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A B S T R A C T   

Deep learning models have become a popular mode to classify electrocardiogram (ECG) data. Investigators have 
used a variety of deep learning techniques for this application. Herein, a detailed examination of deep learning 
methods for ECG arrhythmia detection is provided. Approaches used by investigators are examined, and their 
contributions to the field are detailed. For this purpose, journal papers have been surveyed according to the 
methods used. In addition, various deep learning models and experimental studies are described and discussed. A 
five-class ECG dataset containing 100,022 beats was then utilized for further analysis of deep learning tech
niques. The constructed models were examined with this dataset, and results are presented. This study therefore 
provides information concerning deep learning approaches used for arrhythmia classification, and suggestions 
for further research in this area.   

1. Introduction 

Arrhythmias are an important group of cardiovascular disorder. An 
arrhythmia may occur on its own or in conjunction with other cardio
vascular diseases [1]. Because of the high mortality rates in heart dis
ease, early diagnosis and definitive differentiation of arrhythmias are 
important to patient treatment [2]. The most commonly used solution 
for arrhythmia detection is with the recording of the electrocardiogram 
(ECG), which displays the electrical activity of the heart over time from 
electrodes placed on the skin. The ECG leads, which capture the elec
trical potential of the heart from different angles and positions, can be 
used to indicate disease state via abnormalities in waveforms or rhythms 
[3]. The ECG is a record of the electrical characteristics of the heartbeat 
and has become one of the most important tools in the diagnosis of heart 
disease. It is crucial to diagnose a broad spectrum of abnormalities, from 
arrhythmia to acute coronary syndrome [4]. It contains much infor
mation not only about the structure of the heart, but also concerning the 
function of the electrical conduction system [5]. Different types of 

arrhythmias correspond to different patterns that can be represented by 
different ECG waveforms [6]. These patterns contain information about 
heart function and condition. Therefore, monitoring and recognition of 
ECG signals is an important issue in biomedicine [7]. 

Arrhythmia can be represented by a slow, rapid, or irregular heart
beat, and can be grouped as life-threatening versus non-life-threatening. 
According to the association for the advancement of medical instru
mentation (AAMI), non-life-threatening arrhythmias can be divided into 
five main classes: non-ectopic (N), supraventricular ectopic (S), ven
tricular ectopic (V), fusion (F), and unknown (Q) [8]. Automatic 
arrhythmia detection based on the ECG provides great convenience as it 
does not require physicians to manually analyze the signals, and also 
helps people monitor heart conditions using wearable devices. Auto
mated accurate arrhythmia detection requires machine assistance in the 
treatment of cardiovascular diseases [3]. 

Advances in machine learning have enabled the efficient develop
ment of computer-based diagnostic (CAD) systems and their application 
to many areas. The development of intelligent systems in the field of 
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health, the processing of large amounts of raw data, and obtaining 
meaningful results from these data are of great interest [7]. 
Computer-aided interpretation has become increasingly essential in the 
field of healthcare since it recognized more than 50 years ago [4]. With 
the emergence of these systems, the workload of cardiologists has 
diminished, and the computational effectiveness and accuracy of disease 
detection have increased. In order to minimize visual errors and to 
compensate for manual interpretation, researchers began developing 
CAD systems to assist in the diagnosis using the ECG [5]. An effective 
CAD system requires a powerful pattern classifier, as well as a salient 
feature extractor that can extract significant information from the hid
den layers of raw data [9]. Conventional methods require the use of 
handcrafted features for signal preprocessing, waveform detection, 
feature extraction, and classification. The encoded features are generally 
designed and selected by trial-and-error or experience. Therefore, these 
systems require more specific expertise in various domains and hence 
obtaining useful features is a time-consuming process. Deep learning 
techniques have been developed to overcome these difficulties and to 
provide improved detection rate without the use of fixed coded features 
[10]. 

Traditional neural network methods [11–17] and kernel-based 
classifiers [18–20] were among the most commonly used methods for 
arrhythmia data classification. These methods generally use inputs ob
tained by feature extraction instead of raw input signals. Since the 
desired high performance of raw input data could not be achieved, prior 
research focused on feature extraction methods rather than network 
structure. Time, frequency, statistical and non-linear properties are ob
tained by such approaches as the wavelet transform, Fourier transform, 
and higher order spectra (HOS) [21–24,67–70]. Due to the high 
dimensionality of feature vectors resulting from transformation 
methods, the size of these feature vectors is reduced with statistical 
approaches or techniques such as PCA. Deep learning techniques, which 
have recently become popular in machine learning, provide an effective 
means for knowledge gathering without need of feature engineering 
[25]. Deep learning structures using sufficient ECG input and dataset 
training have the potential to learn all previously important manual 
features, as well as previously unknown features [4]. In the field of 
machine learning, efficient use of multi-layer networks has been ach
ieved due to both the introduction of effective approaches to solve 
optimization problems, as well as hardware advances such as imple
mentation of graphical processing units. Innovative approaches for error 
propagation and developing techniques such as batch normalization, 
residual connections, and depthwise separable convolution, have facil
itated the training of networks with many layers [26]. This area, a new 
sub-branch of machine learning called deep learning, has rapidly 
proliferated, leading to successful applications to process the ECG [27]. 

In this study, we examined the studies in the literature which have 
utilized deep learning methods for processing ECG signals. The contri
butions of these studies to the field are emphasized, and the methods 
proposed by them are analyzed. We also presented several applications 
on a heartbeat dataset containing 100,022 beats in five classes, for the 
purpose of evaluating commonly used deep learning techniques. This 
paper provided a comprehensive information on the classification of 
ECG signals using deep learning techniques which is the state-of-art 
techniques by implementing various models. We have also reviewed 
many related articles, identified the current challenges, suggested 
possible solutions, and delineated the popular trends with critical 
recommendations. 

2. Material and methods 

We employed ECG data from five different classes, containing 
100,022 beats obtained from the MIT-BIH arrhythmia database, to 
evaluate deep learning techniques commonly used in the literature. The 
results were analyzed by applying various applications - from basic 
models to more complex models. 

2.1. ECG dataset 

We have used 100,022 ECG beats from PhysioNet MIT-BIH 
Arrhythmia public database [28] for the evaluation of deep learning 
models. The MIT-BIH arrhythmia database includes N, S, V, F and Q 
main classes with each class having many sub-classes. We have used few 
groups in these classes for this work. These groups are chosen as they are 
widely used in the literature. The beats in our used dataset consist of five 
classes: normal beats (N), atrial premature beats (APB), left bundle 
branch block (LBBB), right bundle branch block (RBBB) and premature 
ventricular contraction (PVC). ECG data from modified limb lead II 
signals were organized into segments with 260 samples. Segments (one 
single beat) of continuous beats of 48 half-hour records of 47 patients 
were used for this work. The signals in each segment consist of 99 
samples before the R peak, and 160 samples after the pulses. Beats tags 
were annotated by multiple cardiologists. Table 1 exhibits the classes, 
the number of pulses, and waveform examples of these classes in the 
arrhythmia data. 

2.2. Experimental setup 

In the application of deep learning techniques, we have used the 
Keras with TensorFlow backend Deep Learning Library. Raw ECG sig
nals were first scaled in the range of 0–1, and then standardized. The 
scikit-learn library was used for pre-processing. An early stopping 
technique was utilized to determine how long the learning process 
would continue. With this technique, loss values are monitored, and the 
training process is stopped when model begins to overfit. Thus, learning 
was stopped so that overfitting problems do not occur for each network. 
Few common hyper-parameter adjustments of models are determined 
for learning rate value of 0.001, and batch size of 128. Optimizers and 
other parameters are varied depending on the examined networks. The 
related adjustments are presented separately in each experimental 
study. The computer used in the experimental studies has an Intel Core 
i7-7700HQ 2.81 GHz CPU, 16 GB memory and 8 GB NVIDIA GeForce 
GTX 1070 graphics card. To ensure consistency in all experimental 
studies, the data was divided into 80% training, 10% validation and 10% 
testing, and the same datasets were used in all proposed models. In order 
to take into account the imbalanced data distributions in the classes 
during the training of the models, a class weight was assigned to each 
class using the scikit-learn library. Accuracy, Sensitivity, Specificity, 
Precision, and F-Score performance metrics were used to evaluate the 
results obtained for the test data. 

3. Applications and review 

In this section, a comprehensive examination has been carried out for 

Table 1 
Classes, number of beats, and waveform examples in the arrhythmia dataset.  

Beat Types Number of 
Patients 

Number 
of Beats 

Waveform Sample  

1. Normal Beats (N) 47 75020 

2. Atrial Premature 
Beat (APB) 2546 

3. Left Bundle 
Branch Block 
(LBBB) 

8072 

4. Right Bundle 
Branch Block 
(RBBB) 

7255 

5. Premature 
Ventricular 
Contraction (PVC) 

7129 
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arrhythmia detection from basic deep learning models and more com
plex network models. Under the deep learning techniques, the studies 
for arrhythmia analysis are detailed, and some of these techniques are 
applied on arrhythmia datasets, with the results then being evaluated. 

3.1. Deep neural networks 

Deep neural networks (DNN) are classical neural networks (NN) that 
are hierarchically bound and that contain many hidden layers [30]. In 
the arrhythmia classification problem, classical NN approaches and SVM 
classifiers have been replaced by DNN based classification models. DNN 
networks [31] input by raw ECG signals do not require preliminary 
feature extraction. The use of some temporal features in combination 
with raw signals has been shown to improve the performance of deep 
networks [32,33]. However, it should not be ignored that there is an 
additional cost in the stages of obtaining temporal features as RR in
terval. The denoising autoencoder (DAE) and stacked denoising 
autoencoder (SDAE) [33–36] approaches are frequently used to feed 
DNN classifiers with more suitable features, in contrast to the capability 
of shallow classifiers. The representations obtained from hidden layers 
of autoencoders are input to the Softmax layer, and classification op
erations are performed. Some studies have used the active learning 
structure to identify the most valuable beats for the DNN fine-tuning 
process [33–35]. In order to avoid overfitting during learning, effec
tive solutions have been presented that fuse existing and previous 
Softmax outputs [33]. In addition, there are studies suggesting the use of 
one-dimensional ECG signals in model inputs by converting them into 
time-frequency images [36]. In studies using DNN, the effects of layer 
increments on classification have been an important parameter to 
address. 

In our investigation, described herein, we studied a simple model 
with single hidden layer versus deeper models, to observe the behavior 
of end-to-end DNN structures, and the number of parameters useful for 
networks in arrhythmia classification. The inputs of these models con
sisted of raw ECG signals, and their output was composed of five ECG 
classes. Fig. 1 shows graphs of the performance of a classical NN with a 
single hidden layer of 128 units in the training phase, along with several 

parameters (activation function, optimizer, and loss function). 
In the NN-1 model (see Fig. 1 (b)), the graph of loss values during the 

training phase showed that the model performance improved in small 
steps, and this process is time consuming. This result caused by the 
derivative, which becomes too small because the values of the selected 
sigmoid activation function are too high or too low. Also, it can lead to 
the vanishing gradient problem which is common in gradient-based 
learning methods. Training of the NN-1 network could be completed 
at approximately 2000 epochs. Each epoch lasted 2s on average. This 
means approximately 1 h of training would be needed with our existing 
GPU hardware. In CPU mode, considering that this time decelerates, the 
cost of training will increase considerably. When the ReLU activation 
function (see Fig. 1 (c)), which is frequently used in deep learning rather 
than the sigmoid function in the NN-2 network, was selected (see Fig. 1 
(c)), and the gradient was updated with small values, so that the learning 
phase duration was approximately 1200 epochs. In the NN-3 and NN-4 
networks, when the Adam optimizer (Fig. 1 (d)) is selected, unlike the 
NN-2 model (Fig. 1 (d)), it completes learning by decreasing to 0.005 
values in a very short time period of approximately 11 epochs. The ReLU 
activation function and the Adam optimizer have improved both 
detection performance and time cost. 

In Fig. 2, the graphs of training performances on the ECG data of the 
models with 2, 3, and 5 hidden layers are given, respectively, to observe 
the effect of layer increase on classification. These models are termed 
DNN-1, DNN-2 and DNN-3, respectively. The hidden layer units in these 
models are 128, and the activation functions are selected as ReLU and 
Adam optimizer. 

The increase in the number of layers using the existing arrhythmia 
dataset had a positive effect on the training stage. On the other hand, 
with the increase in the depth of the layer, the performance of the model 
was improved. We have provided various performance criteria to eval
uate the trained models on unseen test data. The performance values are 
given in Table 2. 

The best accuracy performance of 99.11% was achieved with the 
DNN-3 model with five hidden layers. The sigmoid activation function 
used in the NN-1 model and the SGD optimizer led to a prolonged 
training period with very small changes in gradient. According to these 

Fig. 1. An illustration of the effects of activation functions, optimizers and loss functions on learning for a single hidden layer network. b) Sigmoid, MSE loss, and 
SGD optimizer, c) ReLU, MSE loss, and SGD optimizer, d) ReLU, MSE loss, and Adam optimizer, e) ReLU, categorical cross entropy loss, and Adam optimizer. 
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results, besides the increase in the number of layers, the ReLU activation 
function and Adam optimizer have a significant effect on the perfor
mance of DNN networks. 

3.2. Convolutional neural networks 

The process of learning differential representations to map input data 
to target outputs is the basic step of machine learning. Traditional ma
chine learning methods use various hand-engineered features to obtain 
representations of input data. In the case of deep learning, there is an 

Fig. 2. DNN models designed in the study and some performance graphs of these models during the training stages. a) The DNN models, b) Loss graphs and c) 
Accuracy graphs. 

Table 2 
Performance values of DNN and NN models on arrhythmia test data.  

Models Total Training Time Overall Sensitivity (%) Overall Specificity (%) Overall Precision (%) Overall F-Score (%) Overall Accuracy (%) 

NN-1 4000 s 89.66 98.70 93.93 91.63 97.73 
NN-2 2290 s 94.30 99.23 97.54 95.77 98.73 
NN-3 22 s 93.02 99.13 97.73 95.02 98.56 
NN-4 22 s 94.22 99.21 97.48 95.69 98.67 
DNN-1 24 s 95.34 99.34 97.50 96.37 98.85 
DNN-2 36 s 95.89 99.43 97.76 96.78 98.99 
DNN-3 36 s 96.45 99.53 97.72 97.05 99.11  

Fig. 3. A simple 1D convolutional neural network structure which has convolution, pooling and fully-connected layering.  
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automatic learning process from the low-level representations obtained 
from multiple layers, to the higher abstract representations in the 
training stage (see Fig. 3) [25]. Convolutional neural networks learn 
useful representations of input data in an end-to-end structure using the 
convolution operator. AlexNet’s success in the ImageNet [37] compe
tition in 2012 has made CNN applications popular, and their use in the 
medical field has become widespread. 

As the feature extraction process, which plays a critical role in ECG 
signal classification, is automated with convolutional neural networks, 
the use of CNN has become widespread in this field. These networks are 
used to classify patient-specific beats [6,38] and long duration ECG 
signals containing multiple rhythm classes [39,40,66], to detect 
different interval ECG segments [41], atrial fibrillation [41–48], and 
different types of ECG beats [8,49]. 

Models in CNN-based arrhythmia classification studies are prepared 
at depths reaching 9-layers [8], 11-layers [41], 16-layers [40] and 
34-layers [39,42]. In these models, there are many hierarchically con
nected layers where the feature maps obtained with convolutional layers 
are sub-sampled with pooling layers and fully connected layers in the 
last stage of the model. In addition to these layers, regularized layers 
such as batch normalization and dropout are also employed [6,39,40, 
45]. These make the model more resistant to overfitting, so that the 
learning process is more effective. As layer size increases, optimization 
of the network becomes more difficult. Rajpurkar et al. [39] have 
employed residual network-like shortcut connections in 34-tier models 
to solve this problem in arrhythmia classification. Another difficulty in 
designing the networks is to determine the filter length and number of 
convolution layers. Filter length is usually selected in small sizes, such as 
3 � 1 or 5 � 1. The main reasons for this are reduction of calculation cost 
and ability to distinguish signals with small differences between them 

[6]. Yet, it is seen that these filter lengths are chosen to be larger in 
networks designed for long duration signals. For example, Yildirim et al. 
[40] used a 50 � 1 size filter in the first convolution layer for 10 s ECG 
signals, and Rajpurkar et al. [39] used a filter length of 16 � 1 in 
convolution layers for 30 s. The filter numbers are generally selected as 
multiples of two. Lu et al. [49] showed that variable learning rate is 
more beneficial than constant rate learning. In addition, imbalance data 
in some arrhythmia datasets may yield misleading results in classifier 
performance [5,49]. Jiang et al. [5] discussed this problem in detail in 
heartbeat classification, and proposed three different solution methods. 

Herein, in order to evaluate the performance of the operation of CNN 
networks on ECG input signals according to the number of layers, the 
models in Fig. 4 with different size layers are designed and developed. 

While designing these models, only CNN base layers such as 
convolution, sub-sampling and dense layers were used. The convolution 
layer numbers of the models were increased and the layer parameters 
were designed to be the same. Our aim is to observe the impact of 
deepening CNN networks on existing data. The filter numbers are set to 
increase continuously to 32, 64, 128, and 256. Kernel sizes 5, 3, 5, and 3 
were chosen, respectively. The CNN networks designed for the experi
mental study were trained on the arrhythmia data separately, and 
changes in accuracy and loss values for the training and validation sets 
are given in Fig. 5. 

For the data analyzed, there were no significant differences between 
CNN performances during the training phase. However, it was found 
that the best performance was obtained for the CNN-4 model containing 
four convolution layers. Accordingly, it can be said that more distinctive 
representations of the input data are obtained due to the increase in 
number of layers. The values of some performance criteria on the test 
data of the models are given in Table 3. The F1-score and sensitivity 

Fig. 4. Detailed layer representations of CNN models constructed for experimental studies.  
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values for APB class were at low levels as compared to other classes. The 
main reason for this may be that this class has the least amount of data. 

Although the widespread use of CNN networks is based upon end-to- 
end classification, the feature maps obtained from the intermediate 
layers of these models are rich in information. Therefore, many of the 
traditional machine learning methods are of interest for the feature 
extraction stage. By using appropriate feature selection and size reduc
tion methods on attributes obtained from low-to-high level by convo
lution, useful input sets for shallow or deep classifiers can be obtained 
[5,48–51]. In addition, some handcrafted features are added to the 
feature set in order to improve classification performance [49,50]. In a 
scenario as presented in Fig. 6, the features obtained from a convolution 
layer are combined by means of the fusion process, and the useful fea
tures and classifier inputs selected by various approaches can analyze 
these features. 

Pourbabaee et al. [48] used a CNN network as a feature extractor for 
the detection of paroxysmal atrial fibrillation. They obtained better re
sults than the end-to-end CNN model by training the features of fully 
connected layers with the K-NN classifier. Lu et al. [49] classified the 
random forest classifier by fusing the CNN and PQRST features for 
arrhythmic signals. He stated that these fused features gave better re
sults than CNN features. Golrizkhatami et al. [50] used arrhythmia 
detection with three sub-classifier systems using some handcrafted 
features, along with features from different CNN layers. Fan et al. [43] 

utilized two 13-layer CNN networks in parallel, and concatenated the 
final pooling layer features, then performed the learning process of the 
model in fully connected layers. An illustration of the obtained con
volutional feature maps for the CNN-4 model is displayed in Fig. 7. 

Since the ECG is 1-dimensional, 1D CNN network models can be used 
on these data without any conversion. The widespread use of 2D CNN 
architecture for image problems has led to the emergence of models that 
work effectively on large datasets. Thus, instead of difficulties encoun
tered in designing new models such as layer and parameter setting, 
existing models are adapted to existing problems. The conversion of ECG 
signals to 2-D representative images and the classification by application 
of known models (such as AlexNet, GoogleNet, and ResNet) have 
become widespread [1,44,46,49,52,53]. In these conversion processes, 
frequency spectra of signals and 2-D images of frequency and time 
functions are generally obtained. An illustration showing process steps is 
given in Fig. 8. 

By converting ECG data into two-dimensional representations, many 
profound learning techniques applied on images can be used. The short- 
time Fourier Transform (STFT) approach is frequently used to obtain 
time-frequency representations. In this method, spectral changes are 
obtained as a function of time by applying the Fourier transform on all 
segments in the dedicated window size. These changes are used by 
converting to image information [52,54]. Apart from STFT, there are 
other techniques for converting ECG signals into 2D representations. 
Cao et al. [47] utilized sub-sampling at different scales by decomposing 
segmented samples to improve CNN performance in AF detection. Zhai 
et al. [52] employed the 2D-CNN structure with the dual-beat coupling 
matrix. Rajput et al. [53] incorporated both wavelet and STFT trans
formations and classified arrhythmia data by converting them to image 
data. It has also been shown in several studies that arrhythmia inputs 
converted to 2D representations have advantages over 1D CNN models 
[1,52]. 

3.3. Long short-term memory networks 

CNNs are powerful in learning representations on input data. How
ever, for sequential signals such as the ECG, it is important to consider 
long and short term dependencies. Since classical neural networks do 
not contain memory units, they are insufficient to learn these de
pendencies. With this in mind, recurrent neural network (RNN) 

Fig. 5. Performance graphs of CNN networks on the arrhythmia dataset during the training phase. a) Accuracy graphs (training and validation), b) Loss values 
(training and validation). 

Table 3 
The performance values of deep models on arrhythmia test data.  

Model Classes Performance Values 

Acc 
(%) 

Sen 
(%) 

Spe 
(%) 

Prec 
(%) 

F-Score 
(%) 

Overall 
Acc (%) 

CNN- 
1 

APB 99.37 79.83 99.87 94.28 86.46 98.93 
LBBB 99.84 99.10 99.91 98.97 99.04 
N 99.08 99.61 97.44 99.18 99.39 
RBBB 99.88 99.70 99.90 98.70 99.20 
PVC 99.64 97.37 99.82 97.77 97.57 

CNN- 
4 

APB 99.57 86.29 99.91 96.39 91.06 99.16 
LBBB 99.86 98.97 99.94 99.35 99.16 
N 99.33 99.76 98.01 99.36 99.56 
RBBB 99.88 99.56 99.91 98.84 99.20 
PVC 99.63 97.09 99.83 97.90 97.50  
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Fig. 6. An illustration of employing CNN models to extract features from ECG input signals.  

Fig. 7. Feature maps obtained from convolution layers of the CNN-4 model. a) raw input signal, b) feature maps of the first convolution layer, c) features of the 
second convolution layer, d) features of the third convolution layer, and e) features of the final convolution layer. 
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architectures have been created by adding an internal memory to 
feedforward neural networks [55,56]. Although RNNs are successful in 
short-term memory operations, they have failed to learn long-term de
pendencies. The most important reason for this is the vanishing gradient 
problem. LSTM networks have been introduced by Hochreiter and 
Schmidhuber [57] to solve the problem of vanishing gradient, one of the 
major difficulties in performing long-term memory. Thanks to the gates 
(input, forget and output) in the LSTM, the model can be taught using 
backpropagation through time to avoid gradient problems. In Fig. 9, an 
illustration of the LSTM structure is given. 

As with many sequential problems, LSTM networks have been used 
effectively in the classification of arrhythmia signals. Faust et al. [58] 
have proposed an LSTM network that utilizes heart rate (HR) signals as 
input for the recognition of AF and normal signals. Gao et al. [59] used 
an LSTM model with focal loss to classify imbalanced arrhythmia data. 
Yildirim et al. [29] proposed a wavelet transform-based layer to improve 
the performance of LSTM networks. With this layer, the wavelet co
efficients are used as additional features of the signal. 

Yildirim et al. [40] employed a coded features-based LSTM approach 
to classify arrhythmia data. In their study, they first converted the raw 
signals of 260 samples into 32-dimensional encoded features with an 
18-layer convolutional autoencoder. They achieved 99% accuracy by 
feeding these encoded features into the deep LSTM network. Due to the 
CAE structure, LSTM networks have significantly reduced the compu
tation time to classify arrhythmia data. However, the CAE structure they 
used to obtain the encoded features is both complex and time-consuming 
for coding. Similarly, an interesting study utilizing LSTM networks as a 
feature extractor is described by Hou et al. [60]. They employed an 
LSTM-based autoencoder model for arrhythmia recognition, and input 
the high-level features to the SVM classifier. 

In order to compare the performance of LSTM networks in the clas
sification of arrhythmia data, we have prepared different LSTM models 
that will work on our ECG dataset. These models are commonly used in 
LSTM based classification problems. Vanilla LSTM (see Fig. 10 (a)) with 
a single LSTM layer, and stacked LSTM models containing multiple 
LSTM layers (see Fig. 10 (b)) were created to contain 32 memory units. 
In addition, the bidirectional LSTM (BLSTM) model (see Fig. 10 (c)), 
which takes forward and backward sequences as input, was imple
mented. It is also possible to obtain hidden state outputs for each input 
time step in the LSTM networks. In the Keras environment, this adjust
ment is made with the return sequences parameter in LSTM layers. In 
our study, we used “False” and “True” states to observe the effect of this 
parameter. The hyper-parameters (learning rate, batch-size, etc.) of 
these models are the same as in previous models. 

From the results (Fig. 11 and Table 4), obtaining the hidden state for 
each input time step (return_sequences is true) and the stacked use of 
LSTM layers both increase performance accuracy. However, the number 
of LSTM layers added to the model doubled the computation time. 
Furthermore, the performance of the BLSTM model for the dataset we 
used underperformed the stacked LSTM structure in terms of both time 
cost and detection accuracy. 

In order to reduce the cost of computing and improve the perfor
mance of LSTM networks, hybrid techniques have been developed. In 
particular, CNN and LSTM networks are widely preferred for this pur
pose [10,61,62]. The main objective of CNN-LSTM networks is to create 
powerful models of input data by combining both representative 
learning and sequence learning (see Fig. 12). Oh et al. [10] proposed a 
CNN-LSTM model for the classification of variable length arrhythmia 
data. Andersen et al. [61] have proposed a CNN-LSTM model that uses 
RR interval segments as input for the classification of AF and normal 

Fig. 8. A block diagram illustrating the acquisition of representations of 1D ECG signals for processing with the 2D CNN model.  

Fig. 9. A block representation of the operating structure of the LSTM cell.  
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Fig. 10. Three different LSTM models constructed for experimental studies. a) Vanilla LSTM, b) Stacked LSTM and c) Stacked bidirectional LSTM.  

Fig. 11. Accuracy graphs of LSTM models during training. a) Vanilla LSTM, b) Vanilla LSTM with return sequences, c) Stacked LSTM, d) Bidirectional LSTM.  
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ECG signals. They stated that the use of RR segments instead of raw ECG 
to model inputs reduces the network computational cost. Warric et al. 
[62] proposed a CNN-LSTM model using the raw ECG input for the AF 
detection problem. 

In addition to LSTM models, different RNN models are employed for 
arrhythmia recognition. Wang [63] used a CNN-modified Elman neural 
network (MENN) hybrid for classification of AF signals. Guo et al. [64] 
utilized CNN and gated recurrent units (GRU) for inter-patient SVEB and 
VEB arrhythmia detection. 

As a final experiment in this study, we designed a CNN-LSTM model 
for both arrhythmia data and sequence learning. In this model, we have 
added an LSTM network with 32 memory units to the CNN-4. The 
structure and performance graphs of this model are presented in Fig. 12. 

When the values of the performance criteria for the CNN-LSTM 
model were examined (see Table 5), a 99.26% overall accuracy 

yielded a better result than other models. In addition, each epoch time of 
the CNN-LSTM model requires 294 s to complete, which is similar to that 
of the vanilla LSTM model. In general, although high performance 
(sensitivity, precision, and F1-Score) is obtained for all classes except for 
APB class. The recognition performance is better for classes such as NSR 
where the number of beats are more. Fewer number of data in other 
classes and the presence of inappropriate signals in the dataset may lead 
to misclassifications. Models tend to achieve better performance with 
more data in each class. 

4. Discussion 

The researchers conducted their studies on the classes suggested by 
AAMI standards. Few researchers have frequently used deep learning 
models on two rhythm classes such as supraventricular ectopic beat 

Table 4 
The performance values of Vanilla LSTM, Vanilla LSTM with return sequences, Stacked LSTM, and Bidirectional LSTM models.  

Models Training Time per 
epochs 

Overall Sensitivity 
(%) 

Overall Specificity 
(%) 

Overall Precision 
(%) 

Overall F-Score 
(%) 

Overall Accuracy 
(%) 

Vanilla LSTM (return_sequences ¼
True) 

245 s 86.92 97.94 90.97 88.41 95.71 

Vanilla LSTM (return_sequences ¼
False) 

247 s 96.44 99.48 97.35 96.87 98.98 

Stacked LSTM 504 s 96.41 99.52 97.91 97.12 99.12 
Bidirectional LSTM 1071 s 96.64 99.55 97.32 96.96 99.00  

Fig. 12. Representation and sequence learning approach. a) Block representation of the model b) Performance graphs of the model.  

Table 5 
The performance values of the CNN-LSTM model on test data.  

Classes Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) F1 Score (%) Overall Accuracy (%) 

APB 99.61 89.51 99.86 94.46 91.92 99.26 
LBBB 99.85 99.61 99.86 98.48 99.04 
NSR 99.43 99.69 98.60 99.55 99.62 
RBBB 99.94 99.56 99.96 99.56 99.56 
PVC 99.69 97.37 99.87 98.32 97.84  
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(SVEB or S) and ventricular ectopic (VEB or V) [5,6,33–36,38,52,64]. In 
SVEB and VEB detection process, different records of the same dataset 
were used to distinguish the events from non-SVEB and non-VEB. 
Similarly, studies on the detection of atrial fibrillation (AF) is 
increasing [42,47,58,61–63]. Besides, deep models were frequently 

used for the classification of beats (Normal, LBBB, RBBB, APC, PVC, 
Paced, etc.) and arrhythmia classes [1,3,7,10,29,59,66]. Interpatient 
signals were used to train these models. However, few studies have 
focused on the patient-specific performance of the models because the 
beats of the patients showed different characteristics [6,33,36,38]. 

Table 6 
Some state-of-the-art studies using deep learning techniques on ECG signals.  

Study Database Number of 
Classes 

Total Data DL Technique Results 

Kiranyaz 
et al., 2015 
[38] 

MIT-BIH Arrhythmia Database 5 83,648 beats 1-D CNN VEB: Acc ¼ 99%, Sen ¼ 93.9%, Spec ¼ 98.9% SVEB: 
Acc ¼ 97.6%, Sen ¼ 60.3%, Spec ¼ 99.2% 

Rahhal et al., 
2016 [33] 

MIT-BIH Arrhythmia Database INCART 
SVDB 

4 48 records 75 records 
78 records (30 min) 

DNN-SDAE VEB: Acc ¼ 99.9%, Sen ¼ 99.3%, Spec ¼ 99.9% 
SVEB: Acc ¼ 99.9%, Sen ¼ 95.9%, Spec ¼ 100% 

Luo et al., 
2017 [36] 

MIT-BIH Arrhytmia Database 4 49,373 beats DNN-SDA Patient-specific scenario: VEB: Acc ¼ 99.1%, Sen ¼
93.3%, Spec ¼ 99.5% SVEB: Acc ¼ 98.8%, Sen ¼
71.4%, Spec ¼ 99.8% Inter-patient scenario: VEB: 
Acc ¼ 95.5%, Sen ¼ 60.4%, Spec ¼ 97.9% SVEB: Acc 
¼ 96.2%, Sen ¼ 15.4%, Spec ¼ 99.3% 

Rajpurkar 
et al., 2017 
[39] 

Zio Patch 14 rhythm 64,121 records 34-layer CNN PPV ¼ 0.809, Recall ¼ 0.827, F1 ¼ 0.809 

Acharya et al., 
2017 [8] 

MIT-BIH Arrhytmia Database þ Synthetic 
data 

5 109,449 beats 9-layer CNN Set A: Acc ¼ 93.47%, Sen ¼ 96.01%, Spec ¼ 91.64% 
Set B: Acc ¼ 94.03%, Sen ¼ 96.71%, Spec ¼ 91.54% 

Warrick et al., 
2017 [62] 

PhysioNet Challenge 2017 4 8528 records LSTM 10-folds CV: F1 ¼ 83.10% Entry: F1 ¼ 84% 

Xu et al., 2018 
[31] 

MIT-BIH Arrhytmia Database 5 50,977 beats DNN Exp.1: Acc ¼ 93.1% Exp. 2: Acc ¼ 94.7% Exp. 3: Acc 
¼ 99.9% Exp. 4: Acc ¼ 99.7% 

Hanbay 2018 
[34] 

MIT-BIH Arrhytmia Database 4 – DNN VEB: Acc ¼ 99.9%, Sen ¼ 99.8%, Spec ¼ 100% SVEB: 
Acc ¼ 99.9%, Sen ¼ 99.2%, Spec ¼ 100% 

Sannino et al., 
2018 [32] 

MIT-BIH Arrhytmia Database 2 4576 beats 7-layer DNN Acc ¼ 99.68%, Sen ¼ 99.48%, Spec ¼ 99.83% 

Xia et al., 
2018 [35] 

MIT-BIH Arrhytmia Database Wearable 
Device Data Base 

4 100,700 beats 
160,420 beats 

DNN VEB: Acc ¼ 99.8%, Sen ¼ 99.4%, Spec ¼ 99.9% 
SVEB: Acc ¼ 99.8%, Sen ¼ 98.5%, Spec ¼ 99.9% 

Li et al., 2018 
[6] 

MIT-BIH Arrhytmia Database 5 42,244 beats GCNN, TDCNN VEB: Acc ¼ 98.8%, Sen ¼ 95.5%, Spec ¼ 99.1% 
SVEB: Acc ¼ 98.3%, Sen ¼ 68.7%, Spec ¼ 99.8% 

Yildirim 2018 
[7] 

MIT-BIH Arrhytmia Database 5 7376 beats 7-layer DBLSTM- 
WS 

DULSTM-WS2: Acc ¼ 99.25% DBLSTM-WS3: Acc ¼
99.39% 

Oh et al., 2018 
[10] 

MIT-BIH Arrhytmia Database 5 16,499 beats with 
variable length 

CNN-LSTM Acc ¼ 98.1%, Sen ¼ 97.5%, Spec ¼ 98.7% 

Yildirim et al., 
2018 [40] 

MIT-BIH Arrhytmia Database 13 15 17 833 fragments (10s) 
976 fragments (10s) 
1000 segment (10s) 

1D-CNN Acc ¼ 95.20% Acc ¼ 92.51% Acc ¼ 91.33% 

Zhai et al., 
2018 [52] 

MIT-BIH Arrhytmia Database 5 44 records 2D-CNN VEB: Acc ¼ 99.1%, Sen ¼ 96.4%, Spec ¼ 99.5% 
SVEB: Acc ¼ 97.3%, Sen ¼ 85.3%, Spec ¼ 98.0% 

Faust et al., 
2018 [58] 

MIT-BIH Atrial Fibrillation Database 2 100 beat window 99 
beats overlap 

LSTM CV: Acc ¼ 98.51%, Sen ¼ 98.32%, Spec ¼ 98.67% 
Blind fold validation: Acc ¼ 99.77%, Sen ¼ 99.87%, 
Spec ¼ 99.61% 

Hannun et al., 
2019 [4] 

Zio Monitor 12 91,232 records DNN ROC ¼ 0.97, F1 ¼ 0.837 

Jiang et al., 
2019 [5] 

MIT-BIH Arrhytmia Database European 
ST-T Database MIT-BIH ST Change 
Database 

4 Intra-patient: 230,775 
beats Inter-patient: 
232,357 beats 

DAE & 1D CNN Intra-patient: Acc ¼ 98.4% Inter-patient: VEB: Acc ¼
98.8%, Sen ¼ 91.0%, spec ¼ 99.3% SVEB: Acc ¼
97.3%, Sen ¼ 64.4%, Spec ¼ 98.6% 

Huang et al., 
2019 [1] 

MIT-BIH Arrhytmia Database 5 2520 segments (10 s) 2-D Deep CNN Acc ¼ 99.0% 

Yildirim et al., 
2019 [29] 

MIT-BIH Arrhytmia Database 5 100,022 beats 16-layer deep CAE 
& 5-layer LSTM 
Network 

Raw ECG: Acc ¼ 99.23% Coded Features: Acc ¼
99.11% 

Oh et al., 2019 
[66] 

MITDB 5 94,667 beats Modified U-Net Acc ¼ 97.32% 

Gao et al., 
2019 [59] 

MIT-BIH Arrhytmia Database 8 93,371 beats 4-layer LSTM, 
Focal Loss 

Acc ¼ 99.26%, Recall ¼ 99.26%, Spec ¼ 99.14% 

Fujita et al., 
2019 [45] 

MIT-BIH Malignant Ventricular 
Arrhythmia Database MIT-BIH Atrial 
Fibrillation Database MIT-BIH Arrhytmia 
Database 

4 25,284 beats CNN Normal: Acc ¼ 98.45%, Sen ¼ 99.87%, Spec ¼
99.27% Arr: Acc ¼ 98.45%, Sen ¼ 99.27%, Spec ¼
99.87% 

Fan et al., 
2019 [42] 

MIT-BIH Arrhytmia Database CINC 
Challenge Dataset 

3 8249 records CNN Balanced set: F1 ¼ 84%, Acc ¼ 85% Imbalanced set: 
F1 ¼ 85%, Acc ¼ 87% 

Guo et al., 
2019 [64] 

MIT-BIH Arrhytmia Database MIT-BIH 
Supraventricular Arrhytmia Database 

5 289,666 beats CNN VEB: Acc ¼ 93.71%, Sen ¼ 91.25%, Spec ¼ 94.77% 
SVEB: Acc ¼ 93.61%, Sen ¼ 62.70%, Spec ¼ 96.40% 

Yao et al., 
2020 [3] 

1st China Physiological Signal Challenge 8 9831 records (60 s) ATI-CNN PPV ¼ 82.6%, Recall ¼ 80.1%, F1 ¼ 81.2% 

VEB: V class versus [N, S, and F]; SVEB: S class versus [N, V and F]; Acc: accuracy; Sen: sensitivity; Spec: specificity; CV: cross-validation; PPV: precision; ROC: 
receiver operating characteristic curve, Arr: Arrhythmia, GCNN: Generic CNN, TDCNN: Tuned Dedicated CNN, ATI-CNN: Attention-based time-incremental CNN, 
DBLSTM-WS: Deep bidirectional LSTM- Wavelet sequence. 
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Few state-of-the-art ECG classification studies are given in Table 6. 
Deep learning approaches used in these studies are: deep neural net
works (DNN) [31–36], denoising autoencoders (DAE) [5,33–36], con
volutional autoencoders (CAE) [29], CNN [1,5,6,8,38–40,42,45,64,65], 
LSTM [29,39,58] and CNN-LSTM [3,10,62]. Researchers often design 
new models with different layer sizes, or they try to improve the input to 
the model. For example, Guo et al. [64] have made ECG classification by 
adding dense connections to the standard CNN structure, and thus 
allowing the use of all former layer outputs. Hannun et al. [4] and 
Rajpurkar et al. [39] used the CNN structure by adding shortcut con
nections as it was used in the residual structure. Oh et al. [66] employed 
a modified U-net model, which is often used for image segmentation 
studies. In addition, researchers had the opportunity to employ common 
models used for image processing by simply converting the 
one-dimensional signal data into two-dimensional data [1,52]. Various 
preprocessing techniques are used on ECG records before feeding the 
models. Few common preprocessing operations are removing noise [8, 
59], removing baseline-wondering [32,35,36,64], normalization [3,8, 
10,59] segmentation [8,10,31,32,36,52,66] and feature extraction [31, 
32,35]. 

Most of the studies have been carried out using the public databases. 
One of the most important problems encountered in these datasets is the 
data imbalance problem. Researchers have proposed various approaches 
to deal with this situation. Acharya et al. [8] preferred to produce syn
thetic data to overcome imbalance data. These synthetic data were ob
tained by changing the standard deviation, and Z-score mean calculated 
from the original ECG signals. Jiang et al. [5] also produced synthetic 
data, but they oversampled the minority class data. They trained their 
model with unmodified balanced dataset, and then they fed the model 
with the unbalanced data to perform classification with fine-tuning 
process. Similarly, Lu et al. [49] obtained a balanced dataset by 
increasing the number of minority classes with the random over sampler 
method. For the imbalanced data problem, Guo et al. [59] reduced the 
contribution of normal ECG samples during training phase by using the 
focal loss. Another significant difficulty in public datasets is that these 
datasets usually contain records of a small number of subjects for few 
classes. Datasets with more number of subjects contribute better and 
stable results. For example, Hannun et al. [4] and Rajpurkar et al. [39] 
used the dataset containing long duration records for large number of 
patients. They reported an efficient model better than the cardiologist’s 
performance using a well trained model. 

In this study, we have analyzed literature reports that use deep 
learning on arrhythmia ECG data. Some important observations ob
tained as a result of these examinations are as follows:  

- It is an important advantage to classify raw ECG signals with deep 
learning based systems without using any manual feature extraction. 
However, some studies have shown that the use of certain temporal 
features (i.e., RR interval) along with raw signals improves model 
performance [32,33,58].  

- Imbalance of ECG datasets is an important problem. Because there is 
much data in some classes as compared to other classes, it can give 
misleading information concerning model performance. Some re
searchers have focused on this problem and proposed solutions [5,8, 
49,59].  

- Much recent research in this area has focused on CNN modeling. In 
our experimental studies, both representation and sequential fea
tures of ECG signals improve classification performance. Hence, 
efficient hybrid models can provide more distinctive features from 
ECG signals.  

- The most important problem evident for CNN modeling is the design 
of a suitable structure for various datasets. Development of the layer 
parameters and hyperparameters are an important optimization 
problem in the formulation of a deep network. For this purpose, 
models similar to the effective models prepared on big data in image 
processing should be created for ECG analysis. Therefore, effective 

results can likely be obtained in this field with a transfer learning 
approach. 

- The methods of converting ECG signals to 2-D images by some re
searchers for the use of models trained on two-dimensional images 
for one-dimensional ECG datasets are of interest [1,44,46,49,52,53]. 
The investigations in this field can be used effectively in arrhythmia 
classification by utilizing deep models trained on large image 
datasets.  

- Another interesting application in this field would be to employ 
distinctive models for shallow classification by incorporating deep 
models as the feature extractors. With this approach, the advantages 
of shallow classification can be utilized.  

- Two different approaches are used, namely signal-wise and subject- 
wise, during performance evaluation. The main problem of the 
signal-wise approach is that the performance of the model is high due 
to the fact that the signals belonging to the same subject can be 
included in both the training and test sets. Therefore, subject-wise 
evaluations can give more accurate results about the generalization 
ability of the model. However, the subject number should be suffi
cient for this approach.  

- In a real life scenario, ECG signals have a noisy structure. In the 
approaches used in the literature, noise elimination is performed 
with various pre-processing techniques. Since these pre-processing 
steps add additional computational cost, more robust models are 
needed. 

- Deep learning models perform well when run on databases con
taining large amounts of quality information. Consequently, con
ducting research on recently established large ECG datasets [4,39, 
65] may lead to more effective models. 

For future studies, research should be expanded on the correct and 
efficient clinical applications of models created with deep learning 
techniques. For this purpose, research should be carried out in critical 
areas such as the integration of models into cloud and mobile systems. In 
addition, the development of models that work with integrated low 
power consumption wearable technologies is an important research 
area. Another important issue that will be needed in the use of these 
technologies is data security. Research on the protection of personal 
data stored and transmitted in cloud systems is critical. It is obvious that 
new approaches that will emerge in parallel with the advances in the 
field of deep learning can help in the advancement of the field. 
Furthermore, handcrafted feature extraction and research progress with 
shallow classifiers are necessary for progress in this area. With the in
crease of public databases and the increase of the data of specific classes 
in this direction, it will be a vital source of motivation for deep learning 
approaches to produce more successful results in the future. Finally, 
what features are taken into account during the diagnostic process, due 
to the black-box nature of deep learning methods, is an important 
question mark. For this reason, research on parameters that the models 
should consider for input data will play a significant role in developing 
more reliable methods. 

Some of the recent ECG classification studies are given in Table 6 
using the deep learning technique. When these studies are examined, it 
is evident that CNN models are preferred over other methods. Besides 
the difficulties in the design and parameter adjustment of CNN models, 
the high computational cost is the most crucial disadvantage of these 
networks. They also require a big dataset for proper training, which is 
the another drawback. Furthermore, hybrid models such as CNN-LSTM 
tend to produce successful results. An important problem in the use of 
LSTM models is the high resource utilization. This technique requires 
more time and cost compared to other methods. The most important 
disadvantage in using the deep learning methods are the requirement of 
costly hardwares such as graphics processing unit (GPU), layer and 
parameter optimizations are difficult when developing multi-layer 
models. Effective techniques such as transfer learning, residual con
nections and data augmentation will help to overcome these problems 
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over time. 

5. Conclusions 

This study comprised a comprehensive review and evaluation of 
deep learning techniques for arrhythmia classification. Peer-reviewed 
journal articles that utilized deep learning for arrhythmia detection 
were examined and discussed. An experimental study was presented to 
provide information concerning techniques that make deep learning 
effective for arrhythmia detection. In order to examine the performance 
of the proposed approaches, we constructed deep learning models for 
categorization of a five-class arrhythmia ECG dataset. We presented 
results for various deep learning models for arrhythmia detection, and 
suggested solutions to some important problems in the field. 
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