
Vol:.(1234567890)

The Journal of Supercomputing (2022) 78:4182–4198
https://doi.org/10.1007/s11227-021-04020-y

1 3

Intelligent malware detection based on graph
convolutional network

Shanxi Li1 · Qingguo Zhou1 · Rui Zhou1 · Qingquan Lv1

Accepted: 9 July 2021 / Published online: 24 August 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2021

Abstract
Malware has seriously threatened the safety of computer systems for a long time.
Due to the rapid development of anti-detection technology, traditional detection
methods based on static analysis and dynamic analysis have limited effects. With
its better predictive performance, AI-based malware detection has been increasingly
used to deal with malware in recent years. However, due to the diversity of malware,
it is difficult to extract feature from malware, which make malware detection not
conductive to the application of AI technology. To solve the problem, a malware
classifier based on graph convolutional network is designed to adapt to the differ-
ence of malware characteristics. The specific method is to firstly extract the API
call sequence from the malware code and generate a directed cycle graph, then use
the Markov chain and principal component analysis method to extract the feature
map of the graph, and design a classifier based on graph convolutional network, and
finally analyze and compare the performance of the method. The results show that
the method has better performance in most detection, and the highest accuracy is
98.32% , compared with existing methods, our model is superior to other methods in
terms of FPR and accuracy. It is also stable to deal with the development and growth
of malware.

Keywords Malware detection · Directed cyclic graph · Markov chain · Graph
convolutional network · Machine learning

 * Qingguo Zhou
 zhouqg@lzu.edu.cn

 Shanxi Li
 lisx@lzu.edu.cn

 Rui Zhou
 zr@lzu.edu.cn

 Qingquan Lv
 lvqq18@lzu.edu.cn

1 School of Information Science and Engineering, Lanzhou University, Lanzhou,
People’s Republic of China

http://orcid.org/0000-0001-8054-5446
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-021-04020-y&domain=pdf

4183

1 3

Intelligent malware detection based on graph convolutional…

1 Introduction

Since 2020, the “COVID-19” virus has spread throughout the world, seriously
affecting the health of all mankind and the normal development of society. The
virus has caused unprecedented disaster and panic to mankind. In the cyberspace,
computer viruses and other malicious software are also trying to break through
the computer’s defenses time and time again, causing damage to the computer
world.

Although information security departments spend a lot of money to maintain
network security every year, researchers have been trying to use more advanced
technology to solve the problem of information security, and have achieved a lot
of research results, which effectively curb the harm caused by malicious network
attacks. However, due to the particularity of information technology, malware
developers often look for a breakthrough by actively looking for system vulner-
abilities. On the other hand, the security department often studies the measures
to identify and defend the malware only after the system is broken and the loss
of users is caused. Therefore, the current security measures are often in the state
of “hindsight” and passive defense. How to predict the characteristic information
of malware, detect malware in advance, and nip the spread of malware in the bud
has become an important topic of information security research.

Most of the defense systems still use static analysis as their primary measure-
ment, which is mainly based on signature matching [1]. Some defense systems
have developed dynamic analysis, including sensitive behaviors, access to critical
privileges, network analysis, and key process monitor as their assistant method
[2, 3]. However, all of these methods are mainly focused on specific malware or
malware classes so that they are limited when defensing new types or variants
of malware. Besides, they are also weak to the anti-detection techniques, which
would let the detectors be deceived by disguised malware and cause damage. All
of the situations indicate that developing a new method of detection is essential.

In recent years, deep learning technology has shown an unprecedented degree
of intelligence. Through the analysis of a large number of historical data, it can
find the rules and predict the unknown samples. It shows strong adaptability, pre-
diction ability and intelligent level, and has achieved good results in computer
vision, natural language processing, speech recognition and other fields. At the
same time, it provides an effective means for the detection and prevention of mal-
ware, which can not only accurately detect malware, but also prospectively pre-
dict the maliciousness of unknown software.

Aiming at solving the problems of traditional static detection and dynamic
detection methods, this paper proposes a novel approach of malware detection
based on application programming interface (API) call sequence and deep learn-
ing algorithm. Firstly, the API call relation is extracted, and the ordered cycle
graph is constructed based on Markov chain. Then, the graph convolution neural
network (GCN) is used to detect malware. The performance analysis and compar-
ison are carried out. Consequently, the main contributions of our work are listed
as follows:

4184 S. Li et al.

1 3

• We present a new method to extract features from samples with three-dimen-
sional structure. Firstly, we extract the weight model of malware samples based
on Markov chain by using the API call information of a large number of known
malware samples, and then use the samples to be detected to map in the weight
model, so as to extract the features of the samples to be detected. The model
combines the features of test samples with the general features of malware, so
that the newly generated features can not only maintain the features of the sam-
ples themselves, but also increase the generality of the features, and effectively
resist the disguise and variants of malware.

• A malicious code detection method based on GCN is proposed. Taking the char-
acteristic graph of malicious code as the input, the graph convolution neural net-
work is trained and tested, and the malware detection model based on GCN is
established. The model takes advantage of the graph as input of GCN to improve
the adaptability of the model in detecting malicious code.

The remainder of the paper is organized as follows. Some related works are reviewed
in Sect. 2. System framework ,workflow and the method of detection are presented
in Sect. 3. The data set and experimental environment are introduced in Sect. 4. The
details of experiments and results are shown in Sect. 5, and the whole work is dis-
cussed and concluded in Sect. 6.

2 Related work

2.1 Development trend of malware

Since the birth of computer, malicious threat has been accompanied by the devel-
opment of computer. As early as 1949, John von Neumann’s paper “theory and
organization of complex Automata” [4] mentioned the assumption of how computer
programs can achieve self-replication, which can actually be regarded as the germi-
nation of malicious code. In 1970, Bob Thomas, a developer of BBN technologies,
created a program called creeper, which can realize self-replication and continue to
spread through ARPANET network. In 1983, Fred Cohen wrote the first computer
virus program recognized in history, which can realize self-replication and spread
[5]. Then, computer attack and computer defense has gradually developed into a
huge industry, and the scale of the industry is also higher and higher. Malicious code
refers to software with malicious intention, such as computer virus, worms, spyware,
browser hijackers, adware and track software, which can control and destroy the
user’s computer, data and network, and damage the user’s interests. Nowadays, with
the continuous improvement of malicious code detection technology and the devel-
opment of artificial intelligence technology, the technical level of malicious code is
becoming more and more advanced. We try every means to avoid the detection of
detection software by using escape strategies. These strategies are smarter and more
hidden than many conventional anti-malicious code systems [6, 7]. Generally speak-
ing, the development trend of malicious code is as follows: (1) the forms of attacks
are diverse, and the complexity of threat capability is increasing. (2) Malicious code

4185

1 3

Intelligent malware detection based on graph convolutional…

attacks tend to be intelligent. (3) Malicious code has been fully industrialized. (4)
Malicious code attacks are organized. (5) The ability of anti-detection has improved
significantly.

2.2 Traditional detection methods for malware

In 1987, Fred Cohen put forward the concept of computer virus for the first time,
and put forward the basic theory of computer virus detection and defense, estab-
lished the basis of program behavior detection, put forward a series of defense
schemes, opened the road of computer Malware Defense Research. In recent dec-
ades, researchers have explored a series of methods and techniques to detect mal-
ware after a lot of work. Detection of malware is mainly to detect the characteristic
code of malware, which mainly includes anomaly-based detection and signature-
based detection.

Anomaly-based detection technology is to check the maliciousness of the pro-
gram by detecting the difference between the behavior of the abnormal program and
that of the normal program. Generally, the behavior trajectory of malware is differ-
ent from that of normal software. After fully understanding the behavior of normal
program, a set of standards and specifications will be formed. If the behavior trajec-
tory of the program to be detected is abnormal and violates this set of specifications,
it can be determined as malware. There are three different detection methods for
anomaly-based detection: static detection, dynamic detection and hybrid detection.

Sundarkumar et al. proposed a model based on API call sequence type, which
uses text mining and topic modeling to detect malware [8]. After analysis, it sug-
gests to use decision tree to design malware detection expert system. Wu Songyang
and others used the data stream application program interface (API) as the classifi-
cation function, and adopted the improved k nearest neighbor classification model
to detect Android malicious code. Through machine learning, the API list related to
data flow is further optimized, and the efficiency of sensitive data transmission and
analysis is significantly improved [9].

2.3 AI‑based malware detection technology

Although traditional methods play a very important role in malicious code detec-
tion, they have also made some achievements [10]. However, because malicious
code writers often use various means to avoid the traditional detection methods, or
study some new types of malicious code or variants of malicious code, the accuracy
of the traditional detection model will be greatly reduced in these cases. With the
continuous development of machine learning technology, malware detection tech-
nology based on machine learning model has also developed and achieved some
successful results.

Schultz et al. introduced machine learning based on static features to detect
unknown malware, by using program executables (PE), byte n-gram and string for
feature extraction [11]. Elovici et al. used PE and Fisher score (FS) method for fea-
ture selection, and used artificial neural networks (ANN), Bayesian network (BN),

4186 S. Li et al.

1 3

decision tree (DT) and other methods to detect malicious software, with an accu-
racy of 95.8%. Moskovitch et al. used filter method for feature selection [12]. They
used gain ratio (GR) and Fisher score for feature selection, and used artificial neural
network, decision tree, Naive Bayes (NB) and support vector machine (SVM) classi-
fier to detect malware, with an accuracy of 94.9%. They also put forward a method,
using n-gram operation code as feature, using document frequency (DF), GR and
FS as feature selection method, using artificial neural network, decision tree, naive
Bayes and other classification algorithms, in the case of poor performance of ANN,
DT, Boosted DT(BDT), to keep a lower false alarm rate level [13].

Santos et al. proposed supervised learning to detect unknown malware [14]. They
use information gain method for feature selection, and use different classifiers, such
as DT, k-nearest neighbor (KNN), BN, SVM, in which SVM shows good accuracy.
Ivan firdausi et al [15]. designed malware detection technology by using five classi-
fiers including KNN, NB, J48 DT, SVM and MLP. The experimental results show
that J48 DT achieves the best overall performance, with the recall rate of 95.9%,
false alarm rate of 2.4%, accuracy of 97.3% and accuracy of 96.8%. In a word, it can
be concluded that the proof of concept can detect malware very effectively based
on the use of automatic behavior-based malware analysis and machine learning
technology.

Konrad Rieck et al. proposed a framework for automatically analyzing malware
behavior using machine learning [16]. The framework can automatically identify
new malware categories (clusters) with similar behaviors, and assign unknown mal-
ware to these discovered categories (classifications). Based on clustering and classi-
fication, an incremental method based on behavior analysis was proposed, which can
process the behavior of thousands of malware binaries every day.

In order to facilitate more researchers to use machine learning model to study
malicious code detection technology, Anderson et al. [17] provided a malicious
code benchmark dataset ember for machine learning, and then demonstrated a use
case using LightGBM and baseline gradient-enhanced decision tree model trained
by default. The author also proposed a general framework based on reinforcement
learning (RL) for static PE anti-malware engine. Through training with the anti-
malware engine, the general framework understands which operation sequences may
lead to avoiding the attack of any given malware sample in the detector, thus gen-
erating malware samples that can avoid detection, which provides a reference for
the design of more advanced detection software. Sanjay Sharma et al. proposed a
method based on the appearance of opcodes to improve the accuracy of malware
detection for unknown advanced malware. This method uses the Fisher scoring
method for feature selection, and uses five machine learning classifier algorithms to
detect unknown malware. Among them, random forest, LMT, J48 DT and NB have
reached 100% accuracy [18].

Smita Naval et. [19] proposed a new model based on an improved API sequence.
The method was tested through a series of experiments, and the results were com-
pared with existing malicious code detectors, which proved the effectiveness of the
method.

Tang et al. [20] proposed a new method of static malicious code detection
based on the API call sequence: firstly, extract the API sequence through dynamic

4187

1 3

Intelligent malware detection based on graph convolutional…

analysis, and then convert the sequence into a characteristic image that can repre-
sent the behavior of the malicious code. Finally, the convolutional neural network
(CNN) is used to classify the malicious code into nine malicious code families.
The results showed that the TPR indicator exceeded 99%.

Li Jin et al. proposed a malicious code detection system based on permission
usage analysis-SigPID. It uses machine learning-based classification methods
to classify different families of malware and benign applications. Experimental
results show that it can achieve an accuracy of more than 96%.

In the work of Raff et al. [21], they used neural networks to detect malicious
code at the entire executable file level. This solution avoids many of the problems
of the more common byte n-gram method, but it achieves consistent generaliza-
tion on both test sets.

Alzaylaee et al. [22] proposed a malicious code detection system based on
deep learning, DL-Droid, to dynamically detect malicious Android applications,
using dynamic features to achieve a detection rate of 97.8%.

As a new type of neural network architecture, graph neural network (GNN) has
been widely used in many industries in recent years [23], but there is still little
research on malware detection. Since GNN uses graphs as input, which is related
to the API call sequence graph studied in this paper, so we try to use a special
type of graph convolution network (GCN) in GNN.

3 Malware detection algorithm based on graph convolutional
network

In this section, we will introduce data preprocessing method and the detector
based on GCN proposed in this paper. First, we introduce the framework of the
system, and then we introduce the workflow.

3.1 System framework and workflow

This system mainly includes four steps, namely the extraction of API call
sequence, the generation of directed cycle graph, the Markov process and classifi-
cation. The malware detection system framework is shown in Fig. 1.

The system workflow is shown in Fig. 2. In the figure, the system process is
shown on the left, the highlight work has been shown on the right side of the fig-
ure, and the corresponding steps are indicated by blue curves. The sample is first
executed in the sandbox, and the API called by the sample is extracted from it,
and then the API is used as the vertex of the graph, and the number of times the
API calls other APIs is used as the weight of the directed edge, thereby establish-
ing a directed cyclic graph. Then, extract the feature map based on the Markov
chain, and the GCN classifier is used for classification.

4188 S. Li et al.

1 3

3.2 Algorithm for generating directed cyclic graph of API based on Markov chain

A directed acyclic graph (DAG) is a sequential graph with a limited set of point
S and a set of directed edge E, while the arbitrary edge e directed from a vertex si
to another vertex sj (si, sj ∈ S) , and arbitrary vertex could not return itself with the
directed edge sequences [24]. DAG can represent the set of possibilities that sat-
isfied Markov property, which clarifies that the probability of transitioning from a
state to another only depends on the current state.

Directed acyclic graph (DAG) is widely used in malicious code classification
based on API call sequence, but it is not convenient to use in API sequence with
cyclic call, so it needs to use directed cyclic graph (DCG).

DCG is similar to DAG, but allows loops from vertex to itself. In our work, the
DCG will be generated from API call sequences. The graph consists of vertices
s that presents API and edges e to represent invokes, and the edges in the DCGs
will be weighted according to the invokes chains of the samples. The structure of
DCG is shown in Fig. 3, where the vertex (API) and the relation among vertexes
(invokes) are presented concisely. For an edge ei,j in the graph G, the weight of
the edge would be the number of invokes that from API si to sj , it is labeled nij in
the figure.

For the convenience of model processing, a DCG will be presented as an adjacent
matrix, which is given in Table 1. In the matrix, the row refers to the vertex started,
namely API that make calls, and the column refers to the vertex ended, i.e., API that
is called. The weights of the edges are stored in the cell of the matrix, which means
the number that the call occur [25].

Fig. 1 GCN-based malware detection system framework

4189

1 3

Intelligent malware detection based on graph convolutional…

When the scale of API call is large, it is not conducive to feature extraction. For-
tunately, API calls often satisfy Markov property. In order to extract features of API
calls effectively, we use Markov chain to extract features and simplify models, so as
to facilitate the classification.

Fig. 2 GCN-based malware detection system workflow

Fig. 3 Structure of DCG

4190 S. Li et al.

1 3

Markov chain is a memory-less stochastic process that satisfies Markov prop-
erty. Due to the characteristic of Markov Chain that can simplify the features of
sequences, it is broadly used in the classification and processing of sequential data,
especially dynamic detection [26, 27].

To calculate the weight, firstly, an original malware dataset would be used to gen-
erate a Markov Chain. The dataset must be rich enough to present the general char-
acteristics of malware, and the chain can be defined as “weighting graph,” which can
be labeled as Mw . Suppose the number of APIs is m, the weight wi,j of edge ei,j in the
weighting graph can be computed as follows:

where ni,j means the number of calls that from API si to sj , and
∑m

k=1
ni,k refers to the

sum of all calls that are invoked from si . The nature of the weight in Markov Chain
is the probability of the event’s occurrence. Hence, the sum of the weight invoked
from an API si must be 1:

In the weighting phase, the final weight must fit both the sensitivity of invokes
and the characteristics of the sample itself. Thus, the final graph will be produced
from the merge of the adjacent matrix M (which generated from the sample), and the
weighting graph Mw . The process of the merge is shown in Fig. 4. The merged graph
will only retain the edges (invokes) existed both in M and Mw , and the final weight
Wi,j of the invoke from si to sj can be calculated as follows:

(1)wi,j =
ni,j

∑m

k=1
ni,k

(2)
m
∑

k=1

wi,k = 1

Table 1 Adjacent matrix of the
DCG in Fig. 3

S
1

S
2

S
3

S
4

S
5

S
1

n
1,1

n
1,2

n
1,3

n
1,4

-
S
2

– – n
2,3

– n
2,5

S
3

n
3,1

– – n
3,4

–
S
4

– – – – n
4,5

S
5

– n
5,2

– – –

Fig. 4 Merge process of DCG and weighting graph

4191

1 3

Intelligent malware detection based on graph convolutional…

where ni,j is the value of (i, j) in the adjacent matrix M, namely the number of invoke
ei,j occurred in the sample. The final output for detection is a matrix presenting the
merged graph, which is shown in Table 2.

3.3 GCN‑based malware classification algorithm

Due to the structure of each generated graph is different, and the dimension of adja-
cency matrix is also different, using traditional neural network needs to unify the
dimension, which will be a tedious work. Fortunately, graph convolution network
can deal with graphs with any structure, so in this paper, we try to use graph convo-
lution network to classify the generated graphs.

In the classifier module in the Fig. 1, a typical graph convolutional network
structure architecture is shown. It has C input channels and F output characteris-
tic graphs, and can contain multiple hidden layers [28]. Load a graph to GCN, and
through several layers of GCN, the feature of each node changes from S to Z, and
then completes the classification.

In our experiment, we design a two-layer semi-supervised classification GCN
based on the weighted feature matrix R generated. In the forward phase, the calcula-
tion is as follows:

Here, R̃ = R + I , I is the identity matrix,D̃ is the degree matrix of R̃ . Then, we use
the forward model as follows:

W (0) is the weight matrix from input layer to hidden layer, W (0) is the hidden-to-out-
put weight matrix, the Relu function is defined as Relu(x) = max(0, x) . In fact, since
there are only two types, our softmax function is defined as follows:

Here, p1 + p2 = 1 . In the backpropagation stage, we use the cross-entropy loss
function:

(3)Wi,j = wi,j ⋅ ni,j

(4)R̂ = D̃
−

1

2 R̃D̃
−

1

2

(5)Z = f (X,R) = softmax(R̂Relu(R̂XW (0))W (1))

(6)softmax(pi) =
epi

ep1 + ep2

Table 2 Adjacent matrix of the
merged graph

S
1

S
2

S
3

S
4

S
5

S
1

W
1,1

– W
1,3

– –
S
2

– – W
2,3

– –
S
3

– – – – –
S
4

– – – – W
4,5

S
5

– – – – –

4192 S. Li et al.

1 3

Here, N is the number of samples, y is the label, p is the probability, y(i)
2
= 1 − y

(i)

1
 ,

pi
2
= 1 − pi

1
.

4 Dataset and experiment design

In this work, we collected a dataset consists of 13,624 samples, which have 6686
malware and 6938 benign samples. The detailed statistics are given in Table 3.
The malicious samples came from VirusTotal and VirusShare, and the benign
samples came from system programs as well as the Internet. The benign dataset
was split into five parts evenly to fit the numbers of malware dataset for each
year. In our experiments, the datasets were set 80% for training and 20% for evalu-
ation. For weighting models, an API log dataset was adopted for training. The
dataset for weighting included 62307 malware samples that were obtained from
Virusshare and selected randomly so that the generality of the weighting model
could be guaranteed.

The experiments were performed on a workstation with Ubuntu 18.04 system.
To monitor and extract the call sequences of each sample, a cuckoo sandbox was
deployed on the workstation as the running environment of the sample subsec-
tion weighting and generation of graph. In this phase, the extracted call sequences
were numbered firstly. Then, the sequences were transformed into the DCG. The
index of the DCG presented the corresponding API, and the value in each cell
referred to the appearance number of the API invoked by the previous API. After
generating DCG, the graph mixed with the weighting graph, so that a weighted
DCG with a unique value for each edge was created.

In the weighting phase, firstly, the weighting graph was trained from the data-
set. The initial weighting graph had 1609 rows and columns after the training.
Then, the weighting graph was used to generate merged graphs for detection.

(7)L = −

N
∑

i=1

[

y
(i)

1
log(pi

1
) + y

(i)

2
log(pi

2
)

]

, (i = 1, 2,… ,N)

Table 3 Datasets for evaluation Dataset Number

2016 Malware Dataset 1606
2017 Malware Dataset 1247
2018 Malware Dataset 1656
2019 Malware Dataset 888
2020 Malware Dataset 1289
Benign File Dataset 6938
Total 13,624

4193

1 3

Intelligent malware detection based on graph convolutional…

5 Experiments and results analysis

5.1 Detection and evaluation methods

Before analyzing the results, several common detection and evaluation methods are
introduced.

Accuracy is a standard metric that measures the exactitude of prediction. Pre-
cision refers to the number of predicted positive samples that are really positive.
Recall is the number of positive examples in the sample that are predicted as posi-
tive. F1-Score is a comprehensive measure index of the classification model. All of
these indexes could be computed as the following equations:

where TP is True Positive, which refers to the number of positive samples that are
predicted as positive. FN is False Negative, namely the number of positive sam-
ples that are predicted as negative. FP is False Positive, which means the number of
negative samples that are predicted as positive. TN is True Negative, which is the
number of negative samples that are predicted as negative. In our work, malicious
samples were labeled as positive, and benign samples were labeled as negative.

5.2 Classification results and analysis

After we extracted the API call sequence diagram, we analyzed the sample API call
sequence and corresponding weights.

Figure 5 shows scatters of four randomly selected groups of samples, where the
X-axis referred to the serial number of API that invoke others, Y-axis referred to the
serial number of API that was invoked by others, and Z-axis referred to the weight
of the API invoke. From the figure, we could find that the point of benign samples
distributed more dispersed than that of malicious samples. Also, the weights of API
invokes in the benign samples were more varied than the malicious samples.

Table 4 shows the evaluation result of the models with datasets from different
years. The results showed that the performance among the models had distinct dif-
ferences. For the models based on machine learning, most of them performed well
in the detection of most datasets. The overall performance of GCN in the evalua-
tion was relatively good, most of the indicators were ahead of other models, and the

(8)Accuracy =
TP + TN

TP + TN + FP + FN

(9)Precision =
TP

TP + FP

(10)Recall =
TP

TP + FN

(11)F1-Score =
2 × Precision × Recall

Precision + Recall

4194 S. Li et al.

1 3

(a)

(b)

Fig. 5 Scatters of final merged graph

4195

1 3

Intelligent malware detection based on graph convolutional…

CNN model was relatively close, which was related to their classification principles.
In addition, with the increase in the year, the prediction accuracy has declined to a
certain extent. We believe that the anti-detection ability of the sample has improved
to a certain extent. It is particularly important to note that in the 2020 data, the

Table 4 Evaluation of the models with different datasets

Bold represents the optimum value in the corresponding year indicator

DataSet Model Accuracy Precision Recall F1-Score

2016 Year Dataset SVM 0.9556 0.9350 0.9573 0.9656
Naïve Bayes 0.8211 0.8606 0.8087 0.8112
Decision tree 0.9386 0.9406 0.9652 0.9328
Random forest 0.9357 0.9183 0.9547 0.9351
GCN 0.9832 0.9867 0.9619 0.9734
CNN 0.9673 0.9518 0.9562 0.9529
RNN 0.9270 0.9420 0.9339 0.9280

2017 Year Dataset SVM 0.9605 0.9543 0.9573 0.9652
Naïve Bayes 0.8327 0.8430 0.7834 0.8678
Decision tree 0.9305 0.9618 0.9267 0.9591
Random forest 0.9502 0.9496 0.9389 0.9478
GCN 0.9602 0.9546 0.9636 0.9622
CNN 0.9627 0.9563 0.9682 0.9457
RNN 0.9605 0.9468 0.9722 0.9544

2018 Year Dataset SVM 0.9256 0.9345 0.9487 0.9225
Naïve Bayes 0.8688 0.8693 0.8828 0.8685
Decision tree 0.9440 0.9256 0.9522 0.9337
Random forest 0.9419 0.9617 0.9220 0.9518
GCN 0.9654 0.9770 0.9562 0.9765
CNN 0.9643 0.9638 0.9688 0.9632
RNN 0.9570 0.9340 0.9521 0.9380

2019 Year Dataset SVM 0.9458 0.9362 0.9276 0.9463
Naïve Bayes 0.8378 0.8528 0.8519 0.8261
Decision tree 0.9356 0.9251 0.9159 0.9454
Random forest 0.9507 0.9487 0.9293 0.9186
GCN 0.9654 0.9463 0.9644 0.9552
CNN 0.9307 0.9581 0.9286 0.9483
RNN 0.9480 0.9285 0.9133 0.9259

2020 Year Dataset SVM 0.9008 0.8996 0.9037 0.9003
Naïve Bayes 0.7927 0.819 0.7847 0.8038
Decision tree 0.9245 0.9164 0.9319 0.9237
Random forest 0.9226 0.9176 0.9447 0.9261
GCN 0.9467 0.9494 0.9321 0.9505
CNN 0.9361 0.9344 0.9259 0.9101
RNN 0.9285 0.9379 0.9324 0.9351

4196 S. Li et al.

1 3

detection indicators of GCN are higher than other models, which indicates that the
GCN model has a better classification effect against models with strong detection
capabilities.

The results show that in most of the models based on machine learning or deep
learning, the method has a better performance on the detection of general malware,
which proves the effectiveness of the method.

We compared other methods with our model to test the performance of the model.
Table 5 introduces the comparison results of our model performance and other exist-
ing malicious code detection methods based on deep learning or machine learning.
As shown in Table 5, the TPR of all methods exceeds 99%. In addition, the FPR of
our method is lower than other methods, so our proposed method is superior to other
methods in terms of FPR and accuracy. The reason for the better performance of our
model is that as the malicious code data set increases, our extracted malicious fea-
tures are more accurate and the model is more robust.

6 Conclusion

Malware has a long history, which seriously threatens the security of computer
system. With the rapid development of anti-detection technology, the capability of
traditional detection methods based on static analysis and dynamic analysis is lim-
ited. With neural network having strong prediction performance, the application of
AI technology in malware detection has become a research hotspot. However, due
to the difference of malware, feature extraction is difficult, which is not conducive
to the application of traditional neural network. To solve the problem, we use the
flexibility of GCN input to design a malware detector based on GCN to adapt to
the differences of malware. The specific method is to extract the API call sequence
from the malicious code and generate the directed cyclic graph, use Markov chain
to extract the characteristics of the graph, and then use GCN to realize classifica-
tion. We also have done evaluation comparing with other machine learning algo-
rithms. The results show that the method has better performance in most detection,
and the highest accuracy is 98.32%. From the research, we find that the technology
has potential adaptability, but it has not been realized yet. In the future work, we
will focus on the research of adaptive detection model based on GCN, so that the

Table 5 Comparison of the
detection effect of GCN and
existing methods

Detection approach Type TPR FPR Accuracy

Smita et al. [19] Windows 0.9930 0.0460 0.9542
Tang et al. [20] Windows 0.9900 0.0105 None
Li et al. [29] Android None None 0.9647
Raff et al. [21] Windows None None 0.9400
Alzaylaee et al. [22] Android 0.9956 0.0330 0.9780
GCN Windows 0.9951 0.0037 0.9832

4197

1 3

Intelligent malware detection based on graph convolutional…

malware detection system has stronger adaptive ability, so as to reduce the cost of
personnel of malware detection.

Acknowledgements This work was partially supported by National Key R&D Program of China under
Grant No. 2020YFC0832500, Ministry of Education - China Mobile Research Foundation under Grant
No. MCM20170206, The Fundamental Research Funds for the Central Universities under Grant No.
lzujbky-2019-kb51 and lzujbky-2018-k12, National Natural Science Foundation of China under Grant
No. 61402210, Major National Project of High Resolution Earth Observation System under Grant No.
30-Y20A34-9010-15/17, Program for New Century Excellent Talents in University under Grant No.
NCET-12-0250, State Grid Corporation of China Science and Technology Project under Grant No.
SGGSKY00WYJS2000062, Strategic Priority Research Program of the Chinese Academy of Sciences
with Grant No. XDA03030100, Google Research Awards and Google Faculty Award, Science and Tech-
nology Plan of Qinghai Province under Grant No.2020-GX-164. We also gratefully acknowledge the sup-
port of NVIDIA Corporation with the donation of the Jetson TX1 used for this research.

References

 1. Saeed IA, Selamat A, Abuagoub AMA (2013) A survey on malware and malware detection sys-
tems. Int J Comput Appl 67:25–31. https:// doi. org/ 10. 5120/ 11480- 7108

 2. Bazrafshan Z, Hashemi H, Fard SMH, Hamzeh A (2013) A survey on heuristic malware detection
techniques. In: The 5th Conference on Information and Knowledge Technology, IEEE, shiraz, Iran,
pp 113–120. https:// doi. org/ 10. 1109/ IKT. 2013. 66200 49

 3. Ye Y, Li T, Adjeroh D, Iyengar SS (2017) A survey on malware detection using data mining tech-
niques. ACM Comput Surv 50:1–40. https:// doi. org/ 10. 1145/ 30735 59

 4. Von Neumann J (1966) Theory and organization of complicated automata
 5. Cohen F (1984) Computer viruses: theory and experiments. Comput Secur 6:22–35
 6. Christodorescu M, Jha S, Seshia SA, et al (2005) Semantics-aware malware detection. In: 2005

IEEE Symposium on Security and Privacy (S & P’05), IEEE, pp 32–46
 7. Vasudevan A, Yerraballi R (2006) Spike: engineering malware analysis tools using unobtrusive

binary-instrumentation. In: Proceedings of the 29th Australasian Computer Science Conference—
Vol 48. Australian Computer Society, Inc., AUS, p 311320

 8. Sundarkumar GG, Ravi V, Nwogu I et al (2015) Malware detection via API calls, topic models and
machine learning

 9. Wu S, Wang P, Li X et al (2016) Effective detection of android malware based on the usage of data
flow APIs and machine learning. Inf Softw Technol 75:17–25

 10. Deng X, Liu Y, Zhu C, Zhang H (2021) Air-ground surveillance sensor network based on edge com-
puting for target tracking. Comput Commun 166:254–261

 11. Schultz MG, Eskin E, Zadok F, et al (2002) Data mining methods for detection of new malicious
executables. In: IEEE Symposium on Security & Privacy

 12. Moskovitch R, Stopel D, Feher C et al (2009) Unknown malcode detection and the imbalance prob-
lem. J Comput Virol 5:295–308

 13. Moskovitch R, Feher C, Tzachar N, et al (2008) Unknown malcode detection using opcode rep-
resentation. In: Intelligence & Security Informatics, First European Conference, Euroisi, Esbjerg,
Denmark, December

 14. Santos I, Nieves J, Bringas PG (2011) Semi-supervised learning for unknown malware detection. In:
International symposium on distributed computing & artificial intelligence. PCA techniques, 2016
international conference on advanced communication systems and information security (ACOSIS).
IEEE, Marrakesh, Morocco, pp 1–7. https:// doi. org/ 10. 1109/ ACOSIS. 2016. 78439 30

 15. Firdausi I, Lim C, Erwin A, et al (2010) Analysis of machine learning techniques used in behavior-
based malware detection. IEEE Computer Society

 16. Rieck K, Trinius P, Willems C et al (2011) Automatic analysis of malware behavior using machine
learning. J Comput Secur 19:639–668

 17. Anderson HS, Roth P (2018) Ember: an open dataset for training static pe malware machine learn-
ing models

https://doi.org/10.5120/11480-7108
https://doi.org/10.1109/IKT.2013.6620049
https://doi.org/10.1145/3073559
https://doi.org/10.1109/ACOSIS.2016.7843930

4198 S. Li et al.

1 3

 18. Sharma S, Krishna CR, Sahay SK (2019) Detection of advanced malware by machine learning tech-
niques. Cryptogr Secur 333–342

 19. Naval S, Laxmi V, Rajarajan M et al (2015) Employing program semantics for malware dectection.
IEEE Trans Inf For Secur 10(12):2591–2604

 20. Tang M, Qian Q (2018) Dynamic api call sequence visualisation for malware classification. IET Inf
Secur 13(4):367–377

 21. Raff E, Barker J, Sylvester J et al (2017) Malware detection by eating a whole exe. Machine
Learning

 22. Alzaylaee MK, Yerima SY, Sezer S (2020) DL-Droid: deep learning based android malware detec-
tion using real devices. Comput Secur 89:101663

 23. Xu K, Hu W, Leskovec J, Jegelka S (2018) How powerful are graph neural networks? arXiv: 1810.
00826

 24. Spirtes PL (2013) Directed Cyclic Graphical Representations of Feedback Models. arXiv: 1302.
4982

 25. Deng X, Li J, Liu E, Zhang H (2020) Task allocation algorithm and optimization model on edge
collaboration. J Syst Arch 110:101778

 26. Xiao X, Wang Z, Li Q, Xia S, Jiang Y (2017) Back-propagation neural network on Markov chains
from system call sequences: a new approach for detecting Android malware with system call
sequences. IET Inf Secur 11:8–15. https:// doi. org/ 10. 1049/ iet- ifs. 2015. 0211

 27. Zang D, Liu J,Wang H (2018) Markov chain-based feature extraction for anomaly detection in time
series and its industrial application. In: 2018 Chinese Control And Decision Conference (CCDC),
IEEE

 28. Kipf TN , Welling M (2016) Semi-supervised classification with graph convolutional networks
 29. Li J, Sun L, Yan Q et al (2018) Significant permission identification for machine-learning based

andriod malware detection. IEEE Trans Ind Inform 14(7):3216–3225

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

http://arxiv.org/abs/1810.00826
http://arxiv.org/abs/1810.00826
http://arxiv.org/abs/1302.4982
http://arxiv.org/abs/1302.4982
https://doi.org/10.1049/iet-ifs.2015.0211

	Intelligent malware detection based on graph convolutional network
	Abstract
	1 Introduction
	2 Related work
	2.1 Development trend of malware
	2.2 Traditional detection methods for malware
	2.3 AI-based malware detection technology

	3 Malware detection algorithm based on graph convolutional network
	3.1 System framework and workflow
	3.2 Algorithm for generating directed cyclic graph of API based on Markov chain
	3.3 GCN-based malware classification algorithm

	4 Dataset and experiment design
	5 Experiments and results analysis
	5.1 Detection and evaluation methods
	5.2 Classification results and analysis

	6 Conclusion
	Acknowledgements
	References

