Abstract—The sensorless drive method of the permanent magnet synchronous motor (PMSM) has attracted wide attention for its low cost and high reliability. As a critical technology, a fast and high-precision rotor position estimation is essential. This work addresses the position estimation deviation issue of the sensorless drive method based on the sliding mode observer (SMO) and phase-locked loop (PLL). A non-linear equivalent model of the SMO is established to analyze and compensate for the position estimation deviation caused by the SMO, and a feed-forward PLL is employed to suppress the steady-state position tracking error under variable speed operation. Firstly, the phase-frequency characteristic of the SMO is obtained by studying the SMO and the switching functions in detail. Then, the analysis of the conventional PLL is carried out in terms of the error transfer function. Besides, the position estimation performance of the feed-forward PLL is discussed with the dynamic error coefficient method. Theoretical analysis and experimental evaluation validated the effectiveness of the proposed position estimation deviation suppression technology and the PMSM combining the phase self-compensation SMO and the feed-forward PLL.

Index Terms—sensorless drive, position estimation, sliding mode observer (SMO), non-linear model, phase locked loop (PLL), permanent magnet synchronous motor (PMSM)

I. INTRODUCTION

Comparing with the direct current motor and induction motor, the permanent magnet synchronous motor (PMSM) has the advantages of simple structure, high power density, high energy efficiency and reliable operation. With the reduction of the cost of permanent magnet materials and the development of control technology, the PMSM has been widely used in a variety of applications [1–3].

It is well known that the rotor position information is essential for the control of the PMSM. It can be obtained by mechanical position sensors or estimated through the phase voltages and currents [4, 5]. Even though the mechanical position sensors can work from standstill to the high speed, it increases the complexity of the mechanical structure and increases costs [6, 7]. Especially, mechanical position sensors would be damaged in humid, high-vibration and dusty industrial environments. Therefore, the sensorless drive of the PMSM has attracted extensive interest because of its space-saving, high reliability and low cost.

In middle and high speed ranges, methods based on the fundamental back EMF observers, such as flux observers, full/reduced-order state observers, model reference adaptive systems (MRASs), extended Kalman filters (EKFs), and sliding mode observers (SMOs) are extensively applied to the PMSM rotor position estimation. They are proposed to solve different types of problems, and they also have different application limitations. The flux observer has quite a simple structure with a fast dynamic response. However, due to its pure integral operation, the DC biases of the current and voltage measurements, as well as the initial condition, would affect the rotor position estimation accuracy [8, 9]. Full/reduced-order state observers are important methods employed in the rotor position estimation. They can achieve fast position estimation with a high-reliability but is sensitive to the parameter variations [10, 11]. MRASs can achieve a quite high position estimation accuracy if the model and parameters are accurate enough [8, 12, 13]. In a noisy environment, the EKF can work well and give a recursive optimum position estimation [14, 15]. However, the complex matrix operations aggravate the computational burden of the control system, which limits the applications in the high-speed range [16]. The SMO has emerged as an interesting candidate to estimate the rotor position for its simple structure, high robustness, and low sensitivity to the parameter variations [17–20].

The position estimation method combining the SMO and the phase-locked loop (PLL) is a commonly used in industrial applications, where the SMO is used to estimate the back electromotive force (EMF) and the PLL is adopted to track the rotor position with the estimated back EMF. Numerous studies were presented to improve the rotor position estimation accuracy based on the SMO and the PLL. One concerns the chattering suppression of the SMO, and the other concerns the reduction of the harmonic position error. To deal with the chattering, in [13], the sigmoid function is introduced to replace the sign function, and the sliding mode gain is adjusted through the fuzzy control algorithm. In [21], a second-order SMO with the super-twisting algorithm was presented for the rotor position and speed estimation, which can dramatically alleviate chattering behavior. Among these, adopting the sigmoid function as the switching function is a feasible and effective method to reduce the chattering [22–24]. In order to improve the harmonic suppression ability, in [25], a normalization of the equivalent back EMF for the PLL tracking estimator was
proposed to improve the rotor position estimation accuracy. In [7], an orthogonal PLL with two synchronous frequency extract filters that were used to extract the fundamental wave of the back EMF was proposed, and the proposed method can effectively reduce the back EMF harmonic error.

The position estimation error is comprised of a position deviation and harmonic position error. As reviewed previously, the harmonic position error has been greatly improved, but the position estimation deviation issues do not obtain enough concerns. As presented in [26], the position estimation deviation is mainly caused by the parameter uncertainties, and parameter identification technologies are required to diminish the deviation. In [21], a parallel adaptive identification method of stator resistance is designed relying on derivatives of rotor flux and stator current to improve the near-zero speed operation performance of sensorless induction motor drives. In [15], the resistance uncertainties caused by temperature variation were taken into account with an online resistance observer, which improved position estimation accuracy and the robustness of the STA-SMO. However, they did not consider the effect of the observer on the accuracy of the position estimation. In [27], it is reported that when the estimated value is a persistent excitation, a time delay between the actual value and its estimation may appear due to the non-zero phase response of the observer. A very high gain can reduce the delay to a low level [28]. However, it is not always effective since it may introduce excessive noise to harm the stability of the observer. Another way is trying to estimate the time delay. In [29], a current control method of a six-phase induction machine drive based on the sliding mode was proposed and the time delay estimation technology was used to reconstruct the unmeasurable status. In [30], authors combined the time delay estimation method and the sliding mode to allow the stator current to the reference in finite time.

It is observed in practice that when the sigmoid function replaces the sign function, a serious position estimation deviation relating to the speed appears. To reduce the position estimation deviation, as analyzed above, increasing the sliding mode gain or adopting the time delay estimation technology may be useful. However, increasing the sliding mode gain would make the chattering more severe, and the time delay estimation technology may face the problem of limited estimation accuracy and complicated implementation process. Contrary to the two methods, this paper proposes a non-linear equivalent model of the SMO to analyze and compensate for the deviation.

Variable speed motors, such as reaction flywheels, blowers, compressors and pumps, are commonly used in industrial applications. They need to perform acceleration and deceleration operations frequently. However, as a typical type-II system, the conventional PLL is not fast enough to track the rotor position in acceleration and deceleration operations with zero steady-state position tracking error [8, 31, 32]. If a sudden speed change occurs, the position estimation error would dramatically increase and even cause tracking failure. It suggested introducing the speed to the PLL to improve the position tracking speed cite abdelrahem2017finite, preindl2010sensorless, bierhoff2017general, but it did not give sufficient design details and theoretical analysis. In practice, it may be not feasible to feed the speed directly to the PLL, because it dramatically increases the bandwidth of the PLL. Therefore, this paper gives design details of the feed-forward PLL with a low pass filter and the analysis of the effect of the feed-forward path on the PLL in theory. It is helpful for the parameter design of the feed-forward PLL in engineering.

The main contribution of this paper is to solve the position estimation deviation problem in the sensorless drive based on the SMO and PLL. A phase self-compensation method of the SMO is proposed by establishing a non-linear equivalent model, which can compensate for the rotor position deviation caused by the phase lag of the SMO. The proposed feed-forward PLL can suppress the steady-state estimation deviation under acceleration and deceleration operations, and it is also of benefit to reducing the harmonic position error.

II. SENSORLESS DRIVE METHOD OF PMSM BASED ON SMO AND PLL

The diagram of the sensorless drive method of the PMSM based on the SMO and PLL is shown in Fig. 1, where the SMO is used to reconstruct the back EMF with the phase voltages and currents, and the PLL is adopted to track the rotor position.

A. Mathematical Model of PMSM

The mathematical model of the PMSM in α-β reference frame is given by

$$\begin{align*}
\dot{u}_\alpha &= R_i + L \frac{d}{dt}i_\alpha + e_\alpha \\
\dot{u}_\beta &= R_i + L \frac{d}{dt}i_\beta + e_\beta
\end{align*}$$

(1)

where $u_{\alpha,\beta}$, $i_{\alpha,\beta}$ and $e_{\alpha,\beta}$ represent the terminal voltages, phase currents and back EMFs in α-β axis, respectively; R, L are the resistance and inductance of the stator winding. The back EMFs are

$$\begin{align*}
e_\alpha &= -\psi f \omega_e \sin(\theta_e) \\
e_\beta &= \psi f \omega_e \cos(\theta_e)
\end{align*}$$

(2)

![Diagram of the conventional sensorless drive method of the PMSM based on SMO and PLL.](image)
where θ_c is the rotor electrical position; ω_c is the electrical angular velocity; ψ_f is the permanent magnet flux linkage. From (2), ω_c can be obtained as

$$\omega_c = \frac{1}{\psi_f} \sqrt{(e_{\alpha}^2 + e_{\beta}^2)}$$ \hspace{1cm} (3)

B. Design of SMO

Considering the phase currents as the state variables, the PMSM model (1) is rewritten as

$$\begin{align*}
\dot{i}_{\alpha} &= u_{\alpha} - R_i\dot{i}_{\alpha} - e_{\alpha} - \xi_{\alpha} \\
\dot{i}_{\beta} &= u_{\beta} - R_i\dot{i}_{\beta} - e_{\beta} - \xi_{\beta}
\end{align*}$$ \hspace{1cm} (4)

where $\xi_{\alpha,\beta}$ are the equivalent errors of the model uncertainties, measurement errors, and external disturbances.

Based on (4), a SMO is designed as

$$\begin{align*}
\dot{i}_{\alpha} &= u_{\alpha} - R_i\dot{i}_{\alpha} - v_{\alpha} = k_s f(\dot{i}_{\alpha}) \\
\dot{i}_{\beta} &= u_{\beta} - R_i\dot{i}_{\beta} - v_{\beta} = k_s f(\dot{i}_{\beta})
\end{align*}$$ \hspace{1cm} (5)

where the symbol \dot{i} represents the estimated values of the relevant variables; $f(x)$ is the switching function; $\dot{i}_{\alpha,\beta} = \dot{i}_{\alpha,\beta} - i_{\alpha,\beta}; k_s$ is the sliding mode gain.

Subtracting (4) from (5) yields the error dynamic of the currents as

$$\begin{align*}
\dot{e}_{\alpha} &= -R_i\dot{i}_{\alpha} + e_{\alpha} + \xi_{\alpha} - v_{\alpha} \\
\dot{e}_{\beta} &= -R_i\dot{i}_{\beta} + e_{\beta} + \xi_{\beta} - v_{\beta}
\end{align*}$$ \hspace{1cm} (6)

According to the variable structure theory, a sliding surface is designed as

$$S = \begin{bmatrix} i_{\alpha} \\ i_{\beta} \end{bmatrix} = 0$$ \hspace{1cm} (7)

The stability analysis of the SMO is given by using a Lyapunov function

$$V = \frac{1}{2} S^T S > 0$$ \hspace{1cm} (8)

If the time derivative of the Lyapunov function

$$\dot{V} = V_1 + V_2 + V_3$$ \hspace{1cm} (9)

is negative definite, the sliding mode will be enforced after a finite time interval, where

$$V_1 = -\frac{R}{L} \left[\dot{i}_{\alpha}^2 + \dot{i}_{\beta}^2\right],$$

$$V_2 = \frac{1}{L} \left[\dot{i}_{\alpha} (e_{\alpha} + \xi_{\alpha}) - k_s \dot{i}_{\alpha} f(\dot{i}_{\alpha})\right],$$

and

$$V_3 = \frac{1}{L} \left[\dot{i}_{\beta} (e_{\beta} + \xi_{\beta}) - k_s \dot{i}_{\beta} f(\dot{i}_{\beta})\right].$$

It is clear from (9) that $V_1 < 0$, and if $V_2 < 0$, the occurrence of sliding mode can be achieved. Thus, the sliding mode gain k_s can be selected as

$$k_s > \max(|e_{\alpha}| + |\xi_{\alpha}|, |e_{\beta}| + |\xi_{\beta}|)$$ \hspace{1cm} (10)

When the system reaches the sliding surface, $S = S_0 = 0$. Based on the equivalent principle of the SMO, the estimated back EMFs are

$$\begin{align*}
\dot{e}_{\alpha} &= \frac{\omega_s}{s + \omega_s} v_{\alpha} \\
\dot{e}_{\beta} &= \frac{\omega_s}{s + \omega_s} v_{\beta}
\end{align*}$$ \hspace{1cm} (11)

where $\dot{e}_{\alpha,\beta}$ are the estimated back EMFs, and the low-pass filter $\frac{1}{s + \omega_s}$ in (11) is used to filter the high-frequency components of the SMO’s output. After the estimated back EMFs are obtained, a PLL, as shown in Fig. 2, is adopted to track the rotor position. It can be seen that the PLL is a second-order system that contains a phase detector (PD), a loop filter (LF) and a voltage-controlled oscillator (VCO). In this study, a proportional-integral (PI) controller is used as the loop filter.

Fig. 2. Diagram of the conventional PLL in $\alpha-\beta$ reference frame.

III. PHASE SELF-COM 补偿MENT SMO AND FEED-FORWARD PLL

A. Phase Self-compensation Method of SMO

The sign and sigmoid functions are the commonly used switching functions, and the sigmoid function shows better performance to suppress the chattering. However, it is observed in real applications that when the sigmoid function replaces the sign function, it would exist a position estimation deviation. In this section, the reason for the deviation is studied in detail by establishing a non-linear equivalent model of the SMO.

The equivalent gains of the sign and sigmoid functions are

$$\begin{align*}
k_{fn} &= \frac{1}{|x|}, f(x) = \text{sign}(x) \\
k_{fd} &= \frac{1}{x(1 + e^{-x})}, f(x) = \text{sigmoid}(x)
\end{align*}$$ \hspace{1cm} (12)

where x is the input variable of the function; k_{fn} and k_{fd} are the equivalent gains of the sign and sigmoid functions, respectively. It is noted that an upper limit of the equivalent gain of the sign function is set to avoid calculation crashes since it tends to be infinite at $x = 0$.

Based on (5) and (6), the diagram of the non-linear equivalent model of the SMO is obtained in Fig. 3, where k_f is the equivalent gain of the switching function. It can be seen from Fig. 3 that the SMO is a variable gain control system since the equivalent gain of the switching function is non-constant. The closed-loop transfer function of the non-linear equivalent model at a certain k_f is...
be taken to compensate for the phase lag of the SMO. It can also be seen from Fig. 5 that the equivalent gain of the sigmoid function is smooth enough to calculate and compensate the phase lag according to (14).

B. Analysis of Conventional PLL

The conventional PLL has shown satisfactory performance in tracking the rotor position under a constant speed operation. However, it suffers from a serious position estimation error when the speed is non-constant. To investigate the reason, the following analyzes the characteristics of the conventional PLL. From Fig. 2, a back EMF error $\Delta E'$ is defined as

$$\Delta E' = -\hat{e}_p \cos(\hat{\theta}_e) - \hat{e}_x \sin(\hat{\theta}_e)$$

(15)

where $k_L = \psi_f \omega_e$, $\Delta \theta_e = \hat{\theta}_e - \theta_e$. When the PLL has tracked the rotor position, $\sin(\Delta \theta_e)$ is so small that $\sin(\Delta \theta_e)$ is approximately equal to $\Delta \theta_e$. From this, equation (15) can be rewritten as

$$\Delta E' \approx -k_L \Delta \theta_e$$

(16)

As shown in (16), k_L is a variable, and for ease of analysis and parameter tuning, $\Delta E'$ is normalized as

$$\Delta E \approx -\Delta \theta_e$$

(17)

Therefore, the equivalent diagram of the conventional PLL is shown in Fig. 6, and the open-loop transfer function of the conventional PLL $G_0(s)$ relating the output $\hat{\theta}_e$ to the input θ_e under a certain speed is

$$G_0(s) = \frac{\hat{\theta}_e(s)}{\theta_e(s)} = \frac{k_p s + k_i}{s^2}$$

(18)

It is well known that a step input in speed appears as a ramp input in position, and similarly, a ramp input in speed appears as a parabolic input in position. Thus, the conventional PLL can track the position ramp input with zero steady-state error since it is a type-II control system. However, when the motor accelerates or decelerates, the speed behaves as a ramp signal. Under such a circumstance, the conventional PLL is not fast
enough to track the position input with zero steady-state error. It is noted that the steady-error in the context refers to the steady-state position error.

\[\theta_e - \Delta E = k_p \frac{k_i + s}{s} \frac{1}{s} \theta_e \]

Fig. 6. Equivalent diagram of the conventional PLL.

To quantitatively analyze the steady-state error, an error transfer function of the conventional PLL is established as

\[\Phi_{err0}(s) = \frac{\Delta E(s)}{\theta_e(s)} = \frac{s^2}{s^2 + k_ps + k_i} \]

(19)

Using the final value theorem, the steady-state error for a \(\Delta \omega_c \) input is

\[\epsilon_{ss0} = \lim_{s \to 0} s \Phi_{err0}(s) \frac{\Delta \omega_c}{s^3} = \frac{\Delta \omega_c}{k_i} \]

(20)

It is clear from (20) that the position tracking error is proportional to the acceleration. Although increasing \(k_i \) can reduce the error, it is not a feasible method as the side effect is apparent. As shown in (15), because the input of the loop filter is similar to a sinusoidal wave, an excessive \(k_i \) would weaken the filter capacity and lead to unacceptable position harmonic error.

C. Design and Analysis of Proposed Feed-forward PLL

Since the steady-state tracking error cannot be eliminated by increasing \(k_i \), this paper proposes an improved PLL by introducing a feed-forward path to the conventional PLL, as shown in Fig. 7, where a low pass filter is adopted to filter out the high-frequency noise and disturbance.

From Fig. 7, the open-loop transfer function of the proposed feed-forward PLL is

\[G_1(s) = \frac{\dot{\theta}_e(s)}{\theta_e(s)} = \frac{(k_p + \omega_c)s^2 + (k_i + k_p\omega_c)s + k_i\omega_c}{s^2(s + \omega_c)} \]

(21)

where \(\omega_c \) is the cut off frequency of the low pass filter in the feed-forward path. Accordingly, the closed-loop transfer function of the feed-forward PLL is

\[\Phi_1(s) = \frac{\dot{\theta}_e(s)}{\theta_e(s)} = \frac{(k_p + \omega_c)s^2 + (k_i + k_p\omega_c)s + k_i\omega_c}{s^3 + (k_p + \omega_c)s^2 + (k_i + k_p\omega_c)s + k_i\omega_c} \]

(22)

To study the steady-state performance of the feed-forward PLL, its error transfer function is given by

\[\Phi_{err1}(s) = \frac{\Delta E(s)}{\theta_e(s)} = \frac{s^3}{(s + \omega_c)(s^2 + k_ps + k_i)} \]

(23)

The Taylor series expansion of (23) with respect to \(s \) around the expansion point 0 is

\[\Phi_{err1}(s) = C_0 + C_1s + C_2s^2 + C_3s^3 + C_4s^4 + \mathcal{O}(s^4) \]

(24)

where \(C_0 = 0, C_1 = 0, C_2 = 0, C_3 = \frac{1}{k_i\omega_c} \) and \(C_4 = -\frac{k_i}{k^2\omega^2_c} \); \(\mathcal{O}(s^4) \) is the high-order infinitesimal of \(s^4 \).

It is assumed that a parabolic position input of the feed-forward PLL is

\[\theta_e(t) = \frac{1}{2}\Delta \omega_c t^2 \]

(25)

![Fig. 7. Diagram of the proposed feed-forward PLL.](image)

![Fig. 8. Bode plots of the loop filters of the PLLs with different bandwidths. (a) Bandwidth = 100 rad/s. (b) Bandwidth = 200 rad/s.](image)
and its time derivatives are

\[
\begin{align*}
\theta'_e(t) &= \Delta \omega_e t \\
\theta''_e(t) &= \Delta \omega_e \\
\theta'''_e(t) &= 0
\end{align*}
\]

(26)

Therefore, the steady-state tracking error of the feed-forward PLL for a speed ramp input is

\[
e_{\text{ss}1}(t) = C_0 \theta_e(t) + C_1 \theta'_e(t) + C_2 \theta''_e(t) + C_3 \theta'''_e(t) + \cdots = 0
\]

(27)

It is clear from (27) that the feed-forward PLL can track a parabolic position input with zero steady-state tracking error. It also indicates that the feed-forward PLL can track a speed step and ramp inputs with zero steady-state tracking error.

The position harmonic error is related to the filtering capacity of the PLL that mainly depends on the loop filter. To compare the filtering performance of the conventional PLL with the proposed feed-forward PLL, Fig. 8 shows the Bode plots of the loop filters of the PLLs with different bandwidths. The bandwidths in Fig. 8 (a) and (b) are 100 rad/s and 200 rad/s, respectively.

It can be seen from Fig. 8 that the amplitude of the loop filter of the feed-forward PLL is smaller than that of the conventional PLL at full-frequency band, and with the increase of \(\omega_c \), the amplitude decreases. A lower amplitude, especially at a low-frequency band, is of great benefit to enhancing the filtering performance. Therefore, the feed-forward PLL can obtain a better position estimation performance in reducing the position harmonic error with the same bandwidth as the conventional PLL. It can also be seen from the two plots that with the increase of the bandwidth, the amplitude of the loop filter of the conventional PLL increases. However, even with higher bandwidth, the feed-forward PLL can also obtain a reasonable loop filter gain by tuning \(\omega_c \), which suggests that the feed-forward PLL can achieve a better harmonic suppression ability comparing to the conventional PLL.

IV. EXPERIMENTAL EVALUATION

To evaluate the performance of the proposed high-precision sensorless drive method of the PMSM, a field-oriented control platform is constructed, as shown in Fig. 9. The parameters of the prototype PMSM are listed in TABLE I. The field-oriented controller is based on a digital signal processor TMS320F28335. It is applied to execute the control algorithm, realize the detection of measurement signals, and generate the drive signals. The PMSM is driven by an IGBT based intelligent power module (IPM) PM50RL1A060 with a switching frequency of 10 kHz. A PI controller is used as the speed controller, where the proportional coefficient is 0.5, and the integral coefficient is 2.5. To limit the output of the speed

Fig. 9. Experimental platform.

Fig. 10. Estimated speed, output of the SMO, equivalent gain and position estimation error when the sigmoid function is adopted.

Fig. 11. Estimated speed, output of the SMO, equivalent gain and position estimation error when the sigmoid function is adopted.
controller, the upper and lower limits are set as 10 and -10, respectively.

A. Evaluation of Phase Self-compensation Method of SMO

To demonstrate the performance of the SMO with the sign and sigmoid function, Fig. 10 and Fig. 11 show the estimated speed n, the output of the SMO v_n, the equivalent gain k_{fn}, k_{fd}, and the position estimation error $\Delta \theta_e$. In order to verify the theoretical analysis of the phase lag characteristic of the SMO, the motor increases from 100 r/min to 1500 r/min. At 500 r/min, 1000 r/min and 1500 r/min, the motor keeps to a constant speed for a while.

As shown in Fig. 10, when the sign function is adopted, the equivalent gain k_{fn} always maintains a large value, and therefore, the position estimation deviation is small enough to be neglected. Moreover, because of the discrete output of the SMO and the irregular change of k_{fn}, the estimated position has a significant harmonic error. Therefore, due to the poor position estimation performance, the sign function based SMO is gradually replaced.

By contrast, the sigmoid function has a smaller equivalent gain than that of the sign function around zero. Replacing the sign function with the sigmoid function can effectively reduce the position harmonic error. As shown in Fig. 11, the estimated position also becomes smoother. However, it is observed from $\Delta \theta_e$ that there is a non-negligible position estimation deviation when the sigmoid function is adopted. When the motor operates at 1500 r/min, the position estimation deviation is up to 0.08 rad. As presented in (14), the phase lag is proportional to the speed in theory. As shown at the bottom sub-figure of Fig. 11, the position error increases with the increase of the speed, which is consistent with the theoretical value. Therefore, the position estimation deviation can be compensated through (14), which can eliminate the position estimation deviation caused by the phase lag of the SMO.

To evaluate the performance of the phase self-compensation method of the SMO, Fig. 12 shows the d-q axis currents and position estimation error with and without the phase self-compensation method of the SMO.

B. Evaluation of Feed-forward PLL

In this experiment, the error characteristic of the conventional PLL is verified, and the performance of the proposed feed-forward PLL is also demonstrated with different bandwidths.

Fig. 13 shows the position estimation error of the conventional PLL under acceleration and deceleration operations. It is clear from Fig. 13 that the conventional PLL can track the position with zero steady-state error whether at low speed or high speed. However, when the motor accelerates or decelerates, there is a steady-state position tracking error. Clearly, the error relating to the acceleration is too large to be neglected. With no load condition, the position estimation errors are up to 0.355 rad and 0.449 rad when the motor accelerates and decelerates, respectively. Moreover, when the motor decelerates with rated load condition, the error is up to 0.623 rad, which would lead to a risk of tracking failure. As analyzed in (20), the steady-state position error is proportional to $\Delta \omega_e$ and inversely proportional to k_i. In order to verify the analysis, the second plots in Fig. 13 (a) and (b) give the theoretical position error curves $\frac{\Delta \omega_e}{k_i}$. It is clear that the position tracking error is consistent with the theoretical value, which verified the correctness of the analysis of the conventional PLL.

As presented in (27), the proposed feed-forward PLL can track the position with zero steady-state error when the motor possesses acceleration. Fig. 14 and Fig. 15 show the position and speed estimation results with different bandwidths. It can be seen from Fig. 14 and Fig. 15 that all the conventional PLLs have a steady-state position tracking error when the motor accelerates or decelerates while the proposed feed-forward PLL can track the position without steady-state error.
Since the steady-state position error of the conventional PLL is inversely proportional to \(k_i \), and increasing \(k_i \) can reduce the steady-state error. However, an excessive \(k_i \) would lead to integral saturation and oscillation, which exposes the system to a risk of tracking failure. As shown in Fig. 15 (b), when \(k_i \) is excessive, the system has failed to operate. By contrast,
the proposed feed-forward PLL can track the position stably even with higher bandwidth.

According to Fig. 14 and Fig. 15, Fig. 16 gives the statistical analysis of the conventional and the proposed feed-forward PLLs. The standard deviation (SD) is introduced to quantify the amount of variations of the speed and position estimation. It has been noted that when $\omega_c = 0$, the feed-forward PLL degenerates into the conventional PLL. It is clear from Fig. 16 (I), (II), (IV) and (V) that the SDs of the position and speed are reduced with the increase of ω_c with or without load condition. It suggests that the proposed feed-forward PLL has a better performance in suppressing the position and speed harmonics, and a larger ω_c is of benefit to reducing the position and speed harmonic errors.

However, in the transition processes, as shown Fig. 16 (III) and (VI), the overshoots of the position estimation error relating to ω_c are not monotonic, and there exists an inflection point. Furthermore, with the increase of the bandwidth, the SDs of the speed and position would get worse. However, a smaller bandwidth would reduce the dynamic performance and lead to an excessive overshoot of the position estimation, which harms the stability of the system. Therefore, a reasonable parameter design of the bandwidth and ω_c can ensure a good performance of the feed-forward PLL.

Fig. 17 (a) and (b) show the position estimation performance of the proposed feed-forward PLL with the step load disturbance at 500 r/min and 1500 r/min, respectively. From top to bottom, the speed estimation error Δn, the current phase $A i_a$, and the position estimation error $\Delta \theta_e$ are given, respectively. As shown in Fig. 17, the related load is added at 1.0 s and removed at 4.0 s. It can be seen that adding and removing the load hardly affect the accuracy of rotor position estimation. It verified the effectiveness of the proposed feed-forward under the load changes at low and high speed.

V. CONCLUSION

Based on the analysis of the conventional sensorless drive method with the SMO and PLL, this paper proposed a position estimation deviation suppression technology combining the phase self-compensation SMO and the feed-forward PLL. Through the proposed non-linear equivalent model of the SMO, the position estimation deviation caused by the phase lag of the SMO is compensated in real-time. In variable speed applications, the conventional PLL shows a poor position estimation performance and suffers from a steady-state position estimation deviation under acceleration and deceleration operations. Contrary to increasing the bandwidth of the PLL, the feed-forward PLL has a smaller loop filter gain comparing to the conventional PLL, which is competent for eliminating the deviation and reducing the harmonic position error. A series of experiments verified the effectiveness of the proposed position estimation deviation suppression technology. It is noted that the proposed phase lag analysis method of the SMO provides a practical reference for analyzing the phase characteristics of other observers.

REFERENCES

Gang Liu received the B.S. and M.S. degrees from Shandong University, Jinan, China, in 1992 and 1998, respectively, and the Ph.D. degree from Dalian University of Technology, Dalian, China, in 2001.

He is currently a Ph.D. Supervisor with the School of Instrumentation Science and Optoelectronics Engineering, Beihang University, Beijing, China. His research interests include spacecraft attitude control, high speed magnetically suspended motor and ultra-high sensitivity atomic magnetic field measurement.

Haifeng Zhang received the M.S. degree from Beihang University, Beijing, China, in 2016. He is currently working toward the Ph.D. degree at Beihang University, Beijing, China.

He is currently working toward the Ph.D. degree in precision instruments and machinery at the School of Instrumentation Science and Optoelectronics Engineering, Beihang University, Beijing, China. His research interests include permanent magnet motor control and power electronics.

Xinda Song received the B.S. degree in automation and M.S. degree in control theory and control engineering from Taiyuan University of Technology, Taiyuan, China, in 2004 and 2011, and the Ph.D. degree in precision instrument and machinery from the Beijing University of Aeronautics and Astronautics (BUAA), Beijing, China, in 2016.

He was a Postdoctoral Research Fellow in the School of Instrumentation Science and Opto-electronics Engineering in BUAA.

He is currently with the Research Institute for Frontier Science, BUAA, where he is also a Research Member of the Key Laboratory of Fundamental Science for National Defense, Novel Inertial Navigation System Technology. He obtained the 2018 Chinese Association of Automation excellent doctor degree dissertation award. His research interests include high-speed permanent magnet motor control and power electronics.