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 Abstract— Emotion recognition (ER) from 

Electroencephalogram (EEG) signals is a challenging task due to 

the non-linearity and non-stationarity nature of EEG signals. 

Existing feature extraction methods cannot extract the deep 

concealed characteristics of EEG signals from different layers for 

efficient classification scheme and also hard to select appropriate 

and effective feature extraction methods for different types of 

EEG data. Hence this study intends to develop an efficient deep 

feature extraction based method to automatically classify 

emotion status of people. In order to discover reliable deep 

features, five deep convolutional neural networks (CNN) models 

are considered: AlexNet, VGG16, ResNet50, SqueezeNet and 

MobilNetv2. Pre-processing, Wavelet Transform (WT), and 

Continuous Wavelet Transform (CWT) are employed to convert 

the EEG signals into EEG rhythm images then five well-known 

pretrained CNN models are employed for feature extraction. 

Finally, the proposed method puts the obtained features as input 

to the support vector machine (SVM) method for classifying 

them into binary emotion classes: valence and arousal classes. 

The DEAP dataset was used in experimental works. The 

experimental results demonstrate that the AlexNet features with 

Alpha rhythm produces better accuracy scores (91.07% in 

channel Oz) than the other deep features for the valence 

discrimination, and the MobilNetv2 features yields the highest 

accuracy score (98.93% in Delta rhythm ( with channel C3) for 

arousal discrimination. 

 
Index Terms— EEG based emotion classification, EEG 

rhythms, CWT, Deep features, Pretrained CNN models. 

I. INTRODUCTION 

motion itself is constituted of neuro-physiological 

variations associated with thoughts, behavioral responses 

and a degree of pleasure or displeasure [1], [2]. Emotions, 

which is understood from facial expressions, have important 

role in human-to-human communication. Sounds and body 

gestures are the other important emotion indicators. The major 

part of the emotions in human’s daily life is the management 

of attention [3], [4] and decision-making [5], [6]. Emotion 

detection can improve various artificial intelligence based, 
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applications namely, patient monitoring, criminal detection 

disabled assistance, security services, robotics, and 

communication [7], [8]. There have been several methods for 

classification of emotions such as bio signals (e.g. EEG, 

electrocardiogram (ECG) and electromyography (EMG) etc.), 

imaging techniques and videos [9], [8]. The EEG data is 

defined as non-stationary time series, which refers to the 

recording of the brain's spontaneous electrical activity [10], 

[11]. Many research studies have been undertaken to 

investigate the effects of emotion on EEG signals and ER 

from EEG signals. Issa et al. [12] used CWT and broad 

learning system for EEG based emotion recognition (ER). 

After CWT, the gray scale image feature extraction was 

employed and three classifiers were employed for 

classification into four emotions. Atkinson et al. [13] used 

fourteen EEG electrodes for a novel feature-based approach 

for EEG based ER. Authors used various statistical parameters 

such as standard deviation, median and kurtosis. Beside 

statistical features, Hjorth parameters, band power and the 

fractal dimension were used for feature extraction. A feature 

selection mechanism was employed after feature extraction 

and the SVM classifier was preferred in classification stage of 

the proposed approach. Kumar et al. [14] used only 2 EEG 

electrodes for achieving the EEG based ER. The higher order 

spectrum analysis was used to obtain the bispectrum features 

on the EEG signals. Extracted features were classified by 

using the SVM classifier. Gupta et al. [15] used 6 electrodes 

and flexible analytic wavelet transform (FAWT) to perform 

EEG based ER. Authors used various information based 

features and SVM and random forest (RF) classifiers in their 

proposed work. Zhang et al. [16] used ontology for EEG based 

ER. The proposed method was depended on two steps. The 

users’ contexts, EEG and the environmental parameters were 

considered in the first step and in the second one, modeling of 

the reasons on users’ emotions were extracted.  Zhang et al. 

[17] proposed an methodology for EEG based ER. The 

empirical mode decomposition (EMD) and sample entropy 

were used for feature extraction and SVM classifier was used 

for classification. Candra et al. [18] used the WT for EEG 

based ER. The Shannon entropy and SVM classifier was used 

for construction of the proposed method. Rozgiç et al. [19] 

used an approach for EEG based ER which was composed of 

three steps. An overlapping window was used for feature 

extraction in the first step. In the second step, feature 

transformation was carried out by using the non-parametric 

nearest-neighbor model. Finally, the obtained features were 

classified. Al-Nafjan et al. [20] proposed a methodology for 

EEG based ER. Power spectral density and frontal asymmetry 
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features and deep neural networks were considered in the 

proposed approach. Chen et al. [21] proposed convolutional 

neural networks (CNN) for EEG based ER. A CNN model 

was proposed and trained on the EEG signals. Zhuang et al. 

[22] proposed an approach where EMD was used EEG based 

ER. Energy and phase information were used in classification 

where SVM classifier was considered. Li et al. [23] used 

ensemble of SVM classifiers for EEG based ER. A scheme, 

which was composed of weighted fusion, was considered.  

In this paper, a hybrid approach is proposed. The proposed 

approach employsEEG rhythms for ER. The EEG signals were 

initially low-pass filtered for denoising. Then, the WT is 

employed for rhythm extraction. The extracted EEG rhythm 

signals are then converted to the EEG rhythm images by using 

the CWT method. A series of pre-trained CNN models 

consisting of AlexNet, VGG16, ResNet50, SqueezeNet and 

MobilNetv2 are used to extract deep features [18]–[22]. The 

obtained deep features are used in SVM classifier for the 

classification process. The well-known DEAP dataset was 

considered for performance evaluation of proposed method 

[16].  

 

The contributions of the proposed method are summarized 

as follows:  

(1) An effective automated ER framework is presented 

which combines EEG rhythm, deep CNN features and SVM to 

define valence and arousal emotions from EEG signals; 

(2) Investigating the effectiveness of deep features through 

five deep learning CNN models: AlexNet, VGG16, ResNet50, 

SqueezeNet and MobilNetv2;  

(3) Discovering appropriate deep features with appropriate 

EEG band and channel through statistical analysis for the 

SVM classifier;  

 

The reminder of this paper is as following. Next section 

introduces the proposed methodology. The proposed method 

and the related theories were briefly introduced in the 

proposed methods section. Section 3 gives the dataset, 

experimental works and the results. The discussions on 

experimental works were given in Section 3. The conclusions 

were given in Section 4. 

II. PROPOSED METHODOLOGY 

Our proposed method is designed in an emotional 

classification model for recognizing valence and arousal.  The 

valence is considered in 2 classes, low valence (LV) and high 

valence (HV) and arousal is considered as low arousal (LA) 

and high arousal (HA). Fig. 1 illustrates the framework of the 

proposed methodology. As seen in Fig. 1, the EEG signals are 

initially denoised by using a low-pass filtering. And, WT is 

employed for decomposition of the EEG signals into its 

rhythms. These rhythm signals are converted into rhythm 

images by employing the CWT. The constructed rhythm 

images are conveyed to the pretrained CNN models namely; 

AlexNet, VGG16, ResNet50, SqueezeNet and MobilNetv2 for 

deep feature extraction. Finally, the classification of the 

rhythm images into emotion categories is carried out by using 

the SVM classifier. 

A. Pre-processing: Noise removing by low-pass filtering 

In general, the EEG data is very noisy and often affected by 

artifacts that can bias the analysis of the data and lead to 

incorrect conclusions. That’s why, before going the analysis 

the EEG data, we first removed the noises and artifacts by 

applying of the low-pass filtering. The reason for employing 

low-pass filtering is that the low-pass filter helps to keep each 

EEG channel in its horizontal zone, eliminating large up or 

down shifts in the space of other channels. Using low-pass 

filtering we denoised the raw EEG signals and then used for 

the following step. 

Low-pass filtering

Deep feature extraction

SVM classification
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Fig. 1 Illustration of the proposed method 

 

It is worth to mentioning that each EEG channel was 

investigated independently in order to determine the efficient 

EEG channel and EEG rhythm on ER. The pseudo-code of the 

proposed study is given in Table 1. 

 
TABLE 1 THE PSEUDO-CODE OF THE PROPOSED EEG BASED EMOTION 

DETECTION METHOD 
Input: Raw EEG signals 

Output: ER 

For all channels 
    For subjects 

           Denoising by using low-pass filtering 

           Wavelet Decomposition based rhythm extraction 
           Convert rhythm signals into rhythm images by using CWT  

           For rhythms 

                  Extract deep features by using pretrained CNN models  

            end 

            Apply SVM classification 

     end 

end 

B. EEG rhythms extraction 

As EEG signals convey different emotional information in 
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different frequency band, thus we divided EEG signals into 

five bands in the frequency scale in this study. We employed 

the WT to extract the rhythm of the full-band EEG signal. We 

performed a four level decomposition by using the Daubechies 

4
th

 order wavelet (db4) function [24]. In the first level 

decomposition, the detail coefficients indicate the Gamma 

rhythm (30-60 Hz). In the second level decomposition, the 

detail coefficients indicate the Beta rhythm (15-30 Hz). In the 

third level decomposition, the detail coefficients indicate the 

Alpha rhythm (8-15 Hz). In the last decomposition level, 

while the detail coefficients show the Theta rhythm (4-7 Hz), 

the approximation coefficients show the Delta rhythm (0-4 

Hz).   We extracted below five types of EEG rhythms by the 

WT from original EEG signals:  

• Delta rhythm covers the frequency band less than 4 Hz 

(associated with Deep Dreamless Sleep, Loss of Body 

Awareness, quietness, lethargy, fatigue) 

• Theta rhythm covers the frequency band greater than or 

equal to 4 and less than 8 Hz (Associated with Dreams, Deep 

Meditation, REM sleep, Creativity , awake state, or the 

emotion gradually becomes calmer),  

• Alpha rhythm covers the frequency band greater than or 

equal to 8 and less than or equal to 14 (associated with 

Relaxation (while awake), Pre-sleep Drowsiness),  

• Beta rhythm covers the frequency band greater than 14 

and less than 40 Hz (associated with Active Thinking, 

Concentration, and Cognition)  

• Gamma rhythm covers the frequency band greater than or 

equal to 40 Hz, (associated with Higher Mental Activity, 

Consciousness, Perception, multisensory information 

integration). 

C. Converting EEG rhythms to EEG images 

The CWT, which is a TF method, is employed for 

transforming the EEG rhythms into EEG images. And, it is 

defined as [25];  

 

𝐹𝜔(𝑎, 𝑏) =
1

√|𝑎|
∫ 𝑓(𝑡)�̅�

∞

−∞

(
𝑡 − 𝑎

𝑏
) 𝑑𝑡 (1) 

 

where, ψ(t) is called as the mother wavelet. The mother 

wavelet is a wavelet function that is represented in both time 

and frequency domains. The over line symbolizes the complex 

conjugate operation. The Morse wavelet function is used in 

CWT.   

D. Extraction of Deep Features 

This study considered five pre-trained CNN models: 

AlexNet, VGG16, ResNet50, SqueezeNet and MobilNetv2 

that were trained on 25 million of images. An investigation 

was performed about these five models, which one is better to 

produce higher performance in the ER. Table 2 shows some 

important properties of these CNN models. AlexNet is known 

as the first deep CNN model, which has gained much attention 

in artificial intelligence community. Its depth is 8 and the 

image input size is 227×227 [26]. The ‘fc6’ layer was used for 

feature extraction and the obtained deep feature vectors are 

4096 dimensional. VGG16 was designed as a deeper CNN 

model compared to the AlexNet [27].     

 
TABLE 2 SOME PROPERTIES OF THE PRETRAINED CNN MODELS 

Pretrained 

CNN model 

 

Depth 

Image input 

size 

Feature 

length 

AlexNet 8 227×227 4096 

VGG16 16 224×224 4096 

ResNet50 50 224×224 1000 

SqueezeNet 18 227×227 1000 

MobileNetv2 53 224×224 1000 

 

The depth of the VGG16 is 16 and the input size is 224×224. 

The ‘fc6’ layer of the VGG16 was used for feature extraction 

and the obtained deep feature vectors are 4096 dimensional. 

The ResNet50 is a deeper model compared to AlexNet and 

VGG16 [28]. It was composed of 50 layers. Its image input 

size is 224×224. The ‘fc1000’ layer was used for feature 

extraction and the extracted feature vectors are 1000 

dimensional. SqueezeNet was developed as a fast and 

effective CNN model [29]. As its depth is 18 but it achieves 

AlexNet-level accuracy with 50x fewer parameters. The image 

input size of SqueezeNet is 227×227. The ‘pool10’ layer is 

used for 1000 dimensional feature vector extraction. 

MobileNetv2, of which depth is 53, produces 1000 

dimensional feature vector by using the ‘logits’ layer [30]. The 

input size of MobileNetv2 model is 224×224.              

E. Classification 

The SVM classifier, which is a well-known machine 

learning approach, is considered in this study. The SVM 

classifier was preferred due to its high performance in wide 

range of its applications [31]. 

 Let’s assume a two class data denoted by 

(𝑥1, 𝑦1), (𝑥2, 𝑦2) … , (𝑥𝑖 , 𝑦𝑖) and 𝑖 = 1,2, … , 𝑀. 𝑥𝑖 shows the 

input feature vector and 𝑦 shows the class labels. Thus, Eq. (2) 

can be used for obtaining of the hyper-plane that used to 

separate the two classes. 

 𝑓(𝑥) = 𝑤𝑇𝑥 + 𝑏 = 0 (2) 

 

Where, 𝑤 and 𝑏 indicates the weight vector and the bias value 

used to determine the position of the hyper-plane, 

respectively. SVM was initially developed for the datasets that 

can be separated linearly. If the dataset cannot be separated 

linearly, a kernel function is employed to turn dataset into 

another hyper-plane. To this end, different kernel functions 

such as polynomial and radial basis function can be used. 

SVM employs an optimization procedure to detect the 

optimum separating hyper-plane, which is given in Eq. (3).  

 

{
𝑚𝑖𝑛

‖𝑤‖2

2
𝑦𝑖(𝑤𝑇𝑥𝑖 + 𝑏) ≥ 1   𝑖 = 1,2, … , 𝑀

 (3) 

 

Eq. (3) can be revised by adding 𝐶 regularization parameter 

and a positive artificial 𝜉𝑖 variable as follows: 
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𝑚𝑖𝑛 𝑓(𝑤, 𝜉) =
1

2
‖𝑤‖2 + 𝐶 ∑ 𝜉𝑖

𝑀

𝑖=1

 (4) 

III. EXPERIMENTAL WORKS 

A. DEAP dataset 

The DEAP data set, which contains 32-electrode EEG 

signals from 32 subjects, was constituted while each subject 

was watching forty one-minute music videos. The subjects 

rated each music video in terms of valence, arousal, like / 

dislike, dominance, and familiarity levels. In addition to the 

EEG signals, a facial video was recorded for 22 of the 32 

subjects while watching each music video. Ratings of subjects 

during the experiment were carefully analyzed. Correlations 

among EEG signal frequencies and subjects' evaluations were 

also analyzed. EEG signals were recorded with a sampling 

frequency of 512 Hz and then down-sampled up with a 

sampling frequency of 128 Hz. Thus, a size of 40 × 32 × 8064  

data was constituted for each subject. 

B. Results and Discussions 

For experiments, a computer, which has Intel (R) CPU 

(3.20 GHz) with 32 GB of memory, was utilized. The 

extracted features were divided into training and test sets in 

the ratio of 0.75 and 0.25, respectively. This process was 

carried out in a random fashion. The SVM classifier was 

preferred due to its high performance in wide range of 

applications [31]. Also, it determines the maximum-margin 

hyperplane to reduce the prediction error. The hyperparameter 

C was searched in the range of [10
-4

-10
3
]. The radial basis 

function kernel was used in SVM and its parameters were 

tuned by using the grid search optimization algorithm.  Double 

tagging was considered during the labeling of emotions. 

Valence ratings below five were assumed to contain negative 

emotions, and valence scores higher than five were considered 

to have positive feelings. In addition, arousal rating scales 

range from passive to active. Arousal ratings less than five 

were considered passive, and other rating scales higher than 

five were considered active. Therefore, the class labels 

obtained were high arousal (HA) with low valence (LV) and 

high valence (HV) and low arousal (LA), respectively. 

 

 

Fig. 2 The raw and low-pass filtered of an EEG signal 

 

Fig. 2 illustrates a raw signal and low-pass filtered signal of 

an EEG signal and Fig. 3 shows the gamma, beta, alpha, theta 

and delta rhythms of an EEG signal, respectively. 

 

 
Fig. 3 The rhythms of an EEG signal 

 

Fig. 4 shows the EEG rhythm images that were obtained by 

using the CWT. The x-axis shows the time and the y-axis 

shows the frequency. As seen in Fig. 4, each rhythm is 

covering a frequency band.  

 

   
Gamma Beta Alpha 

  
Theta Delta 

 
Fig. 4 The rhythm images of an EEG signal that are obtained via CWT 

 

The initial experiments were conducted on HV vs LV 

classification and the obtained all results were illustrated in 

Fig. 4. In Fig. 4 each cell shows the achievement of a 

pretrained CNN model.  

 

 

AlexNet 

 

VGG16 

 

ResNet50 

SqueezeNet 
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MobilNetv2 

Fig. 5 The performance of deep feature + SVM on LV and HV classification 

 

The x-axis, y-axis and z-axis of the given plots show the 

rhythms, EEG channels and accuracy scores, respectively. For 

the x-axis, alpha, beta, delta, gamma and theta rhythms are 

denoted by the numbers 1, 2, 3, 4 and 5, respectively. 

Moreover, Tables 3-7 show the achievements of the five EEG 

channels on all EEG rhythms. These channels were selected 

due to the highest average accuracy scores of the rhythms 

achievements. In Table 3, the performances of AlexNet 

features are provided based on different channels and bands. 

As observed from Table 3, Oz channel and Delta rhythm 

produced a 91.07% accuracy score, which was the highest 

accuracy score that AlexNet features have produced.   

 
TABLE 3 CLASSIFICATION ACCURACY FOR ALEXNET MODEL IN HV VS LV FOR 

DIFFERENT RHYTHMS WITH RESPECT TO EACH EEG CHANNELS  
EEG 

channel 

Alpha Beta Delta Gamma Theta Average 

Oz 8.21% 84.29% 91.07% 80.36% 82.86% 85.34% 

F3 86.79% 85.00% 79.64% 80.71% 80.36% 82.50% 

P4 83.93% 80.71% 83.21% 77.14% 82.14% 81.43% 

PO3 89.29% 77.14% 80.36% 82.86% 79.29% 81.79% 

CP5 80.36% 76.07% 89.64% 78.21% 82.50% 81.36% 

Average 85.72% 80.64% 84.78% 79.86% 81.43%  

 

The second highest accuracy score 89.64% was produced 

by the CP5 and Delta rhythm and the third highest accuracy 

score 89.29% was obtained by the PO3 and Alpha rhythm, 

respectively. From Table 3, it can be inferred that Alpha 

rhythm and Oz channel were produced better achievements 

with AlexNet and SVM classifier.     

 
TABLE 4 CLASSIFICATION ACCURACY FOR VGG16 MODEL IN HV VS LV FOR 

DIFFERENT RHYTHMS WITH RESPECT TO EACH EEG CHANNELS  
EEG 

channel 

Alpha Beta Delta Gamma Theta Average 

FC5 76.07% 82.86% 84.29% 82.50% 82.50% 81.64% 

PO3 87.50% 80.00% 81.43% 76.79% 80.71% 81.29% 

Cz 82.50% 81.07% 83.21% 74.64% 85.00% 81.28% 

F3 84.64% 76.07% 87.86% 76.07% 80.71% 81.07% 

C3 85.71% 82.14% 75.00% 82.86% 79.64% 81.07% 

Average 83.28% 80.43% 82.36% 78.57% 81.71%  

 

Table 4 gives the achievements of the VGG16 features and 

SVM classifier on HV vs LV discrimination. As seen in Table 

4, the Alpha rhythm and the FC5 channel produced the highest 

average accuracy scores. With VGG16 features, the best 

achievement 87.86% accuracy score was produced by F3 

channel and Delta rhythm. 

 
 
 

 
 

TABLE 5 CLASSIFICATION ACCURACY FOR RESNET50 MODEL IN HV VS LV 

FOR DIFFERENT RHYTHMS WITH RESPECT TO EACH EEG CHANNELS 
EEG 

channel 

Alpha Beta Delta Gamma Theta Average 

Cz 78.21% 86.43% 80.36% 73.57% 82.86% 80.29% 

F3 84.29% 78.93% 83.57% 73.93% 80.36% 80.22% 

Fp2 77.50% 84.29% 78.57% 79.64% 77.14% 79.43% 

FC5 80.36% 73.57% 77.50% 81.43% 83.93% 79.36% 

FC1 84.64% 72.86% 81.07% 72.50% 85.00% 79.21% 

Average 81.00% 79.22%  80.21%    76.21%    81.86%  

 

In Table 5, the accuracy scores, which were obtained by 

ResNet50 features, were given for each rhythm and EEG 

channel, respectively. According to the average accuracy 

scores, Theta rhythm and Cz channel produced the highest 

average accuracy scores. While Cz produced an average 

80.29% accuracy score, Theta rhythm obtained an average 

81.86% accuracy score. The best achievement 86.43% was 

produced by the Cz channel and Beta rhythm.  

 
TABLE 6 CLASSIFICATION ACCURACY FOR SQUEEZENET MODEL IN HV VS LV 

FOR DIFFERENT RHYTHMS WITH RESPECT TO EACH EEG CHANNELS  
EEG 

channel 

Alpha Beta Delta Gamma Theta Average 

AF4 78.93% 84.29% 76.43% 82.50% 81.79% 80.79% 

Oz 89.64% 73.57% 80.00% 72.14% 83.21% 79.71% 

AF3 89.29% 83.57% 71.43% 75.71% 77.50% 79.50% 

T8 81.07% 82.14% 80.00% 82.14% 71.07% 79.28% 

P4 80.00% 76.79% 83.21% 81.07% 74.64% 79.14% 

Average 83.79%   80.07%    78.21%    78.71%   77.64%  

 

In Table 6, the achievements of EEG channels against 

rhythms with SqueezeNet features on HV vs LV classification 

were given. As seen in Table 6, the best average rhythm 

achievement 83.79% was obtained by the Alpha rhythm and 

the highest average accuracy score 80.79% was produced by 

the AF4 channel, respectively. The best accuracy score 

89.64% was obtained by the Alpha rhythm and Oz channel. 

The mobilNetv2 features achievements were represented in 

Table 7. As observed in Table 7, alpha rhythm and Cz channel 

produced a 85.57% and a 83.00% average accuracy scores 

respectively. The best achievement with MobilNetv2 features 

was a 91.07%, and it was obtained by F3 channel and Alpha 

rhythm.   

 
TABLE 7 CLASSIFICATION ACCURACY FOR MOBILNETV2 MODEL IN HV VS LV 

FOR DIFFERENT RHYTHMS WITH RESPECT TO EACH EEG cHANNELS 
EEG 

channel 

Alpha Beta Delta Gamma Theta Average 

Cz 86.43% 83.57% 76.43% 84.64% 83.93% 83.00% 

Oz 86.79% 83.93% 83.93% 78.93% 80.36% 82.79% 

F3 91.07% 82.50% 79.29% 78.57% 82.50% 82.79% 

P3 78.57% 81.79% 86.43% 85.00% 78.57% 82.07% 

PO3 85.00% 81.43% 84.64% 73.57% 82.14% 81.36% 

Average 85.57%    82.64%    82.14%   80.14%   81.50%  

 

Experiments were also conducted on HA vs LA 

classification and the obtained all results with deep features 

were illustrated in Fig. 5 similar to the Fig. 4. Tables 8-12 

show the achievements of the five EEG channels that 

produced the highest average accuracy scores of the rhythms 

achievements. Table 8 shows the achievements of the AlexNet 

features and SVM. As observed from Table 8, Gamma rhythm 

and Fp2 channel produced a 94.29% and 90.21% accuracy 

scores, respectively, that were the highest average accuracy 
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scores. The best accuracy score 96.43% was also produced by 

the Gamma rhythm and T7 channel. 

 
TABLE 8 CLASSIFICATION ACCURACY FOR ALEXNET MODEL IN HV VS LV FOR 

DIFFERENT RHYTHMS WITH RESPECT TO EACH EEG CHANNELS 
EEG 

channel 

Alpha Beta Delta Gamma Theta Average 

Fp2 86.43% 93.93% 93.57% 93.93% 83.21% 90.21% 

T7 84.64% 90.00% 92.86% 96.43% 85.36% 89.86% 

P7 83.57% 86.79% 91.79% 95.00% 89.29% 89.29% 

FC5 86.43% 90.00% 90.36% 92.14% 85.36% 88.86% 

F7 83.57% 88.57% 88.21% 93.93% 87.50% 88.36% 

Average 84.93%    89.86%   91.36%    94.29% 86.14%  

 

Table 9 represents the obtained accuracy scores for VGG16 

features. From Table 9, it is seen that Beta and Theta rhythms 

obtained average accuracy scores above 90.00% and the CP5 

channel also produced a 90.29% average accuracy score, 

respectively. A 94.64% accuracy score, which the highest 

among all results, was produced by the CP5 channel and Theta 

rhythm.  
TABLE 9 CLASSIFICATION ACCURACY FOR VGG16 MODEL IN HA VS LA FOR 

DIFFERENT RHYTHMS WITH RESPECT TO EACH EEG CHANNELS 
EEG 

channel 

Alpha Beta Delta Gamma Theta Average 

CP5 90.36% 92.86% 88.21% 85.36% 94.64% 90.29% 

P7 91.79% 88.57% 87.14% 89.29% 91.79% 89.72% 

F7 82.50% 91.07% 90.71% 90.00% 91.43% 89.14% 

FC5 87.86% 93.57% 86.43% 88.57% 90.00% 89.29% 

Fp2 91.43% 88.57% 88.57% 93.21% 83.57% 89.07% 

Average 88.79%   90.93%    88.21%   89.29%   90.29%  

    

 

AlexNet 

 

VGG16 

 

ResNet50 

 

SqueezeNet 

 

MobilNetv2 

Fig. 6 The performance of deep feature + SVM on LA and HA 

classification. 

 

Table 10 shows the achievements of the ResNet50 features 

and SVM on HA vs LA classification. As seen in Table 10, 

Delta rhythm and P7 channel produced a 92.36% and 91.50% 

accuracy scores, respectively, that were the highest average 

accuracy scores. The best accuracy score 93.93% was also 

produced by the Delta rhythm and P7 channel and Gamma 

rhythm and FC1 channel, respectively.  
TABLE 10 CLASSIFICATION ACCURACY FOR RESNET50 MODEL IN HA VS LA 

FOR DIFFERENT RHYTHMS WITH RESPECT TO EACH EEG CHANNELS 
EEG 

channel 

Alpha Beta Delta Gamma Theta Average 

P7 89.29% 92.86% 93.93% 90.71% 90.71% 91.50%    

Fp2 91.43% 88.93% 88.57% 91.79% 87.50% 89.64% 

FC6 86.07% 84.64% 95.00% 82.86% 90.36% 87.79% 

CP5 88.21% 86.07% 93.21% 84.64% 86.79% 87.78% 

FC1 78.57% 92.50% 91.07% 93.93% 81.79% 87.57% 

Average 86.71%    89.00%     92.36%    88.79%     87.43%  

 

Table 11 shows the performance of the SqueezeNet features 

on HA vs LA classification. As seen in Table 11, Theta 

rhythm and P7 channel produced a 90.86% and 90.64% 

accuracy scores, respectively, that were the highest average 

accuracy scores. The best accuracy score 96.43%was also 

produced by Gamma rhythm and T7 channel, respectively. 
 

TABLE 11 CLASSIFICATION ACCURACY FOR SQUEEZENET MODEL IN HA VS 

LA FOR DIFFERENT RHYTHMS WITH RESPECT TO EACH EEG CHANNELS 
EEG 

channel 

Alpha Beta Delta Gamma Theta Average 

P7 86.43% 91.43% 90.00% 94.29% 91.07% 90.64% 

FC6 88.57% 85.71% 94.29% 89.29% 90.71% 89.71% 

T7 81.79% 84.29% 91.79% 96.43% 91.79% 89.22% 

CP5 88.21% 90.71% 90.00% 82.14% 94.29% 89.07% 

F3 87.14% 88.21% 91.43% 83.57% 86.43% 87.36% 

Average 86.43%    88.07%    91.50%    89.14%    90.86%  

 

Table 12 shows the performance of the MobilNetv2 features 

on HA vs LA classification. As seen in Table 12, Delta rhythm 

and P7 channel produced a 94.93% and 90.57% accuracy 

scores, respectively, that were the highest average accuracy 

scores. The best accuracy score 98.93% was also produced by 

Delta rhythm and F3 channel, respectively. 

 
TABLE 12 CLASSIFICATION ACCURACY FOR MOBILNETV2 MODEL IN HA VS 

LA FOR DIFFERENT RHYTHMS WITH RESPECT TO EACH EEG CHANNELS 
EEG 

channel 

Alpha Beta Delta Gamma Theta Average 

P7 89.29% 91.43% 96.07% 88.21% 87.86% 90.57% 

F3 88.57% 88.57% 98.93% 87.50% 85.71% 89.86% 

CP5 92.14% 85.36% 96.79% 85.71% 84.29% 88.86% 

Fp2 94.64% 90.36% 88.57% 87.50% 80.00% 88.21% 

FC5 85.00% 86.43% 94.29% 82.86% 82.50% 86.22% 

Average 89.93%    88.43%    94.93%   86.36%    84.07%  

 

In Table13, the proposed method was compared with the 

existing methods that use the same dataset.  As shown in 

Table 13, the proposed method outperformed the existing 

other methods on HV vs LV categorization. Alzarzi et al. 

produced a second-best accuracy score where the accuracy 

was 85.8% [32]. Tripathi et al. [33] and Li et al. [23] reported 

81.4% and 80.7% accuracy scores, respectively. Rozgić et al. 

[19], Zhang et al. [17], and Atkinson et al. [13] reported 

accuracy scores among 76.9%, 75.2% and 73.1% and Zhuang 

et al. [22], Huang et al. [34], and Candra et al. [18] reported 

performance of their method among 60.0% and 70.0%. The 

worst result reported by Koelstra et al. [35] was 57.6%. 
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TABLE 13 PERFORMANCE COMPARISON OF THE PROPOSED METHOD WITH 

SOME OF THE STATE-OF-ART-RESULTS.  
 

Method 

Accuracy (%) 

HV vs LV HA vs LA 

Koelstra et al. [35] 57.6 62.0 

Alazrai et al. [32] 85.8 86.6 

Huang et al. [34] 66.1 82.5 

Candra et al. [18] 65.1 65.3 

Rozgic et al.[[19] 76.9 69.1 

Zhang et al. [17] 75.2 81.7 

Atkinson et al. [13] 73.1 73.0 

Tripathi et al. [33] 81.4 73.3 

Zhuang et al.[22] 69.1 71.9 

Li et al. [23] 80.7 83.7 

Proposed study 91.1 98.9 

 

The achievement comparisons on HA and LA 

categorization were also shown in Table 13. As shown in 

Table 13, the proposed method obtained the best classification 

score. The second-best result was produced by Alazrai et al. 

[32]. Huang et al. [34], Zhang et al. [17], and Li et al. [23] 

reported accuracy results between 80.0% and 85.0%, 

respectively. Atkinson et al. [13], Tripathi et al. [33], and 

Zhuang et al. [22] reported accuracy results between 70.0% 

and 75.0% respectively. Also, Koelstra et al. reported the 

worst accuracy score [35].   

In order to further evaluate the performance of the proposed 

method, we performed a multiclass classification between four 

different classes of emotions: HVHA, LVHA, LVLA, and 

HVLA in the same DEAP database. The labelling process is 

given in Table 14. These results were obtained for Oz channel, 

AlexNet features and Alpha rhythm. The SVM was also tuned 

as mentioned previously. 

   
TABLE 14 2D EMOTION CLASSIFICATION LABELS 

Emotion Label Scores 

HVHA V ≥ 5,  A ≥ 5 

LVHA V < 5,  A ≥ 5 

LVLA V < 5,  A < 5 

HVLA V ≥ 5,  A < 5 

 

The best accuracy was 90.6% for HVHA emotion state,  

89.23% for LVHA emotion state,  83.1%  for LVLA emotion 

state, and  83.4% for HVLA emotion state.  

IV. CONCLUSION 

This study intended to develop an emotion classification 

framework that can use EEG signal data for recognizing 

valance and arousal from humans.  The proposed framework 

consists of several steps such as noise removing by low-pass 

filtering; EEG rhythms extraction by the WT, the rhythms 

conversation to EEG images by the CWT, deep feature 

extraction and investigation by the five CNN models and the 

SVM classification of the extracted deep features. The 

followings are important conclusions of the proposed method. 

1)  In the HV vs LV discrimination, the AlexNet features 

with Alpha rhythm produced better average accuracy scores 

than the other deep features. Besides, the Oz channel with 

AlexNet features produced the best average classification 

score. The MobilNetv2 features achieved the second best 

performance for HV vs LV classification. It is surprising that 

an initial model (AlexNet) produced better results than the 

recent deep models. 

2) In the HV vs LV classification, generally Cz, F3, PO3 

and Oz channels produced considerable results than the other 

channels.  

3) In the HA vs LA discrimination, the AlexNet features 

with Gamma rhythm produced better average accuracy scores 

than the other deep features. Besides, the P7 channel with 

ResNet50 features produced the best average classification 

score. The MobilNetv2 features achieved the second best 

performance for HV vs LV classification. The highest 

accuracy score 98.93% was obtained by the F3 channel, Delta 

rhythm and MobilNetv2 features. 

4) The proposed method produced better results in HA vs 

LA classification than HV vs LV classification. 
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