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ABSTRACT Nowadays, data are generated in a continuous streaming manner as the inputs of various
applications. The sources of such generated data can be wired or wireless sensor networks commonly
used in various fields of geographical, traffic, Internet of Things (IoT), financial tickers, Web2 and Web3,
e-commerce, social networks, and online communities. The high volume, high variety, and high velocity
of data have recently posed the challenge of 3Vs to this field, also known as the Big Data Problem. The
3Vs dimensions of complexities for the big data entails high-speed storage, scalability of database systems,
suitable data models, real-time responsiveness and so on. Data model, as the representation schema of data is
an essential issue since many others (e.g., DBMS systems’ design, DB languages, etc.) rely on. So, the study
of data models is a key and fundamental aspect in structuring, organizing, storing, and manipulating big
data. It is also the essence in various areas of cloud migration, web-scale, and so forth. In this paper,
we have systematically reviewed different types of data models, the rationale behind them, their applications
and support capabilities, and the technologies to switch from one model to another. To address the user
needs in various fields, a systematic review method is adopted to classify and present different types and
characteristics of data models.

INDEX TERMS Big data, database, data model, NoSQL, schema.

I. INTRODUCTION
In previous decades, relational database management sys-
tem (RDBMS) [1] was considered as the optimal solution
for many data consistency and management services [2].
The relational database was rapidly developed as a popular
choice for most data-driven companies. However, the tradi-
tional relational data model [3] used Cartesian products. This
yielded a mound of worthless results when ran on complex
data, thereby reducing the efficiency of the queries. With the
increase in the volume and the change in the variety of data
over time, the unscalability problem arose in the relational
data models. The other deficiencies of these models were
the lack of open-source databases and no support for all
data structures. Since then, data models have been proposed
to remedy such deficiencies. The XML model was devel-
oped to manage semi-structured data [5], [6]. The object-
relational [7] was another model developed, still facing the
scalability problem. Additionally, the explosive growth of
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data traffic by social networks, e-commerce as well as mul-
timedia data streams at the sensors [8] was an emerging
challenge to IT companies and other data resources. Accord-
ing to [9], this growth rate doubles every two years and
has increased tenfold within the years 2013 to 2020 (from
4.4 to 44 ZB). There was an urgent need for horizontal
scalability and greater flexibility of databases due to the
exponential growth of data volume, the change of data from
structured to semi-structured [10] and non-structured, and
the challenge of their storage. Hence, some practical solu-
tions have been presented to satisfy such challenges to big
data. The need to substitute new databases for old ones was
felt after the emergence of big data issues, 3Vs [3], [12],
IoT [13]–[15] in computer and data sciences. As a possible
remedy, NoSQL came into view. It has emerged in a general
term with unstable and flexible conceptual data models [16]
and varied strategies for the databases. Among features of
NoSQL databases are high scalability, availability without the
need for ACID feature support [9], open-source possibility
of the presented models [17], and capability of dynamic data
modeling. Given the variety and various applications of data
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models in NoSQL [18], information on data modeling, data
model types, and data retrieval from schema-less databases is
a requirement for engineers, scientists, and big data analysts
in making the best decisions. Also, knowledge about the
rationale for using different types of the data models, switch-
ing techniques from one data model to another, migration
strategies from source to target database at the conceptual
level [19] is among other requirements in the field that form
the topic of research in this article.

II. BACKGROUND
This section provides key concepts and terminologies associ-
ated with big data, data model, and schema.

A. BIG DATA CONCEPTS
Big data is an abstract concept with distinctive characteristics
that distinguish it from other types of data [12], including
massive data and very big data. Big data deals with sets of
information, not capable of being received, acquired, man-
aged, and processed at an acceptable time through infor-
mation technology and traditional software and hardware
tools [12], [20]. In the digital world, data is generated from
different sources where the rapid growth of data results from
the fast transfer of digital technologies. Big data can be
classified into two general types, the information produced
by humans and the information obtained from the physical
world and utilities such as sensors, GPS devices, and CCTV
cameras. In addition to the internet, these types of information
can be grounds for the exponential growth of big data over
the years. Big data is facing the problem of 3Vs, including
processing large streams of high-velocity data in the short-
est possible time. Meanwhile, software technologies have
been making attempts to overcome this problem [11], [14].
Unfortunately, datasets with these features cannot be fully
managed by the current systems, tools, and technologies.
Instead of being exploited or valued, a mass of data is given
up without reaching its ultimate goal. This will increase the
demand for technologies, systems, tools, methods, models,
structures, and concepts to receive, manage, process, and
analyze big data, extract the embedded knowledge and turn
it into value [21]. According to [22], big data aimes to use
different techniques for data analysis. However, there is a
growing gap between the possibility of data collection and
the power of data processing during the life cycle of data [23].
Therefore, data representation aims at managing data hetero-
geneity to make it meaningful for data analysts and scientists
(users or applications) [24]. Improper data representation
may reduce the value of original data and thus the efficiency
of data retrieval and analysis [21]. Instead, data modeling
provides a representation of big data to be managed. In this
paper, we examine different types of data models focusing on
different representations of big data.

B. DATA MODEL CONCEPTS
The data model represents the organization and the structure
of data elements. It shows how data elements relate to one

another [2], [3], [9] or determine [25] how data can be stored,
organized, and manipulated. In recent years, interest has been
aroused in developing of various tools and technologies for
exploitation and adding value to the mass of data to tackle the
3Vs (volume, velocity, and variety) of big data. In this regard,
significant challenges are related to the storage, analysis,
and representation of data in large volumes. In fact, data
modeling with the help of data representation enables data
management. In [2], the presented model is a core model
for storing, analyzing, and processing data in large systems.
In [26] and [27], the data model is defined as a set of con-
ceptual tools used to model the original set of data and the
relationships between data items. Based on [28], a data model
is aimed to make data meaningful and data communication
possible for information needs. In [4], the datamodel includes
three concepts:

(I) Data model is a set of data structures that mainly
describes data types, properties, and relationships. The
data structure is the basic part on which operations and
constraints are structured.

(II) Data model is a set of operators and inference rules that
mainly describe types and methods of operation in a
particular data structure.

(III) Data model is a set of comprehensive constraints that
can be used to describe syntax, dependencies, and con-
straints of data to ensure its accuracy, validity, and
compatibility.

The first concept of data structure is sometimes considered
by the data model regardless of the two others [29]. Based
on [30] and [25], a data model design consists of three phases,
namely a conceptual data model, logical data model, and
physical data model:

• Conceptual level deals with communicating ideas to the
users about the program’s domain specifying entities
and relationships in the scope of the model.

• The logical level is concernedwith communicating ideas
to the designers about the domain of applications spec-
ifying more details than the previous level. This level is
also referred to as the schema.

• Physical level refers to the physical storage and prac-
tical implementation in a database management sys-
tem. Therefore, the main step in designing a database
is the logical level of data model design at which the
database is specified from the perspectives of both
users and designers. Based on [31], the conceptual
data model is composed of three layers with the cor-
responding architecture of Attribute, Collection, and
Family.

To design a database at the abstract below the modeling level
entails structuring data in an abstract environment, fulfilled
by the data model. The data model is important in understand-
ing the type of data structure and the form of data storage.
There is a fixed concept of the data model in relational
databases. In contrast, different conceptual data models are
developed in NoSQL databases [32]–[34] with flexible and
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dynamic schema and strategies for storing data structures.
These databases also face the following challenges:

• Current NoSQL databases make no distinction
between data models at the logical and physical
levels.

• Different types of data structures are represented not
in the same way, although they must have been, at the
logical level.

• There is no common data model for different types of
NoSQL databases at the conceptual level.

C. SCHEMA CONCEPTS
In general, databases can be categorized into two groups of
schema-based and schema-less. The former utilizes a schema
to describe the structure of the database, while there is no
need to predefine a specific data structure for the latter, which
leads to the higher flexibility of the database. The data is
stored regarding a predefined structure of schema, which can
be defined either in accordance with some rules or in themind
of developers. Therefore, a non-defined data structure does
not necessarily ascertain a schema-less database; its existence
is relatively efficient for understanding data structure and
effective data management. Sometimes, schema is implicitly
embedded in data or program code [35]. In NoSQL data
models, a schema structure [36] is dynamically defined by
the data stored and the entities of that class [37]. The major
challenge of schema-less databases is lack of a definition to
check for data compatibility [38]. The existence of a schema
allows static data analysis and manipulation compatible with
the schema itself [35]. Given the importance of schema as a
pre-stage in data model design and its relation to the concept
of data model, we are intended to review the related articles.
In this article, attempts have been made to review the meth-
ods, solutions, and reasons for presenting different types of
data models in the field.

The rest of the article is structured as follows. In section 3,
methods are discussed for selecting papers to be reviewed.
Then, a summary of the selected papers is given in section 4.
Section 5 is devoted to the comparison of results and their
classification. Finally, the main conclusion of the results is
drawn in section 6.

III. RESEARCH METHODOLOGY
In this section, according to the Systematic Literature
Review (SLR) method [39], [40], we classified the data mod-
els reviewed from 2014 to 2020. First, the research needs
were identified in the ‘‘Identification of Needs’’ section.
Next, the related articles were collected, and then, refined
based on the identified needs. Last, the key questions to
extract from the articles were identified in the ‘‘Determining
Research Questions’’ section.

A. IDENTIFICATION OF NEEDS
This research aimed to answer the following analytical ques-
tions on the types of data models proposed in recent years:

• Why are data models of importance?
• How are data models classified, and the rationale behind
this classification?

• How are different types of data models compared and
the application of each type?

• Which kind of properties are required for data models,
and what are future research directions to be followed?

B. SELECTION OF RESOURCES
In the first step, articles were searched from leading scien-
tific publishers, including IEEE, Springer, Elsevier, Taylor &
Francis, Wiley, ACM, and Sage pub, corresponding to the
topic of data modeling.
Table 1 shows the number of articles collected from each

publisher in the first step of the search. Regarding the number
of published articles, only journal and conference papers
indexed in the WoS and ISI were considered to be evaluated
in the second step.

TABLE 1. Number of publishers on the searched topic.

The next step was to refine the selected articles.
Figure 1 shows the refinement and selection process of related
articles to the topic under investigation, summarized in a
flowchart. The deletion index for removing articles is as
follows:
• Articles not written in English.
• Articles not indexed in ISI.
• Articles with data models irrelevant to the study
database design or data storage.

As articles on data modeling encompass a wide range of
topics and applications, the search was done for the key-
words relevant to the concept of data model and database.
The results are shown in terms of publication index in
Figure 2.

Table 2 represents the number of initial and selected
articles for review. In the refinement stage, we excluded
short articles, book chapters, low-quality papers containing
no technical or scientific information about the discussion,
unrelated articles to our data model classification, and those
exclusively related to data model products. The selection
index for the finalized studies was based on:
• Articles published between 2014 and 2020.
• Articles related to the data model in the databases.
• Articles related to the data model applications.

Figure 3 illustrates categories of finalized articles according
to the publication year and Table 3 shows the classification of
articles according to the journal and the year.
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FIGURE 1. Evaluation and final index of article selection.

FIGURE 2. Distribution of keywords searched in each journal.

TABLE 2. Distribution of remained articles after refinement stage.

C. DETERMINING RESEARCH QUESTIONS
In each article, there was an assumption based on introducing
a new data model, applying an existing data model for a
specific purpose, or comparing several data models. We were
striving for responding to the following questions. The study
aimed at making a comparison between the extracted out-
come of each article and their total output to conclude a
systematic review of data models, their basic features and
applications. The questions posed to be answered were as
follows:
• RQ1: What is the new data model proposed or the data
model applied in the article? (Including the title, the used

FIGURE 3. Illustration of final articles by the publication year.

data model algorithm, the reason for the data model use,
and the way it works)

• RQ2: What is the reason behind if there is any compar-
ison drawn between the proposed data model and other
data models?

• RQ3: What is the application of the presented data
model?
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TABLE 3. Selected papers for review distinguished by categories and publishers.

• RQ4: What is the designed data model intended to
achieve?

• RQ5: What are the critical features of the studied data
model and what is the comparative result?

• RQ6: Which type of supported data (including struc-
tured, semi-structured, unstructured, or mixed) is used
in the data model?

• RQ7: Which type of schema in the study is referred to?
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IV. REVIEW OF THE SELECTED ARTICLES
The remained articles after the refinement stage were individ-
ually studied and summarized in this section. In the process of
reviewing, it was attempted to find answers to the questions
listed in section III considering the nature and the content of
research.

In [4], Open Scalable Relational Data Model (OSRDM)
was introduced, which supports data variety with full hori-
zontal scalability compared to the relational data model. This
data model exhibits similar properties of performance and
scalability to the NoSQL data model. In this model, a public
key was used to identify specific data items similar to the
key-value data models. In other words, this model developed
on a key-value model with split keys and public hashes, pro-
viding full horizontal scalability. Feature keys are also used
for flexible storage and data aggregation. The data structure
and the communication of operators can be defined by the
users themselves. Compared to the relational, column-based,
and document-based data models, various data structures are
supported by the model and various data types are definable
by the users. Representing data relationships as entities and
separating entities in the data structure provide this model
with full horizontal scalability.

In the design of NoSQL database [19], a model-based
process, called Mortadelo, was planned to automate database
implementation when switching between NoSQL models.
A conceptual data model is required for the database to deter-
mine the entities and the relationships between them. The
way to retrieve and update entities at runtime is also deter-
mined at this level which forms the first step of data model
design. From a technical point of view, processing separate
but linked metamodels can cause random system complexity.
A metamodel was developed to model a NoSQL database
independent of the platform, to cope with such complexity in
Mortadelo, called Generic Data Management (GDM). It can
be used as input for different instances of NoSQL in which
structured data and data access patterns are aggregated in a
metadata scheme. Two logical metadata instances (column
family data model and document data model) were also used
as input. The proposed model was evaluated in terms of
expressiveness, efficiency, required resources, and adaptabil-
ity to change. Thismodel claimed to be high-efficient in terms
of system performance. In this approach, the query integra-
tion mechanism was used and compared with the approach
in [41]. Except the two-query integration, the answers to all
queries were exactly the same with the shorter response time
for the model in [41]. In comparison with MONGODB and
Cassandra as the two top NoSQL databases, a case study was
carried out to test the performance of this model.

In [16], a data model was designed for MongoDB and Cas-
sandra to compare their performance on storing radio spec-
trum data obtained from sensors and Binary Large Objects.
The purpose was to select the optimal text database of
the game for the time-series data as having timestamps.
Each Avro record from Kafka was converted into a docu-
ment in MongoDB. The bucketing pattern was used for the

minimum number of documents. Avro fields were mapped
from Kafka record in Cassandra data model to columns in a
database table, and bucketing was used for size limitation of
partitions.

Another mechanism was presented for converting the
NoSQL conceptual data model to the schema JSON logical
data model [30]. The steps of converting data and their rela-
tionships were described from the conceptual to the logical
level. Similar to the NoSQL databases, the proposed model
was claimed to be simpler for converting data at the physi-
cal level. This model aimed to make schema more flexible,
represent both structured and unstructured data, and evolve
heterogeneity of NoSQL databases. Its early formation at the
conceptual level occurred on the base of Collection, Family,
and Attribute layers with their structural types. Its perfor-
mance was then evaluated through a case study.

In a designed architecture for scalable and efficient Elec-
tronic Product Code Information System (EPCIS) track-
ing [42], a column-based data model was adopted to retrieve
information in NoSQL. It was shown that the column-based
data models were themost suited to data track and trace appli-
cations. The data from the EPCIS system were stored in Cas-
sandra clusters using distributed hashes on the column-based
data model. The syntax comparison between SQL and Cas-
sandra showed that SQL required more than one index to
access the recorded events available for a particular tag,
analogous with the document-based data model. This is while
only one index was used for Cassandra database. In the
column-based model, there was no need for encryption and
decryption of information based on the storage path of
stored data in the linked columns. The scalability of the
column-based data model was finally investigated from an
operational point of view. It was found that the column-based
model had better performance than other data models on
tracking specific data for path-based queries.

In [23], a NoSQL data model was introduced to support the
high-performance of MapReduce, providing two algorithms
for automatic partitioning and parallelization of data. The
purpose was to present a model of NoSQL data collection
not only scalable but also suitable for workflows of big data-
driven applications. The first algorithm splits the workflow
into multiple clusters, each runs in a virtual machine. The sec-
ond algorithm executes data partitioning, virtual machine
preparation, and deprivation reduction automatically. It also
develops scalability of workflows in the MapReduce style
and a new DataView for workflows of big data systems. The
suggested model was used to analyze collected data from
vehicles and provide insight into associated risks with the
driving style.

In [43], the NoSQL data models were compared with the
relational data model and categorized according to their key
features. These features include horizontal scalability, parti-
tioning ability of large datasets in distributed sources, data
replicability for fault tolerance, and mechanism facility for
data item compatibility. Other properties of data placement,
partition, replication, consistency, fault tolerance, as well
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as lack of global query language are fully explored for all
NoSQL data models.

NoSQL databases, in particular the column-store Cassan-
dra database were used for storing linked data and OWL
ontology [44]. Given that linked data storage necessitate scal-
able databases and distributed parallel algorithms, a schema
was designed to store the ontology classification in the
Cassandra database and help OWL scalability. Combining
MapReduce algorithms on Cassandra, an optimal model was
implemented for the storage of OWL ontology classifica-
tion. The RFD data model based on directional graphs was
deployed to distribute and link data structures on the Web.
This model facilitated the link between Cassandra database
and the OWL file.

In [45], an encrypted graph database model was introduced
for online social networking services, called GraphSE, to pro-
vide privacy in social networks based on queries. The needs
for storage and computation of big data in social networks,
control over data confidentiality in the cloud environment,
and prevention of data leakage by cryptography were justifi-
cations for this model. The graph data models have practical
application in social networks concerning their rich and com-
plex search demand. This poses the challenges of scalability
which limit query performance by using the algorithms such
as neighbor search or k-nearest neighbor. The distributed and
encrypted graph was introduced to overcome this limitation.
The data model efficiency, operational power, scalability,
memory consumption, and search time latency were studied
on YouTube data.

In [46], a graph-based metamodel, GSMM, was proposed
on a straight line and tagged graph for structured and unstruc-
tured data accompanied by a general semi-structured lan-
guage, GSL. The goal was to achieve flexible feature entries
within a single framework. It was asserted that data models of
relational, OEM, DOEM, XML, TGM, XML, and RDF (for a
triple-based database) can be extracted from this metamodel.
This metamodel could also be used to represent Neo4j and
BigTable datamodels. The cardinality of each datamodel was
then expressed as a rooted GSMM graph. By comparing the
constraints and limitations of the two data models, this paper
achieved a qualitative, quantitative, and flexible evaluation of
GSL to represent the limitations of the data model.

Providing a focal data model called SQLtoKeyNoSql [47],
a relational layer was developed on NoSQL key-value
databases such as key-value, column, and document. In fact,
a mapping of the relational data model was defined in NoSQL
in such a way that the user could manage data making use
of SQL DDL and DML orders. The purpose was to facil-
itate migration from the relational to NoSQL data models
while avoiding the risk of poor performance. In this model,
a relational schema was mapped into a three-level focal
model. This focal schema of simple hierarchical structure and
key-value representation was next mapped into NoSQL data
models. In this architecture, there were defined modules for
query execution and presentation. The model data scalability
and performance were investigated in this research. Although

experiments showed satisfactory results, this model was not
cost-effective for key-value databases in terms of time and
overhead costs. The results of this model were compared
with those of MongoDB, Cassandra, Redis, HBase, and
Key-Oriented data models, excluding semi-structured XML
and DOM. Neither specific data nor special data model appli-
cations were observed.

First, data models of four databases, MongoDB, Redis,
PostgreSQL, and InfluxDB, were modified to represent time
series data in [48]. Simulating reading and writing operators,
a comparison was then drawn on their writing performance,
defined query performance, memory usage, and operational
power. Finally, Redis and InfluxDB data models showed the
best operational power. The InfluxDB data model showed
the best results in terms of memory usage of the tested data
volume, query performance, and average execution time.

To transform a logical model into a conceptual model,
a process was designed for converting relation-entity data
model to a graph-based data model in NoSQL [38]. The
process was intended to increase flexibility of the concep-
tual models. Another NoSQL abstract model (NoAM) was
presented based on the common features to NoSQL database
models. Based on the mapping rules from the conceptual to
the logical level, a simplified ER model known as Extended
Bity Entity-Relationship (EB-ER) was used at the concep-
tual level. The XML model was used at the logical level in
addition to a graph-based data model. Also, several charac-
teristics have been introduced for flexibility in the conceptual
data schema. Ultimately, an algorithm was developed for the
conceptual model transformation on a set of integrated con-
straints by which EB-ER that was automatically mapped into
a graph-based data model at the logical level. To implement
the algorithm, Neo4j database and Cypher query language
were utilized.

Making use of clouds, NoSQL big data models were inves-
tigated in [49]. The purpose of this paper was to reveal the role
of clouds in hosting big data for meeting big data challenges
to the NoSQL data models. Given the concept and objectives
of DBaas, the cloud environment’s ability to manage big data
systems and the simplified access to complex databases were
of concern. TheXCLOUDXdatamodel has been expanded to
represent large data models. With the aim of cloud utilization,
the study investigated different types of XCLOUDX data
model classification. JSON storagewas employed by the built
Cloudant from CouchDB and the used CloudKit as a schema-
less technology. The Cloud Datastore as a schema-less and
non-relational NoSQL database in the cloud environment,
non-cloudy LightCloud, as well as Cloudera were stud-
ied. Numerous big data models in the X. . .X cloud class,
including the cloud-based columnar database of 1010data
System, Azure DocumentDB, Amazon DynamoDB, and
Datameer were also investigated. In addition to basic
features of the cloud itself, key features of the cloud
environment, including scalability, performance, and config-
uration were finally introduced for investigation on big data
storage.
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In [9], a data model was examined as one of the key aspects
of cloud-based data storage. The hierarchical data model
called NewSQL was suggested combining goals of RDB
and NoSQL deliver. It aimed to cover horizontal scalability
similar to NoSQL and maintain ACID properties similar to
the relational model. NoSQL was proposed as a schema-less
data model with respect to the stored data volume in the
cloud environment, data growth rate, and big data challenges.
Among NoSQL data models, BigTable, Dynamo PNUTS,
and Cassandra were suggested for OLTP and OLAP of big
data owing to their velocity coverage. The low latency and the
availability of reading and writing are requirements for both
systems. One of their limitations in the cloud environment
is the poor processing of queries. As a solution, changing
their data models is suggested. The hierarchical data model is
efficient in the cloud environment for the analysis of program
entities and identification of relations among them as well as
placement of related data close to the servers/DC.

How Big Spatial Vector Data (BSVD) is stored with their
associated data models was discussed in part of [50]. The
column-based and key-value data models in NoSQL were
considered as tools that able to store and integrate spatial
data from multiple resources effectively. The relational data
models of Oracle and PostgreSQLwere also discussed.More-
over, the data model and the vector data model within the
database were considered necessary for a new spatial data
model. Having reviewed index and query, this paper found
the features of data partition and scalability required for the
data storage.

In [51], a hybrid data model was developed from SQL
and NoSQL utilizing ontology. Combining relational and
non-relational databases to create an ontology, this model
provides migration from SQL to NoSQL. The system’s over-
all structure is composed of multiple nodes linking together
in a single semantic space. Three logical levels constitute
the architecture of this system. First, node client, which pro-
vides clients with interfaces depending on their permission.
The second level, graphical user interface, connects the node
client to the server. Third is the node server dedicated to data
storage management. This model aimed at improving access
to data, integrating heterogeneous data, presenting a hybrid
version of DBMS by mixing local paths of prior DBMS ver-
sions. MySQL and RDF Store were used for implementation
of the model. The flexibility, mobility, and efficiency were
the considered features in this model.

In [8], Another model was designed for transferring and
mapping spatial data from RDB schema to RDF and XML
schemas. This model thoroughly represents data and meta-
data structures and data constraints in detail. Indirectmapping
to RDF was done without the use of XML, and schema
from RDB was transformed to RDF with the help of XML.
Employing big data techniques, several models were also pro-
posed for direct mapping while making comparisons among
the existing data models.

To test access control policies in the schema-less data
model, an integrated data model was presented to evaluate

the accessibility of schema-less resources [52]. This approach
was presented in three stages of extracting the integrated
resource model, defining access control policies, and map-
ping to the main data model in a two-way process. MongoDB
was applied to the model evaluation due to the support of
NoSQL systems for MapReduce. Local NoSQL data model
and unifying model data resource were used in the presented
two-way mapping method. To show data sources in various
NoSQL data models, an integrated data model is provided
and then utilized to test accessibility as a key feature in data
management systems. The flexibility of this model makes it
applicable to complex systems with several heterogeneous
NoSQL databases. This model can be applied to key-value,
document-based, and column-based models in NoSQL. It can
also be applied to different data models since integration
of data sources was independent of data model. The model
was tested on six different datasets, increasing the average
runtime by 2.5 In [53], the Couchbase Server document-based
data management system was analyzed. Its data model was
described and its architecture was investigated in contrast
to other traditional NoSQL and HTAP models. Furthermore,
a comparison was drawn between NoSQL and SQL. The data
service of this approach uses JSON format to display data
structures in a flexible and self-describing manner. Similar
to the relational model, this model applied the main key to
access documents. On the contrary, the documents in this
model are stored in the server based on the defined logical
structure in the program code. The distinguishing feature of
this model is its agile management in adding new objects and
properties to new JSON data with a new program code and no
schema change. The distinction between the relational model
and this model is horizontal scalability, independence scaling,
and clustering without shared storage.

In [35], the schema of the MongoDB data model was
studied for schema inference from the document-oriented
data models in NoSQL, and schemas were inferred for the
ODM, Morphia, and Mongoose. The purpose of this arti-
cle was to use a mapper rather than API and to facilitate
reading data during migration. In this paper, a metamodel
was developed as an object-oriented conceptual model to
describe relationships and concepts. In addition, a strategy
was adopted to automate object-document mapping (ODM)
when the database is already available. To apply the semi-
structured data, JSON text format was used. In the end,
the studied schema is suggested for the Ecore models
(a language for changing the model) to be used in NoSQL
database applications.

In [54] refers to the step before data model design, concep-
tual schema, which is reviewed here as a bright idea in data
model design. This paper focused on a unique global schema
aggregated from the database including many schemas whose
complex management is done using the clustering algorithm.
This procedure is done by repeating two options: i) auto-
matically clustering schemas through discovering cluster
matches, and ii) manually aggregating schemas cluster by
cluster. The ER data model was used to represent schema,
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generalized to the generalization relationship model in which
clusters were represented as a graph. The analysis time,
development time, rest time, and total aggregation time are
among the studied properties, whereas flexibility, scalability,
and efficiency are not among key properties considered in the
design of data model in this study.

In [55] A schema was suggested for the document-based
database in three areas of NoSQL, namely architecture, algo-
rithm, and association rules. The purpose of this model was
to maintain a balance of compatibility, availability, and scal-
ability features in the data model. The architecture consisted
of four phases, the representation layer on the client side,
the selection of selectable and non-selectable parameters,
the semantic mapping of entities by the model itself, and the
production of schema as the final phase. The proposed model
was mathematically formulated and run in Java to be evalu-
ated in MongoDB and Couchbase databases. This model was
claimed to be superior to the other two models in terms of
writing time and security.

In [56], schema-based Postgres database was compared
with schema-lessMongoDB and Cassandra databases. Refer-
ring to the features of a schema-less database, it is concluded
that schema is important even in NoSQL databases. The three
databases were examined in terms of schema. The results
showed that as a schema-based database, Postgres stores
data as a single JSON object. This was, however, different
from JSON storage in MongoDB as a document-based which
stores dynamic data in datasets. In the column-based Cas-
sandra, each attribute was stored as a column family in the
database schema which can be readily changed by adding
a new column family. Therefore, non-schema databases per-
form faster on schema evolution. It was finally shown that in
spite of being more flexible, schema-less databases increase
sparseness and query execution time, having been checked by
changing schema and datasets.

In [57], different studies were compared on combining
graph database and RDF models to find out graph problems
using relational database capabilities. The article stressed the
query language called G-SQL, obtained from the combina-
tion of a relational database with a graph processing engine
for graph navigation. Regarding local cache problems to
navigate large graphs, one layer of the graphwas simulated on
the relational database using the power of graph navigation in
combination with mature technology of relational database.
This yielded accelerated processing of combined queries and
a schema for synchronized SQL database and graph updates.

In [25], a schema was developed for document-based data
models such as MongoDB to support and store temporal
data from sensors that continuously transmit data. With the
aim of scalability of data integration in addition to flex-
ibility evolution, this schema examined the challenges of
temporary data modeling. Also, an algorithm was devel-
oped for integrating JSON data as hierarchical documents.
In the proposed schema, the SchemaMinute (for minutes,
including nested documents (for second), was used to store
per-second data from sensors. The second sub-document

schema introduced SchemaSensor (for hours) and nested doc-
uments (for minute). The schema design was then compared
with the document per event approach. The two proposals
resulted in lower latency in data reading and more effi-
cient data retrieval. Instead of complete document writes for
updates, the query was performed on a smaller part of nested
document.

In [58], a Cassandra-based model was suggested for meta-
data storage. The metadata was divided into the operational
and the archive categories, part of which was sent to SQL
and part needed for data analysis was sent to this new data
model in NoSQL. The purpose of this data model was to
improve performance and scalability in analysis and dis-
tributed systems.

V. RESULTS AND COMPARISON
A. DATABASE CATEGORIES
In general, data models can be divided into different clas-
sifications based on the type of database. According to the
concepts and challenges of big data, there are two main
categories of data models before and data models after the
emergence of NoSQL databases. With the emergence of big
data issues, the challenge of 3Vs, IoT, current affairs in
computer science and data science, required types of NoSQL
databases received priority over previous types of datamodels
including, relational, object-relational, TimeSeries, and etc.
However, some types of databases before the emergence of
NoSQL are still being used for some applications. Regarding
the applications and frequencies of reviewed data models,
databases were classified under three general categories of
time series, relational, and NoSQL. They were further clas-
sified into five main classes of NoSQL database, includ-
ing key-value, document-based, column-based, graph-based,
and Native XML. NoSQL systems are a very heterogeneous
group of database systems. It can be said that there are a
total of sixteen different data models to date [64], of which
eight are subsets of NoSQL [64], although any attempt to
classify one or more systems fails. However, according to
the data model examined in this paper, we have considered
this category. These classifications have their own products
according to their characteristics and applications, separately
shown in Figure 4.

(1) Relational database
The relational model is based on a traditional database
that originated from Mr. Codd’s dynamic thinking,
which has been incorporated into the software industry
in recent decades. In thismodel, all entities are expressed
in the form of one and only one structure called relations.
This model can be displayed in a two-dimensional table
understandable to everyone. The simplicity of a rela-
tional model is the first determining factor in its success.
Other key factors are capability and functionality of soft-
ware, general and uniform understanding of concepts,
and simplicity of comprehensiveness in this model. The
complex data processing and big data challenges have
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FIGURE 4. Distribution of product types according to database classification.

recently caused deficiencies to this model. Among such
deficiencies are having static schema and ACID trans-
action format, separating data and processing, focusing
on structured data and attitude toward tables, and hold-
ing no support for nested relationships. Although this
model has been satisfying the needs of previous decades,
it is now under the influence of changing needs of data
processing.

(2) NoSQL
This system has been developed to overcome the chal-
lenges of big data and provide a strong adaptation of tra-
ditional and predefined schemas to traditional databases.
These databases were a new generation of more flexible
and higher scalable (horizontally) data storage systems
since traditional databases had limited capabilities with
large-scale, unstructured, or semi-structured data [23].
NoSQL systems were expanded into different scenarios
with the focus on further applications and classified into
four main groups based on different data models [61]:

(a) Key-value
This model consists of a value and an index or key
to determine the value. The key-value model lists all
data in ascending order, and the values are accessible
only by the key [43], [62]. In modern types of this
category, scalability has priority over compatibility.
This system is useful when there is only one type of
object for which query is done based on a type of
property.

(b) Document store
The storage structure of this type is based on doc-
uments. These documents are indexed and a simple

query method is presented for them. This system
is more advanced and complex than the key-value
model. The attribute-names are dynamically specified
at runtime. In contrast to the key-value database, this
category benefits from the secondary index capabil-
ity [43]. It stores data in a structured and hierarchical
manner and with accessibility to different IDs [62].

(c) Column store
This model, also known as Wide Column Store,
structures the data into columns with the number
of key-value pairs [43], and thus provides high
scalability [62]. Extended records can be vertically or
horizontally partitioned across nodes. In this category,
the data model is in the form of rows and columns,
and the scalability model is obtained from splitting
both rows and columns over multiple nodes. The table
columns are distributed as a group of columns in
other nodes. Partitioning can be done on a table both
horizontally and vertically at the same time [43].

(d) Graph database
It uses graph structures with nodes and edges to store
data. Graphs and edges respectively play the role
of objects and the relationships between them. This
type of database employs the index-free adjacency
technique in which each node directly relates to its
neighbor node. Millions of records can be navigated
in this way [43], [62]. Data can be easily transferred
from one model to another.

(e) Native XML
It is a database in which data are represented as XML
elements. The semantic data must be defined by an
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TABLE 4. The data model in each article reviewed.

XML element as a combination of delimited start and
end tags for description of data elements. The XML
document is developed for semi-structured data with
arbitrary elements in terms of presence or position.
The elements have an underlying tree structure in an
XML document. The XML emerged as a response to
the weaknesses of relational and object-relational data
models. These models have structures with poor scal-
ability in which system performance is reduced with
increasing size. Nonetheless, there was no response to
the unstructured data.

(3) Time-series database
In the past, attempts were made to use relational or
object-relational data models to store timestamp data
or data streams or adjust data models to this type of
data. These databases were not responsive to the needs
of big data. It was impossible to load and process data
either continuously or with low latency. Accordingly,
time-series databases flourished which were data-driven
with data streams as their input [63]. Their models have
real-time applications for data streams and timestamp
data as well as data-based computations [25]. These
databases have features of error tolerance, high acces-
sibility, continuity, or low latency in real-time process-
ing and responding to queries. In these data stream
management systems, the main trade-off is between the
amount of memory and the approximate accuracy used

to store stream [63]. The architecture of Data Stream
Management System and its comparison with DBMS
are described in [63] and [25], respectively.

Table 4 shows the type and the change of products, rela-
tional, RDF, NoSQL, and Time-series, on which data models
were tested in each article reviewed. Figure 5 shows the
frequency and efficiency of each data model compared to
each other.

Based on the reviews and the results, among all the prod-
ucts in database classifications, MongoDB and Cassandra
were the most applied in recent years, followed by Rela-
tional and Redis databases. As a result, document-based and
key-value are the most widely used classifications. Today,
data streams from sensors, networks, IoT, and so forth
account for the majority of data volume. As time-series data
models are required for real-time or low-latency processing
of data streams, MongoDB in [25] is discussed to be suitable
databas.

Therefore, the popularity of data stream research can be
considered one of the reasons for giving emphasis to this type
of data model. Based on [8], the lack of solutions to prevent
data loss and the problem of compatibility are drawbacks of
relational databases in converting RDB data sets to Semantic
Web (SW) for storing spatial data.We compared the results of
this study with the latest ranking of databases (2021) in terms
of popularity. The obtained ranks were based on 378 products
(Figure 7) in [64] and 107 products (Figure 6) in our study.
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FIGURE 5. Schematic of database products in reviewed articles between
2014 and 2020.

FIGURE 6. General classification of databases in the reviewed articles.

FIGURE 7. The latest ranking of databases in terms of popularity in 2021.

To establish a comparable set of products, both outputs were
first transformed into percentages and then compared to each
other. The emphasis given by numerous studies to data mod-
els of document stores databases is justifiable regarding their

popularity. Obviously, this focus on a product can lead to
further development of models for more mature products.

The comparison results of this systematic study showed
that NoSQL document stores databases were the most
reviewed in the field, followed by column stores databases.
In spite of their challenges and shortcomings, relational
database technologies still are popular, followed by key-value
and graph-based databases. Overall, NoSQL databases hold
the first rank in the world of database technology with respect
to the cumulative frequency of their several groups. On the
one hand, features such as high scalability (horizontal), avail-
ability, and schema flexibility provide these databases with
the possibility to overcome big data challenges and the suit-
ability for data streams. On the other hand, deficiencies
such as static schema and limited types of predefined data
to define relationships face relational models with major
challenges. Hence, the popularity of NoSQL models is com-
pletely justifiable. Only those models can be adaptable to the
generation of new data types that are able to dynamically
define all data types. The results of this systematic review
on both databases suggest that a logical format is undeni-
ably required for storing data with covering ACID features,
even with the flexible NoSQL schemas and even at the pro-
gram level. Therefore, researchers are presenting new data
models for day-to-day problem solving based on emerging
needs, while this issue has remained a challenge in the field
of data storage. By comparing our results with the latest
available rankings and observing the popularity of relational
databases despite the lack of support for big data challenges,
it can be concluded that data models if the maturity of rela-
tional data models to cover weaknesses and shortcomings
use themselves.While retaining their characteristics, they can
certainly meet more needs in the future. Just as document
store data models like Mango DB have recently tried to
incorporate ACID features into their data model. In the next
section, we have categorized considered features in each data
model reviewed to check the accuracy of basic features for
data models. Comparing the results will help us to better
understand the concept of the data model and the reasons
for emphasis given to a specific model based on its required
characteristics.

B. DATA MODEL FEATURES
Apart from application and needs, a data model contains
some key features to survive into the age of new information
and to meet big data challenges. It is obvious that all of
these features cannot be simultaneously gathered in a single
model. For instance, agility and flexibility were obtained at
the expense of low compatibility of data storage and retrieval
with the database in the data model [35]. The scalability was
increased with the decrease of ACID properties in NoSQL
databases [19]. However, the more coverage of these features,
the more capable is the data model when facing the challenge
of 3Vs. These basic features of the data model can be sum-
marized as follows:
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• Scalability: The data model efficient performance on
multiplied size or scale.

• Performance: The data model efficiency in terms of data
production volume and velocity and big data processing.

• Representation: The data model management of hetero-
geneous data making them meaningful for analysts and
commentators.

• Consistency: The new model compatibility with previ-
ous data models for data integration.

• Flexibility: The data model ability to provide support for
various data structures.

• Schema-based or schema-less: The data model ability
to have limited types of data with static and predefined
schema or unlimited types of data with dynamic schema
according to the definition of the relation.

• Data partition: The data model capability of horizontal
and vertical partitioning at any time to ensure data avail-
ability and concurrent access performance.

• Support for data types: The data model ability to store
structured, semi-structured, and unstructured data based
on the variety of big data.

• Hash: a technique to directly search the location of
desired data on the disk.

• Efficiency: The data model has the necessary efficiency
in many processes on data and the database uses a small
amount of computational and storage resources.

• Availability: Data should be available whenever
necessary.

The determining factors in data model design are consid-
ered consistency, availability, and scalability [55]. Having
reviewed various articles, we observed that scalability, per-
formance, and schema-less with frequencies of 10% or more
are important features in designing the data model (Figure 8).
In this diagram, frequencies of different features are close to
each other, suggestive of the necessity for the existence of
each feature. In other words, a data model is more practi-
cal when includes simultaneous existence of these features.
The NoSQL databases have been introduced as a comple-
ment to the previous ones, especially relational databases to
remedy deficiencies of scalability, flexibility at the schema
level, ability to store large volumes of data, and efficiency in
widely-used applications. The frequency of each feature in
the reviewed databases is shown in Figure 9. Table 5 shows

FIGURE 8. Cumulative frequency of key features reviewed in the articles.

FIGURE 9. The frequency of each feature in the reviewed databases.

TABLE 5. Each data model features separately studied in each article.

in detail the features that each data model covers. Comparing
the results of Table 4 and Table 5, it can be inferred that
NoSQL databases constitute the dominant group concerning
the coverage of key features and the variety of products
in different applications. The relational model takes second
place, and both models are merely adjacent in the Efficiency
feature.

Table 6 shows responses to the questions in Section 3-C,
briefly describing which question response can be achieved
in which article content. Figure 10 illustrates the frequency
of responses from the papers reviewed. The XML, RDF, and
JSON format of initial data representation and, in some cases,
data exchanges were studied in databases and data models,
shown in Table 7, with frequencies shown in Figure 11. The
JSON in column store models, as well as MongoDB in [16],
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FIGURE 10. The frequency of responses from the articles reviewed.

FIGURE 11. The frequency of the initial format of data representation in
the data models reviewed.

TABLE 6. Responses to each question in Section 3-3 from each article.

is the most widely used formats of initial data representation,
providing standards for describing and testing documents.
This format is suitable for unstructured, semi-structured,
and structured data presentation from both schema-based
and schema-less points of view using a set of key-value
pairs. JSON technology is integrated with a number of dis-
tinctive NoSQL databases to represent raw data exchange
formats. As a data format, JSON is also suited to NoSQL
databases for serialization. It has been used in the design
of NoSQL databases [30]. JSON is a simple data format
that allows developers to store a set of values, lists, and
key-value pairs that communicate with each other [59], [60].
Table 7 shows the representation formats used in each
papers.

TABLE 7. The data representation formats regarding resources used in
each article.

VI. CONCLUSION
The exponential growth of data generated from different
sources, high volume and variety of data, and their rapid
transfer from digital technologies brought about the growth
of big data, the challenge of 3Vs, and the development of
software technologies to overcome this challenge. In the
field of data storage and management at the abstract level
of database design, a data model is required to define the
data structure and storage as a way to meet the challenges of
big data. In this article, we have systematically reviewed data
model types proposed from 2014 to 2020. The results suggest
that the research focus has mainly been on the classification
of data models, storage of various data types and variety,
support capabilities and basic features of data models, and the
popularity and basic technology in recent years. The results
of this review will be helpful for users not only in the domain
of database and data storage but also in various domains of
big data, cloud, data migration, and so on. The elegance of
this article lies in its allowing for the possibility of comparing
data models based on their critical features and corresponding
products. This article depicts the significance of data models
even in NoSQL databases which lack static data models and
flexible schemas. Although there are a variety of data models
with various purposes, there must be a logical structure or
format for data storage even at the program level. This is
evidence of the need formore focus and research on this issue.
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