts are not accurate, approximations are accepted 
and deviations can be rescued in the operation stage. Furthermore, the 
effect of uncertainties in MGs is higher than that of conventional power 
systems as MGs are small power systems so that even small variations 
would have a significant influence. Neglecting the effect of the RESs 
uncertainties may affect the MG operation schedule such that the final 
optimal decision may not be the best operating point in the practical 
application [2]. 

The classical way to handle uncertainty in power systems is considering 
some spinning reserve to be deployed when needed but if the reserve re-
quirements are underestimated this leads to reliability issues and on the 
other hand, overestimation may result in increased costs. Stochastic opti-
mization (SO) has a huge literature in uncertainty modeling in power 
systems applications. Uncertain parameters in stochastic programming are 
usually represented by scenarios sampled from probability distributions. 
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Nomenclature 

Indices and Sets 
Ωi

g Set of generators connected to bus “i” 
Ωi

l Set of lines connected to bus “i” 
EB Second stage decisions 
ED First stage decisions 
g ε G Diesel Generator 
i,j ε I Indices for buses 
L Set of lines 
tε T Time periods “h” 
xi Type of load at bus “i” that can be shed (residential and 

commercial) 

Constants and Parameters 
α Load shedding percentage ε {0, 25, 50, 75, 100} 
θij Phase angle of line “ij” 
Δch,Δdis Charging and discharging efficiency of BESS 
Δt Time slot “h” 
∅ Rated power factor angle of generator 
Φl Power factor angle of different loads 
μw, μpv Uncertainty sets for wind and PV, respectively 
ΔPw

i , ΔPpv
i Deviations of wind, PV powers from forecast 

ΔPw,max
i , ΔPpv,max

i Max. deviations of wind, PV powers from forecast 
Γw, Γpv Budget of uncertainty for wind and PV, respectively 
ag, bg, cg Active power cost coefficients of diesel generators 
a′

g, b′

g, c′

g Reactive power cost coefficients of diesel generators 
Cd Diesel fuel cost $/L or $/gal 
Emax Max induced EMF of synchronous generator “V” 
Nw, Npv Number of wind and PV sources, respectively 
Pg,max Max active power of generator “g” 
Pg,min Min active power of generator “g” 
Pch

i,max , Pch
i,min Max and min charging power of BESS at bus “i” 

Pdis
i,max,Pdis

i,min Max and min discharging power of BESS at bus “i” 

PPV,forecast
i,t Forecasted PV power connected to bus “i” at time “t” 

PW,forecast
i,t Forecasted wind power connected to bus “i” at time “t” 

Rup,max
g ,Rdn,min

g Max, min spinning reserve capacity for generator “g” 
Sg,rating VA rating of Generator “g” 
Sij,max, Sij,min Max and min VA rating capacity of line “ij” 
SOCi,max Max state of charge of BESS connected to bus “i” 
SOCi,min Min state of charge of BESS connected to bus “i” 
Vc,max Max converter voltage “V” 
VDER DER voltage “V” 
Vi,max, Vi,min Max and min bus voltage “V” 
Vt Synchronous generator terminal voltage “V” 
VOLLxi Value of lost load cost “$/kWh” for load type “x” 
X Reactance of transformers and grid filters “Ω” 
Xs Synchronous reactance of synchronous generator “Ω” 
Zij Impedance of line “ij” ,“Ω” 

First Stage Variables 
δi,t, δj,t Voltage angle of bus “i” or “j” at time “t” 
PDER,t DER active power scheduled dispatch at time “t”   

For BESS: PDER = Pdis,sch
i,t − Pch,sch

i,t   
For RES (PV, Wind): PDER = PPV,sch

i,t or PW,sch
i,t 

Pij,t Active power flow through line “ij” at time “t” 
Pch,sch

i,t Scheduled BESS active power charging at bus “i” & time “t” 

Pdis,sch
i,t Scheduled BESS active power discharging at bus “i” & time 

“t” 
Pl

i,t Active load at bus “i” at time “t” 
QDER,t DER reactive power scheduled dispatch at time “t”   

For BESS: QDER = QBESS,sch
i,t   

For RES (PV, Wind): QDER = QPV,sch
i,t or QW,sch

i,t 

Qg,t Scheduled Reactive power of generator “g” at time “t” 
Qij,t Reactive power flow through line “ij” at time “t” 
QBESS,sch

i,t Scheduled BESS reactive power at bus “i” & time “t” 
Ql

i,t Reactive load at bus “i” at time “t” 

QPV,sch
i,t Scheduled PV reactive power at bus “i” and time “t” 

QW,sch
i,t Scheduled Wind reactive power at bus “i” and time “t” 

Rup
g,t Scheduled up spinning reserve for generator “g” at time “t” 

Rdn
g,t Scheduled down spinning reserve for generator “g” at time 

“t” 
Sij,t Apparent power flow through line “ij” at time “t” 
SOCi,t Scheduled State of charge of BESS at bus “i” and time “t” 

Second Stage Variables 
γ Auxiliary variable represents the worst-case recourse cost 
δi,t, s, δj,t, s Voltage angle of bus “i” or “j” at time “t”at deviation “s” 
PDER,t, s DER active power dispatch at time “t”at deviation “s”   

For BESS: PDER = Pdis
i,t,s − Pch

i,t,s   
For RES (PV, Wind): PDER = PPV

i,t,s or PW
i,t,s 

Pij,t, s Active power flow through line “ij” at time “t”at deviation 
“s” 

Pch
i,t,s BESS active power charging at bus “i” & time “t” & 

deviation “s” 
Pdis

i,t,s BESS active power discharging at bus “i” & time “t” at 
deviation “s” 

PPV
i,t,s PV active power at bus “i” and time “t” at deviation “s” 

PW
i,t,s wind active power at bus “i” and time “t” at deviation “s” 

Plsh
i,t,s Active load shed at bus “i” & time “t” & deviation “s” (=0 

for industrial load) 
QDER,t, s DER reactive power dispatch at time “t” at deviation “s”   

For BESS: QDER = QBESS
i,t,s   

For RES (PV, Wind): QDER = QPV
i,t,s or QW

i,t,s 
Qg,t, s Reactive power of generator “g” at time “t” at deviation “s” 
Qij,t, s Reactive power flow through line “ij” at time “t” at 

deviation “s” 
QBESS

i,t,s BESS reactive power at bus “i” & time “t” at deviation “s” 
QPV

i,t,s PV reactive power at bus “i” and time “t” at deviation “s” 
QW

i,t,s Wind reactive power at bus “i” and time “t” at deviation “s” 
Qlsh

i,t,s Reactive shedding at bus “i", time “t” & deviation “s” (=0 
for industrial load) 

rup
g,t,s up reserve deployment for generator “g” at time “t” at 

deviation “s” 
rdn
g,t,s down reserve deployment for generator “g” at time “t” at 

deviation “s” 
Sij,t, s Apparent power flow through line “ij” at time “t” at 

deviation “s” 
SOCi,t, s State of charge of BESS at bus “i” and time “t” at deviation 

“s” 

Acronyms 
BESS Battery Energy Storage System 
DER Distributed Energy Resource 
EM Energy Management 
GAMS General Algebraic Modeling System 
LV Low Voltage 
MG Microgrid 
OPF Optimal Power Flow 
PV Photovoltaic 
RES Renewable Energy Source 
SOC State of Charge 
VOLL Value of Loss of Load 
WT Wind Turbine  
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Probability distributions are fitted and modeled according to the available 
historical data and experience which may not reflect the statistical prop-
erties of the uncertain variables accurately. Each scenario can be seen as a 
plausible realization of the stochastic variable. Large number of scenarios 
is required to perfectly model the stochastic variable but this leads to 
intractability and computational complexity problems. Therefore, scenario 
reduction is required to solve this problem in expense of some information 
loss [3–5]. 

On the other hand, robust optimization (RO) is another method for 
handling uncertainties that requires moderate information about the un-
certain variables through uncertainty set to restrict the uncertainties 
within upper and lower limits to make robust decisions against worst 
cases. RO does not require fitting or modeling neither probability distri-
butions nor scenario generation thus, computational complexity is 
reduced dramatically compared to SO. The disadvantages of RO are that 
its solution is conservative and considering low probability (worst) cases 
may result in increased costs compared to SO [2,4]. Although these dis-
advantages, RO can be a good uncertainty modeling technique in isolated 
MGs as the isolated MGs depend on their local power sources without 
access to the main grid, so that the operation priority is given to reliable 
continuity of supply rather than operation cost reduction compared to grid 
connected MGs that have main grid support [6,7]. 

1.2. Literature review 

Day-ahead energy management (EM) in MGs are widely studied in the 
literature in order to effectively manage the local power sources to supply 
its load demands in the most techno-economical way over a certain time 
horizon to find the optimal dispatch of the different sources. In [8], EM 
model is proposed for an isolated MG with unbalanced conditions and a 
novel linearization approach is proposed. Whereas in [9], an EM model 
with demand response is derived with a smart load estimator in an isolated 
MG. While in [10], EM model is proposed to minimize the operation costs 
and emissions for different operating strategies. Also, in [11], EM of MGs 
including plug-in hybrid electric vehicles is proposed while maximizing 
the employment of RESs. While in [12], EM is used in a high RESs pene-
tration MG to reduce energy cost, power fluctuations, peak load, and 
emissions while maximizing the reliability. Whereas in [13], EM strategy is 
derived with smart charging/discharging of plug-in hybrid electric vehi-
cles while improving the lifetimes of Battery Energy Storage Systems 
(BESSs) and decreasing the energy drawn from the upstream utility grid. In 
[14], the aim is to manage an MG with RESs and BESSs for optimizing the 
peak load curtailment with adaptive neuro-fuzzy inference system fore-
casting. In [15], a multi objective particle swarm optimization is presented 
to reduce the MG different costs and reliability indices. While in [16], a 
mixed-integer linear programming model for the optimal EM of residential 
MGs, modeled as unbalanced, three-phase system is presented. Also, in 
[17], a power quality constrained optimal EM for three phases residential 
MG is developed in the transition mode between grid-connected and 
islanded operation to minimize the operation costs considering the outage 
of the main grid. In all the previous studies, the uncertainties from RESs are 
not considered which may affect the optimal dispatch and the calculated 
operation cost results. 

Several studies have considered the RESs uncertainties using RO. 
For example, in [18], the mathematical formulation and architecture 
of a robust EM system for isolated MGs featuring RESs, energy storage, 
and interruptible loads is presented utilizing RO. Whereas in [19], A 
scenario-based robust EM method considering the worst-case condi-
tions of RESs and load is developed in this paper. The economic and 
robust model is proposed to optimize the operation cost and social 
benefits simultaneously. While in [20], RO is utilized to effectively 
handle the RESs and electricity price uncertainties in an AC/DC hybrid 
MG. While in [7], chance constraint approximations and RO ap-
proaches are developed to face the uncertainties from RESs and heat 
demands. Whereas in [6], two-stage RO is used to obtain robust de-
cisions considering the uncertain RESs, market prices, and voltage 

dependent loads in the day-ahead operation planning of unbalanced 
three phase MGs. Although in the aforementioned studies RESs un-
certainties are considered using RO in the EM model but the contri-
bution of the reactive power from Distributed Energy Resources 
(DERs) units or BESSs was not considered. This leads to loss the op-
portunity to gain benefits from the reactive power capability of DERs 
even with the use of power electronic converters. Moreover, the cost 
of reactive power of diesel generators was not considered. Therefore, 
optimal dispatch results may be affected and errors in the calculated 
total operation costs will occur. The optimization of the reactive 
power supplied from DERs to allow for ancillary services such as 
voltage support and the reduction of power losses has been considered 
in [21,22]. However, these studies did not consider the costs related to 
the reactive power. In addition, most of these studies solve the OPF 
problem either for the active power dispatch or the reactive power 
dispatch, which may result in deviations from the system optimal 
solutions. 

Despite some studies have taken the costs of reactive power into 
account in the problem of reactive power dispatch [23,24] but the active 
power dispatch is not considered. Simultaneous active/reactive power 
dispatch in the EM problem can lead to accurate operation decisions 
compared to the separate dispatch for active power or reactive power 
when executed alone. 

1.3. Contributions and paper organization 

As shown from the previous review, RESs uncertain behavior is a 
critical issue in isolated MG operational planning to operate the system 
securely. RO is selected in this paper due to its reliable behavior in the 
worst-case scenario which is a major concern in isolated MGs and its 
lower computational complexity compared to SO. Reactive power costs 
from conventional generators are usually neglected for simplifications 
and due to their small value compared to active power costs which af-
fects the operation cost calculations. Therefore, considering the diesel 
reactive power costs is concerned in this work to study their effect on the 
overall operation costs. Utilization of the inverter interfaced DERs 
reactive power capability is usually neglected although power electronic 
converters have high installation costs, and therefore their capacity 
should be fully utilized to reduce the stress on diesel generators and 
reduce the operation costs. Despite the possibility of managing the 
dispatch of both active and reactive powers of the different sources, most 
works have focused on one or the other although they are related and 
should be co-optimized so that the optimal operating decisions can be 
found accurately. Detailed modeling of the generators and inverter 
interfaced DERs through their capability curves is important to provide 
more accurate representations of these power sources. 

Therefore, in this paper, a day-ahead adaptive (two-stage) robust EM 
in an isolated MG is proposed based on network-constraint multi-period 
AC OPF. The isolated MG has a variety of power/energy sources; 
including diesel generators, Wind Turbines (WTs), PhotoVoltaic (PV) 
systems, and BESSs. The optimization problem aim is to decide for the 
day-ahead optimal dispatch and the optimal worst case re-dispatch of 
the MG. The objective is to effectively manage the available sources such 
that the opertaion costs related to diesel generators and load shedding 
are minimized. Hence, the main contributions in this paper compared to 
the previous literature can be highlighted as follows:  

• Reactive power costs from diesel generators are considerd. These were 
usually neglected or considered separately from active power costs 
although they are related and should be co-optimized. Neglecting 
diesel reactive power costs causes deviations in the optimal dispatch 
results and introduces errors in the calculated total operational costs.  

• Utilization of the reactive power capability of the inverter-interfaced 
DERs like WTs, PVs, and BESSs with consideration of the capability 
curves of the inverters to get benefit from this ability and do not 
depend only on diesel generators in supplying reactive power. In 
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most of the previous literature, only active powers are supplied from 
DERs.  

• Detailed modeling of the synchronous diesel generators and inverter 
interfaced DERs by the consideration of their capability curves not 
just the widely used box constraints to provide a realistic behavior of 
these sources. 

The rest of the paper is organized as follows. Section 2 provides the 
detailed adaptive robust EM problem formulation. Section 3 discusses 
the MG test system description and Section 4 presents the results and 
discussions. Conclusions are outlined in Section 5. 

2. Adaptive robust energy management problem formulation 

RO concerns with decision making problems under uncertainty that 
are not characterized by probability distributions but uncertainty sets. 
An uncertainty set is utilized to model the possible deviations of the 
uncertain variables and it has a set structure. A RO problem aims to find 
a solution that is feasible for any realization of the uncertain variables 
within the uncertainty set, and optimal for the worst-case condition 
[25]. 

The problem is a two-stage optimization problem, where the here- 
and-now decisions contain the day-ahead active/reactive power and 
reserve dispatch for the different power sources while the redispatch at 
the balancing stage are wait-and-see decisions, which adapt to the 
realization of the uncertainty. The adaptation in the second stage can be 
carried out by a redispatch of the diesel generators and load shedding 
events [26]. 

2.1. Adaptive robust energy management problem objective function 

The objective is to minimize the day-ahead operation costs and the 
worst-case re-dispatch costs. The objective function is given by a min- 
max-min problem as following: 

min
ED

{

C1 +C2 + max
ΔPw

i ,ΔPpv
i ϵμ

min
EBϵB(ED ,ΔPw

i ,ΔPpv
i )

C3

}

(1)  

Where: 

C1 = Cd

{
∑

tϵT

∑

gϵG

[(
ag P2

g,t + bg Pg,t + cg

)
+ bg

(
RUP

g,t + RDN
g,t

)]
}

,

C2 = Cd*

{
∑

tϵT

∑

gϵG

[
a′

g Q2
g,t + b′

g Qg,t + c′

g

]
}

, and

C3 = Cd

∑

tϵT

∑

gϵG
bg

(
rup

g,t,s − rdn
g,t,s

)
+
∑

tϵT

∑

iϵI

(
VOLLxi * Plsh

i,t,s

)

The related active power fuel cost is a function of the fuel con-
sumption and it is given by the first term in the objective function. The 
fuel consumption characteristics can be fitted to a quadratic function of 
the active power output and the cost coefficients can be obtained [20]. 
The scheduled reserve cost is assumed to be linear and added to the fuel 
costs in the first term. Moreover, the related reactive power costs of the 
diesel generators are given in the second term. The simplest form for the 
related reactive power costs from diesel generators is the triangle 
method where the reactive power cost coefficients are related to their 
corresponding active power cost coefficients, i.e., a′

g = ag sin2∅, b′

g =

bg sin∅, c′

g = cg [23,24]. 
The third term (inner max-min problem) of the objective function is 

the second stage worst case cost and is composed of two terms; the 
deployed reserve costs and the load shedding related costs depending on 
the RESs deviations within the uncertainty set. The outer maximization 
problem finds the worst-case realization of the deviations ΔPw

i and ΔPpv
i of 

uncertain RESs production from their forecast. These deviations are to be 

chosen from within an uncertainty sets μw and μpv, which will be defined 
later. Once the worst-case realization of the uncertainty is fixed, the inner 
minimization problem determines the optimal second stage decision. 
These decision variables must be optimized within the feasibility set B, 
which relies on the first stage decision set ED and the worst-case re-
alizations ΔPw

i and ΔPpv
i of the uncertainty. Therefore, the feasibility set B 

is defined by the constraints representing the second stage (i.e., the 
recourse problem). 

VOLL is a metric that calculates the cost per unit energy not supplied 
to consumers. Alternatively, this is the price consumers would pay to 
prevent disconnections [27]. Many studies have used arbitrary values 
for VOLL, but this may affect the accuracy of the model and the cost 
results [16,28,29]. Therefore, in this paper, inflation adjusted real VOLL 
values are utilized to obtain more accurate results [27]. 

2.2. Adaptive robust energy management problem constraints 

The adaptive robust EM problem constraints are divided into first- 
stage constraints and second-stage constraints as follows. 

2.2.1. The problem first stage (day-ahead) constraints 
These are the constraints pertaining to the scheduling stage and 

involving first-stage variables. 

2.2.1.1. The problem first stage equality constraints. These constraints 
include the active and reactive power balance at each bus, the active, 
reactive, and apparent power flow through lines, BESSs state of charge, 
and preventing the simultaneous charging/discharging of the BESSs for 
each time slot.  

• Active power balance at each bus and time: 
∑

gϵ Ωi
g

Pg,t + PW,forecast
i,t + PPV,forecast

i,t + Pdis,sch
i,t − Pch,sch

i,t − Pl
i,t =

∑

jϵ Ωi
l

Pij,t

(2)    

• Reactive power balance at each bus and time: 
∑

gϵ Ωi
g

Qg,t + QW.sch
i,t + QPV,sch

i,t + QBESS,sch
i,t − Ql

i,t =
∑

jϵ Ωi
l

Qij,t (3)    

• Active power flow through lines at each time: 

Pij,t =
V2

i,t

Zij
cosθij −

Vi,t*Vj,t

Zij
cos

(
δi,t − δj,t + θij

)
(4)    

• Reactive power flow through lines at each time: 

Qij,t =
V2

i,t

Zij
sinθij −

Vi,t*Vj,t

Zij
sin
(
δi,t − δj,t + θij

)
(5)    

• Apparent power flow through lines at each time: 

S2
ij,t = P2

ij,t + Q2
ij,t (6)    

• Storage state of charge at each bus and time: 

SOCi,t = SOCi,t− 1 +
(
Pch,sch

i,t
* ηch − Pdis,sch

i,t
/

ηdis
)
*Δt (7)    

• Storage charging and discharging allowance at each bus and time: (to 
prevent charging and discharging simultaneously): 
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Pch,sch
i,t *Pdis,sch

i,t = 0 (8)   

2.2.1.2. The problem first stage inequality constraints. These constraints 
involve the capability curves and the spinning reserve limits for diesel 
generators, inverter interfaced DERs capability curves, BESSs SOC 
limits, BESSs charging and discharging power limits, line capacity limits, 
and bus voltage limits for each time slot.  

• Diesel Generator Active and Reactive Power Limits (Generator 
Capability Curves) [30,31]:  
- Prime-mover limits at each time: 

Limits on the mechanical power input from the prime-mover impose 
constraints on the active power generation. 

Pg,t + RUP
g,t ≤ Pg,max (9)   

Pg,t − RDN
g,t ≥ Pg,min (10)     

- Armature current limits at each time: 

The armature current results in copper losses leading to increased 
temperature in armature windings and the surrounding environ-
ment. This encounters a limitation on generator maximum current 
flowing in the armature without overheating. The apparent power 
rating depends on the armature current and the terminal voltage of 
the generator. 

Pg,t
2 + Q2

g,t ≤ S2
g,rating (11)     

- Field current limits at each time: 

A maximum limit on the value of the field current is imposed by the 
heating in the field winding due to copper losses in the field circuit. 

Pg,t
2 +

(

Qg,t +
V2

i,t

Xs

)2

≤

(
Emax*Vi,t

Xs

)2

(12)     

- Diesel generators spinning reserve limits at each time: 

0 ≤ RUP
g,t ≤ Rup,max

g (13)  

0 ≤ RDN
g,t ≤ Rdn,max

g (14)    

- Inverter Interfaced DERs’ Capability Curves: 

In this paper; WTs, PVs, and BESSs DERs are assumed to have inverter 
interface with the MG so that reactive power as well as active power 
could be supplied according to their capability curves. It is possible to 
represent the constraints due to the converter current and voltage 
limitations, analogous to the synchronous generators, by the following 
constraints, respectively [32,33]:   

- Inverter current limits at each time: 

P2
DER,t + Q2

DER,t ≤
(
VDER,t *Ic,max

)2 (15)    

- Inverter voltage limits at each time: 

P2
DER,t +

(

QDER,t +
V2

DER,t

X

)2

≤

(
Vc,max*VDER,t

X

)2

(16)    

• Storage state of charge limits at each bus and time: 

SOCi,min ≤ SOCi,t ≤ SOCi,max (17)    

• Storage charge and discharge active power limits at each bus and 
time: 

Pch
i,min ≤ Pch,sch

i,t ≤ Pch
i,max (18)  

Pdis,sch
i,min ≤ Pdis,sch

i,t ≤ Pdis,sch
i,max (19)    

• Line capacity limits at each time: 

Sij,min ≤ Sij,t ≤ Sij,max (20)    

• Bus voltages bounds at each time: 

Vi,min ≤ Vi,t ≤ Vi,max (21)   

2.2.2. The problem second stage (balancing) constraints 
These constraints define the feasibility set B in (1), which determines 

the operating region of the MG in the actual operation. Indeed, in the RO 
framework, it is sufficient to apply one instance of the operation con-
straints, valid for the worst-case condition; i.e., the deviation of the 
uncertain RESs generation. In contrast, in the SO technique one set of 
second stage constraints for each scenario should be enforced. 

2.2.2.3. The problem second stage equality constraints. These constraints 
include the active and reactive power balance at each bus, the active, 
reactive, and apparent power flow through lines, BESSs SOC, preventing 
the simultaneous charging/discharging of the BESSs, and load shedding 
for each time slot and deviation.  

• Active power balance at each bus, time, and deviation: 

rup
g,t,s − rdn

g,t,s + ΔPW
i,t,s + ΔPPV

i,t,s + Pdis
i,t,s − Pdis,sch

i,t − Pch
i,t,s + Pch,sch

i,t + Plsh
i,t,s

=
∑

jϵ Ωi
l

Pij,t,s −
∑

jϵ Ωi
l

Pij,t

(22)    
• Reactive power balance at each bus, time, and deviation: 

QW
i,t,s − QW,sch

i,t + QPV
i,t,s − QPV,sch

i,t + QBESS
i,t,s − QBESS,sch

i,t + Qlsh
i,t,s

=
∑

jϵ Ωi
l

Qij,t,s −
∑

jϵ Ωi
l

Qij,t (23)    

• Active power flow through lines at each time and deviation: 

Pij,t,s =
V2

i,t,s

Zij
cos θij −

Vi,t,s*Vj,t,s

Zij
cos

(
δi,t,s − δj,t,s + θij

)
(24)    

• Reactive power flow through lines at each time and deviation: 

Qij,t,s =
V2

i,t,s

Zij
sin θij −

Vi,t,s*Vj,t,s

Zij
sin
(
δi,t,s − δj,t,s + θij

)
(25)    

• Apparent power flow through lines at each time and deviation: 

S2
ij,t,s = P2

ij,t,s + Q2
ij,t,s (26)    

• Storage state of charge at each bus, time and deviation: 

SOCi,t,s = SOCi,t− 1,s +
(

Pch
i,t,s * ηch − Pdis

i,t,s

/
ηdis

)
*Δt (27)  
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• Storage charging and discharging allowance at each bus, time and 
deviation: (to prevent charging and discharging simultaneously): 

Pch
i,t,s*Pdis

i,t,s = 0 (28)    

• Load shedding at each bus, time and deviation: 

Plsh
i,t,s = αPl

i,t (29)   

Qlsh
i,t,s = Plsh

i,t,s tan Φl (30)   

2.2.2.4. The problem second stage inequality constraints. These constraints 
involve the capability curves and the spinning reserve limits for diesel 
generators, inverter interfaced DERs capability curves, BESSs SOC limits, 
BESSs charging and discharging power limits, line capacity limits, bus 
voltage limits, and load shedding limits for each time slot and deviation. 

• Diesel Generator Active and Reactive Power Limits (Generator Capa-
bility Curves):  
- Prime-mover limits at each time and deviation: 

Pg,t + rup
g,t,s ≤ Pg,max (31)  

Pg,t − rdn
g,t,s ≥ Pg,min (32)    

- Armature current limits at each time and deviation: 
(

Pg,t + rup
g,t,s − rdn

g,t,s

)2
+
(
Qg,t
)2

≤ S2
g,rating (33)    

- Field current limits at each time and deviation: 

(
Pg,t + rup

g,t,s − rdn
g,t,s

)2
+

(

Qg,t +
V2

i,t,s

Xs

)2

≤

(
Emax*Vi,t,s

Xs

)2

(34)    

- Up/Down deployment reserve limits at each time and deviation: 

0 ≤ rup
g,t,s ≤ RUP

g,t (35)  

0 ≤ rdn
g,t,s ≤ RDN

g,t (36)  

Inverter Interfaced DERs’ Capability Curves at each time and 
deviation:  
- Inverter current limits at each time and deviation: 

P2
DER,t,s + Q2

DER,t,s ≤
(
VDER,t,s *Ic,max

)2 (37)    

- Inverter voltage limits at each time and deviation: 

P2
DER,t,s +

(

QDER,t,s +
V2

DER,t,s

X

)2

≤

(
Vc,max*VDER,t,s

X

)2

(38)    

• Storage State of Charge Limits at each bus, time and deviation: 

SOCi,min ≤ SOCi,t,s ≤ SOCi,max (39)    

• Storage charge and discharge active power limits at each bus, time 
and deviation: 

Pch
i,min ≤ Pch

i,t,s ≤ Pch
i,max (40)  

Pdis
i,min ≤ Pdis

i,t,s ≤ Pdis
i,max (41)    

• Load shedding limits at each bus, time and deviation: 

0 ≤ Plsh
i,t,s ≤ Pl

i,t (42)    

• Line capacity limits at each time and deviation: 

Sij,min ≤ Sij,t,s ≤ Sij,max (43)    

• Bus voltages bounds at each time and deviation: 

Vi,min ≤ Vi,t,s ≤ Vi,max (44)   

2.3. Uncertainty sets definition 

Polyhedral uncertainty sets are commonly utilized in the problems of 
adaptive RO. Considering symmetrical intervals for the deviations of 
both PVs and WTs power generation from their forecast, maximum de-
viations can be utilized to construct the uncertainty sets μpv, μw for PVs 
and WTs, respectively. Furthermore, a budget of uncertainty is included to 
limit the overall output deviations for RESs as following: 

μw
(
ΔPw

i ,ΔPw,max
i , Γw

)
:=

∑

Nw

⃒
⃒ΔPw

i

⃒
⃒

ΔPw,max
i

≤ Γw (45)  

μpv

(
ΔPpv

i ,ΔPpv,max
i , Γpv

)
:=

∑

Npv

|ΔPpv
i |

ΔPpv,max
i

≤ Γpv. (46) 

The budget of uncertainty controls the level of conservatism as it can 
be varied from “0” to “Nw” for WTs and from “0” to “Npv” for PVs. When 
Γw and Γpv = 0, the uncertainty sets become singleton equal to the RES 
forecast and the problem is converted to the normal deterministic case. 
As Γw and Γpv increase, the size of the uncertainty sets enlarges. This 
implies that larger deviations from the forecast are supposed, thus the 
resulting operation solutions are more conservative and the MG is pro-
tected against a higher level of uncertainty. When Γw and Γpv equal to 
Nw and Npv respectively, the uncertainty sets will be defined by the 
whole intervals for each one of them. 

The budget of uncertainty constraint ensures that the output of the 
two RESs cannot be at the lower or upper allowed production limits 
resulting from (45) and (46) at the same time. Indeed, if the production 
from one RES is at the lower limit then, the deviation for the other must 
be at most equal to 40 % of its maximum value. This represents nature’s 
behavior and added to restrict the conservatism of the robust optimi-
zation problem and avoid less likely occurring events [25]. 

Furthermore, the maximum deviations from RESs power forecast can 
be described by the following constraints: 
⃒
⃒ΔPw

i

⃒
⃒ ≤ ΔPw,max

i (47)  

|ΔPpv
i | ≤ ΔPpv,max

i (48) 

The maximum RESs forecast deviations can be extracted utilizing the 
predicted forecast errors in short term forecasting studies. In general, 
wind forecasting errors are often considered to be higher than solar 
ones. For 24 and 48-h-ahead horizons, wind errors become twice the 
solar ones. Based on various studies reviewed in [34] and [35], the 
maximum error bounds for the 24-h-ahead wind power forecast is 
ranged from 30 % to 50% and for solar is from 6 to 30 %. In this paper, 
the used values for maximum power deviations from forecasts for wind 
and solar are 40%, 20%, respectively. 
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2.4. Problem reformulation as a single minimization problem 

A non-physical auxiliary variable γ representing the worst-case cost 
can be introduced, which is the optimal objective function value of the 
internal max-min problem in (1). Then the problem could be solved as a 
single minimization problem after including the following constraint:   

Where the optimal redispatch decisions are written as a function of the 
deviations of RESs output. However, recalling that the uncertainty sets μw 
and μpv, defined by (45)–(48) represent polyhedrons that contain an 
infinite number of points. Then, there is an instance of each second stage 
variable and constraint for each (ΔPw

i ∈ μw ,ΔPpv
i ∈ μpv). Since the sets 

μw and μpv are uncountable, the reformulation proposed above would 
lead to a problem with an infinite number of constraints and variables for 
the second stage. In practice, for linear problems it is shown that only the 
vertices of the polyhedral uncertainty set are part of the solution to the 
internal max-min problem [26]. However, in the proposed nonlinear 
problem, simple division (sampling) of the uncertainty sets (polyhedrons) 
into large number of points can be achieved to get rid of this problem in a 
simple way. The uncertainty sets for PVs and WTs are shown in Fig. 1 after 
sampling to a certain number of points. 

Therefore, the problem objective function (1) can be reformulated as 
follows: 

min
ED

(C1 +C2 + γ) (50) 

With the constraints from (2) to (21) are applied and (22) to (49) for 
all “s” are also applied where the subscript “s” refers to the considered 
deviation points from the uncertainty sets (after sampling) which 
represent the RESs deviations. γ is the auxiliary variable defined in (49). 

3. Test system description 

The low voltage MG shown in Fig. 2 is used in this paper to imple-
ment the proposed EM strategy [32,36]. An 80-kW diesel generator is 

connected to Bus 1 to represent the slack bus for this isolated MG. The 
total active and reactive powers for the loads are presented in Fig. 3. The 
available active power profiles for wind and PV are displayed in Fig. 4. 
The cost parameters for diesel generators are obtained using the curve 
fitting MATLAB tool “cftool” to fit the fuel consumption data to a second 
order polynomial function. The specification data for the diesel gener-
ators are shown in Table 1 while the inverter interfaced DERs data are 

given in Table 2. The charging/discharging efficiencies of the BESS are 
assumed to be 77% [37]. The maximum and minimum bus voltages are 
supposed to be 1.05 and 0.95 p.u., respectively. 

Three types of loads are considered in this system; residential, 
commercial and industrial with their profiles taken from [32,36]. It is 
assumed that load shedding can be done for 0, 25%, 50%, 75% or 100% 
of the commercial and residential loads at any bus. The cost of load 
shedding compensation is included utilizing real cost data from [27] and 
after inflation adjustment, the VOLL for residential and commercial 
loads are obtained. In addition, the price of the diesel fuel is averaged 
and inflation adjusted as obtained from [38,39]. These data are pre-
sented in Table 3. 

4. Results and discussion 

The day-ahead EM problem based adaptive robust optimization is 
modeled as a nonlinear programing (NLP) problem in the General 
Algebraic Modeling System (GAMS) environment [40] and is solved 
using the CONOPT solver. The CONOPT solver is a feasible path solver 
based on the generalized reduced gradient algorithm. The general 
framework of the proposed problem formulation and solution pro-
cedure is presented in Fig. 5. First, the optimization problem is solved 
with considering/neglecting the reactive power costs of diesel gener-
ators while considering/neglecting the reactive power capabilities 
from inverter interfaced DERs to investigate their impact on the MG 
operation while considering RESs uncertainty. Furthermore, the effect 
of the number of deviation points in the uncertainty sets on the ac-
curacy of the uncertainty modeling and MG operation is analyzed. 
Moreover, the impact of budget of uncertainty on the total operation 

Fig. 1. Uncertainty sets for PV and wind.  

γ ≥

{

Cd

∑

tϵT

∑

gϵG
bg

(
rup

g,t

(
ΔPw

i ,ΔPpv
i
)
− rdn

g,t

(
ΔPw

i ,ΔPpv
i
))

+
∑

tϵT

∑

iϵI

(
VOLLxi Plsh

i,t

(
ΔPw

i ,ΔPpv
i
))
}

,

∀ ΔPw
i ∈ μw ,ΔPpv

i ∈ μpv

(49)   
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Fig. 2. The benchmark Microgrid [32,36].  

Fig. 3. Total active and reactive power loads.  

Fig. 4. Available active power forecast for RESs.  

Table 1 
Specification data for diesel generators.   

Diesel generator 
specifications 

Fuel consumption 
coefficients 

Type used 

Bus Rated 
power 
“kW” 

Min power 
“kW” 

ag  bg  cg  

1 80 40 0.5149 4.474 0.7389 Caterpillar 
DE110E2 

7 36 18 0.7485 1.473 0.5761 Caterpillar 
DE50E0  

Table 2 
Inverter Interfaced Distributed Energy Resources (DERs) data.  

Bus Type DER rated power “kW” Inverter type used 

3 BESS 30 Delta M30A/M50A 
4 WT 20 TRIO-30.0-TL-OUTD-W 
5 PV 10 ABB–PVI 
6 PV 10 ABB–PVI 
12 WT 20 TRIO-20.0-TL-OUTD-W  

Table 3 
Further system data.  

Load shedding costs (VOLL) “$/kWh” 

Commercial Loads 55.88 
Residential Loads 2.39  
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cost is studied. Finally, the effect of changing the RESs penetration 
level on the system performance is studied. 

4.1. Impact of considering/neglecting the reactive power capabilities and 
costs 

In this section the optimization problem is solved with considering/ 
neglecting the reactive power costs of diesel generators while consid-
ering/neglecting the reactive power capabilities from inverter interfaced 
DERs to investigate their impact on the MG operation while considering 
RESs uncertainty in the problem formulation. 

4.1.1. Case (1) Neglecting reactive power costs and reactive power support 
from inverter interfaced DERs 

In this case, the diesel reactive power costs are not considered and 
there is no reactive power support from inverter interfaced DERs. In other 
words, the term related to reactive power costs from diesel generators is 
omitted from the objective function and both RESs and BESS are able to 
provide active powers only. The optimized total operation costs in this 
case, where the diesel reactive power costs are not accounted, are 270,237 
$/day. However, the actual total operation costs should be 317,413 $/day 
as there are 47,176 $/day (reactive power costs) not added. The neglected 
reactive power costs are calculated as follows; after the optimization is 
executed, the non-optimized reactive power costs from the dispatched 
diesel reactive power, Fig. 6, are calculated using the relevant terms of Eq. 
(1). The generators active power dispatched are shown in Fig. 7. 

4.1.2. Case (2): Neglecting reactive power costs while considering reactive 
power support from inverter interfaced DERs 

In this case, the diesel reactive power costs are neglected while 
inverter interfaced DERs are assumed to supply reactive power. The 
reactive powers produced from diesel generators are slightly decreased 
compared to Case 1, Fig. 8. This is because the reactive power costs were 
not optimized in both cases while in case 2 some reactive power is 
supplied from inverter interfaced DERs. Hence, in this case, both diesel 
generators and inverter based DERs are treated similarly regarding the 
reactive power injection. 

In this case, diesel generators can supply active power at a given cost 
and reactive power at no cost while inverter interfaced DERs can supply 

both active and reactive powers at no cost. Therefore, the reactive power 
loads are supplied mainly from diesel generators while the active power 
loads are mainly supplied from DERs. The generators active power 
dispatched are nearly the same as case 1 and shown in Fig. 9. 

The optimized total operation costs per day in this case are 262,312 $ 
without considering the reactive power costs (38,440 $). This makes the 
actual total operation costs to be 300,752 $. The diesel reactive power 
costs in this case are less than the previous case because some of the 
reactive powers are provided from DERs as shown in Fig. 10. 

4.1.3. Case (3): Considering reactive power costs without reactive power 
support from inverter interfaced DERs 

In this case, there is no capability for inverter interfaced DERs to 
generate reactive power while considering the diesel reactive power 
costs. The diesel generators’ active power dispatches are as the previous 
cases. The diesel reactive power dispatches are shown in Fig. 11 which 
indicates a reduction in the dispatch compared to the previous cases. 

Fig. 5. Framework of the proposed adaptive robust energy management model 
and solution procedure. 

Fig. 6. Reactive power dispatch of diesel generators (Case 1).  

Fig. 7. Active power dispatch of diesel generators (Case 1).  

Fig. 8. Reactive power dispatch of diesel generators (Case 2).  
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This is because the reactive power costs are considered in the optimi-
zation objective. The active powers supplied from diesels are presented 
in Fig. 12. 

The optimized (actual) total operation costs are 298,085 $/day 
which are less than cases (1) and (2) due to the consideration of the 
diesel reactive power costs in the optimization. The reactive power cost 
from diesel generators in this case is 35,288 $/day, which is less than the 
previous cases. 

4.1.4. Case (4): Considering reactive power costs and reactive power 
support from inverter interfaced DERs 

This case verifies the impact of utilizing the reactive power capability 
of inverter interfaced DERs in reducing the operation costs while taking 
the reactive power costs from diesel generators into account. In this case, 
the optimized (actual) total operation costs per day are 294,263 $, 
which is the lowest as compared to all the previous cases. The reactive 

power costs are 31,894 $/day in this case, the lowest reactive power 
costs in all cases due to taking the reactive power costs from diesel 
generators into account and the reactive power support from DERs. The 
reactive power dispatched from diesel generators are reduced compared 
to the previous cases and shown in Fig. 13 as more reactive powers are 
supplied from the DERs, Fig. 14. The generators active power dispatched 
are displayed in Fig. 15. The different costs for all cases are tabulated in 
Table 4. 

4.2. Impact of the selected number of points in the uncertainty sets 
The number of selected points should be large enough in order to 

represent the whole situations within the uncertainty sets but this affects 
the computational burden and execution time badly. Thus, the number 
of points affects the accuracy of the solution and a tradeoff between the 
number of points and the accuracy of the solution should be considered. 

The operation costs are shown in Fig. 16 versus the selected number 
of points within the uncertainty sets. As shown from this figure, as the 
number of points is increased, the operation costs are increases due to 
the increased uncertainties that could be considered till roughly being 
constant after 40 points which may be acceptable at representing the 
whole deviations. 

Furthermore, the computation performance of the robust EM model 
is evaluated through Fig. 17. In this figure, as the number of points 
within the uncertainty set increases, the execution time as well as the 
number of iterations are increased as expected but they seem not to be 
settled at certain values as the optimization takes some time searching 
for the worst-case solutions when the number of points is increased. 

4.3. Impact of the budget of uncertainty 
As the budget of uncertainty increases, the size of the RESs deviations 

from forecast increases so that the size of the uncertainty set increases 
which results in scheduling more reserves to face these increased un-
certainties which finally increase the total operation costs. Fig. 18 shows 

Fig. 9. Active power dispatch of diesel generators (Case 2).  

Fig. 10. Reactive power dispatch from DERs (Case 2).  

Fig. 11. Reactive power dispatch of diesel generators (Case 3).  

Fig. 12. Active power dispatch of diesel generators (Case 3).  

Fig. 13. Reactive power dispatch of diesel generators (Case 4).  
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the total operation costs as the budget of uncertainty increases to 
interpret its effect. As shown from this figure, the budget of uncertainty 
can be utilized as a parameter for deciding the conservatism of the 
robust optimization model. Indeed, when the budget of uncertainty 
equals zero, the EM problem is reduced to the deterministic one with the 
RESs are modeled with their forecasted values, thus there is no uncer-
tainty in this case which gives the least operation costs which is the least 
conservative case. 

As the budget of uncertainty increases, the operation costs also in-
crease as the uncertainty increases which adds more conservatism to the 
solutions against uncertainties. Additionally, as the size of the uncer-
tainty sets increases, the execution time and the number of the iterations 
increase as shown in Fig. 19. Therefore, a tradeoff between the conser-
vatism and computational complexity should be done according to the 
operator preferences to compromise between the operation reliability 
and security from one hand and economics and computations on the 
other hand. 

Fig. 14. Reactive power dispatch from DERs (Case 4).  

Fig. 15. Active power dispatch of diesel generators (Case 4).  

Table 4 
Break down of the different costs for the different cases.  

Costs 
($/day) 

Diesel active power 
dispatch and reserve 
cost 

Diesel reactive 
power costs 

Diesel active power 
re-dispatch costs 

Load 
shedding 
costs 

Optimized total 
operation costs (1) 

Diesel reactive power 
costs (not accounted) (2) 

Total operation costs 
(actual costs) (1) + (2) 

Case 
number 

Case (1) 256,704 Not considered 1,264 12,269 270,237 47,176 317,413 
Case (2) 250,505 Not considered 1,085 10,718 262,312 38,440 300,752 
Case (3) 250,709 35,288 1,024 11,065 298,085 Already accounted 298,085 
Case (4) 250,090 31,894 1,204 11,075 294,263 Already accounted 294,263  

Fig. 16. Operation costs versus number of points within the uncertainty set.  

Fig. 17. Execution time and number of iterations versus number of points in 
the uncertainty set. 

Fig. 18. Operation costs versus budget of uncertainty.  
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4.4. Effect of the RESs penetration level 

In this section, the effect of the RESs penetration level is studied by 
changing the size and the number of RESs units connected to the MG 
network. As shown from Figs. 20 and 21, the effect of changing the size 
and the number of RESs is similar. As the number and size of RESs in-
crease, the execution time and the number of iterations are increased. In 
addition, the increase in RESs penetration level decreases the operation 
costs. This is due to the dependence on the diesel generators will be 
reduced. However, increasing the RESs penetration level increases the 
capital costs paid in purchasing the additional RESs units. Additionally, 
network congestion might occur with the increasing RESs penetration 
level that might lead to RESs power curtailments. 

5. Conclusions 

The EM problem in isolated MGs requires reliable operation strategy to 
make robust operation decisions in the existence of intermittent and un-
certain RESs with no support from the external grid. In this paper, the 
adaptive robust optimization is utilized in the EM of isolated MGs to 
minimize the worst-case operation costs to give more reliable solutions 
while considering the RESs uncertainties. Furthermore, the reactive power 
capabilities from inverter interfaced DERs are utilized to reduce the stress 
on diesel generators in supplying reactive power with no additional costs. 
Moreover, the reactive power related fuel costs of diesel generators are 
considered which are usually neglected for simplifications which results in 
errors in the calculated operational costs. Additionally, active and reactive 
power dispatches are optimized simultaneously in the proposed EM 
formulation which gives a more accurate results compared to active or 
reactive power dispatch when executed alone as in the previous literature. 
Accurate representation of the diesel generators as well as the inverter 
interfaced DERs is given through their capability curves to better model 
their behaviors instead of the widely used box constraints. In addition, 
realistic values of the costs for fuel, load shedding and all other parameters 
of the MG components were used to provide meaningful economic 
insights. 

The EM problem was formulated as an adaptive (two stage) robust 
optimization problem and was solved via the GAMS environment using 
the CONOPT solver. The results showed the usefulness of the adaptive 
robust optimization in modeling the uncertainties of RESs to minimize 
the worst-case operation costs in isolated MGs and give optimal active 
and reactive power dispatches for the different power sources. The effect 
of the size of uncertainty sets and the budget of uncertainty on the total 
operation costs and computation burden is discussed through various 
simulation analyses. A tradeoff between the conservatism and compu-
tational complexity should be done according to the operator prefer-
ences to compromise between the operation reliability and security from 
one hand and economics and computations on the other hand. 

Furthermore, the results presented in the paper showed the possible 
deviations of the optimal dispatch results and erroneous operation costs 
when neglecting the reactive power fuel costs related to diesel genera-
tors. Accordingly, combined active/reactive power dispatch is essential 
in the EM of isolated MGs to provide more accurate results. Moreover, 
utilizing the reactive power capabilities of the inverter interfaced DERs 
can significantly reduce the operating costs of the isolated MGs. 
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