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Abstract Medical image segmentation is important for disease diagnosis and support medical deci-

sion systems. The study proposes an efficient 3D semantic segmentation deep learning model ‘‘3D-

DenseUNet-569” for liver and tumor segmentation. The proposed 3D-DenseUNet-569 is a fully 3D

semantic segmentation model with a significantly deeper network and lower trainable parameters.

The proposed model adopts Depthwise Separable Convolution (DS-Conv) as opposed to tradi-

tional convolution. The DS-Conv significantly decreases GPU memory requirements and computa-

tional cost and achieves high performance. The proposed 3D-DenseUNet-569 utilizes DensNet

connections and UNet links, which preserve low-level features and produce effective results. The

results of experimental study on the standard LiTS dataset demonstrate that the 3D-DenseNet-

569 model is effective and efficient with respect to related studies.
� 2020 The Authors. Published by Elsevier B.V. on behalf of Faculty of Engineering, Alexandria

University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

Nowadays, medical diagnostic scans, for example Computed
Tomography (CT) and Magnetic Resonance Imaging (MRI)
are important for diagnosis and assessment the treatment of

many disease. In clinics, human experts including radiologists
and physicians mainly perform medical image interpretation.
Recent advances in deep learning techniques are aiding in seg-
menting, classifying, and identifying patterns or organs in

medical applications [1].
Liver tumor (cancer) is the most common tumor disease

worldwide, and it leads to significant fatalities on an annual
basis. Precise tumor measurements (from MRI and CT),

including tumor size, location, and shape, can aid doctors in
making precise cancer assessment and treatment planning
[2,3]. Abnormality in form and texture of liver in MRI and

CT images are significant biomarkers for the diagnosis of ini-
tial disease and progression in liver tumor disease [4,5].

Manual or semi-manual (traditional) segmentation meth-

ods are used to analyze medical images for diagnosing liver
cancer. Unfortunately, traditional segmentation methods are
based on the operator, and thus they are subjective and very
time-consuming. Therefore, automatic segmentation tech-

niques of liver and tumor are in high demand. Previously,
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many computer-aided (automatic) techniques were developed.
Actually, develop effective and efficient semantic segmentation
techniques are interesting research topic for many areas.

The automatic segmentation of liver and tumor faces many
challenges including the contrast level between liver and tumor
is relatively small, there are varying sizes and types of liver

tumors [6] and anomalies in tissues (e.g., after tumour resec-
tion). In addition, there are different acquisition techniques
and multi resolution scanners, which lead to unpredictable

intensity variation between a liver and its tumor [3].
Recently, deep learning techniques gained significant atten-

tion to handel a lot of computer vision problems [1,7–11].
Specifically, the Convolutional Neural Networks (CNN) and

the Fully CNN (FCNs) achieved significant success in medical
image segmentation, classification, and recognition. The FCNs
models are highly stable with different image resolution, and

this encourages researchers to use them for liver tumor seg-
mentation from CT and MRI 3D images (volumes) [1,12].

Generally, medical image segmentation using CNNs/FCNs

techniques was classified into two classes. (A) 2D CNNs/
FCNs, for example UNet [7], FCN based on VGG-16 model
[13], and multi-channel FCN [14]. (B) 3D CNNs/FCNs, where

the 2D convolution operations that applied on 2D images are
generalized to 3D convolution operations to be applied on 3D
images [3,9].

As opposed to analyzing slice by slice, the 3D FCNs models

analyze the input slices as volumetric and utilize global fea-
tures between the input slices. Thus, accuracy of 3D FCNs
models are better than accuracy of 2D FCNs models. Unfortu-

nately, memory footprint and execution time of 3D FCNs are
relatively high. This limits the input size, network depth, and
filter size, which are important factors for achieving high per-

formance [15]. Additionally, the high computational cost of
the 3D FCNs impedes training on a large dataset.

The study proposes 3D-DenseUNet-569, which is an effi-

cient 3D deep learning model for semantic liver and its tumor
segmentation. The 3D-DenseUNet-569 architecture exhibits
the following advantages:

1. Utilizes the advantages of both UNet links and DenseNets
connections, and this maintains low-level features and leads
to fast training and results that are more accurate.

2. Decreases the pooling layer by adopting a standard convo-
lution with strides, and this maintains the resolution and
decreases the memory consumption.

3. Adopts the DS-Conv as opposed to traditional convolu-
tion, and this significantly decreases memory consumption
and computation while improving performance [16].

The 3D-DenseUNet-569 model was trained and evaluated
on a standard Liver Tumor Segmentation (LiTS-2017) dataset
[17]. The experimental results show the 3D-DenseUNet-569

model achieves high accuracy (96.7% for liver segmentation
and 80.7% for tumor segmentation) which outperforms
related models for liver and tumor segmentation tasks.

The paper organization is: Section 2 presents a related
work. Section 3 explains and discuss the proposed 3D-
DenseUNet-569 methodology and architecture. Section 4

presents our experiments and analyzes their results. Finally,
Section 5 concludes the study and suggests some future
research.
2. Related work

Many automatic segmentation methods are proposed includ-
ing texture based methods [4], statistical shape models [18],

region growing and threshold methods [19], graph cut tech-
niques [20], and sigmoid edge techniques [21]. Unfortunately,
the techniques depend on handcrafted features and have poor

feature representation.
Recently, CNNs and FCNs gained significant success in

solving many problems in computer vision fields. Several stud-
ies adapted this direction and applied various CNNs/FCNs for

liver and tumor segmentation [7,22,23].
Ben-Cohen et al. [13] proposed a FCN architecture for liver

and tumor segmentation from CT abdomen images. Christ

et al. [24] presented an automatic method for liver and lesions
segmentation from CT images by utilizing a cascaded FCNs
and 3D Conditional Random Fields (CRFs).

Sun et al. [14] proposed a multi-channel FCN to segment
liver tumors from multi contrast enhanced CT. This model
includes three channels which can be individually trained to

extract different features from a CT scans. Subsequently, a fea-
ture fusion of CECT images is used to generate probability
maps.

Most of the aforementioned methods are based on 2D FCN

with different network depths that process the input images
slice-by-slice. However, all the 2D FCN methods ignore the
3D context features, which restrict global feature extraction

capability and decrease segmentation accuracy.
During the Liver Tumor Segmentation challenge (LiTS-

2017) [25], Han [26] proposed an optimal model of the first

round and presented 2.5D CFN model that takes a five adja-
cent slices as one input slice and constructs a segmentation rel-
ative to the center slice. The model includes 32 layers and

utilizes short-range residual connections from ResNet [27]
and long-range concatenation connections of U-Net [7]. The
optimal model for the second round of LiTS was proposed
by the Lenovo Research group, China. The model employed

two cascaded neural networks for liver and its tumor segmen-
tation. This model costists of cascaded 2D and 2.5D U-Net
models.

Recently, an efficient design of 3D FCN models and
advancing GPU technology facilitate appling these methods
to 3D medical imaging. Çiçek et al. [28] proposed a successful

3D FCN architecture, termed as3D UNet, with skip connec-
tions to 3D segmentation from sparse annotation of biomedi-
cal images. Roth et al. [9] presented a cascaded 3D FCN and
an enhanced 3D UNet for multi-organ (e.g., liver, spleen,

and pancreas) segmentation.
With respect to 2D and 3D, 3D FCN exhibit high accuracy

but it is more complex and required high memory [2]. The high

complexity impedes the model in training a larger dataset. The
high memory footprint leads to reduce the network depth and
the filters size, which Which negatively affects the performance

[29].
Most deep learning researchers believe that the deeper

model is the most effective model [27,30]. Nevertheless, the

deeper model faces popping/vanishing gradients problems,
which obstruct convergence through training. Huang et al.
[31] proposed densely connected networks (DenseNets) to
address these issues. The architecture of DenseNets contains

direct connections between the consecutive layers, and this
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facilitates training and produces accurate results. DenseNets
provides a direct connection among the entire layers, thereby
improving flow of gradients and information throughout the

layers. Furthermore, dense connections decrease the over-
fitting problem when working on a smaller training dataset.
DenseNets exhibited good performances in image classification

tasks. Therefore, many researchers extend the definition of
DenseNets to segmentation problems [2,30,32–34].

Li et al. [2] presented a hybrid densely UNet (H-

DenseUNet) architecture to segment liver and tumor. The H-
DenseUNet extracts local and global features from slices via
a cascaded 2D and 3D DenseUNet networks. The architecture
addresses heavy computation and memory consumption prob-

lems where local and global features are extracted and fused
together for precise liver and tumor segmentation.

3. Methodology

Based on the great success of DenseNets in medical images
segmentation [2,30,35], we propose an efficient, 3D-

DenseUNet-569, 3D deep learning model for liver and tumor
semantic segmentation. However, the use of DenseNets for
3D image segmentation exhibits the following challenges.

1. The original DenseNet (DenseNet-161) [31] was developed
for classification tasks instead of segmentation tasks.

2. Deep densely connected networks for object segmentation
actually consist of several pooling and upsampling layers,
that decreases the resolution (low level features).

3. The 3D deep neural networks suffer from high GPU mem-

ory consumption and computational cost. High memory
utilization limits input size, network depth, and filter size,
which are important factors in achieving high performance

[15]. Additionally, the high computational cost of 3D con-
volutions limits training on a large-scale dataset.

Given the three aforementioned challenges, we designed an
efficient 3D-DenseUNet-569 model. As shown in Fig. 1, the
3D-DenseUNet-569 structure exhibits the following

advantages.

1. The proposed 3D-DenseUNet-569 model inherits both
advantages of 3D UNet [28] and DenseNets [2,31]. The

direct dense connections between the layers produce a
growth in the information flow, and this leads to an easier
and more accurate training. Additionally, there exists UNet

links from the encoding to decoding layers to improve the
resolution.

2. The 3D-DenseUNet-569 adopts a standard convolution

with strides as opposed to the pooling layer. The strategy
offers two significant benefits. Firstly, it eliminates the
need for using the pooling operation. Subsequently, it
increases the number of training features, which maintains

the resolution. Secondly, it decreases the memory
consumption.

3. The 3D-DenseUNet-569 replaces the standard convolution

in each dense block by a Depthwise Separable Convolution
(DS-Conv). The DS-Conv significantly decreases the mem-
ory consumption and computation cost while maintaining a

comparable (or preferable) performance [16].
The DS-Conv consists of depthwise and pointwise (i.e.,
1 � 1) convolutions, which significantly decreases the compu-
tation cost and memory consumption. A 3D depthwise convo-

lution executes a 3D convolution on each input volume while a
3D pointwise convolution is utilized to merge the 3D depth-
wise convolution outputs [15].

As depicted in Fig. 1, the 3D-DenseUNet-569 model con-
sists of iterative 3D DenseNet blocks. Each 3D densely block
includes different output dimensions, and there are links

among the consecutive layers. The connected path between
the densely blocks guarantees the maximum flow of informa-
tion, which enhances convergence to an optimal solution in
deep networks [2].

We assume that I 2 Rn� 224�224�12ð Þ�cn denotes the 3D train-
ing samples (for 224� 224� 12 3D input volume) with

ground-truth labels: Y 2 Rn� 224�224�12ð Þ�1 , such that n denotes

the input batch size and the last dimension cn represents the
channel. Each pixel i; j; kð Þcan be classified into a class c (liver,
tumor, and background), i.e., Yi;j;k ¼ c; and thus the 3D-

DenseUNet-569 conducts segmentation for liver and tumor
as follows:

X ¼ f I; hð Þ;X 2 Rn� 224�224�12ð Þ�64;

by ¼ f X; hð Þ; by 2 Rn� 224�224�12ð Þ�3 ð1Þ
where X denotes the feature vector from the final up-sampling

layer (layer 5, see Fig. 1) and by denotes the corresponding pix-
elwise probabilities for the input I. Let h denote the model
parameters (for e.g., convolution weights and bias terms of
the rectified linear unit).

The depth of the proposed 3D-DenseUNet-569 is extended
to 569 main layers. The layers consist of convolution layers,
depthwise convolution layers, pointwise convolution layers,

Batch Normalization (BN) layers, activation layers, transition
blocks, and upsampling blocks.

The transition block is employed to decrease the size of the

feature vectors. Each transition block contains a BN layer, a
1x1 convolution layer and a convolution layer with stride 2
as opposed to a pooling layer. Furthermore, a compression

factor is set to 0.5 during the experiments to prevent expansion
of feature maps.

The upsampling block consists of a bilinear interpolation
layer, and this is followed by a combination of low-level fea-

tures from the opposite dense block (i.e., UNet connections)
and a 3x3 convolutional layer. Specifically, BN layer and acti-
vation layer were applied after each convolution layer. The BN

aids in creating deeper and wider networks, and it is an impor-
tant factor in the considerable success of ResNet. The activa-
tion layer implements a rectified linear unit (ReLU) layer.

The ReLU is employed to optimize the proposed architecture
and consequently enhance the performance [36].

With the proposed architecture, the number of parameters
corresponds to 3.6 Million training parameters, and the net-

work depth is extended to 569 layers.

3.1. Loss function

The proposed model learns parameters/features from CT
images by minimizing the loss function. The loss function is
adapted as weighted cross entropy as follows:



Fig. 1 Proposed 3D-DenseUNet-569 Architecture for Semantic Liver and Tumor Segmentation.
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where yci is probability of the ground truth, byc
i is the predicted

probability of voxel i belongs to specific class c (liver, tumor, or
background), and wc

i denotes a weighting factor for each class.
Empirically, the weights are set as 1.2 for liver, 2.2 for liver
lesion, and 0.2 for background.

3.2. Training scheme

Many extant studies proved the effectiveness of knowledge
transfer to boost performance [37,38]. Unfortunately, a
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reliable pre-trained 3D model is absent, and this limits knowl-
edge transfer and thereby the performance.

To address the problem, we adopted cascaded training

methodology, which yields good performance and fast conver-
gence. In the methodology, the model was initially trained for
100 epochs, and each epoch contains 10 steps (sub-epochs).

The optimal weights obtained in the initial training phase are
used as a base for the next/final phase. In next training phase,
the 3D-DenseUNet-569 was trained for 1000 epochs in which

each epoch contains 10 steps.

4. Experimental results and analysis

4.1. Dataset

The 3D-DenseUNet-569 was trained and evaluated on the
well-known Liver Tumor Segmentation Challenge (LiTS-
2017) dataset [17]. The LiTS-2017 dataset contains 201 3D
CT scans of the abdomen, 131 for training, and 70 for testing.

The LiTS-2017 dataset was collected from many different clin-
ical sites via different CT scanners and methodologies. The
dataset exhibits a different plane resolution in the range

[0.55,1.0] mm and slice spacing in range [0.45,6.0] mm. To
remove any irrelevant details, each image intensity out of the
range [-200, 250] HU was truncated. To augment the dataset

and alleviate the overheating problem, we adopted a random
scaling and mirror from 0.8 to 1.2 for all the training data.

4.2. Evaluation metrics

Based on the LiTS benchmark [23], we utilized the Dice per
case score (DICE) and Dice global score to evaluate segmenta-
tion effectiveness. The DICE is an F-measures score, which

measures the average of recall and precision. For a segmenta-
tion task, it measures the overlap degree between the reference
and predicted segmentation masks. We assume that A and B

are two segmentation masks that the DICE defines as follows:

DICE A;Bð Þ ¼ 2 A \ Bj j
Aj j þ Bj j ð3Þ

The DICE final scores are located in the range [0,1] the
value 1 represents an accurate segmentation. The DICE score

is represent an average score per each case. The Dice global
score is an average Dice score for the entire dataset. The Dice
global score is more sensitive to larger tumors than small

tumors [23].

4.3. Implementation details

The 3D-DenseUNet-569 model was implemented by Ten-
sorFlow [39] with backend Keras packages [40]. Momentum
was selected as 0.5, and the initial learning rate is 0.01, and

then decreased by a value of 2 after every 10 epochs. The
training of the 3D-DenseUNet-569 model required approxi-
mately 42 h on a single NVIDIA GTX 1080 with 8 GB
memory. It is noted that the 3D-DenseUNet-569 is an

end-to-end model. The total time required for the segmenta-
tion ranged from 34 s to 130 s for the LiTS dataset. The
required time depends on the resolution and the slice num-

ber for each scan.
4.4. Results and discussion

Fig. 2 displays the training losses of the 3D-DenseUNet-569.
The advantage of our model is that we can train it in a cas-
caded mode, which yields fast convergence to an optimal solu-

tion. As shown in Fig. 2, the convergence of second training
phase is faster and realizes lower loss values. Moreover, the
results indicate that the 3D-DenseUNet-569 utilizes the trans-
fer learning strategy.

To validate the effectiveness, the proposed 3D-DenseUNet-
569 is compared with Kaluva et al. (2D densely connected
model) [32], H-DenseUNet (hybrid densely UNet model) [2],

and RA-UNet (3D UNet model) [41]. These models were cho-
sen as it had high accuracy results, also it represents the differ-
ent alternatives to the proposed model. From Table 1, the

proposed method achieves a DICE score of 96.2% and DICE
global score of 96.7%. For tumor burden evaluation, our
method reached a DICE score of 69.6%, DICE global score

of 80.7% corresponds to a desirable performance in the LiTS
challenge for liver and tumor segmentation.

The number of trainable parameters depends on the model
structure (i.e. number and type of the layers). The 3D DS-

Conv reduces the number of training parameters than the stan-
dard 3D convolution, which reduces the required memory and
computational power while maintaining a good performance

[42].
As in Fig. 3, the proposed 3D-DenseUNet-569 outper-

formed the related methods for liver segmentation. Unfortu-

nately, the H-DenseUNet [2] outperformed our proposed
model for tumor segmentation (see Fig. 4). A suitable explana-
tion can be that the H-DenseUNet [2] utilizes local and global
slices features through a cascaded 2D/3D DenseUNet. It is

worth noting that, the proposed 3D-DenseUNet-569 is more
efficient than the H-DenseUNet [2] with a significantly deeper
network (569 layers) and lower trainable parameters (3.6

Million).
Fig. 5 shows examples of LiTS tumor segmentation results

of the 3D-Denseunet-569. It demonstrates that the proposed

3D-Denseunet-569 model can successfully segment liver and
tumors in large regions. The proposed model can segment
tumors that are small and hard to detect. Given the very small



Table 1 The 3D-DenseUNet-569 Effectiveness (Dice: %) Compared with Other Related Methods on the LiTS Dataset.

Dimension No. of trainable parameters(Million) LiTS liver LiTS tumor

DICE DICE global DICE DICE global

Kaluva et al. [32] 2D – 91.2 92.3 49.2 62.5

H-DenseUNet [2] 2.5 D 4 M 96.1 96.5 72.2 82.4

3D DenseUNet-65 [2] 3D – 93.6 92.9 59.4 78.8

RA-UNet [41] 3D 4 M 96.1 96.3 59.5 79.5

The proposed 3D-DenseUNet-569 3D 3.6 M 96.2 96.7 69.6 80.7
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size and low contrast of a few tumors, the 3D-DenseUNet-569
model still exhibits some false results for tumor segmentation.

In order to evaluate the performance of using the 3D DS-

Conv, experiments were conducted on the 3D-DenseUNet-
569 model. As in the table 2, the model was trained using
3D DS-Conv and 3D standard convolution. These experiments

were conducted on various numbers of input cases (e.g. 5, 10,
15 and 20). As a result, the 3D DS-Conv requires an average
10.4 s for each epoch/step opposed to 38.85 s for the 3D stan-
dard convolution. Therefore, these results show that the pro-
posed model with 3D DS-Conv achieves better performance.

It’s worth to mention that, the processing time for the first
training epoch/step is relatively large because it includes the
model compiling time.

Table 3 shows that, the number of total parameters as well
as trainable parameters of the 3D-DenseUNet-569 using 3D



Fig. 5 Examples of Segmentation Results of the 3D-DenseUNet-569. (a) Original slice from the LiTS dataset, (b) corresponding

enhanced intensity, (c) corresponding segmentation mask from the LiTS Dataset, (d) segmentation results of the 3D-Denseunet-569 where

the liver is represented by green region and the tumors are represented by red regions.
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DS-Conv is much lower than the 3D-DenseUNet-569 using 3D
standard convolution. Therefore, the required memory size has
been reduced by about 5 times. All the performance experi-

ments were conducted on GPU equipped with 8 GB memory.

5. Conclusion

This paper proposed an efficient 3D segmentation deep learn-
ing model (named 3D-DenseUNet-569) for liver and tumor
semantic segmentation from CT volumes. The proposed 3D-

DenseUNet-569 model combines advantages of both DensNet
connections and UNet links, which preserves low-level features
and produces more accurate results. The 3D-DenseUNet-569
adapted the 3D depthwise separable convolution to overcome

memory and computational cost limitations of 3D FCNs.
Therefore, the 3D-DenseUNet-569 is an efficient fully 3D seg-
mentation model with a significantly deeper network (569 main

layers) and a lower number of trainable parameters (3.6 Mil-
lion). The experimental results demonstrated that, the 3D-
DenseUNet-569 model achieves a DICE of 96.2% and DICE

global score of 96.7% for liver segmentation. With respect to
tumor segmentation, the proposed model achieves a DICE



Table 2 The 3D-DenseUNet-569 performance evaluation on the LiTS Dataset.

The 3D-DenseUNet-569 using 3D DS-Conv The 3D-DenseUNet-569 using 3D standard Conv

Epoch NO 5-cases 10-cases 15-cases 20-cases 5-cases 10-cases 15-cases 20-cases

1 40 55 59 45 192 241 225 228

2 8 6 7 7 18 17 12 17

3 6 5 6 6 14 10 19 18

4 6 6 6 6 25 14 19 17

5 6 6 7 6 13 15 17 18

6 6 5 6 6 13 14 19 20

7 6 6 6 6 16 13 18 27

8 6 5 6 6 25 17 21 22

9 6 6 6 6 15 32 19 17

10 6 5 6 6 27 30 20 20

Avarage 9.6 10.5 11.5 10 35.8 40.3 38.9 40.4

Total Avarage 10.4 38.85

Table 3 Number of parameters of the 3D-DenseUNet-569

using the 3D DS-Conv compared with using the 3D standard

convolution.

The 3D-DenseUNet-

569 using 3D DS-Conv

The 3D-DenseUNet-569

using 3D standard Conv

Total

params

36,433,587 181,270,071

Trainable

params

36,270,875 180,615,711

Non-

trainable

params

162,712 654,360
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of 69.6% and DICE global score of 80.7%. These results rep-

resent a high performance in the LiTS challenge.
As a future work, we plan to improve the 3D-DenseUNet-

569 architecture to be more general to other medical imaging
segmentation tasks such as COVID-19 lesion segmentation

of lung CT images. Also, we aim to apply it in real CT clinical
cases.
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