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Electrocardiogram (ECG) signal produced by the human heart has been investigated as a potential
entropy source for cryptographic random bit generation for a long time. The throughput of existing meth-
ods remains as the bottleneck for its deployment in practical applications. To overcome this problem, we
develop a Bernoulli entropy source by processing a single heartbeat ECG signal to obtain a long random
bit sequence (RBS). The proposed method converts the signal into an IID (independent and identically dis-
tributed) source of entropy using efficient interpolation and optimization techniques. Several heartbeat
signals, obtained from two different databases, were used to test the entropy source generating RBSs with
one million bits. The entropy source was evaluated with the latest NIST recommendation for IID source
validation and it passed all recommended tests and the average min-entropy obtained from several
heartbeat signals of different individuals was close to the perfect entropy value of 1.0. It was also
observed that the entropy increases monotonically with the increase of the length of keys. The proposed
method can efficiently produce a long RBS for cryptographic applications, such as key generation for one-
time pad and image encryption. The method could be further explored to generate a true random number
with a personalized signature, which is crucial for information security in the future generation of
computing.
� 2022 The Author. Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In the forthcoming era of computing, the use of true random
numbers with a personalized signature is envisaged to be more
crucial in cryptographic applications, such as one-time pad (OTP)
(Argyris et al., 2016; Manucom et al., 2019), image encryption
(Nguyen et al., 2020; Sivaraman et al., 2020), wireless body area
network security (Camara et al., 2019; Karthikeyan and
Manickam, 2019; Pirbhulal et al., 2018; Zheng et al., 2017), and
protection of implantable medical devices (Chizari and Lupu,
2019; Zheng et al., 2015). A true random number generator har-
vests the numbers from an entropy source which is based on phys-
ical processes with inherent randomness. In fact, a correct entropy
source is considered as the cornerstone of a true random number
generator. Frequently used entropy sources include noise (e.g.,
electrical, thermal, environment noise), jitter (e.g., clock, phase),
chaos, quantum effect (e.g., multiphoton emission, beam splitter
port axis misalignment, non-perfect circular polarization), and bio-
electrical signals (e.g., electrocardiogram, electroencephalogram,
and electromyography) (Kaya, 2020a; Kaya, 2020b; Kaya et al.,
2021; Stipčević and Koç, 2014; Wu et al., 2021; Yu et al., 2019).

A new trend of true random number generation from bioelectri-
cal signals is emerging primarily in wireless body area networks
(Arslan Tuncer and Kaya, 2018; Camara et al., 2019; Camara
et al., 2018; Chen et al., 2012b; Pirbhulal et al., 2018; Zheng
et al., 2017). Among the bioelectrical signals used as the entropy
source, the electrocardiogram (ECG) signal is gaining attention
because of its potential use in generating random numbers with
personalized signatures for biometric authentication (González-
Manzano et al., 2017; Karimian et al., 2019; Lyp et al., 2021) and
cryptography (Chen et al., 2012a; Hamad et al., 2017; Islam, 2015).
ersity –
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1.1. Related works

The ECG signal has already emerged as a biometric modality
(AlDuwaile and Islam, 2021; Islam and Alajlan, 2016; Islam et al.,
2012; Wu et al., 2021b) for its uniqueness, stability, universality,
robustness, collectability, acceptability, and liveness properties,
which are also desirable characteristics for a noise source for
biometric cryptography (Chizari and Lupu, 2019; Ramli et al.,
2013). Biometric cryptography has already been investigated for
physiological value-based security (PVS) solutions
(Venkatasubramanian and Gupta, 2010) that do not require a key
exchange protocol. It could be viable because it is not as resource
hungry as public-key cryptography and it proposes higher security
than symmetric encryption (Chizari and Lupu, 2019). Hence, a ran-
dom key generated from an ECG signal could introduce a new
dimension in cryptography that is useful for many applications.

Most of the existing studies focused on the use of inter-pulse-
interval (IPI) values of ECG signal for random bit sequence (RBS)
generation. Although Ortiz-Martin et al. (2018) reported that IPI
values of heartbeats do not make a good source of randomness,
later in 2020 they found that a certain bit combination of eight-
bit IPI values were feasible for RBS generation (Ortiz-Martin
et al., 2020). They analyzed the randomness using the non-IID (in-
dependent and identically distributed) track of the NIST 800-90B
recommendation (Turan et al., 2018) and found that RBS generated
from several combinations of five bits could pass some of the tests.
Different encoding and quantization of IPI values to obtain a string
of 4 to 16 bits were also used in (Chen et al., 2012b; Chizari and
Lupu, 2019; Pirbhulal et al., 2018). On the contrary, some research-
ers used other features extracted from a heartbeat signal to obtain
a higher number of bits. For example, Zheng et al. (2017) used a
binary representation of five-feature values to obtain a string of
128 bits and Camara et al. (2018) used quantization of wavelet
coefficients to obtain 184 bits from single heartbeats. In all these
studies, the required length of a RBS could be achieved by append-
ing bit strings from consecutive heartbeats as required by a crypto-
graphic protocol.

Although existing processes may be suitable for applications
where the length of the RBS is relatively small, they are not feasible
when the required sequence is much longer. This is because the
time required to capture the ECG signal could be quite long, as
shown in Table 1. For example, for encryption of a
128 � 128 Gy-scale image, existing IPI-based methods could take
as long as 4.55 h to generate a key. Hence, the throughput of the
RBS generation process may not be sufficient for many applications
wherein a long RBS is required in a short period of time. Moreover,
a bit sequence generated from IPI and other features may not be
identically distributed and the produced key could have lower
entropy. To the best of our knowledge, all existing methods gener-
ating RBS from ECG signals have been evaluated using the non-IID
track.
Table 1
Time requirement for a key generation using existing IPI and feature-based methods.

Application Required Key Length
(minimum)

IPI (Chiza
2019)

Number

WBAN, IMD 128 bits 16 + 1
OTP (For a text with 1000 ASCII char) 8000 bits 1000 + 1

Image Encryption (128 � 128, gray
scale)

131,072 bits 16,384 +

* Assuming 1 s for each heartbeat i.e. 60 heartbeats/minute.
+ Assuming 8 bit/IPI is generated.

++ Assuming 128 bit/ heartbeat.
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1.2. Contributions

In this paper, we propose a method to use a single heartbeat
ECG signal as a noise source and convert it into an entropy source
to produce a long RBS with high throughput, such that the gener-
ated bit sequence follows a uniform distribution to maximize the
entropy. We produce the whole sequence from the noise source,
in contrary to the suggestion by Killmann and Schindler (2001),
to use a true random number generation (TRNG) to generate a seed
and then the deterministic random number generation (DRNG) to
obtain an RBS. The main advantage of our method is that it is pos-
sible to check the biometric signature of the random sequence pos-
sessed by the heartbeat signal (AlDuwaile and Islam, 2020; Islam
and Alajlan, 2015). We tested the entropy source to generate one
million bits using several heartbeats from two different databases
and evaluated it with the IID-track assumption of the latest NIST
recommendation (Turan et al., 2018) and it passed all tests. The
main contributions of this work are as follows:

i. Developing a Bernoulli entropy source: We have developed
the entropy source as a Bernoulli process consisting of a
set of independent binary random variables. We have pro-
cessed the ECG signal obtained from a small segment of
heartbeat signal using the interpolation technique. The bit
string obtained from the interpolated samples are map with
the entropy source to produce a RBS.

ii. Developing an IID source of entropy: We have developed an
IID source of entropy by using an optimization technique to
enhance the uniformity of distribution of the generated RBS.
This is significant because uniform distribution increases the
entropy of the source to enhance the security. To the best of
our knowledge, no existing work on RBS generation using an
ECG signal satisfies all tests for IID assumptions.

iii. An entropy source with high throughput: We use efficient
cubic spline interpolation to transform a small segment of
ECG signal into an entropy source to obtain a long RBS.
The throughput depends primarily upon the time required
for capturing the segment of the ECG signal and it could take
less than one second for a complete heartbeat. Compared to
existing methods this is a significant improvement because
the throughput of existing methods is not suitable for many
applications, like OTP and image encryption.

1.3. Outline

The remainder of this paper is organized as follows. In Section 2,
the proposed method is presented. In Section 3, the datasets and
experimental results are described. The discussion about the
obtained results is presented in Section 4. Section 5 concludes
the paper with possible future works.
ri and Lupu, Feature-based (Zheng et al., 2017)

of HBs Required+ Required
Time*

Number of HB Required
++

Required
Time*

17 sec 1 1 sec
1001 sec
(16.68 min)

63 63 sec

1 16,385 sec
(4.55 h)

1024 1024 sec
(17.1 min)
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2. Method

In this section, we describe we describe the development pro-
cess of an entropy source by using a small segment of ECG signal
as a noise source. At first, we discuss the randomness of ECG sig-
nals and their suitability as a noise source (Subsection 2.1). The
entropy source is described as a Bernoulli random process and it
is obtained by digitalization and resampling of the noise source
and nonlinear mapping of quantized samples with discrete random
variables. We did not use any optional conditioning component
(Turan et al., 2018). In Subsection 2.5, we discuss the throughput
and computational complexity of the proposed method.
2.1. ECG signal as a noise source

An ECG signal, which is a reflection of electrical activities of the
heart, can be measured noninvasively on the surface of the body.
The electrical signal produced by the heart is semi-periodic, and
the duration required for a complete heartbeat is also random. This
heart rate variability (HRV) is a natural process, and it is associated
with different conditions such as respiration, blood pressure, phys-
ical activity, and mental stress (Sörnmo and Laguna, 2005). The
dynamic nature of the heart makes it a potential noise source for
true RBS generation. While there are large inter-individual differ-
ences among signals produced by hearts of different people, HRV
introduces intra-individual variability of temporal and morpholog-
ical properties of heartbeats as well (Islam and Alajlan, 2013b).
Fig. 1 shows two heartbeats from the same individual showing
the intra-individual differences in morphological (e.g. amplitudes
of R-peaks) and temporal features (e.g. P-P durations). During a
normal sinus rhythm, the signal of a complete heartbeat contains
three main components: P-wave, QRS-complex, and T-wave. In
general, a heartbeat starts with a P-wave corresponding to atrial
contraction followed by a QRS-complex representing the contrac-
tion of the ventricles, and finally, it ends with a T-wave represent-
ing relaxation of the ventricles. It could be noted that the duration
of a heartbeat for a healthy person varies from 0.6 to 1 s and the
amplitude of the QRS-complex is much larger than those of the
P-wave and the T-wave. We consider the use of a small segment
of ECG signal which include the signal for one heartbeat (e.g., P-P
segment) as a noise source. We process a ECG segment as a noise
source and convert it into an entropy source that produces a RBS
with the desired length required by an application.
Fig. 1. Two segmented heartbeat signals from the same person showing all
morphological elements and intra-individual variability.
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2.2. Development of a Bernoulli process

We define the entropy source as a Bernoulli process with a set
of n independent and identically distributed binary random vari-
ables {X1, X2, . . . Xn} producing a sequence of RBS with length n.
The probability that the process generates a sequence X with j
10s and (n-j) 00s can be described by the binomial distribution
P Xjjð Þ ¼ n
j

� �
P Xi ¼ 1ð ÞjP Xi ¼ 0ð Þn�j ð1Þ

Uniform distribution of each of these random variables, i.e. P
(Xi = 1) = P(Xi = 0); i = 1 . . . n, maximizes the entropy of the gener-
ated RBS. Hence, to obtain an IID entropy source producing a long
RBS with maximum entropy, the following conditions are required
to be fulfilled:

i) An arbitrarily large number of bits can be obtained from the
noise source.

ii) When n is large, the expected numbers of 10s and 00s are
equal i.e. nP(Xi = 1) = nP(Xi = 0).

iii) Probability distributions of all random variables are inde-
pendent i.e. P(X1, X2, . . . Xn) = P(X1) P(X2) . . . P(Xn).

Since heartbeat signal f(t); 0 � t � T, where T is the duration of a
heartbeat; is a continuous signal, it is always possible to obtain an
arbitrarily large number of samples by applying sampling and
interpolation techniques, and the desired length of the bit
sequence is obtained by quantization of the samples. In order to
obtain n bits from a continuous signal, we define a function
E : f ! X1;X2; � � � ;Xnf g, which maps the noise source f onto the n
binary random processes. Fig. 2 shows the steps of the proposed
method to map the noise source onto an entropy source that pro-
duces the RBS with length n. The five steps of the development pro-
cess as discussed below.

Step 1: Digitalization
For digital signal processing, a continuous ECG signal is gener-

ally sampled at a constant sampling rate s, which is not less than
the Nyquist rate determined by the useful bandwidth of the signal.
The digital representation of continuous signal f(t), 0 � t � T for an
ECG segment with duration T, produces r samples, where r = T � s.
The amplitude of each sample ai 2 R, i = 1 . . . r, is real and finite.

Step 2: Removal of R-Peak
The values of most of these r samples are suppressed by the

large amplitude of the R-peak, which is the peak of the narrow
but steep QRS complex. Hence, removing the top part of the nar-
row QRS-complex (i.e., the R-wave) could increase the uniformity
of the distribution of the samples obtained from the remaining
parts of the signal producing more uniformly distributed samples.
Hence, we use a simple optimization technique to obtain the most
uniform distribution possible (discussed in Subsection 2.3).

Step 3: Interpolation
Cubic spline interpolation technique is used in association with

the optimization step to obtain the distribution of the interpolated
samples as uniform as possible over the range of 0–2m levels,
where m is the number of quantized bits. In fact, the optimization
process divides the signal f into two segments and each of them is
interpolated separately, yielding a set of p interpolated samples in
total as discussed in Subsection 2.3 in detail.

Step 4: Quantization
To obtain a sequence of n random binary values from the ECG

segment represented by p interpolated samples, we use a quantiza-
tion technique producing m-bits of each of them. The value of p
and m depend on the number of bits (n) required for the applica-
tion such that n = p � m. At first, the amplitude of each sample
ai 2 R, i = 1 . . . p, which is finite and real, is normalized to the range
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Fig. 2. Block diagram of the proposed entropy source development process from a
segment of ECG signal.
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[0–1] to obtain a normalized sample ai. Then for a m-bit quantiza-
tion, each normalized sample is multiplied by 2m as follows

bai ¼ ai � 2m ð2Þ
Step 5: Mapping
The binary representation of each quantized sample (bai) yields a

m-bit binary string. Hence, the concatenation of these strings pro-
duces a sequence of n random bits {b1, b2, . . ., bn} where bi 2 {0, 1}.
The Bernoulli process is obtained by mapping the n random values
{b1, b2, . . ., bn} to the n random variables {X1, X2, . . . Xn}, by using a
non-linear mapping process (discussed in Subsection 2.4) as
follows:

M : bi ! Xj;1 � i; j � n ð3Þ
Fig. 3. Effect of the optimization process on the distribution of samples using 4-, 6-,
and 8-bit quantization.
2.3. Interpolation and uniformity optimization

It is well known that a digital signal obtained by sampling at a
rate higher than the Nyquist rate could be reconstructed by interpo-
4

lation techniques. Cubic spline interpolation is a widely used
method that requires only four parameters to define a continuous
cubic polynomial function between a pair of samples (Revesz,
2014). We can interpolate an arbitrary number of samples in
between them using the polynomial functions. In this way, we
can obtain q samples equally divided among r � 1 intervals defined
by r samples each of which could be quantized by Eq. (2) to obtain a
n-bit RBS. However, the values of most of the q samples obtained by
this process are suppressed by the large amplitude of the R-peak,
which is the peak of the narrow but steep QRS complex. Hence,
the distribution of the obtained samples, quantized into 2m discrete
levels, is mostly concentrated in a small region with a small stan-
dard deviation and the mean shifted towards zero rather than the
middle of the range 0–2m, as shown in the left column of Fig. 3.
The binary representation of these quantized samples produces
more zeros than ones yielding non-uniform distribution for the bin-
ary random processes. Hence, removing the top part of the narrow
QRS-complex (i.e., the R-wave) could increase the uniformity of the
distribution of the samples obtained from the remaining parts of
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the signal producing more uniformly distributed samples. Hence,
we use a simple optimization technique such that we can obtain
the most uniform distribution possible of the obtained samples
by removing only a small part of the R-wave.

To remove the top part of the R-wave, we first detect the R-peak
using an efficient method described in (Islam and Alajlan, 2013a).
Then, the S-peak is also detected by using the augmented-Hilbert
transformdescribed in (IslamandAlajlan, 2014).Weuse an iterative
optimizationprocess to select anoptimalwindoww* centered at the
R-peak so that after removal of this part and then interpolationof the
remaining parts of the signal produces q samples such that their dis-
tribution, over the range of quantization levels 0–2m, becomes as
uniform as possible. To optimize the uniformity of the distribution
of quantized samples bai, we minimize the variance (var) of the dis-
tributionP(bai) for removing the toppart of theQRScomplexwithdif-
ferent window sizes (w), as defined by the equation:

w� ¼ argmin
w

var P bai
� �� �

;1 � i � q ð4Þ

We consider a widow (w) of the signal, centered at the R-peak,
with increasing size until the radius of the window becomes equal
to the length of the Q-S segment. Then we exclude the window,
resample the remaining part of the signal, and compute the vari-
ance of the distribution P(bai) of the obtained samples bai. We select
the window w* such that removal of it yields the minimum vari-
ance. Right side of Fig. 3 shows the effect of the optimization pro-
cess on the distribution of samples obtained by 4-, 6-, and 8-bit
quantization. The use of global optimization is feasible because
the maximum possible window size is limited by the length of
the QRS complex which is only a small part of the signal.

Fig. 4(a) shows a segment of an ECG signal before normalization
and the window of the signal that was selected by the optimization
process. Fig. 4(b) shows the segment after resampling and normal-
ization without removal of the window. Fig. 4(c) shows the seg-
ment with removal of the window but without resampling and
normalization. Next, the segment is divided into two sub-
segments fpq (P-Q segment) and fst (S-T segment) with r1 and r2
samples respectively, where r1 + r2 < r. The divided sub-segments
fpq and fst are discrete representations of useful parts of noise
source f. As the original function was sampled at a rate higher than
the Nyquist rate, we can obtain an arbitrarily large number of sam-
ples by a resampling process known as piecewise uniform resam-
pling [30, 34]. The resampling process yields ppq and pst samples
from fpq and fst respectively, such that p = ppq + pst. The amplitude
of a sample ai 2 R; i = 1 . . . p; is finite and real and it is normalized
(ai) to the range [0–1], as shown in Fig. 4(d). The quantization of
Fig. 4. (a) P-P segmented heartbeat signal (noise source) with selected window w*, (b) i
the window, (d) interpolated and normalized samples after removal the window.
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these p samples, as defined by Eq. (2), yields a n-bit binary
sequence {b1, b2, . . ., bn}.

2.4. Mapping

We used a non-linear mapping process to associate the digital-
ized and quantized samples with the random variables. The map-
ping process does not change the number of bits and their
distribution, and the entropy of the generated sequence does not
change as well. The importance of the mapping process is that it
will reduce the chance of obtaining long repeated subsequences
due to the interpolation and quantization processes as the proba-
bility of getting consecutive samples with the same value will
increase with an increasing value of n. Since we use only determin-
istic operations, the process is invertible and the sequence could be
completely recovered to verify the signature. The algorithm is
given below:

Algorithm Mapping ({b1, b2, . . ., bn}, c)
nterpo
Input: binary sequence {b1, b2, . . ., bn}, c is a constant
Output: Random process {X1, X2, . . . Xn}
for j  1 to c do
begin
1. The n-bit sequence is divided into two equal subse-
quences and swap the sequence as follows:
8
lated s
biji¼1; ...; k ¼
biþk=2 if i 6 k=2
bi�k=2 if i > k=2
bi if i ¼ k=2� 2:

><>: ð5Þ
2. These two subsequences are merged by taking the alter-
native samples from each subsequence as follows:(

biji¼1; ...; k ¼

bi=2þ1 if i is odd
b iþkð Þ=2 if i is even:

ð6Þ
3. The n bit sequence (or the maximum part possible) is
reshaped into a square matrix. The matrix is transposed
and then the i-th row is swapped with the (i + j)-th row

4. The resulting matrix is again reshaped to convert it into
a sequence of n bits {b01, b02, . . ., b0n}.

5. bi = b0i; 0 � i � n

end
6. Xi ¼ bi;1 � i � n:
amples without removal of the window, (c) the signal after removal of
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2.5. Throughput and computational complexity

The throughput can be defined as the number of bits produced
by the RBS generator in a unit time. Due to the physiological con-
straint, the capturing time of a P-P segment could be up to one sec-
ond for a healthy individual, although the average duration is
smaller than that. Hence, the throughput for a heartbeat signal
based RBS generation system depends on two factors: i) duration
of the heartbeat and ii) computational complexity. In this work,
we need a single heartbeat signal as the noise source and the cap-
turing time is minimal compared to existing methods. In fact, by
our method we can increase the value of n arbitrarily using the
same segment of ECG signal. Hence, the computational complexity
of the proposed method is the important factor for efficient RBS
generation with high throughput.

In the interpolation and uniformity optimization process, we
first detect the R peak using an O(r) algorithm where r is the num-
ber of samples in the signal, which is limited by the sampling rate.
Then the iterative optimization process interpolates the signal at
each iteration. Due to the use of the global optimization process,
the number of iterations (p) is small and limited by the length of
the QS segment, which is a small fraction of r. By using cubic spline
functions, we can obtain q samples in O(p � q) times. Since p is a
small fraction of r and O(r) is negligible, the total time required
by the process is O(q), which is linear to the number of samples q.

Each of the six steps of the mapping algorithm is a linear-time
operation for one iteration. By applying these operations only for a
constant number of iterations, the shuffling process remains a
linear-time operation. Although n is big, for a particular application
it is bounded and the total computational cost of the proposed
method becomes linear. Hence, real-time response is possible
using a machine with ordinary computing power even for a long
RBS.
3. Experiments and results

Recently, NIST updated its guidelines for the evaluation of an
entropy source for cryptographic bit generation using physical pro-
cesses. According to this recommendation, known as NIST 800-90B
(Turan et al., 2018), the testing of an entropy source can be carried
Table 2
Permutation tests for the PTB database.

i Name of test Quantization Leve

4-bit

Ci, 0

1 Excursion Test Statistic 304
2 Number of Directional Runs 9032
3 Length of Directional Runs 6914
4 Number of Increases and Decreases 2439
5 Number of Runs Based on the Median 2308
6 Length of Runs Based on Median 585
7 Average Collision Test Statistic 1759
8 Maximum Collision Test Statistic 2410
9 Periodicity Test Statistic (log = 1) 1538
10 Periodicity Test Statistic (log = 2) 9428
11 Periodicity Test Statistic (log = 8) 1294
12 Periodicity Test Statistic (log = 16) 1336
13 Periodicity Test Statistic (log = 32) 3969
14 Covariance Test Statistic (log = 1) 6427
15 Covariance Test Statistic (log = 2) 8805
16 Covariance Test Statistic (log = 8) 9788
17 Covariance Test Statistic (log = 16) 465
18 Covariance Test Statistic (log = 32) 9553
19 Compression Test Statistic 8681

Permutation Tests Assessment Passed
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out in two different tracks: IID track and non-IID track. The IID
track is used for an entropy source that generates independent
and identically distributed samples, whereas the non-IID track is
used for entropy sources that do not generate IID samples. As dis-
cussed in Section 2, the proposed Bernoulli entropy source consists
of n independent and identically distributed random variables to
produce a sequence of n bits of IID samples and we evaluate the
entropy source as the IID-track.

In cryptography, the unpredictability of secret keys is essential.
The probability of guessing a secret correctly in the first trial is
related to the entropy of the secret generated from the noise source
and the unpredictability increases with the increase of entropy.
NIST recommends using a very conservative measure known as
min-entropy. The min-entropy of an independent discrete random
variable Xi, which takes values from the set {0, 1} with probability P
(Xi = 0) = p0 and P(Xi = 1) = p1 is defined as

H ¼ �log2 min p0;p1ð Þð Þ ð7Þ
In Subsection 3.1, we summarize the validation process for the

IID-track. We used two different databases for the validation. In
Subsection 3.2, we describe the databases and the experimental
protocols. Subsections 3.3 and 3.4 independently give the valida-
tion results of these two databases. Finally, Subsection 3.5 shows
the entropy for heartbeat signals from different ECG records and
for different throughputs.
3.1. Entropy source validation for the IID-Track

As recommended by NIST 800-90B, a sequence of at least one-
million bits is required to be collected from the entropy source
for the validation process. In this work, the sequence generated
by n binary random variables is tested using statistical tests for
verification of the IID assumption, and it is accepted as a RBS if it
passes all tests. Three different sets of statistical tests are carried
out on the generated bit sequence: i) permutation tests, ii) chi-
square statistical tests, and iii) restart tests. Each of these tests, dis-
cussed in the following three subsections, takes a sequence as
input and tests the hypothesis that the bits are IID. If the hypoth-
esis is rejected by any of the tests, the sequence is considered to
be non-IID.
ls

6-bit 8-bit

Ci, 1 Ci, 0 Ci, 1 Ci, 0 Ci, 1

0 3503 0 8985 0
18 3058 28 5650 35
2033 7179 1912 252 3033
25 7149 30 595 14
5 8336 6 7578 5
1142 6509 1299 5249 1754
1 171 2 1873 4
1150 7767 552 1172 815
19 5096 30 1412 13
5 7998 19 2118 25
15 6285 23 3898 27
21 7919 19 9122 10
19 6444 14 1794 27
3 3191 8 4298 5
3 2440 10 8259 0
1 6578 5 9820 0
5 652 3 8312 4
4 4677 4 6156 7
18 1515 18 2166 44

Passed Passed



Table 3
Chi-square statistical tests for the PTB database.

i Name of test Quantization Levels

4-bit 6-bit 8-bit

test statistic
(T)

critical value
(Cv)

test statistic
(T)

critical value
(Cv)

test statistic
(T)

critical value
(Cv)

1 Independence Test 961.5 1167.4 1926.9 2249.4 2057.3 2249.4
2 Goodness-of-fit Test 4.4 27.9 11.8 27.9 9.2 27.9
3 Length of the Longest Repeated Substring Test (the threshold for

P is 0.001)
P = 0.81 P = 0.89 P = 0.322

Chi-square Tests Assessment Passed Passed Passed

Md Saiful Islam Journal of King Saud University – Computer and Information Sciences xxx (xxxx) xxx
3.1.1. Permutation tests
The permutation tests consist of a set of eleven statistical

hypothesis tests as listed in Tables 2 and 6. Given an input bit
sequence, ten-thousand (10,000) permutations are generated for
each of the tests and the test statistic of the original sequence is
compared to that of each permutation. Two counters initialized
with zeros, Ci,0 and Ci,1 (where i is the index of a test), are used
to find the ranking of the original test statistics among the per-
muted test statistics. The values of Ci,0 and Ci,1 are increased when
the statistical value of a permutation for the i-th test is greater than
and equal to the value of the original sequence respectively. If the
samples are IID, their test statistics should be similar and type-I
error probability should not exceed 0.001. Hence, extreme values
for the counters suggest that the bits are not IID and the following
condition should be satisfied to pass each of the tests:
Ci;0 þ Ci;1 > 5andCi;0 < 9995 ð8Þ
3.1.2. Chi-square tests
The chi-square tests consist of three statistical tests such as the

independence test, goodness-of-fit test, and length-of-the-longest-
repeated-substring test, as listed in Tables 3 and 7. The indepen-
dence test checks dependencies between successive bits in a
sequence by comparing the frequencies of m-bit tuples to their
expected values. The test passes, if the chi-square test statistic
(T) is smaller than the critical value (Cv) with 2m–2 degrees of free-
dom when the type-I error is chosen as 0.001. The goodness-of-fit
test attempts to check whether the distribution of the ones
remains the same throughout the entire bit sequence. Here, the
test statistic (T) is a chi-square random variable with nine degrees
of freedom. Similar to the independence test, the test passes if T is
smaller than the critical value (Cv) at type-I error 0.001, i.e.
T < Cv ð9Þ
The length-of-the-longest-repeated-substring test checks if the

length of the longest repeated substring is significantly longer than
the expected value which invalidates the IID assumption. Suppose
w is the length of a longest repeated substring in the given bit
sequence with length n, Xi is a binomially distributed random vari-
Table 4
Initial estimation of entropy for the PTB database.

Record # Quantization Levels

4-bit 6-bit 8-bit

Record 1 0.8664 0.8159 0.8778
Record 2 0.9085 0.9209 0.8659
Record 3 0.8436 0.9204 0.9171
Average HI 0.8728 0.8857 0.8869
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able with parameter j = (n�w� 1
2 ), and a probability of success ps

= (p2 + (1 - p)2)w, where p is the probability of the number of 10s in
the sequence. Then, the test passes if

P Xi � 1ð Þ ¼ 1� 1� psð Þj � 0:001: ð10Þ
3.1.3. Entropy estimation and restart tests
If the bit sequence passes all permutation and Chi-square tests,

the initial entropy is estimated using the min-entropy estimation
determined using the most-common-value estimate (Turan et al.,
2018). This method first finds the proportion P = max (p, 1 � p),
where p is the probability of 1’s in the given sequence. The upper
bound of the confidence interval is used to estimate the min-
entropy per sample of the source:

pu ¼ min 1; bp þ 2:576

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibp 1� bp� �
L� 1

s0@ 1A ð11Þ

where 2.576 corresponds to the Z(1�0.005) value.
Then the initial estimation of min-entropy (HI) is

HI ¼ �log2 puð Þ ð12Þ
The estimated entropy of a source might provide an overesti-

mate if the noise source generates correlated sequences after
restarts. The restart tests re-evaluate the entropy estimation using
different outputs from many restarts of the noise source. This
ensures that bits in a restart sequence are drawn from the same
distribution but are independent and uncorrelated. This will pre-
vent an attacker (with access to output sequences of multiple noise
sources) from predicting the next output sequence. For the restart
tests, we use 1000 different heartbeats, and from each of them,
1000 bits are collected. This data is stored in a 1000 � 1000 restart
matrix M, where samples from a heartbeat are stored in a row.
Then two tests are carried out: i) sanity check, and ii) validation
test.

The sanity-check tests the frequency of the most common value
Xmax in the rows and the columns of the matrixM. If this frequency
is significantly greater than the expected value P(X > Xmax), given
the initial entropy estimate HI, the restart test fails and the
sequence is considered non-IID. Setting the probability of type-I
error at 0.01 and with the error a for each of the binomial experi-
ments, the test passes if

P X > Xmaxð Þ ¼
X1000

j¼Xmax

1000
j

� �
pj 1� pð Þ1000�j � a ð13Þ

If the random bit sequence passes the sanity check, the valida-
tion test is carried out. Two datasets are constructed: i) the row
dataset is constructed by concatenating the rows, and ii) the col-
umn dataset is constructed by concatenating the columns of M.
Then, the entropy is estimated for the row (Hr) and column (Hc)
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datasets. The validation test passes if the minimum of Hr and Hc is
more than half of HI. The final entropy assessment (H) of the source
becomes the minimum of the row, the column, and the initial esti-
mates, i.e.,

H ¼ min Hr;Hc;HIð Þ ð14Þ
3.2. Databases and experimental protocol

We have used two databases for the evaluation of our method.
The first one is known as PTB (Physikalisch–Technische–Bundesan
stalt) which is publicly available in Physionet (Goldberger et al.,
2000). This dataset contains 60 s ECG records collected with a sam-
pling frequency of 1000 Hz from 290 individuals with ages ranging
from 17 to 87 years. We also used an in-house database of ECG sig-
nals captured from fingers (Islam et al., 2017). This dataset contains
656 ECG records from164 individuals collected in two different ses-
sions.We used a commercially available finger-based ECG device to
capture each record of the ECG signal for fifteen seconds from the
thumbs of a subject at a sampling frequency of 250 Hz.

We independently tested and evaluated the proposed method
using both databases. First, we inspected all the records and
excluded those heartbeats which had been significantly altered
by noise during capturing time. For testing and initial entropy esti-
mation, we used the first five records from each database. For eval-
uation of IID assumption, one heartbeat (P-P segment) was
selected randomly from one of these ECG records and one million
bits were generated from it by the method discussed in Section 2.
The number of extracted samples for the heartbeat depends on the
quantization levels. For 4-, 6-, or 8-bit quantization, 250 000, 166
667, and 125 000 samples were collected, respectively. Each of
these samples was quantized accordingly and then shuffled to
obtain the random sequence. Then, permutation and Chi-square
tests were carried out.

For initial entropy estimation, we used three heartbeats ran-
domly selected from the first five records and compute the min-
entropy, and the average of these estimations was used as an initial
estimation HI. Then for the restart test, we used 1000 heartbeat sig-
nals collected from different ECG records and 1000 bits were col-
lected from each of them. We applied increasing numbers of
iterations for the shuffling operations on the bits collected from
each heartbeat and the sanity check and validation test were car-
ried out. Finally, the initial entropy estimation was updated to
obtain the final entropy. In Subsection 3.3, and 3.4, we present
the experimental results for all these tests using PTB and FEGG
databases respectively.
3.3. Results of validation on the PTB database

This section presents the results of entropy source validation for
the IID-track using the PTB database. Table 2 shows test statistics
(Ci, 0 and Ci, 1) for eleven permutation tests for three different levels
of quantization. All tests passed by satisfying the criteria given in
Eq. (8). It could be noted that for both of the periodicity test statis-
tic and covariance test statistic, five different logs were used.
Table 3 shows the results of three chi-square statistical tests for
different levels of quantization and all tests passed by satisfying
the criteria discussed in Subsection 3.1.2. Initial estimation of
entropy for three different heartbeats, individually obtained from
three different ECG records, and the average entropy are shown
in Table 4. Results of restart tests and updated entropy estimation
are shown in Table 5. It could be noted that sanity check and val-
idation tests passed the criteria discussed in Subsection 3.1.3.
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3.4. Results of validation on the FECG database

This section presents the results of entropy source validation for
the IID-track using the FECG database. Table 6 shows test statistics
(Ci, 0 and Ci, 1) for eleven permutation tests, for three different
levels of quantization, and all tests passed by satisfying the criteria
given in Eq. (8). Like before, for both of the periodicity test statistic
and covariance test statistic, five different logs were used. Table 7
shows the results of three chi-square statistical tests for different
levels of quantization and all tests passed by satisfying the criteria
discussed in Subsection 3.1.2. Initial estimation of entropy for
three different heartbeats individually obtained from three differ-
ent ECG records and the average entropy are shown in Table 8.
Results of restart tests and updated entropy estimation are shown
in Table 9. It could be noted that sanity check and validation tests
passed the criteria discussed in Subsection 3.1.3.
3.5. Entropy and throughput

We computed entropy for three different heartbeats (HB-1, HB-
2, HB-3), selected randomly, from each of the first five records of
both databases. We extracted one-million bits using 8-bit quanti-
zation to compute the entropy. Then, we computed the average
entropy for each record as shown in Table 10.

We also tested the throughput for three different heartbeats
randomly selected from each of the first five records of ECG signal
from both databases. From the same heartbeat, we extracted bit
sequences for different lengths ranging from 1to10 million bits/-
heartbeat. Then, for a particular length, we computed the average
entropy of RBSs for three heartbeats for each quantization levels
as shown in Table 11. Since the computing time is not significant,
we assumed that throughput is equal to the length of a RBS by con-
sidering the total capturing and processing time for a single heart-
beat ECG signal as one second.
4. Discussion

We tested a single heartbeat ECG signal as an IID source of
entropy for RBS generation individually using different resampling
rates and quantization levels for two different databases. It could
be noted from Subsections 3.3 and 3.4 that bit sequences generated
from both databases passed all permutation, chi-square, and
restart tests with a good margin between the test results and crit-
ical values. For example, the value of Ci, 0 and Ci, 1 was 8985 and 0
respectively, for the excursion test statistic (Table 2) while the
threshold for Ci, 0 + Ci, 1 was 5 (lower bound) and for Ci, 0 was
9995 (upper bound), as given in Equation (8). We tested several
heartbeats from different records of both databases and found
equivalent results. As an initial estimation, we reported the aver-
age entropy obtained from three heartbeats randomly selected
from each of the first five records, and the restart test is based on
this average entropy.

The proposed optimization technique, discussed in Subsection
2.1, played a crucial role in improving the entropy by making the
distribution of random variables more uniform. To observe the
effect of the optimization process on the distribution of bits pro-
duced by the Bernoulli process, we have computed the distribution
of 00s and 10s in the RBS generated from three different heartbeats
before and after optimization as shown in Fig. 5. It could be noted
that due to optimization the distribution becomes almost uniform
on the average (50.56% 0’s and 49.44% 1’s).

The large throughput of the proposed method makes it promis-
ing for practical applications. We increased the throughput by



Table 5
Restart tests and updated estimation for the PTB database.

i Name of test Quantization Levels

4-bit 6-bit 8-bit

1 Sanity Check
(a = 0.0000104) P(X � Xmax) = 0.053 P(X � Xmax) = 0.0201 P(X � Xmax) = 0.0360

2 Validation Testing Hr = 0.9472 Hr = 0.9503 Hr = 0.9379
Hc = 0.9472 Hc = 0.9503 Hc = 0.9379

Assessment Passed Passed Passed
Updated Estimation of Entropy (H) 0.8728 0.8857 0.8399

Table 6
Permutation tests for the FECG database.

i Name of test Quantization Levels

4-bit 6-bit 8-bit

Ci, 0 Ci, 1 Ci, 0 Ci, 1 Ci, 0 Ci, 1

1 Excursion Test Statistic 2633 0 1922 0 1603 0
2 Number of Directional Runs 5540 22 8936 8 41 2
3 Length of Directional Runs 0 304 3483 3912 9146 583
4 Number of Increases and Decreases 6497 39 4471 37 8666 19
5 Number of Runs Based on the Median 468 1 2557 9 994 1
6 Length of Runs Based on Median 8392 745 9322 323 2415 2323
7 Average Collision Test Statistic 4474 9 1086 2 6493 0
8 Maximum Collision Test Statistic 1032 765 2257 1048 9488 141
9 Periodicity Test Statistic (log = 1) 8694 17 3591 29 4862 34
10 Periodicity Test Statistic (log = 2) 9307 7 7609 22 5841 25
11 Periodicity Test Statistic (log = 8) 6363 26 3450 27 4051 29
12 Periodicity Test Statistic (log = 16) 8068 13 2357 23 6385 33
13 Periodicity Test Statistic (log = 32) 7457 20 8111 23 8613 15
14 Covariance Test Statistic (log = 1) 3657 5 9214 4 7197 3
15 Covariance Test Statistic (log = 2) 7066 5 9803 0 299 0
16 Covariance Test Statistic (log = 8) 661 2 2729 7 2309 4
17 Covariance Test Statistic (log = 16) 2990 4 1249 3 3897 7
18 Covariance Test Statistic (log = 32) 6665 5 8949 1 7562 3
19 Compression Test Statistic 9344 15 3701 82 6274 61

Permutation Tests Assessment Passed Passed Passed

Table 7
Chi-square statistical tests for the FECG database.

i Name of test Quantization Levels

4-bit 6-bit 8-bit

test statistic
(T)

critical value
(Cv)

test statistic
(T)

critical value
(Cv)

test statistic
(T)

critical value
(Cv)

1 Independence Test 1950.3 2249.4 1967.8 2249.4 2057.8 2249.4
2 Goodness-of-fit Test 11.4 27.9 9.2 27.9 5.1 27.9
3 Length of the Longest Repeated Substring Test (the threshold for

P is 0.001)
P = 0.859 P = 0.986 P = 0.397

Chi-square Tests Assessment Passed Passed Passed

Table 8
Initial estimation of entropy for the FECG database.

Record # Quantization Levels

4-bit 6-bit 8-bit

Record 1 0.9345 0.9061 0.9241
Record 2 0.8882 0.9632 0.9525
Record 3 0.9652 0.9236 0.9430
Average HI 0.9293 0.9400 0.9399
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increasing the resampling rate and the number of quantization
levels. Due to the use of efficient cubic polynomial interpolation
technique, this increase of throughput does not significantly
increase the computation time but the entropy improves monoton-
ically. Fig. 6 shows the increase of entropy for different lengths of
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RBS ranging from 1 to 10 million bits. This slow but monotonic
increase implies that the Bernoulli process converges to the perfect
source of entropy while the length of the bit sequence increases,
which is a significant implication about the proposed entropy
source.

We have compared the performance of the proposed method
with those of state-of-the-art methods, as given in Table 12.
Although several studies were evaluated by recommendations of
NIST 800-90B, none of the existing works was evaluated using
the IID track. The throughput of the proposed method has
increased significantly due to the use of the heartbeat-
resampling process making the method suitable for applications
that require a long RBS. In fact, most of the existing methods fail
to generate such a sequence due to their dependency on long
ECG signal requiring a long time to be captured.



Table 9
Restart tests and updated estimation for the FECG database.

i Name of test Quantization Levels

4-bit 6-bit 8-bit

1 Sanity Check
(a = 0.0000104)

P(X � Xmax) = 0.02 P(X � Xmax) = 0.00057 P(X � Xmax) = 0.0176

2 Validation Testing Hr = 0.9537
Hc = 0.9537

Hr = 0.9625
Hc = 0.9625

Hr = 0.9777
Hc = 0.9777

Assessment Passed Passed Passed
Updated Estimation of Entropy (H) 0.9293 0.9400 0.9399

Table 10
Entropy for different ECG records.

Entropy for the PTB database Entropy for the FECG database

ECG Record HB-1 HB-2 HB-3 Average HB-1 HB-2 HB-3 Average

1 0.9148 0.8596 0.8676 0.8807 0.9955 0.9543 0.9247 0.9582
2 0.8962 0.9423 0.9559 0.9315 0.9859 0.9755 0.9287 0.9634
3 0.8834 0.9877 0.9619 0.9443 0.9484 0.9501 0.9006 0.9330
4 0.9957 0.9612 0.9657 0.9742 0.9766 0.9715 0.9918 0.9800
5 0.8769 0.8879 0.9907 0.9185 0.9099 0.9339 0.9542 0.9327

Average 0.9298 Average 0.9535

Table 11
Average entropy for different throughputs.

Length of the RBS (Million bits /HB) Average entropy for the PTB database Average entropy for the FECG database

4-bit 6-bit 8-bit 4-bit 6-bit 8-bit

1 0.8758 0.9072 0.9179 0.9545 0.9632 0.9705
2 0.8768 0.9083 0.9189 0.9556 0.9643 0.9716
4 0.8775 0.9090 0.9196 0.9563 0.9650 0.9723
8 0.8780 0.9095 0.9201 0.9568 0.9656 0.9729
10 0.8782 0.9096 0.9203 0.9570 0.9657 0.9730
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5. Conclusion

A single heartbeat ECG signal has been found to be feasible to
yield an IID source of entropy that can be used to generate a long
RBS satisfying the requirement for most cryptographic applica-
tions. The proposed method is also computationally efficient,
which makes a small segment of ECG signal feasible for the gener-
ation of long RBS for practical applications. The average min-
entropy of RBSs with a length of one million or more bits, obtained
from several heartbeat signals from different individuals, were



Table 12
Comparison with the state-of-the-art methods.

Ref. Important concept of the Method Evaluation Process of the Entropy Source Throughput (bits per
heartbeat)

Applicability

(Ortiz-Martin et al.,
2020)

Concatenation of five bits from 8-bit IPI value NIST 800-90B (Non-IID track) 5 WBAN: Yes
IMD: Yes
OTP: No
ImgEncrp:
No

(Chizari and Lupu,
2019)

8-bit representation of IPI value NIST SP 800–22, Dieharder (Brown et al.,
2013)

8 WBAN: Yes
IMD: Yes
OTP: No
ImgEncrp:
No

(Pirbhulal et al.,
2018)

16-bit representation of IPI value NIST SP 800–22 (Rev 1a) 16 WBAN: Yes
IMD: Yes
OTP: No
ImgEncrp:
No

(Camara et al.,
2018)

Quantization of wavelet coefficients of a heartbeat
signal

NIST SP 800–22 (Rev 1a), Dieharder, ENT
(Walker, 2008)

184 WBAN: Yes
IMD: Yes
OTP: Maybe
ImgEncrp:
No

(Zheng et al., 2017) Binary representation of five feature values obtained
from a heartbeat

NIST SP 800–22 (Rev 1a) <128 (adaptive) WBAN: Yes
IMD: Yes
OTP: Maybe
ImgEncrp:
No

(Chen et al., 2012b) IPI value encoded into 4-bit NIST SP 800–22 (Rev 1a) 4 WBAN: Yes
IMD: Yes
OTP: No
ImgEncrp:
No

Proposed Resampling of ECG signal NIST 800-90B, (IID track) �1,0000,000 WBAN: Yes
IMD: Yes
OTP: Yes
ImgEncrp:
Yes
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close to perfect entropy of 1.0. More interestingly, the entropy
increases monotonically with the increase of the length of a key.
The developed entropy source has passed all tests recommended
by NIST for IID source validation. The randomness of the generated
RBSs for cryptographic applications requiring personalized signa-
tures will be investigated and evaluated further in our future work
using other tests such as TESTU01 (L’Ecuyer and Simard, 2007) and
SP 800-90C (Barker and Kelsey, 2016).
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