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Position Estimation Deviation Suppression
Technology of PMSM Combining Phase

Self-compensation SMO and Feed-forward PLL
Gang Liu, Haifeng Zhang, Xinda Song

Abstract—The sensorless drive method of the permanent mag-
net synchronous motor (PMSM) has attracted wide attention
for its low cost and high reliability. As a critical technology,
a fast and high-precision rotor position estimation is essential.
This work addresses the position estimation deviation issue of
the sensorless drive method based on the sliding mode observer
(SMO) and phase-locked loop (PLL). A non-linear equivalent
model of the SMO is established to analyze and compensate for
the position estimation deviation caused by the SMO, and a feed-
forward PLL is employed to suppress the steady-state position
tracking error under variable speed operation. Firstly, the phase-
frequency characteristic of the SMO is obtained by studying the
SMO and the switching functions in detail. Then, the analysis
of the conventional PLL is carried out in terms of the error
transfer function. Besides, the position estimation performance
of the feed-forward PLL is discussed with the dynamic error coef-
ficient method. Theoretical analysis and experimental evaluation
validated the effectiveness of the proposed position estimation
deviation suppression technology of the PMSM combining the
phase self-compensation SMO and the feed-forward PLL.

Index Terms—sensorless drive, position estimation, sliding
mode observer (SMO), non-linear model, phase locked loop
(PLL), permanent magnet synchronous motor (PMSM)

I. INTRODUCTION

COMPARING with the direct current motor and induc-
tion motor, the permanent magnet synchronous motor

(PMSM) has the advantages of simple structure, high power
density, high energy efficiency and reliable operation. With
the reduction of the cost of permanent magnet materials and
the development of control technology, the PMSM has been
widely used in a variety of applications [1–3].

It is well known that the rotor position information is
essential for the control of the PMSM. It can be obtained by
mechanical position sensors or estimated through the phase
voltages and currents [4, 5]. Even though the mechanical
position sensors can work from standstill to the high speed,
it increases the complexity of the mechanical structure and
increases costs [6, 7]. Especially, mechanical position sen-
sors would be damaged in humid, high-vibration and dusty
industrial environments. Therefore, the sensorless drive of the
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PMSM has attracted extensive interest because of its space-
saving, high reliability and low cost.

In middle and high speed ranges, methods based on the
fundamental back EMF observers, such as flux observers,
full/reduced-order state observers, model reference adaptive
systems (MRASs), extended Kalman filters (EKFs), and slid-
ing mode observers (SMOs) are extensively applied to the
rotor position estimation. They are proposed to solve different
types of problems, and they also have different application
limitations. The flux observer has quite a simple structure
with a fast dynamic response. However, due to its pure
integral operation, the DC biases of the current and voltage
measurements, as well as the initial condition, would affect
the rotor position estimation accuracy [8, 9]. Full/reduced-
order state observers are important methods employed in the
rotor position estimation. They can achieve fast position esti-
mation with a high-reliability but is sensitive to the parameter
variations [10, 11]. MRASs can achieve a quite high position
estimation accuracy if the model and parameters are accurate
enough [8, 12, 13]. In a noisy environment, the EKF can
work well and give a recursive optimum position estimation
[14, 15]. However, the complex matrix operations aggravate
the computational burden of the control system, which limits
the applications in the high-speed range [16]. The SMO has
emerged as an interesting candidate to estimate the rotor
position for its simple structure, high robustness, and low
sensitivity to the parameter variations [17–20].

The position estimation method combining the SMO and
the phase-locked loop (PLL) is a commonly used in industrial
applications, where the SMO is used to estimate the back
electromotive force (EMF) and the PLL is adopted to track
the rotor position with the estimated back EMF. Numerous
studies were presented to improve the rotor position estimation
accuracy based on the SMO and the PLL. One concerns the
chattering suppression of the SMO, and the other concerns
the reduction of the harmonic position error. To deal with
the chattering, in [13], the sigmoid function is introduced to
replace the sign function, and the sliding mode gain is adjusted
through the fuzzy control algorithm. In [21], a second-order
SMO with the super-twisting algorithm was presented for the
rotor position and speed estimation, which can dramatically al-
leviate chattering behavior. Among these, adopting the sigmoid
function as the switching function is a feasible and effective
method to reduce the chattering [22–24]. In order to improve
the harmonic suppression ability, in [25], a normalization of
the equivalent back EMF for the PLL tracking estimator was
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proposed to improve the rotor position estimation accuracy.
In [7], an orthogonal PLL with two synchronous frequency
extract filters that were used to extract the fundamental wave
of the back EMF was proposed, and the proposed method can
effectively reduce the back EMF harmonic error.

The position estimation error is comprised of a position
deviation and harmonic position error. As reviewed previous,
the harmonic position error has been greatly improved, but
the position estimation deviation issues do not obtain enough
concerns. As presented in [26], the position estimation de-
viation is mainly caused by the parameter uncertainties, and
parameter identification technologies are required to diminish
the deviation. In [21], a parallel adaptive identification method
of stator resistance is designed relying on derivatives of
rotor flux and stator current to improve the near-zero speed
operation performance of sensorless induction motor drives.
In [15], the resistance uncertainties caused by temperature
variation were taken into account with an online resistance
observer, which improved position estimation accuracy and the
robustness of the STA-SMO. However, they did not consider
the effect of the observer on the accuracy of the position
estimation. In [27], it is reported that when the estimated
value is a persistent excitation, a time delay between the actual
value and its estimation may appear due to the non-zero phase
response of the observer. A very high gain can reduce the delay
to a low level [28]. However, it is not always effective since
it may introduce excessive noise to harm the stability of the
observer. Another way is trying to estimate the time delay.
In [29], a current control method of a six-phase induction
machine drive based on the sliding mode was proposed and
the time delay estimation technology was used to reconstruct
the unmeasurable status. In [30], authors combined the time
delay estimation method and the sliding mode to allow the
stator current to the reference in finite time.

It is observed in practice that when the sigmoid function
replaces the sign function, a serious position estimation de-
viation relating to the speed appears. To reduce the position
estimation deviation, as analyzed above, increasing the sliding
mode gain or adopting the time delay estimation technology
may be useful. However, increasing the sliding mode gain
would make the chattering more severe, and the time delay
estimation technology may face the problem of limited es-
timation accuracy and complicated implementation process.
Contrary to the two methods, this paper proposes a non-linear
equivalent model of the SMO to analyze and compensate for
the deviation.

Variable speed motors, such as reaction flywheels, blowers,
compressors and pumps, are commonly used in industrial
applications. They need to perform acceleration and decel-
eration operations frequently. However, as a typical type-II
system, the conventional PLL is not fast enough to track
the rotor position in acceleration and deceleration operations
with zero steady-state position tracking error [8, 31, 32].
If a sudden speed change occurs, the position estimation
error would dramatically increase and even cause tracking
failure. It suggested introducing the speed to the PLL to im-
prove the position tracking speed cite abdelrahem2017finite,
preindl2010sensorless, bierhoff2017general, but it did not give

sufficient design details and theoretical analysis. In practice,
it may be not feasible to feed the speed directly to the PLL,
because it dramatically increases the bandwidth of the PLL.
Therefore, this paper gives design details of the feed-forward
PLL with a low pass filter and the analysis of the effect of the
feed-forward path on the PLL in theory. It is helpful for the
parameter design of the feed-forward PLL in engineering.

The main contribution of this paper is to solve the position
estimation deviation problem in the sensorless drive based on
the SMO and PLL. A phase self-compensation method of
the SMO is proposed by establishing a non-linear equivalent
model, which can compensate for the rotor position deviation
caused by the phase lag of the SMO. The proposed feed-
forward PLL can suppress the steady-state estimation deviation
under acceleration and deceleration operations, and it is also
of benefit to reducing the harmonic position error.

II. SENSORLESS DRIVE METHOD OF PMSM BASED ON
SMO AND PLL

The diagram of the sensorless drive method of the PMSM
based on the SMO and PLL is shown in Fig. 1, where the
SMO is used to reconstruct the back EMF with the phase
voltages and currents, and the PLL is adopted to track the
rotor position.

A. Mathematical Model of PMSM

The mathematical model of the PMSM in α-β reference
frame is given by

uα=Riα + L
diα
dt

+ eα

uβ=Riβ + L
diβ
dt

+ eβ

(1)

where uα,β , iα,β and eα,β represent the terminal voltages,
phase currents and back EMFs in α-β axis, respectively; R,
L are the resistance and inductance of the stator winding. The
back EMFs are {

eα=− ψfωe sin (θe)

eβ=ψfωe cos (θe)
(2)
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ê

ê
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Fig. 1. Diagram of the conventional sensorless drive method of the PMSM
based on SMO and PLL.
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where θe is the rotor electrical position; ωe is the electrical
angular velocity; ψf is the permanent magnet flux linkage.
From (2), ωe can be obtained as

ωe =
1

ψf

√(
e2
α + e2

β

)
(3)

B. Design of SMO

Considering the phase currents as the state variables, the
PMSM model (1) is rewritten as

i̇α=
uα −Riα − eα − ξα

L

i̇β=
uβ −Riβ − eβ − ξβ

L

(4)

where ξα,β are the equivalent errors of the model uncertainties,
measurement errors, and external disturbances.

Based on (4), a SMO is designed as
˙̂iα=

uα −Rîα − vα
L

, vα=ksf (̃iα)

˙̂iβ=
uβ −Rîβ − vβ

L
, vβ=ksf (̃iβ)

(5)

where the symbol ˆ represents the estimated values of the
relevant variables; f (x) is the switching function; ĩα,β =
îα,β − iα,β ; ks is the sliding mode gain.

Subtracting (4) from (5) yields the error dynamic of the
currents as 

˙̃iα=
−Rĩα + eα + ξα − vα

L

˙̃iβ=
−Rĩβ + eα + ξβ − vβ

L

(6)

According to the variable structure theory, a sliding surface
is designed as

S =

[
ĩα

ĩβ

]
= 0 (7)

The stability analysis of the SMO is given by using a
Lyapunov function

V =
1

2
STS > 0 (8)

If the time derivative of the Lyapunov function

V̇ = V1 + V2 + V3 (9)

is negative definite, the sliding mode will be enforced after a
finite time interval, where

V1 = −R
L

[̃
i2α + ĩ2β

]
,

V2 =
1

L

[̃
iα (eα + ξα)− ksĩαf (̃iα)

]
,

and
V3 =

1

L

[̃
iβ (eβ + ξβ)− ksĩβf (̃iβ)

]
.

It is clear from (9) that V1 < 0, and if V2 < 0, the
occurrence of sliding mode can be achieved. Thus, the sliding
mode gain ks can be selected as

ks > max (|eα|+ |ξα| , |eβ |+ |ξβ |) (10)

When the system reaches the sliding surface, S = Ṡ = 0.
Based on the equivalent principle of the SMO, the estimated
back EMFs are 

êα=
ωs

s+ ωs
vα

êβ=
ωs

s+ ωs
vβ

(11)

where êα,β are the estimated back EMFs, and the low-
pass filter ωs

s+ωs
in (11) is used to filter the high-frequency

components of the SMO’s output. After the estimated back
EMFs are obtained, a PLL, as shown in Fig. 2, is adopted
to track the rotor position. It can be seen that the PLL is a
second-order system that contains a phase detector (PD), a
loop filter (LF) and a voltage-controlled oscillator (VCO). In
this study, a proportional-integral (PI) controller is used as the
loop filter.
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Fig. 2. Diagram of the conventional PLL in α-β reference frame.

III. PHASE SELF-COMPENSATION SMO AND
FEED-FORWARD PLL

A. Phase Self-compensation Method of SMO

The sign and sigmoid functions are the commonly used
switching functions, and the sigmoid function shows better
performance to suppress the chattering. However, it is ob-
served in real applications that when the sigmoid function
replaces the sign function, it would exist a position estimation
deviation. In this section, the reason for the deviation is studied
in detail by establishing a non-linear equivalent model of the
SMO.

The equivalent gains of the sign and sigmoid functions are
kfn =

∣∣∣∣ 1x
∣∣∣∣ , f(x) = sign(x)

kfd =
1− e−x

x(1 + e−x)
, f(x) = sigmoid(x)

(12)

where x is the input variable of the function; kfn and kfd
are the equivalent gains of the sign and sigmoid functions,
respectively. It is noted that an upper limit of the equivalent
gain of the sign function is set to avoid calculation crashes
since it tends to be infinite at x = 0.

Based on (5) and (6), the diagram of the non-linear equiva-
lent model of the SMO is obtained in Fig. 3, where kf is the
equivalent gain of the switching function. It can be seen from
Fig. 3 that the SMO is a variable gain control system since
the equivalent gain of the switching function is non-constant.
The closed-loop transfer function of the non-linear equivalent
model at a certain kf is



2168-6777 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JESTPE.2020.2967508, IEEE Journal
of Emerging and Selected Topics in Power Electronics

IEEE JOURNAL OF EMERGING AND SELECTED TOPICS IN POWER ELECTRONICS, VOL. XX, NO. X, AUGUST 2019 4

e


i

i

sk
e



R

Ls R

R

Ls R

fk

fk sk

v

v

Fig. 3. Non-linear equivalent model of the SMO.

ΦSMO (s) =
vα,β
eα,β

=
kc

τs+ 1
(13)

where kc =
kskf
kskf+1 , τ = L

kskfR+R . It is clear that the
SMO has a low-pass characteristic that relies on kf , ks, R
and L, which would lead to a phase lag to the position
estimated. Through the non-linear equivalent model, the phase
lag relating to the speed is

θed = − arctan (τωe) (14)

Because kf in θed is unknown, the change law of kf needs
to be discussed to confirm the phase-frequency characteristic
of the SMO. Fig. 4 shows the comparison of the sign and
sigmoid functions according to (12). The essential difference
between the two functions is that around zero, the sigmoid
function is continuous while the sign function is discontinuous.
Although the equivalent gains of the two functions tend to be
consistent with the increase of the input, they are different
when the input is small. After the initial reaching phase,
states of the SMO slide along the sliding surface. Therefore,
the properties of the switching functions around zero have a
significant impact on the performance of the SMO.
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Fig. 4. Comparison of the sign and sigmoid functions. (a) Functions. (b)
Equivalent gains.

Fig. 5 shows a simulation result of the equivalent gains of
the sign and sigmoid functions when the SMO is on the sliding
surface. When the sliding mode occurs, the input of the SMO
fluctuates above and below zero. In this case, kfn tends to
be infinity while kfd tends to be constant, which explains
the reason why the sign function based SMO has a serious
chattering problem while that of the sigmoid function has a
considerable phase lag. Therefore, when the sigmoid function
is adopted as the switching function, effective measures should

be taken to compensate for the phase lag of the SMO. It can
also be seen from Fig. 5 that the equivalent gain of the sigmoid
function is smooth enough to calculate and compensate the
phase lag according to (14).
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Fig. 5. Simulation result of the equivalent gains of the sign and sigmoid
functions when the SMO is on the sliding surface.

B. Analysis of Conventional PLL

The conventional PLL has shown satisfactory performance
in tracking the rotor position under a constant speed operation.
However, it suffers from a serious position estimation error
when the speed is non-constant. To investigate the reason, the
following analyzes the characteristics of the conventional PLL.
From Fig. 2, a back EMF error ∆E′ is defined as

∆E′ = −êα cos
(
θ̂e

)
− êβ sin

(
θ̂e

)
=− kL sin (∆θe)

(15)

where kL = ψfωe, ∆θe = θ̂e − θe. When the PLL has
tracked the rotor position, sin (∆θe) is so small that sin (∆θe)
is approximately equal to ∆θe. From this, equation (15) can
be rewritten as

∆E′ ≈ −kL∆θe (16)

As shown in (16), kL is a variable, and for ease of analysis
and parameter tuning, ∆E′ is normalized as

∆E ≈ −∆θe (17)

Therefore, the equivalent diagram of the conventional PLL
is shown in Fig. 6, and the open-loop transfer function of the
conventional PLL G0 (s) relating the output θ̂e to the input θe
under a certain speed is

G0 (s) =
θ̂e (s)

θe (s)
=
kps+ ki

s2
(18)

It is well known that a step input in speed appears as a ramp
input in position, and similarly, a ramp input in speed appears
as a parabolic input in position. Thus, the conventional PLL
can track the position ramp input with zero steady-state error
since it is a type-II control system. However, when the motor
accelerates or decelerates, the speed behaves as a ramp signal.
Under such a circumstance, the conventional PLL is not fast
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TABLE I
MOTOR PARAMETERS

Symbols Parameters Values
Pn Number of pole pairs 4
J Moment of inertia 0.003 kg·m2
R Stator phase resistance 0.95 Ω
L Stator phase inductance 12.5 mH
ψf Flux linkage 0.183 Wb
Te Rated torque 5 N·m
n Rated speed 1500 r/min
Ud Rated voltage 311 V
I Rated current 10 A

enough to track the position input with zero steady-state error.
It is noted that the steady-error in the context refers to the
steady-state position error.
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Fig. 6. Equivalent diagram of the conventional PLL.

To quantitatively analyze the steady-state error, an error
transfer function of the conventional PLL is established as

Φer0 (s) =
∆E (s)

θe (s)
=

s2

s2 + kps+ ki
(19)

Using the final value theorem, the steady-state error for a
∆ωe input is

ess0 = lim
s→0

sΦer0 (s)
∆ωe
s3

=
∆ωe
ki

(20)

It is clear from (20) that the position tracking error is
proportional to the acceleration. Although increasing ki can
reduce the error, it is not a feasible method as the side effect
is apparent. As shown in (15), because the input of the loop
filter is similar to a sinusoidal wave, an excessive ki would
weaken the filter capacity and lead to unacceptable position
harmonic error.

C. Design and Analysis of Proposed Feed-forward PLL

Since the steady-state tracking error cannot be eliminated
by increasing ki, this paper proposes an improved PLL by
introducing a feed-forward path to the conventional PLL, as
shown in Fig. 7, where a low pass filter is adopted to filter
out the high-frequency noise and disturbance.

From Fig. 7, the open-loop transfer function of the proposed
feed-forward PLL is

G1 (s) =
θ̂e (s)

θe (s)
=

(kp + ωc)s
2 + (ki + kpωc)s+ kiωc
s2(s+ ωc)

(21)
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ê

ˆ
e

1

f
2 2ˆ ˆe e 

c

cs





ˆ
e

Fig. 7. Diagram of the proposed feed-forward PLL.

where ωc is the cut off frequency of the low pass filter in
the feed-forward path. Accordingly, the closed-loop transfer
function of the feed-forward PLL is

Φ1 (s) =
θ̂e (s)

θe (s)
=

(kp + ωc)s
2 + (ki + kpωc)s+ kiωc

s3 + (kp + ωc)s2 + (ki + kpωc)s+ kiωc
(22)

To study the steady-state performance of the feed-forward
PLL, its error transfer function is given by

Φer1 (s) =
∆E (s)

θe (s)
=

s3

(s+ ωc)(s2 + kps+ ki)
(23)

The Taylor series expansion of (23) with respect to s around
the expansion point 0 is

Φer1 (s) = C0 + C1s+ C2s
2 + C3s

3 + C4s
4 + o

(
s4
)

(24)

where C0 = 0, C1 = 0, C2 = 0, C3 = 1
kiωc

and C4 = − kp
k2iωc

;
o
(
s4
)

is the high-order infinitesimal of s4.
It is assumed that a parabolic position input of the feed-

forward PLL is
θe (t) =

1

2
∆ωet

2 (25)
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and its time derivatives are
θ′e (t) = ∆ωet

θ′′e (t) = ∆ωe

θ′′′e (t) = 0

(26)

Therefore, the steady-state tracking error of the feed-
forward PLL for a speed ramp input is

ess1 (t) = C0θe (t) + C1θ
′
e (t) + C2θ

′′
e (t) + C3θ

′′′
e (t) + · · ·

= 0
(27)

It is clear from (27) that the feed-forward PLL can track a
parabolic position input with zero steady-state tracking error.
It also indicates that the feed-forward PLL can track a speed
step and ramp inputs with zero steady-state tracking error.

The position harmonic error is related to the filtering ca-
pacity of the PLL that mainly depends on the loop filter. To
compare the filtering performance of the conventional PLL
with the proposed feed-forward PLL, Fig. 8 shows the Bode
plots of the loop filters of the PLLs with different bandwidths.
The bandwidths in Fig. 8 (a) and (b) are 100 rad/s and 200
rad/s, respectively.

It can be seen from Fig. 8 that the amplitude of the loop
filter of the feed-forward PLL is smaller than that of the
conventional PLL at full-frequency band, and with the increase
of ωc, the amplitude decreases. A lower amplitude, especially
at a low-frequency band, is of great benefit to enhancing the
filtering performance. Therefore, the feed-forward PLL can
obtain a better position estimation performance in reducing
the position harmonic error with the same bandwidth as the
conventional PLL. It can also be seen from the two plots
that with the increase of the bandwidth, the amplitude of the
loop filter of the conventional PLL increases. However, even
with higher bandwidth, the feed-forward PLL can also obtain
a reasonable loop filter gain by tuning ωc, which suggests
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Fig. 9. Experimental platform.
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Fig. 10. Estimated speed, output of the SMO, equivalent gain and position
estimation error when the sign function is adopted.

that the feed-forward PLL can achieve a better harmonic
suppression ability comparing to the conventional PLL.

IV. EXPERIMENTAL EVALUATION

To evaluate the performance of the proposed high-precision
sensorless drive method of the PMSM, a field-oriented control
platform is constructed, as shown in Fig. 9. The parameters
of the prototype PMSM are listed in TABLE I. The field-
oriented controller is based on a digital signal processor
TMS320F28335. It is applied to execute the control algorithm,
realize the detection of measurement signals, and generate the
drive signals. The PMSM is driven by an IGBT based intel-
ligent power module (IPM) PM50RL1A060 with a switching
frequency of 10 kHz. A PI controller is used as the speed
controller, where the proportional coefficient is 0.5, and the
integral coefficient is 2.5. To limit the output of the speed
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Fig. 11. Estimated speed, output of the SMO, equivalent gain and position
estimation error when the sigmoid function is adopted.
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controller, the upper and lower limits are set as 10 and -10,
respectively.

A. Evaluation of Phase Self-compensation Method of SMO

To demonstrate the performance of the SMO with the sign
and sigmoid function, Fig. 10 and Fig. 11 show the estimated
speed n, the output of the SMO vα, the equivalent gain kfn,
kfd, and the position estimation error ∆θe. In order to verify
the theoretical analysis of the phase lag characteristic of the
SMO, the motor increases from 100 r/min to 1500 r/min. At
500 r/min, 1000 r/min and 1500 r/min, the motor keeps to a
constant speed for a while.

As shown in Fig. 10, when the sign function is adopted,
the equivalent gain kfn always maintains a large value, and
therefore, the position estimation deviation is small enough to
be neglected. Moreover, because of the discrete output of the
SMO and the irregular change of kfn, the estimated position
has a significant harmonic error. Therefore, due to the poor
position estimation performance, the sign function based SMO
is gradually replaced.

By contrast, the sigmoid function has a smaller equivalent
gain than that of the sign function around zero. Replacing
the sign function with the sigmoid function can effectively
reduce the position harmonic error. As shown in Fig. 11,
the estimated position also becomes smoother. However, it
is observed from ∆θe that there is a non-negligible position
estimation deviation when the sigmoid function is adopted.
When the motor operates at 1500 r/min, the position estimation
deviation is up to 0.08 rad. As presented in (14), the phase lag
is proportional to the speed in theory. As shown at the bottom
sub-figure of Fig. 11, the position error increases with the
increase of the speed, which is consistent with the theoretical
value. Therefore, the position estimation deviation can be
compensated through (14), which can eliminate the position
estimation deviation caused by the phase lag of the SMO.

To evaluate the performance of the phase self-compensation
method of the SMO, Fig. 12 shows the d-q axis currents and
position estimation error with and without the phase self-
compensation method. At 1.25s and 3.75s, the phase self-
compensation method is enabled and disabled, respectively.
It is clear that when the phase self-compensation method is
enabled, the position estimation deviation is almost reduced

to 0, and the q-axis current is also reduced by 0.32 A.
Therefore, the phase self-compensation method can effectively
compensate the phase lag caused by the SMO to improve the
efficiency of the motor.

B. Evaluation of Feed-forward PLL
In this experiment, the error characteristic of the conven-

tional PLL is verified, and the performance of the proposed
feed-forward PLL is also demonstrated with different band-
widths.

Fig. 13 shows the position estimation error of the conven-
tional PLL under acceleration and deceleration operations. It
is clear from Fig. 13 that the conventional PLL can track
the position with zero steady-state error whether at low
speed or high speed. However, when the motor accelerates
or decelerates, there is a steady-state position tracking error.
Clearly, the error relating to the acceleration is too large to
be neglected. With no load condition, the position estimation
errors are up to 0.355 rad and 0.449 rad when the motor
accelerates and decelerates, respectively. Moreover, when the
motor decelerates with rated load condition, the error is up to
0.623 rad, which would lead to a risk of tracking failure. As
analyzed in (20), the steady-state position error is proportional
to ∆ωe and inversely proportional to ki. In order to verify
the analysis, the second plots in Fig. 13 (a) and (b) give
the theoretical position error curves ∆ωe

ki
. It is clear that

the position tracking error is consistent with the theoretical
value, which verified the correctness of the analysis of the
conventional PLL.

As presented in (27), the proposed feed-forward PLL can
track the position with zero steady-state error when the motor
possesses acceleration. Fig. 14 and Fig. 15 show the position
and speed estimation results with different bandwidths. It can
be seen from Fig. 14 and Fig. 15 that all the conventional
PLLs have a steady-state position tracking error when the
motor accelerates or decelerates while the proposed feed-
forward PLL can track the position without steady-state error.
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Fig. 13. Position estimation error of the conventional PLL under acceleration
and deceleration operations. (a) With no load condition. (b) With rated load
condition.
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Since the steady-state position error of the conventional PLL
is inversely proportional to ki, and increasing ki can reduce
the steady-state error. However, an excessive ki would lead to

integral saturation and oscillation, which exposes the system
to a risk of tracking failure. As shown in Fig. 15 (b), when
ki is excessive, the system has failed to operate. By contrast,
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Fig. 17. Position estimation performance of the proposed feed-forward PLL
with the step load disturbance. (a) 500 r/min. (b) 1500 r/min.

the proposed feed-forward PLL can track the position stably
even with higher bandwidth.

According to Fig. 14 and Fig. 15, Fig. 16 gives the statisti-
cal analysis of the conventional and the proposed feed-forward
PLLs. The standard deviation (SD) is introduced to quantify
the amount of variations of the speed and position estimation.
It has been noted that when ωc = 0, the feed-forward PLL
degenerates into the conventional PLL. It is clear from Fig. 16
(I), (II), (IV) and (V) that the SDs of the position and speed are
reduced with the increase of ωc with or without load condition.
It suggests that the proposed feed-forward PLL has a better
performance in suppressing the position and speed harmonics,
and a larger ωc is of benefit to reducing the position and speed
harmonic errors.

However, in the transition processes, as shown Fig. 16
(III) and (VI), the overshoots of the position estimation error
relating to ωc are not monotonic, and there exists an inflection
point. Furthermore, with the increase of the bandwidth, the
SDs of the speed and position would get worse. However,
a smaller bandwidth would reduce the dynamic performance
and lead to an excessive overshoot of the position estimation,
which harms the stability of the system. Therefore, a reason-
able parameter design of the bandwidth and ωc can ensure a
good performance of the feed-forward PLL.

Fig. 17 (a) and (b) show the position estimation perfor-
mance of the proposed feed-forward PLL with the step load
disturbance at 500 r/min and 1500 r/min, respectively. From
top to bottom, the speed estimation error ∆n, the current
phase A ia, and the position estimation error ∆θe are given,
respectively. As shown in Fig. 17, the related load is added

at 1.0 s and removed at 4.0 s. It can be seen that adding and
removing the load hardly affect the accuracy of rotor position
estimation. It verified the effectiveness of the proposed feed-
forward under the load changes at low and high speed.

V. CONCLUSION

Based on the analysis of the conventional sensorless drive
method with the SMO and PLL, this paper proposed a position
estimation deviation suppression technology combining the
phase self-compensation SMO and the feed-forward PLL.
Through the proposed non-linear equivalent model of the
SMO, the position estimation deviation caused by the phase
lag of the SMO is compensated in real-time. In variable speed
applications, the conventional PLL shows a poor position
estimation performance and suffers from a steady-state posi-
tion estimation deviation under acceleration and deceleration
operations. Contrary to increasing the bandwidth of the PLL,
the feed-forward PLL has a smaller loop filter gain comparing
to the conventional PLL, which is competent for eliminating
the deviation and reducing the harmonic position error. A
series of experiments verified the effectiveness of the proposed
position estimation deviation suppression technology. It is
noted that the proposed phase lag analysis method of the
SMO provides a practical reference for analyzing the phase
characteristics of other observers.
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