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Abstract 

The modern manufacturing industry is investing in new technologies such as the Internet of Things (IoT), big data 

analytics, cloud computing and cybersecurity to cope with system complexity, increase information visibility, 

improve production performance, and gain competitive advantages in the global market.  These advances are rapidly 

enabling a new generation of smart manufacturing, i.e., a cyber-physical system tightly integrating manufacturing 

enterprises in the physical world with virtual enterprises in cyberspace.  To a great extent, realizing the full potential 

of cyber-physical systems depends on the development of new methodologies on the Internet of Manufacturing 

Things (IoMT) for data-enabled engineering innovations.  This paper presents a review of the IoT technologies and 

systems that are the drivers and foundations of data-driven innovations in smart manufacturing. We discuss the 

evolution of internet from computer networks to human networks to the latest era of smart and connected networks of 

manufacturing things (e.g., materials, sensors, equipment, people, products, and supply chain). In addition, we present 

a new framework that leverages IoMT and cloud computing to develop a virtual machine network.  We further extend 

our review to IoMT cybersecurity issues that are of paramount importance to businesses and operations, as well as 

IoT and smart manufacturing policies that are laid out by governments around the world for the future of smart 

factory.  Finally, we present the challenges and opportunities arising from IoMT.  We hope this work will help 

catalyze more in-depth investigations and multi-disciplinary research efforts to advance IoMT technologies. 
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I. Introduction 

The manufacturing sector has a large footprint in the US economy, producing a gross output of $2.2 

trillion in 2016, 11.7 % of the total American GDP [1]. To achieve competitive advantages in global 

markets, modern manufacturing enterprises strive to create new products (or services) with exceptional 

features such as adaptation, customization, responsiveness, quality and reliability at unprecedented scales. 

New products have become an integral and indispensable part of everyday life. For example, phones and 

automobiles are not just communication and travel devices – they are becoming embedded with services 

which make them act as personal devices.  Products are becoming increasingly self-aware.  As a result, 

manufacturing systems are becoming increasingly complex and therefore deploy advanced sensing 

technologies to increase information visibility and system controllability. Notably, Industry 4.0 is driving 

manufacturing enterprises to become a new generation of cyber-physical systems towards network-enabled 

smart manufacturing. The “smartness” level depends to a great extent on data-driven innovations that 

“enable all information about the manufacturing process to be available whenever it is needed, wherever it 

is needed, and in an easily comprehensible form across the enterprise and among interconnected 

enterprises” [2, 3]. As smart manufacturing becomes a trend impacting business and economic growth, a 

large number of networked machines are used increasingly to carry out manufacturing operations. These 

machines may carry out the same or different functions or tasks, and some machines rely heavily on the 

output from other machines, e.g., a pipelined product line. The connection between networked machines 

may also be configured dynamically to increase flexibility and adaptation to customized tasks. As a result, 

the smart synergy of networked machines is critical to improving the performance of manufacturing 

systems. 

One critical enabling technology for smart manufacturing is the Internet of Things (IoT), which is the 

formation of a global information network composed of large numbers of interconnected “Things.” Here, 

manufacturing “Things” may include materials, sensors, actuators, controllers, robots, human operators, 

machines, equipment, products, and material handling equipment to name but a few.  The internet-based 

IoT infrastructure provides an unprecedented opportunity to link manufacturing “Things,” services, and 

applications to achieve effective digital integration of the entire manufacturing enterprise. This integration 

can be extended from enterprise resource planning (ERP) to supply chain management (SCM) to 

manufacturing execution system (MES) to process control systems (PCS).  However, the rapid growth of 

large-scale IoT sensing leads to the creation/manifestation of big data that are stored locally or in data 

repositories distributed over the cloud.  Realizing the full potential of big data for smart manufacturing 

requires fundamentally new methodologies for large-scale IoT data management, information processing, 

and manufacturing process control.  For example, the IoT may deploy a multitude of sensors to 

continuously monitor machine conditions and then transmit data to the cloud.  IoT data include not only 

historical sensor signals and measurements collected from a large number of machines but also on-line data 

from in-situ monitoring of machines.  The data can be retrieved easily from the cloud platform to 

distributed computers for parallel processing and used to extract useful information and prototype 

algorithms for deployment in the cloud or in the IoT “Things.” However, very little has been done to 

leverage sensing data, known as machine signatures, from a large-scale IoT network of machines to 

develop new methods and tools for manufacturing systems diagnostics, prognostics, and optimization.  

Smart manufacturing goes beyond the automation of manufacturing shop floors but rather depends on 

data-driven innovations to realize high levels of autonomy and optimization of manufacturing enterprises. As 

IoT and big data lead to the realization of cyber-physical manufacturing systems, the physical world is 

reflected in cyberspace through data-driven information processing, modeling and simulation. Analytics in 

the cyberspace exploit the knowledge and useful information acquired from data to feed optimal actions (or 

control schemes) back to the physical world.  Cyber-physical integration and interaction are indispensable to 

realizing smart manufacturing.  This paper presents a review of IoT technologies and systems that are 

enablers of data-driven innovations in smart manufacturing. The internet has evolved from hard-wired 

computer networks through wireless human connected networks to the new era of smart and connected 

networks of manufacturing things. This trend is integrated with rapid advances in cloud computing, virtual 

reality, and big data analytics to provide a new paradigm for smart manufacturing.  We present a new 

framework that leverages IoT and cloud computing to develop a virtual machine network.  We have also 

reviewed the IoT cybersecurity issues that are of paramount importance to businesses and operations, as well 
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as IoT and smart manufacturing policies for the future of smart factory defined by governments across the 

world.  Finally, challenges and opportunities in IoMT are described.  It is our expectation that this work will 

catalyze increased multidisciplinary research effort and in-depth investigation to advance the Internet of 

Manufacturing Things (IoMT) technologies. 

The rest of the paper is organized as follows: Section II provides an overview of the Internet of Things. 

IoT technologies for manufacturing services and applications are discussed and summarized in Section III. 

Then, we present a case study that leverages IoT and cloud computing to build virtual machine networks in 

Section IV. IoT cybersecurity issues and manufacturing policies are discussed in Sections V and VI, 

respectively. The challenges and opportunities to design and develop IoT technologies for smart 

manufacturing are discussed in Section VII. Finally, we present the conclusions in Section VIII. 

II. IoT Overview 

A. The Evolution of the Internet 

The Internet’s reach and connectivity have touched every aspect of human endeavor. It is estimated that 

around 47% of the world population were internet users in 2015 [4]. Fig. 1 shows the evolution from before 

the internet to the Internet of Things. In the pre-internet stage, telecommunication advanced from the concept 

of the “speaking telegraph” by Innocenzo Manzetti in 1844 through the first New York to Chicago phone 

call by Alexander Bell in 1892 to the burgeoning mobile and smart phone technologies. In 1960, the US 

Department of Defense funded the ARPANET project to develop the first prototype of Internet – 

interconnected computer networks for fault-tolerant communications. From the 1960s to the 1990s, the 

world saw rapid developments of content materials in the internet such as emails, information, entertainment, 

web browsing, and HTML webpages.  After the 1990s, the internet began to provide more services to 

individual users and business users such as online auctions, retailing, shopping, advertisements, search, and 

financial transactions. Since the 2000s, social networks have facilitated interconnectivity among billions of 

people, e.g., Linkedin, Facebook, and Twitter. Also, massive open online courses (MOOC) websites are 

increasingly establishing an internet of students for teaching and education.  Most recently, we have 

witnessed the shift from the internet of people to the internet of things. More and more “smart” devices are 

connected to the internet. It is estimated that there will be 212 billion “things” connected to the internet by 

2020 [5]. The manufacturing industry is also moving towards the new “smart factory,” which is envisioned 

as a cyber-physical system that “enables all information about the manufacturing process to be available 

when it is needed, where it is needed, and in the form that it is needed across entire manufacturing supply 

chains, complete product lifecycles, multiple industries, and small, medium and large enterprises” [2, 3]. 

 

B. IoT Sensing 

The concept of IoT was first coined by Ashton at the MIT Auto-ID Center in 1999 [6]. The term IoT 

means the formation of an “Internet” composed of large numbers of interconnected “Things.”  Here, the 

“Internet” refers to a global inter-networking infrastructure that uses the TCP/IP protocol to connect and 

remotely control “Things”. High-level communication based on the TCP/IP suite may be supported by a 

blend of low-level wired and wireless technologies such as Ethernet, Wi-Fi, Bluetooth, ZigBee, radio 

Telecommunication 

1844 Manzetti, telephone 
1892 Bell, telephone 
1973 Motorola, mobile phone 
1992 IBM, PDA 
2007 Apple, iPhone 
 

 
Internet of Contents 

1960s ARPANET 
1980s TCP/IP 
1989 AOL 
Contents: emails, messaging, 
information, entertainment, 
web browser, htmls 
 

Internet of Services 

E-commerce, e-productivity 
online auction, retailing, 
shopping, advertisements 
1995 Amazon, eBay 
1998 Google search, Paypal 
 

Internet of People 

2003 Linkedin, Myspace, Skype 
2004 Facebook 
2005 YouTube, Reddit 
2006 Twitter 
2011 Google+, Snapchat, Instagram 
2012 Coursera, MOOC 
 

Internet of Things 

Smart and interconnected 
networks of machines, 
operators, sensors, devices, 
raw materials, vehicles, 
bicycles, and other objects 

 
Time 

Fig. 1: The evolution of the Internet 
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frequency identification (RFID), or barcodes. “Things” refer to any objects (either physical or virtual) that 

have unique identities and can sense, collect and/or exchange data about environmental and operational 

dynamics. Examples of “Things” include vehicles, sensors, actuators, machines, controllers, robots, and 

human operators.  In practice, the IP address and/or a universal unique identifier (UUID) are commonly used 

to designate a “Thing.”  This designation greatly enhances the identifiability of “Things,” making the 

integration of “Things” into large-scale IoT networks much easier. The key technologies that integrate 

“Things” into IoT ecosystems include RFID, wireless sensor networks (WSN), and mobile computing, 

which are discussed briefly in the following sections: 

RFID: RFID technology reads and queries RFID tags attached to an object to automatically identify, 

monitor, and track the object using radio waves [7]. The basic components of RFID technology are: i) RFID 

tags, ii) RFID readers, and iii) backend signal processing and IT infrastructure. The RFID tag contains a 

small microchip that stores data and processes information, as well as an antenna that can receive and 

transmit data to the reader. RFID tags can be either passive or active. Passive tags harvest energy from the 

reader’s radio waves. Active tags have an embedded power source (e.g., battery) and can operate at a farther 

distance from the reader. RFID readers transmit an encoded interrogating signal to all tags within range and 

read out their stored information. Unlike barcodes, the tags do not have to be within the range of sight but 

only in the range of radio waves.  Radio waves provide the energy source for passive tags so that they can 

respond with their stored identity information. Active RFID sensors often have a longer communication 

range than passive ones due to the availability of an internal battery. For example, high-frequency active tags 

(e.g., 3-10GHz) can reach ranges from 300 feet to 1500 feet, while low-frequency passive tags (e.g., 

800MHz~900MHz) often operate over ranges between 1 foot and 50 feet. Based on the type of tag and 

reader, RFID systems are commonly classified into three categories, i.e., Active Reader Passive Tag 

(ARPT), Active Reader Active Tag (ARAT), and Passive Reader Active Tag (PRAT) [8]. RFID offers a 

variety of advantages such as low cost, battery-free operation, long range and long lifetime. It is worth 

mentioning that RFID systems have been used prominently in manufacturing enterprise operations, 

especially for work-in-process tracking, inventory control, and supply chain visibility management [9]. 

Wireless sensor networks (WSN): WSNs mainly use spatially distributed autonomous sensors to sense 

and monitor environmental and operational dynamics of a complex system. Rapid advances in WSNs 

contribute significantly to the implementation of IoT [10], because “things” are much easier to be connected 

with each other when many machines are equipped with wireless sensors. Each WSN sensor consists of 

several components – a radio transceiver to transmit data and receive control signals; a microcontroller 

providing embedded computing; an analog circuit for signal processing; an embedded operating system; and 

a power source. Large numbers of WSN sensors are commonly organized into three different types of 

network topologies, i.e., star, cluster tree, and multi-hop mesh [11]. Because a microcontroller is embedded 

into sensor nodes to improve the local processing capacity, each individual sensor becomes “smarter” in IoT. 

Therefore, decision making can be enabled at different levels of an IoT system, i.e., cloud processing, 

gateway computing, or embedded intelligence in sensor nodes. WSNs have been used widely for civil 

structure monitoring [10, 12], landslide detection [13], traffic monitoring [14], and machine health 

monitoring [15, 16]. For example, Bukkapatnam et al. installed sensors (i.e., cutting force, vibration, and 

acoustic emission) to monitor nano-machining dynamics and process-machine interactions to provide higher 

yields and better repeatability. There are three challenges, i.e., latency, bandwidth and interference, that 

prevent the ubiquitous application of WSNs in industry. WSNs have a limited bandwidth and update 

frequency for data transmission. However, it is not necessary to transmit all the raw data through the WSN, 

but only useful information extracted by the embedded computing. One solution is to transmit features that 

are extracted from the raw data, and the other is to transmit Fast Fourier Transform (FFT) coefficients (i.e., 

data compression by Cooley Tukey algorithms) that can be used to reconstruct the raw data. 

Mobile computing: Smart phones and tablets bring significant changes in almost every walk of life 

including the manufacturing industry. Note that smart phones are equipped with internet connectivity, 

advanced processors, and embedded sensors to obtain acceleration, ambient light, attitude (gyroscope), 

barometric pressure, GPS location, proximity, and images [17]. As a result, it is easy to integrate mobile 

computing with IoT systems. For example, IoT things can access the internet or social networks through 

mobile devices, while IoT sensing capabilities can be enriched by sensors or cameras embedded in the 

phone.  In the past few years, the interplay between IoT systems and mobile phones has significantly 
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increased. The integration of mobile phones with IoT near users promises to improve sensing modalities, 

increase information-processing capability and also provide better decisions and services in real time.  

RFID, WSNs, and mobile computing contribute significantly to the development of IoT sensing 

systems. IoT sensor nodes are deployed to collect and send data to cloud data centers, while users can 

control the IoT remotely through the internet. The stored data and analytical results are readily available to 

users anywhere and at any time using a web-based user interface (e.g., dashboard). As there are different 

types of IoT sensors, optimal scheduling and planning algorithms for power and computing resources are 

needed urgently. The existence of heterogeneous sensing networks also requires seamless information 

exchange and data communication through different protocols to achieve a high level of interoperability.  

C. IoT Data Protocols and Architectures 

The efficacy of an IoT system depends to a great extent on the interconnection between many different 

types of “Things,” which may have different communication, processing, storage, and power-supply 

characteristics. Table I shows a list of 9 data link protocols widely used for data transport in IoT systems. 

Example protocols used for a short-range and local-area wireless network include Bluetooth, ZigBee, Z-

wave, WiFi, and NFC. They are often used to transmit data over short ranges from 10cm to 100 meters. 

Bluetooth is commonly used for in-vehicle networking and wearable sensing applications [18]. ZigBee is the 

most popular WSN protocol with low energy consumption well suited for ubiquitous sensing [19]. Z-wave 

has a very low data rate with a very low energy consumption suitable for smart home and health applications 

[20]. WiFi is a wireless computer network protocol based on IEEE 802.11 standards, while NFC is 

commonly seen in contactless payment via smart phones [21].  In addition, there are long-range and wide-

area network protocols such as SigFox [22], Neul [23], LoRaWAN [24], and cellular communication 

technologies. These protocols are commonly used for smart city and environmental applications to transmit 

data over ranges from 2 kilometers to 200 kilometers.  

Table I. IoT data link protocols and their characteristics 

Protocol Standard Frequency Range Data Rates Applications 

Bluetooth Bluetooth 4.2 2.4GHz 50-150m 1Mbps in-vehicle network 

wearable sensing 

smart home 

ZigBee IEEE802.15.4 2.4GHz 10-100m 250kbps smart home 
remote control 

health care 

Z-Wave ZAD12837 900MHz 30m 9.6/40/100kbps  smart home health 
care 

WiFi IEEE 802.11 2.4GHz 

5GHz 

50m 150~600Mbps laptops, mobiles, 

tablets, and digital 

TVs 

NFC ISO/IEC 18000-3 13.56MHz 10cm 100~420kbps smartphones, 
contactless payment 

Sigfox Sigfox 900MHz 30-50km (Rural) 

3-10km (Urban) 

10~1000bps smart city, industrial 

and environmental 
applications 

Neul Neul  900MHz 10km 10~100kbps smart city, industrial 

and environmental 

applications 

LoRaWAN LoRaWAN Various 15km (Rural)  
2-5km (Urban) 

0.3-50 kbps smart city, industrial 
and environmental 

applications 

Cellular GSM/GPRS/EDGE 

(2G), UMTS/HSPA 
(3G), LTE (4G) 

900 MHz 

1800 MHz 
1900 MHz 

2100MHz 

35km (GSM) 

200km (HSPA) 

35-170kps(GPRS) 

120-384kbps(EDGE) 
384kbps-2Mbps(UMTS) 

600kbps-10Mbps(HSPA) 
3-10Mbps (LTE) 

cellular networks, 

mobile phones, and 
long-distance 

applications 

The IoT system also uses the internet to connect a large number of “Things.” Internet protocol (IP) is a 

universal standard for data communication over heterogeneous networks. Each “Thing” is assigned a unique 

IP address. As the number of “Things” connected to the internet is increasing rapidly, scalability of the 

protocol has emerged as a major challenge. Currently, IPv4 is the 32-bit address system that is on the verge 

of being incapacitated, i.e., using up all the IP addresses. IPv6 is the new 128-bit address system that has a 

capacity of approximately 2
128

, or 3.4×10
38

 addresses [25]. IPv6 enables every IoT “Thing” to have a unique 

Acc
ep

te
d 

M
an

us
cr

ipt



 

6 

IP address in the global Internet network. 6LowPAN is a key IPv6-based technology that defines 

encapsulation and header compression mechanisms independent of the frequency band and physical layers 

[26]. In other words, 6LowPAN can be used across different communication platforms (e.g., WiFi, ZigBee, 

802.15.4), thereby enabling sensors in heterogeneous networks to carry IPv6 packets and become a part of 

large-scale IoT system.  

Specific to manufacturing, MTConnect provides an information model that includes both a common 

vocabulary (dictionary) and semantics for manufacturing data as well as some communications protocols 

(specifically through the Agent). MTConnect was developed by the MTConnect Institute to enable 

manufacturing equipment to communicate data and exchange information using standard Internet 

technologies, e.g., HTTP and XML (Extensible Mark-Up Language) rather than proprietary formats [27, 28]. 

MTConnect is a universal protocol for communication between IoT-enabled machines and user-specific 

applications in the manufacturing shop environment. In other words, open standard grammar and vocabulary 

are provided by manufacturing dictionary and XML models to define and model manufacturing “Things” 

such as names, units, values, and contexts of machines and cutting tools. Notably, Table I lists a variety of 

protocols that can be used to connect and control “Things” remotely. However, MTConnect is a read-only 

communication protocol that ensures safety by design. In other words, software applications can only request 

data from MTConnect compatible “Things,” but cannot control the machines or equipment through the 

MTConnect standard. 

As shown in Fig. 2, MTConnect consists of three basic components – adapter, agent, and application. 

The adapter is a software tool that links or converts various data definitions to the MTConnect data 

definition. Note that the use of an Adapter is the most prevalent means of implementation of the standard, 

but it is not a requirement. The agent receives data requests from applications and then uses the dictionary 

and semantics to translate raw data into MTConnect compliant data. Further, MTConnect compliant data 

will be transmitted to the application for information processing and knowledge discovery, including data 

requests, storage, analytics, and visualization etc. Examples of applications may include software tools used 

in manufacturing execution systems (MES), production management systems, enterprise resource planning 

(ERP), predictive maintenance systems, and visualization dashboards.  If the data follow MTConnect 

definitions, then there will be no need to redefine data for every MTConnect compliant software application. 

This will help to reduce project costs significantly, optimize production planning, increase manufacturing 

performance, and improve predictive maintenance. 

 
In addition, a number of IoT frameworks and architectures such as RAMI 4.0 and OPC Unified 

Architecture have been proposed to define the communication structure of Industry 4.0.  RAMI 4.0 

provides a reference architectural model to define the 3-dimensional map for Industry 4.0. The first 

dimension is the Factory Hierarchy (i.e., product, field device, control device, station, work center, and 

enterprise). The second dimension is Architecture (i.e., Asset, Integration, communication, information, 

function, and business). The third dimension is Product Life Cycle (i.e., from the initial design to the 

scrapyard). Note that RAMI 4.0 is similar to the Open Systems Interconnection (OSI) model but add two 

more dimensions that are critical to the industrial systems. Note also that the OSI model uses 7 abstraction 

layers – physical layer, data link layer, network layer, transport layer, session layer, presentation layer and 

application layer - to compartmentalize and standardize functions in network communication [29]. As such, 

the OSI model enables users to communicate over the internet without concern for electrical specifications, 

binary transmission, or network addressing. Similarly, RAMI 4.0 compartmentalizes and standardizes 

functions in three different dimensions so as to provide the reference architecture for Industry 4.0. Also, the 

OPC foundation proposes the OPC Unified Architecture (UA) for data acquisition and information 

exchange in the RAMI 4.0 framework. Because the same architecture model is used, OPC UA enabled 

devices and products will speak the same language for effective and efficient communication. However, 

Adapters MT Agent Application 

Sensors 

CNC 

PLC 

A piece of software with 
vocabulary and semantics 
to translate raw data into 

MTConnect compliant data 

Network 
Data request 
Data storage 

Data analytics 

Data visualization 

Fig. 2: An illustration of the MTConnect standard.  
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there are also other IoT architectures currently available such as the IoT standard landscape from NIST, 

Robot Revolution Initiative (Japan), the Industrial Internet Consortium (IIC) white paper, Platform 

Industrie 4.0 white paper, as well as the Cisco white paper. Note that it is difficult for all companies to use 

the same reference architecture of Industry 4.0 due to competitions in the business world. However, such 

competition will accelerate the development of a comprehensive IoT framework. As with the first phase of 

internet development, it is anticipated that competition and collaboration will eventually result in a widely-

used IoT framework and architecture for Industry 4.0. 

D. IoT Platforms 

Table II shows a list of major IoT platforms and their characteristics. IoT platforms provide the software 

infrastructure to enable physical “Things” and cyber-world applications to communicate and integrate with 

each other. Examples of popular platforms include GE Predix, ThingWorx, IBM Watson, Azure, C3 IoT, 

and AWS. These industrial platforms include a variety of architectural mechanisms including cloud 

computing, embedded systems, augmented reality integration, data management, software applications, 

machine learning, and analytical services.  Pervasive IoT sensing leads to the proliferation of data.  Most IoT 

platforms provide a service called “dashboard” for data visualization [30]. Currently, dashboard 

programming has become popular in IoT, because it provides an easy, user-friendly graphical user interface 

(GUI) to monitor useful key performance indicators (KPIs) quickly and generate reports for decision 

support. For example, Azure supports a user-configured dashboard that can include a number of resources 

from the marketplace such as IoT events, time series insights, stream analytics, log analytics, cost analytics, 

and reports. However, most of these platforms are limited in their ability to fulfill the needs to realize smart 

manufacturing. In short, these platforms are not specifically designed and customized for the manufacturing 

industry.  It is critical to integrate manufacturing domain expertise with the IoT platforms, which is 

ultimately required to steer and gain value from the data analysis. 

Table II. IoT platforms and their characteristics 
Platform Company Features 

Predix GE  Supports over 60 regulatory frameworks worldwide 

 Pivotal Cloud Foundry 

 Enable industrial-scale Analytics for Asset Performance Management (APM) 

 Cloud platform to build apps for industry 

ThingWorx PTC  Coldlight - IoT Analytics  

 Augmented Reality Integration 

 Machine-to-Machine remote monitoring and service 

Watson IoT IBM  Machine learning and tradeoff Analytics: helps the users to make decisions 

 Visual recognition, Rasberry Pi support 

 Real-Time Insights - Contextualize and analyze real-time IoT data 

Azure IoT Microsoft  Easily integrate Azure IoT Suite with your systems and applications, including Salesforce, 

SAP, Oracle Database, and Microsoft Dynamics 

 Services: computing, mobile services, data management, and Messaging 

 Enables devices to analyze untapped data automatically 

AWS IoT Amazon  An IoT platform for enterprise application development 

 Supports HTTP, WebSockets, and MQTT  

 Rules Engine can route messages to AWS endpoints 

 Create a virtual model of each device  

Google IoT Cloud Google  Cloud-based platform 

 Modular services: computing, app, query, cloud functions, cloud database  

 Use Google’s core infrastructure 

 Committed to open source 

Machineshop MachineShop  Middleware 

 Provides a rich set of different level services 

 Easy integration using industry-standard RESTful API’s 

 Edge computing platform 

Cisco IoT Cloud Cisco  Platform as a service (PaaS) 

 REST APIs for send and get data streams 

 Better for tiny IoT prototypes or M2M applications 

 Access to 3rd party APIs 

Oracle Cloud Oracle  Web-based 

 Pre-integrated: Oracle SaaS Auto-Association & Auto-Discovery 

 Rich Connectivity: Cloud & On-premise connectors 

 Recommendations: Built-in recommendation engine for guidance 

 Error Detection & Repair: Alters & Guided Error Handling 

E. IoT Technologies 

There are many enabling technologies (e.g., cloud computing, virtual reality, IPv6, ambient intelligence) 

contributing to the rapid development and implementation of IoT systems.  This section presents the 
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discussion of 3 key technologies – cloud computing, virtual reality, and big data analytics – that promise to 

improve IoT-enabled manufacturing services.   

Cloud computing: Cloud computing provides internet-based computing services, including data 

storage, data management, KPI computation, data visualization and data analytics amongst others. There are 

three broad categories of cloud computing services, i.e., infrastructure as a service (IaaS) [31], platform as a 

service (PaaS) [32], and software as a service (Saas) [33]. IaaS refers to cloud-based services of IT 

infrastructure such as operating systems, virtual machines, networks, and storage. PaaS provides an 

environment to develop, test, deploy, and manage IoT software applications. SaaS delivers the services of 

software applications over the cloud. Cloud computing allows IoT systems to gain ubiquitous access to 

shared computing and storage resources, thereby overcoming the disadvantage of limited computing 

resources and storage capability in the “Things.”  In addition, the integration of cloud computing with IoT 

offers services such as machine learning and data analytics over the internet, supporting intelligence and 

decision making in different contexts.  

Virtual Reality (VR) and Augmented Reality (AR): The integration of VR and AR with IoT 

systems is conducive to asset utilization, labor training, root cause diagnosis, and maintenance, among 

others. VR enables a person’s physical presence in the virtual environment and simulates human interactions 

with virtual objects [34]. VR has been used widely in digital design, workforce training, and predictive 

maintenance. However, AR augments the real-world, physical environment with computer inputs such as 

instructions, sound, video, or graphics [35]. AR enables close interaction between the physical world and 

cyberspace, thereby enhancing the user experience and knowledge about the connection between smart 

“Things” and the network, human operators, and other “Things.” For example, AR is used in the inventory 

control to check the utilization rate of assets in the storage area of a manufacturing shop. In addition, AR is 

used by service technicians in the elevator industry to provide remote, predictive and self-guided 

maintenance and repair services. The use of AR significantly reduces the skill variability between 

technicians, shortens the repair time, improves the quality of elevator services, and further increases the 

building efficiency. 

Big data Analytics: IoT sensing leads to big data with the following characteristics – high volume, 

high velocity, high veracity, and high variety [36, 37]. A large number of “Things” generate huge amounts of 

data in real time. The challenge with manufacturing data is in that it can be "big" in terms of variety and 

veracity. Variety arises from the diverse data types in manufacturing, from power profiles to machining 

parameters to acoustic emissions to cutting force signals, each requiring a particular signal acquisition 

parameter [38]. The manufacturing workshop environment also has a high level of nonstationarity, 

uncertainty and noise [39]. Veracity is particularly important in the IoT paradigm given the uncertainty (and 

the lack of quantification of uncertainty) of statistical models. However, the manufacturing industry is not 

well prepared for changes in the quest for data-driven knowledge [40, 41]. Big data analytics provide 

efficient and effective methods and tools to handle large-scale IoT data for information processing and 

manufacturing process control. For example, the new MapReduce framework can be leveraged to develop 

parallel algorithms for processing massive amounts of data across a distributed cluster of processors or 

computers and building a virtual machine network [42]. Hadoop is an open software framework for the fast 

processing of big data and running analytical software on distributed computing clusters [43]. The 

availability of such big data tools helps to overcome the limited ability of conventional algorithms to process 

large amounts of data, and further extract useful information and new patterns to help improve the 

“smartness” level of manufacturing. 

III. Sensor Networks, Manufacturing Services, and Applications  

IoT has found applications in many areas such as manufacturing, healthcare, transportation, smart city, 

and smart home. This section will focus on a review of manufacturing execution systems (MES), sensor-

based modeling of manufacturing systems, and the recent development and application of IoT technologies 

in the manufacturing domain.  

A. Manufacturing Execution Systems 

Fig. 3 shows a typical structure of a manufacturing execution system (MES) used in current practice. The 

objective of MES is to establish transparent data sharing and information exchange between machines, 
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controllers, and the managerial departments in manufacturing shops [44]. At the process levels, there are 

various proprietary control systems from different vendors such as WSNs, PLCs, and CNC controllers. 

Gateway computers transmit real-time data streams from control systems in the bottom layer to two database 

servers.  Then, management-level users utilize software applications for process monitoring and data 

analytics. The MES provides a backbone system for digital performance management, energy management, 

cost analysis, quality control, and supply chain optimization. Recently, IoT technologies have brought 

significant changes to the structure of existing MES systems. With the MTConnect protocol and IoT-enabled 

control systems, MES is moving to cloud platforms. Cloud-based MES systems overcome the difficulty of 

decoding real-time data streams with proprietary definitions, thereby making data communication, storage, 

analytics, and reporting much easier to implement. 

 

 

Fig. 4 shows the bidirectional data flow between Enterprise Resource Planning (ERP) systems, MES, and 

Process Control Systems (PCS), i.e., top down from ERP to PCS and bottom up from PCS to ERP. Fig. 4 

follows the Activity models from ISA 95 but focuses more on the data flow. The ERP systems receive inputs 

of customer orders, market analysis, and demand forecasting [45]. Purchasing and logistics departments will 

place purchase orders of materials, and also plan, track and monitor shipments. Work orders are then 

generated and passed to the MES to describe raw materials, order quantities and expected completion time. 

The MES creates a more detailed plan to complete the production, including the allocation of resources, 

operator scheduling, and machine parameter settings. When the PCS system is working to fulfill the work 

Fig. 3: The structure of a manufacturing execution system. 

ERP MES PCS 

Work orders (raw materials, 

quantities, deliver time), 

process planning …… 

Production planning and 

control, machine parameters, 

operator scheduling …… 

Customer orders 

Market analysis 

Demand forecasting …… 

Sensor signals, machine 

conditions, production data, 

job status, tool wear …… 

Asset utilization, quality data, labor 

management, process performance …… 

Fig. 4: The data flow between ERP, MES, and PCS. 
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orders, in-process data (e.g., real-time sensor signals, machine conditions, production data and job status) 

will be collected and fed back to the MES. Based on the results of data analytics, the MES adjusts the 

manufacturing process (e.g., predictive maintenance, operator shifts) to deliver work orders on time. In 

addition, the MES provides valuable feedback (e.g., asset utilization, quality data, labor management and 

process performance) to the ERP so that the purchasing department can make changes to the bill of 

materials. The availability of real-time feedback makes cost analysis, work-in-process predictions, and 

inventory control more accurate and reliable. 

B. Sensor-based Manufacturing Informatics and Control  

Advanced sensing leads to big data populated in ERP, MES, and PCS. Currently, a significant amount 

of data already exist in the manufacturing domain, but are not fully utilized for real-time process monitoring, 

fault diagnosis, and performance optimization. Realizing the full potential of MES and advanced sensing 

depends on the development of new methodologies to extract useful features and patterns from the data, and 

then exploit the new knowledge to enable smart manufacturing [46].  Here, we categorize sensor-based 

manufacturing informatics and control into four specific areas as follows: 

Data representation and visualization: Sensing systems communicate data in real time with databases 

(either in the cloud or locally).  In many cases, energy budget and bandwidth pose significant challenges on 

the efficiency and effectiveness of data transmission.  For example, battery-supported wireless sensors and 

active RFID tags commonly face the difficulties in energy budget and bandwidth.  As such, a compact 

representation of data is necessary. For example, Fourier analysis expresses the signals as the summation of 

sinusoids in different frequency bands.  Wavelet representation transforms sensor signals into a combination 

of orthonormal basis vectors that are locally supported.  A compact representation gets rid of the need to 

store large amounts of raw data, but instead stores significant Fourier or wavelet coefficients for 

compression and/or transmission purposes. This compact representation also makes the underlying patterns 

more prominent in the transformed domains so that the extraction of salient features becomes much easier in 

the context of smart manufacturing [47, 48].  Also, data visualization is critical to presenting key information 

and patterns to end users in an easily comprehensible way. For example, a customized “Dashboard” GUI can 

help a user pinpoint critical information of interests, e.g., KPIs, energy usage, machine parameters. Network 

visualization is also conducive to characterizing and representing the interconnected network of 

manufacturing “Things,” thereby facilitating the formation of a virtual machine network in cyberspace. 

Pattern recognition and feature extraction: Data representation and visualization help transform the 

raw data to alternative domains, e.g., frequency domain, wavelet domain, and state-space domain.  The next 

step is to learn and recognize hidden patterns using pattern recognition methods such as principal component 

analysis (PCA), data clustering, factor analysis, multilinear subspace learning, and Bayesian networks. 

Further, feature extraction focuses on the quantification of salient patterns as features for system informatics 

and control.  For examples, Bukkaptnam et al. proposed the wavelet analysis of acoustic emission signals for 

feature representation in metal cutting [49, 50]. Koh and Shi et al. integrated engineering knowledge with the 

Haar transformation for tonnage signal analysis and fault detection in stamping processes [51]. Jin and Shi 

developed feature-preserving data compression of stamping tonnage signals using wavelets [52], and further 

decomposed press tonnage signals to obtain individual station signals in transfer or progressive die processes 

[53]. Ding et al. proposed the integration of data-reduction with data-separation tasks for process monitoring 

and statistical control of waveform signals [54]. Bukkaptnam et al. [47] also proposed an adaptive wavelet 

method to represent nonlinear dynamic signals for feature extraction in the state space. Bukkaptnam et al. 

[55, 56] developed local Markov models to predict system dynamics and future evolution in the state space. 

Yang et al. [57, 58] also developed a new heterogeneous recurrence approach to monitor and control 

nonlinear stochastic processes. Heterogeneous recurrence analysis was successfully implemented for both 

sleep apnea monitoring [59] and the identification of dynamic transitions in ultraprecision machining 

processes [60]. 

Sensor data fusion: It is common that multiple sensors with different sensitivity to certain operational 

characteristics are installed in a manufacturing system to collect homogeneous or heterogeneous signals. It 

may be noted that these multi-sensor signals can be inter-related if they are monitoring system dynamics 

from different perspectives. Multi-sensor data fusion consists of three critical steps: i) identifying multiscale 

information flows among multiple sensors; ii) modeling the dynamic evolution of the underlying process 

dynamics, iii) exploiting the new knowledge from sensor fusion for system informatics and control. 
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Conventionally, linear correlation structures between multiple sensors are characterized to monitor and 

control manufacturing processes. Effective multi-sensor fusion strategies should consider both information-

transfer flows in real-time sensor signals and the evolution of nonlinear dynamics in the underlying 

processes. For examples, Gang et al. [61] proposed nonlinear coupling analysis of variables by exploiting 

cross recurrences between them. The nonlinear measure is commonly used in neuroscience to study the 

interrelationship between neurons. Yang et al. [62, 63] developed a novel wavelet framework - multiscale 

recurrence analysis - to characterize and quantify the variations of nonlinear dynamics in the underlying 

processes. Also, Yang et al. [64], and Bukkapatnam and Cheng [65] worked with General Motors to develop 

local recurrence models to predict the nonlinear and nonstationary evolution of manufacturing operational 

conditions. Jing and Shi [66] proposed to identify causal relationships from observational data for 

manufacturing process control. Engineering knowledge was integrated with heuristic rules to learn arc 

directions in the causal network. Qiang et al. [67] considered nonlinear phase synchronization and thereby 

physical interactions between correlated functional process variables for conditional monitoring and 

diagnosis of chemical-mechanical planarization processes. 

Process Control and Decision making: Once a manufacturing process is out of control, the next step is 

to take optimal actions to bring the system back under control. The action plan depends on a number of steps 

such as root cause diagnostics, condition prognostics, and system optimization. Traditional methods for root 

cause diagnostics include engineering-driven statistical models (e.g., stream of variation analysis, 

probabilistic graph models) [68, 69] or failure modes and effects analysis (FMEA) [70].  Also, physics-

driven models can be formulated based on specific failure mechanisms in the manufacturing system. 

However, they are often not able to match with real data very well and are therefore inadequate to predict 

system malfunctions and identify root causes. Data-driven models leverage the real-time sensor signals to 

characterize and model degradation behaviors in the underlying process. A salient advantage is the ability to 

transform high-dimensional sensor signals into low-dimensional degradation features for condition 

prognostics [71, 72].  

Further, simulation modeling replicates a real-world manufacturing system, and better explains the 

underlying mechanisms of the system.  Hence, simulation modeling is widely used for diagnostic, 

prognostic, and optimization purposes. However, discrete-event simulation (DES) tends to track individual 

entities and their activities in the network of queues. As a result, DES models are not only time-consuming 

to execute but also provide unrealistic approximations in the setting of mass production or continuous 

manufacturing. Yang et al. [73] developed continuous-flow simulation models of manufacturing systems 

using nonlinear differential equations.  This approach was used to simulate operational dynamics of a 

multistage assembly line. The movement of entities is treated as a fluid flow, buffer stocks as water tanks, 

the conveyor belt as a water pipe and manufacturing stations as valves which control the rates of flow. The 

continuous-flow models were shown to enable faster and more accurate prediction of aggregate 

manufacturing performance than DES counterparts. In addition, simulation optimization [74] can be 

integrated with the wealth of sensor data for manufacturing process modeling and decision support. 

 

Fig. 5: Google trend comparisons of popularity levels of “cloud manufacturing”, “industrial internet of 

things”, and “cyber-physical systems” from 07/01/2011 to 08/01/2017. The popularity score represents 

search interest relative to the highest point on the chart for the given time in the world. 
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C. IoT Manufacturing Applications 

Fig. 5 shows Google trend comparisons of the popularity levels of “cloud manufacturing”, “industrial 

internet of things”, and “cyber-physical systems” from 07/01/2011 to 08/01/2017. The three terms receive 

increasing attention over the past six years.  In particular, industrial IoT yields the fastest increase over the 

past three years.  In this section, we will present a review of IoT manufacturing applications in the following 

categories: IoT-based cloud manufacturing, cyber-physical manufacturing, energy efficiency management, 

operations management, safety and ergonomics, as well as supply chain and logistics. 

IoT-based cloud manufacturing: IoT fuels increasing interests to design and develop new system 

infrastructures that integrates WSNs and cloud computing into manufacturing settings. For example, Tao et 

al. [75] developed an architecture of IoT-enabled cloud manufacturing system (i.e., CCIoT-CMfg). This 

four-layer system provides an opportunity for cloud-based manufacturing service generation, management 

and applications. Georgakopoulos [76] sketched a road map to harness the power of IoT and cloud 

computing to enhance manufacturing operations and realize the smart factory. IoT and cloud computing are 

used to facilitate the real-time monitoring of key plant performance indices, improve productivity, optimally 

manage inventory level, and improve plant-to-customer traceability. Lin et al. [77] developed a five-stage 

approach to improve the predictive maintenance of equipment and identify the root causes of yield loss, 

which is named as advanced manufacturing cloud of things (AMCoT). Zhang et al. [78] proposed an IoT 

framework for real-time data acquisition and integration, which aims to increase information visibility in the 

enterprise layer, workshop floor layer, and machine layer for better decisions in manufacturing execution. 

Internet-based data flow and cloud database in the IoT context effectively facilitate mutual interactions 

between humans and machines. Cloud computing and analytics can help resolve complex decision-making 

problems in manufacturing. 

Cyber-physical manufacturing systems: The term “cyber-physical manufacturing” is also used in 

the literature to show the interrelated technologies of IoT, manufacturing and cyber-physical systems. 

Monostori et al. [79] thoroughly reviewed virtual (i.e., computer science and communication technology) 

and physical (material science and technology) systems in the field of manufacturing. The authors 

suggested that cyber-physical manufacturing systems allow adaptive scheduling in production planning, 

anticipative maintenance strategy, and adaptive production control. Thramboulidis and Christoulakis [80] 

proposed a UML-based framework (i.e., UML4IoT) to integrate cyber-physical components into the IoT-

based manufacturing environment. Such a framework automates the process of generating the IoT-

compliant layer allowing both new and legacy cyber-physical components to exploit the IoT connectivity. 

Tao et al. proposed the IIHub system to support online generation of manufacturing services using 

encapsulation templates [81]. Particle Swarm Optimization algorithms have also been developed to solve 

the problem of multi-objective MGrid resource service composition and optimal-selection [82, 83]. 

Babiceanu and Seker [84] investigated trends in cyber-physical manufacturing systems. They reviewed 

current applications of virtualization, cloud-based services, and big data analytics in manufacturing settings, 

and suggested that predictive manufacturing will be an important outcome of the manufacturing cyber-

physical system. In addition, Adamson et al. [85] presented the concept of feature-based manufacturing for 

adaptive equipment control and resource-task matching in a distributed and collaborative manufacturing 

cyber-physical system.  

Energy efficiency management: IoT is also utilized for the optimal management of energy 

efficiency in manufacturing. Qin et al. [86] implemented IoT to optimize energy consumption in additive 

manufacturing. An IoT-based framework was developed to monitor and analyze energy consumption in the 

selective laser sintering process and a control system was created to optimize each build and reduce the 

energy of the entire process. Tan et al. [87] used IoT for the real-time monitoring of energy efficiency on 

manufacturing shop floors. Energy data were collected and transmitted wirelessly for analysis and feedback, 

allowing the detection of abnormal energy consumption patterns. The proposed system enables the 

application of best energy management practice to day-to-day operations. Shaikh et al. [88] investigated 

enabling technologies to achieve green IoT. Technologies such as RFID, sensor network, and internet were 

reviewed and their relationship with energy consumption and the environment highlighted. IoT applications 

were also classified by their impact on the environment. In addition, Tao et al. [89] integrated IoT into the 

evaluation of energy-saving and emission reduction (ESER). An IoT-enabled system for ESER life cycle 

assessment was proposed, harnessing the powerful perception ability of IoT for real-time data collection and 
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management. The system facilitates the collection of energy consumption and environmental impact data 

generated over the entire life cycle of manufacturing, and realizes effective data integration between the 

ESER evaluation system and the existing enterprise information systems. 

Manufacturing operations management: Rymaszewska [90] studied the effect of IoT on the product-

service systems of manufacturing industry. Because IoT provides opportunities to access end-users’ 

operations, it helps manufacturing companies to achieve closer and better proximity to customers and change 

their products accordingly. As such, the IoT-aided system is able to provide the best possible level of service 

to end users. Li et al. [91] designed an IoT-based predictive maintenance system for equipment used in coal 

mines. The system incorporates sensors monitoring variables such as vibration and air pressure to collect 

operational data and transmit them wirelessly to remote servers. Operators can use mobile devices to access 

the data collected and respond to malfunctions of the equipment. Xu and Chen [92] developed an IoT-based 

dynamic production scheduling framework for just-in-time manufacturing. The system performs real-time 

resource status monitoring and dynamic scheduling, helping manufacturers to manipulate production 

schedules dynamically to maximize production outputs with limited resources. Ding et al. [93] developed an 

approach to allocate sensors optimally in a multi-station assembly process. By adopting a state-space model 

and backward-propagation strategy, the distributed sensor system can improve product quality and reduce 

process downtime. Ding et al. [94] conducted a thorough review of state-of-the-art practices, and 

investigated the optimal design of distributed sensing systems for quality and productivity improvement. 

Safety and ergonomics: There are also many research efforts focusing on the design of IoT systems for 

safety and ergonomics in the manufacturing industry. Boos et al. [95] investigated the use of IoT to address 

accountability challenges in pharmaceutical manufacturers. Multiple dimensions of accountability (i.e. 

visibility, responsibility and liability) and control (i.e. transparency, predictability and influence) were 

studied and a framework was proposed to integrate accountability and control capability in the context of 

IoT. Sun et al. [96] implemented an IoT-based dam monitoring and pre-alarm system to deal with tailings 

disposal and prevent the failure of tailing dams. Podgorski et al. [97] designed a conceptual framework for 

risk management of occupational safety. A framework is proposed for dynamic and personalized 

occupational risk management, which can continuously assess risks in real time, and monitor the risk level of 

each worker individually. Environmental and workers’ physiological parameters, as well as interactions 

between workers, the environment and smart physical objects can also be monitored. Guo et al. [98] 

presented an opportunistic IoT system based on ad hoc, opportunistic networking devices using short-range 

radio techniques such as Wi-Fi and Bluetooth. The system demonstrates an inherent relationship between 

humans and the opportunistic connections of smart things. It enables information forwarding and 

dissemination within the opportunistic communities that are formed based on the movement and 

opportunistic contact of humans. Shirehjini and Semsar [99] developed a mobile 3D user interface to access 

the IoT-based smart environment. The 3D user interface creates a logical link between physical devices and 

their virtual representation, allowing users to control the amount and manner in which the IoT automates the 

environment. In addition, Cheng et al. [100] used nonintrusive real-time worker location sensing and 

physiological status monitoring technology to monitor the activity (i.e., unsafe behaviors) of construction 

workers. The proposed system allows the remote monitoring of construction workers’ safety performance by 

fusing their location and physical strain data.  

Supply chain and logistics: “Physical Internet” is an IoT-related concept proposed in the domain of 

manufacturing supply chain and logistics. Meller et al. [101] contributed to the Physical Internet (PI) by 

developing a road-based PI transit center to efficiently and sustainably transfer trailers from one truck to 

another. The design of PI transit center was evaluated using key performance indicators. Cheng et al. [102] 

used complex networks and IoT to address challenges in matching the supply and demand of manufacturing 

resources. IoT technology was used to realize the intelligent perception and access of various manufacturing 

resources and capabilities. Reaidy et al [103] proposed an IoT-based platform to fulfill orders in a 

collaborative warehouse environment. RFID technology was incorporated into an IoT infrastructure to 

manage decentralized warehouses, improving the competitiveness of warehouses in a dynamic environment 

and accelerating the adoption of these concepts and technologies in warehouses. Qu et al. [104] developed a 

dynamic production logistic synchronization to deal with the dynamics of production logistics processes. IoT 

technology was used to capture the execution dynamics and cloud computing was also incorporated to deal 

with various dynamics systematically. Fan et al. [105] studied the use of RFID technology to manage 

inventory inaccuracy in a supply chain. The authors assumed a uniformly distributed demand, and 
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considered factors including fixed investment cost, tag price and shrinkage recovery rate to analyze both 

RFID and non-RFID cases in both centralized and decentralized supply chains. Qu et al. [104] designed a 

cost-effective IoT solution for production logistic execution processes with system dynamics. Using 

sensitivity analysis, optimal IoT solutions were evaluated and analyzed to provide guidance for IoT 

implementation. Internal and external production logistic processes were combined into an integrated 

structure to offer a generic system dynamics approach. Hwang et al. [106] employed IoT technology to deal 

with large fluctuations in demand. An IoT-based performance model was proposed, defining both 

manufacturing processes and performance indicator formulas. Key Performance Indicators of the overall 

effectiveness of the equipment were selected to construct an IoT-based production performance model. In 

addition, Zhou et al. [107] discussed supply chain management in the era of IoT, and provided a review of 

pertinent papers about business models, architecture for IoT-enabled intelligent decision support systems, the 

role of IoT technology, and IoT deployment for decision making in production, transport, and service 

provider selection, and RFID-based inventory management. 

In addition to academic research, industrial organizations have increasingly invested in new IoT 

technologies for process monitoring, operation optimization, fault detection, and optimal control. Table III 

shows a representative list of companies that implement IoT solutions in industrial case studies. Note that 

most of examples are for marketing purposes, and more research is urgently needed for IoT system 

optimization, data modeling, and cybersecurity and so on.  

Table III. IoT industrial case studies 

Company Details 

Vale Fertilizantes 

Vale used the GE Predix platform to improve maintenance strategies and asset reliability, avoiding 25 days of lost production in 

one year and resulting in a savings of $1.4 million. Corrective maintenance was reduced to zero between 2014 and 2015, and 

weak acid flow is now above 13 cubic meters per hour. 

Link: https://www.ge.com/digital/stories/vale-fertilizantes-saves-million-production-losses-asset-performance-management 

BMW 

BMW uses Amazon AWS for its car-as-a-sensor (CARASSO) that collects sensor data to give drivers dynamically updated map 

information. By running on AWS, CARASSO can adapt to rapidly changing load requirements. By 2018 CARASSO is expected 

to process data collected by a fleet of 100,000 vehicles traveling more than eight billion kilometers. 

Link: https://aws.amazon.com/solutions/case-studies/bmw/ 

Sandvik 

Coromant 

Sandvik develops new predictive analytics on the Microsoft Azure platform that connects with in-house shop floor control tools to 

collect the machine data, tool data, and send them to Azure for real-time analysis using machine learning algorithms, as well as 

process optimization in real-time and the set-up of predictive maintenance schedules and alarms. 

Link: https://customers.microsoft.com/en-us/story/sandvik-coromant-process-manufacturing-sweden 

Toyota Tsusho 

Based on Amazon AWS, the company launched a traffic information broadcasting system TSquare, which provides users real-time 

traffic data in Bangkok and 6 suburban provinces. AWS helps process large amounts of traffic data in a scalable and reliable way. 

Link: https://aws.amazon.com/solutions/case-studies/toyota-tsusho/ 

Samsung 

The company developed S-NET Cloud based on Microsoft Azure for remote energy management of air conditioners. The system 

saves energy by keeping cooling and heating efficient, using the system air-conditioner sensor, operational data and indoor 

environmental information. Further, the S-NET system detects equipment malfunctions and performs remote maintenance and 

management in an integrated manner, using real-time data analytics. 

Link: https://enterprise.microsoft.com/en-ca/articles/industries/manufacturing-and-resources/remote-energy-management-

solution-based-microsoft-azure-iot/ 

Cummins Power 

Generation 

Cummins developed a Cummins PowerCommand Cloud on Microsoft Azure, which is a cloud-based remote monitoring solution 

for generators and power systems. The system can monitor millions of power systems and generators worldwide, thereby 

improving services, saving lives, and ultimately creating more innovative products that improve quality of life.  

Link: https://customers.microsoft.com/en-us/story/keeping-the-power-on-when-you-need-it-most 

Echelon 

Echelon developed an adaptive streetlight control system on the IBM Watson IoT platform. The system boosts energy and 

operational savings of high-efficiency lighting systems through adaptive lighting control. This helps city managers to take 

advantage of smart controls that adjust street lighting based on real-time weather data as well as activity levels or time of day. 

Link: http://news.echelon.com/press-release/corporate/echelon-enables-outdoor-lighting-enhance-public-safety-through-ibm-

watson 

Marathon 

Petroleum 

Marathon collects data for analysis on the GE Predix platform, and develops collaborative strategy for optimizing the asset 

performance management and optimization. The IoT technology helps Marathon with the service, support, and flexible program 

design necessary for meeting its ongoing needs. Link: https://www.ge.com/digital/stories/marathon-petroleum-develops-

collaborative-strategy-optimizing-apm 

Daimler 

Daimler has built a Detroit Connect system on Microsoft Azure to collect performance data from vehicles on the road and store 

them in Azure. Fleet managers can view complete fault-event details through the Detroit Connect portal and quickly know when a 

fault-event has occurred. This helps increase flexibility and reduce costs, and build long-lasting relationships with its customers. 

Link: https://customers.microsoft.com/en-us/story/daimlertrucks 

INNOVYT 
This company developed IoT solutions on Microsoft Azure and Amazon AWS platforms for real time fleet tracking, alerts and 

advanced analytics of driving behavior and insights for improving fleet. Link: http://innovyt.com/azure-big-data-solution/ 

LightInTheBox 

The company uses Amazon AWS to build a highly available website for its customers and save on operating expenses. IoT 

technology makes it possible to accommodate any transaction, anywhere, and enables the adjustment of computing resources as 

needed to reduce costs. Link : https://aws.amazon.com/solutions/case-studies/LightInTheBox/ 

TraceLink 

This company developed the Life Science Cloud platform to ensure compliance throughout the global life science network and 

global pharmaceutical supply chain. AWS helps the company to fully support the requirements of hundreds of pharmaceutical 

companies and their partners. Link: https://www.tracelink.com/insights/the-tracelink-life-sciences-cloud-community 
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IV. Case Study - IoT and Cloud Computing to Build Cyber-physical 

Manufacturing Networks 

IoMT integrates sensors, computing units, physical objects (e.g., machines and tools), and services into 

a network, thereby forming the backbone of a smart manufacturing system. The IoMT network helps a 

large number of manufacturing “things” to communicate and exchange data.  With massive data readily 

available, IoMT presents an unprecedented opportunity to improve the “smartness” of a manufacturing 

enterprise.  However, realizing the full potential of IoMT depends on the development of new data-driven 

methods and tools for smart manufacturing. As IoMT is relatively new, existing methodologies fall short of 

addressing the internet-like IoMT structures and big data gathered from every corner of a manufacturing 

enterprise. It is imperative to develop new IoMT analytical methods and tools for smart manufacturing, e.g. 

(i) Data Management: IoMT communicates large volumes of data at high velocity, calling for new 

data management techniques (e.g., data access, data structure, data compression, data synthesis, data 

traceability, data retrieval). It is worth mentioning that there are significant differences between 

manufacturing data and data from other domains (e.g., computer science, environmental science, healthcare 

systems).  Manufacturing systems involve machines, controllers, robots, sensors, human operators, and 

elements of other related business units such as inventory, supply chain and management. Data from the 

network of all manufacturing things show new structures and properties that require efficient handling and 

storage.  Also, data pertinent to specific operations should be efficiently and effectively traced and retrieved 

to serve the purposes of manufacturing analytics. 

(ii) Information Processing: IoMT data contain rich information on fine-grained details of 

manufacturing systems.  There is an urgent need to process the data to extract useful information pertinent 

to the manufacturing enterprise – from individual machines through networked processes and complete 

product lifecycles to supply chains. However, data availability does not imply information readiness but 

requires the development of new information-processing methodologies in the IoMT context. The first 

stage is data representation to describe the data in alternative domains (e.g., frequency domain, wavelet 

domain, and state-space domain) so as to reveal hidden information.  An effective representation scheme 

will make statistical measures of salient patterns in the data much simpler in the transformed domain.  The 

second stage is feature extraction to characterize and quantify specific patterns in the IoMT data.  Based on 

the effect sparsity principle [108], there should be a parsimonious set of features sensitive to the state 

variables to be estimated instead of extraneous noise. Finally, information visualization is necessary to 

communicate features and patterns efficiently and clearly to end-users through graphics and animations. 

(iii) Decision Making: As shown in Fig. 6, IoMT and big data lead to a new generation of cyber-

physical manufacturing systems. The physical world is reflected in cyberspace by data-driven information 

processing, modeling and simulation. Analytics in cyberspace exploits the acquired knowledge and useful 

information from data to feed optimal actions (or control schemes) back to the physical world.  As 

mentioned above in section II.C, manufacturing decisions of interest include machine monitoring, fault 

diagnosis, predictive maintenance, inventory optimization, supply chain management, and safety 

management to name but a few. The “smartness” level in manufacturing depends to a great extent on 

cyber-physical integration and interaction. 

 

Cyber World Physical World 

Data 

Actions 

Fig. 6: Cyber-physical manufacturing systems. The manufacturing enterprise is reflected in the cyber space 
through data, and analytics run in the cyber space feed the actions back to the physical world.  
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In this section, we present a case study of large-scale IoMT machine information processing, network 

modeling, and condition monitoring. This case study is not comprehensive but serves as an example to 

leverage the internet-like connection of IoMT machines to build a virtual machine network.  As sensor 

observations contain rich information describing machines’ status, this study focuses on the dissimilarity 

measures between machine signatures (e.g., power profiles from discrete-part manufacturing). Then, each 

machine is represented as a node of a large-scale network in cyberspace, and node attributes are machine 

signatures.  The edge link and weight depend on the similarity and dissimilarity of node attributes.  

However, the dimensionality of machine signatures is high and the number of machines is large in the 

IoMT context. Therefore, we also present an idea of cloud computing for efficient network modeling of 

large-scale IoMT machines in the cyberspace, which will be detailed in the following subsections.  

IV.A. Physical Machine Networks – Process Monitoring and Control 

This case study presents our preliminary studies of stochastic network and parallel algorithms to build a 

large-scale network of IoMT machines in cyberspace. Notably, most traditional methods focus on the 

conformance to reference signatures (i.e., “standard” or “normal” ones). However, network models are 

constructed and optimized using pairwise comparisons of machine profiles. The dissimilarity matrix 

(consisting of the dissimilarity between each pair of profiles) is obtained from the pairwise comparison, 

rather than from a column in a reference comparison. For conventional reference comparisons, the 

computational workload is low, and easy to implement. The difference against the reference profile can be 

directly used as an indicator to determine if the current profile is normal or not. However, it is necessary to 

empirically and/or statistically establish a “normal” signature from a historical record of profiles. On the 

contrary, network modeling does not need to establish a “normal” signature but rather leverages the 

pairwise dissimilarity information to automatically group large numbers of profiles into homogeneous 

clusters. As such, the proposed network approach will provide a better representation of information in the 

data and further offers opportunities for visual analysis of machine conditions.  

The proposed machine-network models are generally applicable to monitoring P2P dynamics in 

manufacturing processes. In other words, one machine repeatedly manufactures the same type of discrete 

part in large quantities (the high volume, low mix scenario). Further, P2P network models can be used for 

different types of parts.  For example, if there are two different kinds of part, then power profiles from the 

same part will have a higher level of similarity than those from different parts. This will lead to another 

application of product classification - group parts into homogeneous clusters. Network visualization will 

provide categorization of parts, evaluation of energy consumption, and further help production planning. 

For the low volume high mix scenario, network models can be potentially applicable to product 

classification or detection of process characteristics (e.g., types of materials, machining procedures, and 

specific tools used). For example, M2M networks can help to extract useful information about machine 

utilization, power usage, and condition monitoring, which will help further optimize factory operations, 

reducing equipment downtime and maintenance costs. Virtual machine networks have great potential to 

shift current manufacturing practices towards globalized production optimization and management. IoMT 

energy management provides a major opportunity to optimize the energy consumption and realize green 

and sustainable manufacturing.  

IV.B. Virtual Machine Networks 

Virtual manufacturing overcomes many practical limitations in the physical world and provides a 

greater level of flexibility to optimize a variety of manufacturing actions (e.g., production planning, quality 

control, maintenance scheduling) in cyberspace. As manufacturing is highly complex and involves 

multifarious elements, there are potentially several types of virtual manufacturing networks including (a) 

machine networks; (b) supply chain networks; (c) human resource networks; and (d) customer networks to 

name a few. In this present study, we focus on the development of virtual machine networks. It may be 

noted that social networks are essentially an internet of people, and people can communicate with each 

other easily through a network. However, it is easy to build a virtual machine network but difficult to 

enable communication between networked machines. Here, we propose to build virtual machine-to-

machine networks by allowing each machine to exchange real-time attributes with each other (e.g., 

machine signatures, profiles, events). As such, machines can form a community or a group in the network 

that collectively provides a subnetwork of machines with similar attributes.  
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For example, power profiles are a machine signature that describes the energy consumption of 

successive operations in a discrete-manufacturing process. Fig. 6 (right) shows that IoMT-enabled 

machines communicate power profiles with a distinct morphology and pattern during the cutting phase. 

Some of them show nominal patterns (e.g., M2 and M3), whereas others have larger variations (e.g., M1 

and M6) and elevated patterns (e.g., M4 and M5). Note that machine signatures may vary due to a number 

of factors such as the product, machine type, procedure, and anomalies. In the large-scale IoMT context, 

each machine can communicate its attributes (e.g., power profiles) for every discrete part produced, thereby 

allowing the quantification of both part-to-part (P2P) and machine-to-machine (M2M) dissimilarities in 

the attributes. Such an IoMT-based virtual machine network provides great opportunities for i) Condition 

monitoring and quality control: Machines with similar conditions can be grouped into the same cluster. 

The structure of a virtual machine network not only provides useful information on the machine status and 

utilization statistics but also offers the opportunity of profile-based machine clustering, product 

categorization, and online quality control. ii) Planning and scheduling: The structure of a virtual machine 

network varies dynamically because machine profiles change over time. Such a dynamic network can 

further help optimize maintenance decisions, manufacturing planning, and scheduling. For example, we can 

proactively assign a machine’s workload to other (normal) machines and schedule maintenance, when a 

machine is moving towards the “machine failure” cluster in the network. ii) Smart manufacturing: For a 

large-scale manufacturing system, advanced sensing increases information visibility and helps cope with 

high-level complexity in the system. IoMT provides an opportunity to realize the virtual machine network 

for smart manufacturing. For example, machines communicate with each other to report their status and 

exchange information for optimal planning and scheduling. This will substantially help to create value from 

data, optimize factory operations and reduce maintenance costs and equipment downtime. 

IV.C. Network Modeling and Analytics 

Advanced sensing in the large-scale IoMT context communicates rich data streams. As shown in Fig. 6, 

IoMT connects a large number of machines in the manufacturing system and generates overwhelmingly big 

data.  For an individual machine, power profiles can be collected during the production of discrete parts.  

When a large number of parts are produced, the IoMT will generate tens of thousands of power profiles. 

P2P variations in power profiles provide a wealth of information pertinent to machine conditions and 

production performance. This will enable engineers to make proactive decisions to adjust processes and 

maintain machines, improving the quality of products and reducing the re-work rate. For a group of 

machines, IoMT sensing provides an unprecedented opportunity to embody machines in a large-scale 

network to enable smart manufacturing.  However, the number of machines and data volume pose 

significant challenges for the construction and optimization of a cyber-physical machine network. There is 

an urgent need to extract pertinent knowledge about manufacturing operations (i.e., from one machine to a 

group of machines) and then exploit the knowledge acquired for decision making.  Realizing the promise of 

IoMT depends to a greater extent on information-processing capability.  Little has been done to address the 

fundamental issues important to big data analytics in the large-scale IoMT context.  In this case study, we 

propose to develop virtual machine network models from the following perspectives:  

(1) Customized P2P network: It is not uncommon for IoMT sensing to collect long-term 

monitoring data from an individual machine. As shown in Fig. 7, during the production of a part, the signal 

waveform changes significantly in different segments (i.e., different stages of the manufacturing operation).  

Between two different parts, the signals are similar to each other but with variations. Therefore, we propose 

to develop a network model of stochastic P2P dynamics for customized monitoring of machine conditions, 

where each part is represented as a network node and the node attributes are profile data for this part.   

(2) Population M2M network:  There are also similarities and dissimilarities in profile patterns 

between two different machines.  Therefore, we propose to develop a virtual M2M network model, where 

each node represents an individual machine and node attributes are the dominant profile patterns or 

aggregated properties.  The choice of node attributes is highly dependent on domain-specific applications. 

Such an M2M network will help engineers and managers to identify machine communities that share 

similar operational conditions, study machine variations within each community, and pinpoint an individual 

machine in one of the communities for monitoring and maintenance purposes.   

(3) Parallel graph analytics: However, such network modeling is computationally expensive due 

to the population size and data volume. Traditional serial-computing schemes are limited in their ability to 
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represent networks efficiently and provide real-time analytics in the IoMT setting.  Note that the power of 

IoMT lies in the inclusion of more machines to form a network topology, links, and communities.  Hence, 

we propose to develop parallel algorithms for efficient network modeling and optimization of the large-

scale IoMT, as well as further develop network-based predictive analytics for smart manufacturing.  

In the following four subsections, we will discuss the technical steps towards the construction and 

optimization of virtual machine networks (i.e., pattern matching, network modeling, predictive analytics, 

and parallel computing).  These steps are not meant to be comprehensive or exclusive, but rather serve as 

initial ideas for IoMT network modeling. 

 

IV.C.1 Pattern Matching 

Fig. 7a shows the CAD file and power profiles for a machining operation. The variation in energy 

consumption can be due to machine parameters (e.g., rotations per minute, depth of cut, and feed rate), tool 

conditions, materials properties, and other uncertainty factors. Fig. 7b shows the part-to-part (P2P) power 

profiles when a welding machine cyclically produces discrete parts with the same design. Although this 

investigation uses power consumption data as an illustration, there may be other profiles of interest such as 

acoustic emission, cutting force, or vibration. Note that profile patterns are similar to each other because the 

parts have the same design but have variations (i.e., due to machine and process variations). Because 

profile patterns are very pertinent to process dynamics, pattern matching will provide a good opportunity to 

monitor the condition of machines and tools. Fig. 7 shows there are pattern variations between the power 

profiles from Part 1 to Part 5, although they are all of the same design. Conventional methods focus on the 

comparison between the current profile and reference profiles (i.e., “standard” or “normal” ones). Here, we 

propose to perform a pairwise comparison of machine profiles using either P2P or M2M network methods. 

Note that a dissimilarity matrix (that is, the dissimilarity between each pair of profiles) is obtained from 

pairwise comparison, rather than only being a column in reference comparison. However, two profiles can 

be misaligned due to discrete sampling and phase shift. For e.g., Parts 1-5 in Fig. 7 show a typical pattern, 

but there are variations in shape, amplitude, and phase. This poses significant challenges to the 

characterization and quantification of pattern interrelationships (i.e., similarity and dissimilarity) between 

profiles. 

In the literature, such interrelationships are estimated by methods such as correlation and mutual 

information.  Note that correlation is a second-order quantity evaluating merely the linear dependency 

between two profiles 𝑥1(𝑡) and 𝑥2(𝑡). It should be noted that linear correlation cannot capture the nonlinear 

interdependence between variables adequately. Mutual information 𝑀𝐼𝑥1,𝑥2
  characterizes and quantifies 

both linear and nonlinear correlations but requires stationarity in the computation, i.e., 

Fig. 7: (a) The CAD file and power profiles from the machining operation; (b) P2P variations in current profiles 
when a welding machine produces parts with the same design. 

(a) 

Part 1 Part 2 Part 3 Part 4 Part 5 

… 

(b) 
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𝑀𝐼𝑥1,𝑥2
= ∑∑𝑃𝑟(𝑥1, 𝑥2)log⁡(

𝑃𝑟(𝑥1, 𝑥2)

𝑃𝑟(𝑥1)𝑃𝑟(𝑥2)
)

𝑥1𝑥2

 (

1) 

Yun et al. [109] developed an information theoretic approach that used mutual information to measure the 

nonlinear correlation between variables (i.e., analogous to profiles) for variable clustering and predictive 

modeling. Gang et al. [61] proposed nonlinear coupling analysis of variables by exploiting cross 

recurrences between them. This nonlinear measure is commonly used in neuroscience to study the 

interrelationship between neurons. In addition, Zhou et al. [110] investigated the discrete wavelet transform 

of cycle-based profiles and developed a wavelet control chart for process monitoring. 

 

In order to measure the morphologic dissimilarity between profile data, Yang et al. [111] proposed one-

dimensional and multi-dimensional dynamic time warping (see Fig. 8). Note that profile alignment is 

imperative to measure pattern dissimilarity. If we do not use the warping approach and measure the 

difference between part profiles directly, this will contaminate useful information and will not yield 

meaningful results in most cases. However, dynamic time warping aligns two signatures optimally and 

yields meaningful results by comparing the morphology of corresponding segments. Given two profiles  

𝒙1⃗⃗⃗⃗ (𝑡) , 𝑡 =  1, 2, …, 𝑛1  and 𝒙2⃗⃗⃗⃗ (𝑡) , 𝑡 =  1, 2, …, 𝑛2 , the dissimilarity between 𝒙1⃗⃗⃗⃗ (𝑡)  and 𝒙2⃗⃗⃗⃗ (𝑡)  is then 

measured as ∑ ‖𝒙1⃗⃗⃗⃗ (𝑡𝑖) − 𝒙2⃗⃗⃗⃗ (𝑡𝑗)‖(𝑡𝑖,𝑡𝑗)∈𝜁 . To find the optimal warping path 𝜁 , a dynamic programming 

algorithm iteratively searches: 

𝑑(𝑖, 𝑗) = 𝑚𝑖𝑛 (

𝑑(𝑖, 𝑗– 1) ⁡+ ⁡𝑤(𝑖, 𝑗)
𝑑(𝑖 − 1, 𝑗 − 1)⁡+ 𝑤(𝑖, 𝑗)⁡

𝑑(𝑖 − 1, 𝑗) ⁡+ ⁡𝑤(𝑖, 𝑗)⁡
) (2) 

where the initial condition is 𝑑(1,1) = ⁡𝑤(1,1) = ‖𝒙1⃗⃗⃗⃗ (𝑡1) − 𝒙2⃗⃗⃗⃗ (𝑡1)‖  and a window size constraint is 

|𝑖 − 𝑗| < 𝑟 . The normalized dissimilarity between 𝒙1⃗⃗⃗⃗ (𝑡)  and 𝒙2⃗⃗⃗⃗ (𝑡)  are obtained as ∆(𝒙1⃗⃗⃗⃗ , 𝒙2⃗⃗⃗⃗ ) =
𝑑(𝑛1, 𝑛2) (𝑛1 + 𝑛2)⁄ . As a result, machine profiles are optimally aligned for the measurement of pattern 

dissimilarities. If pattern matching is performed for every pair of profiles, then a warping matrix will be 

generated to provide pairwise similarity and dissimilarity among profiles.  

IV.C.2 Network Modeling 

Although the warping matrix contains rich information about the variations in machine profiles (i.e., 

either P2P or M2M), it is difficult to use the matrix itself as a predictor in predictive models for 

manufacturing applications.  There is an urgent need to develop novel methods and tools that will enable 

and assist the exploitation of dissimilarity matrices to make optimal decisions in manufacturing.  Because 

these machines are networked elements in the manufacturing system, it is natural to use network theory to 

provide analytical methods to study the interrelationship and interactions between machines. The nodes or 

vertices of such networks will be machines and the edges or links will be interactions (i.e., similarity or 

dissimilarity in profiles) between machines. 

 The next step is to optimally represent each P2P (or M2M) machine profile as a network node in a 

high-dimensional space. The distance between nodes should preserve the dissimilarity between two 

corresponding profiles. Fig. 9 illustrates the network modeling of six machine profiles. A dissimilarity 

matrix provides pertinent information about the variations of machine signatures. By optimizing the 

location of nodes in the network, node-to-node distances preserve the profile-to-profile dissimilarities in the 

warping matrix of Fig. 9a. For example, Fig. 9 shows that dissimilarities between M1 and others (M2-M6) 

Fig. 8: One-dimensional (a) and three-dimensional dynamic 
time warping for pattern matching 

(a) 

 

(b) 

 

Acc
ep

te
d 

M
an

us
cr

ipt



 

20 

are preserved as the Euclidean distance between node M1 and others. Let  𝒔𝑖 and 𝒔𝑗 denote the location of 

𝑖𝑡ℎ  and 𝑗𝑡ℎ  nodes in the network and 𝛿𝑖𝑗  is the dissimilarity between 𝑖𝑡ℎ  and 𝑗𝑡ℎ  machine profiles in the 

warping matrix ∆. Then, the objective function of network modeling can be formulated as:  

min∑(‖𝒔𝑖 − 𝒔𝑗‖ − 𝛿𝑖𝑗)

𝑖<𝑗

; ⁡𝑖, 𝑗⁡ ∈ [1, 𝑛] (2) 

where ‖∙‖ can be the Euclidean norm or other distance measures, depending on the specific application. 

This approach represents each power profile as a network node based on the pairwise dissimilarity 

measures, which greatly reduces the dimensionality of the data and thereby identifies the “best data” to 

represent the machine’s condition. In the presence of a small number of machines (or profiles), optimizing 

the locations of network nodes 𝒔𝑖 ’s can be achieved by existing algorithms such as multi-dimensional 

scaling (MDS) [112] and scaling by majorizing a complicated function (SMACOF) [113]. However, the 

computational complexity of MDS is 𝑂(𝑁3) because of the centering operation and eigen-decomposition. 

SMACOF utilizes the Guttman transform that consists of a large matrix multiplication. Existing algorithms 

tend to have limitations in addressing the emerging challenges in network modeling of a large-scale IoMT 

network. 

 

IV.C.3 Cloud Computing 

Because serial algorithms often lead to prohibitive computation time in large-scale IoMT, there is an 

urgent need to scale up the algorithm and use large-scale machine learning in cloud computing to complete 

the optimization task collaboratively. Parallel algorithms pipeline the overall computing task into multiple 

computers (or processors) for collaborative processing. As shown in Fig. 10, each computer carries out part 

of the computation and works simultaneously with other computers to combine results to build virtual 

machine networks, reducing the computing time significantly. Nowadays, the availability of multi-core 

CPUs, cell processors (e.g., GPUs), and cloud computing make parallel algorithms easily implementable 

with off-the-shelf strategies such as multi-threading and single-instruction-multiple-data. 

 

Due to the high dimensionality of IoMT data, second-order algorithms are often difficult and even 

prohibitive. It is preferable to use first-order approaches such as gradient-based algorithms. Also, large 

volumes of data pose significant challenges to optimization algorithms as each iteration must process the 

(a) (b) 

Fig. 9: (a) Dissimilarity matrix of six machine profiles; (b) A network model with node-to-node distances 
preserving the profile-to-profile dissimilarity matrix in (a).  

Physical Machine 

Network 

…
 

Combine Results 

Virtual Machine Network 

Fig. 10: Map reduce and cloud computing to optimize the virtual machine network  
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entire data set. The stochastic gradient approach is well suited to handle IoMT data because each iteration 

or subtask processes a limited subset of samples. For convex functions, stochastic gradient approaches are 

shown to guarantee convergence in most cases. Therefore, Kan et al. [114] proposed to integrate stochastic 

gradient algorithms with batch learning, i.e., mini-batch stochastic network algorithms, to model virtual 

machine networks. As opposed to considering one sample at a time, mini-batch stochastic network 

algorithms handle multiple samples (i.e., a mini-batch) simultaneously in each iteration. See more details in 

[114]. Once the virtual machine network is constructed, changes in machine conditions are encoded as 

network dynamics. We will discuss IoMT network analytics in more detail in the next subsection. 

IV.C.4 Predictive Analytics 

Virtual machine networks provide a new paradigm for exploring future physical spaces and perform 

predictive analytics towards an anticipatory manufacturing enterprise. Network analytics are generally 

applicable to provide decision support for future production and market variations.  Here, virtual machine 

networks provide a new means of studying the manufacturing system using a network structure and 

topology. 

Node attributes (e.g., coordinates of nodes), once optimized, can be used as features for condition 

monitoring and predictive modeling. For example, if P2P variations of a single machine are monitored in 

the IoMT system, each node will represent the operational profile of one discrete part. If the node is located 

away from the cluster of normal condition in the virtual machine network, maintenance services need to be 

scheduled to prevent machine failure. For a group of machines (i.e., M2M networks), each node represents 

a machine or its signature (e.g., power profiles, features, or patterns).  Predictive models can be constructed 

to predict the machine’s condition based on its node attributes. If node attributes show the machine 

condition has a high probability of being abnormal, engineers can re-assign its jobs to other machines and 

schedule maintenance. In the state of the art, there are various modeling approaches available for predictive 

applications, including linear regression models [115], neural networks [116], self-organizing networks 

[117, 118] and particle filtering [119] Practitioners can select an optimal predictive modeling approach 

based on the complexity of data and requirements of processing speed. 

Machines are also interconnected, and each machine has its nominal profile patterns and temporal 

variations. However, abnormal events in one machine may cause a cascade of follow-up events on 

neighboring machines in the network. In the social network, sociologists show that social connections and 

interactions have significant impacts on a person's behavior [120, 121]. Network edges (or links) represent 

the connections between machines, thereby providing important information about the behaviors of 

manufacturing systems.  It is worth investigating whether the organization of links in large-scale IoMT 

networks are random or follow specific principles for unique properties or orders.  The link and topological 

patterns facilitate the detection of community structures. There will be small variations in node properties 

within the same community but large variations between two different communities.  Virtual machine 

networks provide a graphical representation of large numbers of machines and also groups machines with 

similar conditions into homogeneous clusters. This enables condition monitoring of machines using visual 

analytics of the data. For example, we can pinpoint each profile from a machine in the network clusters for 

monitoring or classification purposes. Raghavan et al. [122] developed a label propagation algorithm (LPA) 

that is a near linear time algorithm to effectively and efficiently identify community structures in large-

scale IoMT networks.  LPA is widely used and is a part of software packages like R, Python, Java, and 

iGraph libraries.  As natural networks are often uncontrolled and exhibit self-organizing behavior, self-

organized M2M networks may be investigated further to increase robustness against external and internal 

uncertainty in manufacturing.  

Further, network topology has been shown to influence the performance of processes such as event 

formation, information diffusion, navigation, search and others. Topological measures that are widely used 

to exploit meaningful information in networked processes include node degree, link density, average path 

length, network diameter and clustering coefficient. A comprehensive review of network topological 

measures can be found in [123, 124]. Although topological measures are important, they may be 

insufficient to describe specific functionalities of the machine networks. There is a need to unearth patterns 

of node attribute, link organization, community structure, and network topology from the large-scale IoMT 

network.  For examples, are there link and topological patterns we can exploit to optimize the design of 

facilities? Which community does the machine belong to? Are there manufacturing jobs that need to be re-
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assigned? Are there preventive maintenance services that can be delivered based on real-time machine 

conditions?  

V. IoT and Cybersecurity in Manufacturing 

With the rapid advance of IOT, it is anticipated that the manufacturing industry will see more and more 

IoT-based devices, applications and services in the next few years.  As manufacturing equipment is a part 

of the critical infrastructure for economic growth, they can easily become the target of malicious attackers.  

The interconnection of IoT devices, cloud databases, and information networks makes the IoT system 

vulnerable to cyber-attacks.  Therefore, IoT cybersecurity is of primary concern in smart manufacturing. It 

is imperative to develop new cybersecurity frameworks and methodologies that will help facilitate the 

widespread adoption of IoMT. MTConnect advocates a read-only option when the upper-level MES 

interacts with the smart manufacturing “Things” in the IoT system [27, 28]. In other words, software 

applications can only read data from the network of sensors, machines, controllers in the lower-level PCS 

system, but cannot write data to control or damage the manufacturing infrastructure.  

As shown in Fig. 11, the National Institute of Standards and Technology (NIST) developed the 

cybersecurity framework (CSF) for manufacturing implementation [125]. This CSF includes five critical 

components, i.e., 𝑖) Identify: What processes and assets need protection? 𝑖𝑖) Protect: What safeguards are 

available? 𝑖𝑖𝑖)⁡Detect: What techniques can identify incidents? 𝑖𝑣) Respond: What techniques can contain 

the impact of incidents? 𝑣) Recover: What techniques can restore capabilities? This framework can be used 

to measure the performance of different cybersecurity solutions, thereby helping further improve the 

implementation of IoT and cybersecurity systems in manufacturing environments.  

In the past few years, cybersecurity has fueled increasing interest in the manufacturing community. For 

examples, Hutchins et al. [126] proposed a framework to identify vulnerabilities in automotive 

manufacturing systems, which considers the data flows within a manufacturing enterprise and throughout 

the supply chain. Desmit et al. [127] proposed an intersection mapping approach to identify cyber-physical 

vulnerabilities and predict their influence on intelligent manufacturing systems. Sturm et al. [128] focused 

on cyber-physical vulnerabilities in additive manufacturing (AM), and made the following 

recommendations to improve the AM cybersecurity, i.e., improving software checks; hashing/securing 

signing/blockchain; improving process monitoring; operator training. 

 

Furthermore, there are a number of innovative techniques to protect the security and privacy of IoMT 

systems including cryptographic solutions, intrusion identification, and blockchain technology. 

Cryptographic solutions: Duan et al. [129] designed a data-centric access control framework to 

provide secure access to smart-grid services in a publish/subscribe model. Seo et al. [130] focused on the 

development of lightweight key management protocols for scalable and distributed authentication. Zhang et 

al. [131] propose a password-authenticated group key exchange protocol and prove its security in a 

standard model, which does not require short passwords to be pre-shared among users. Saxena et al. [132] 

designed a lightweight authentication and key agreement protocol for the long-term evolution (LTE) 

network to support secure and efficient communications between IoT devices and their users. Note that 

manufacturing data can be encrypted locally and in the cloud using the PGP standard [using entropy 

generated keys and AES encryption] as well as transmitted through communications encrypted on the chip 

by hardware.  

Intrusion Identification: Siboni et al. [133] developed a cybersecurity testbed framework that allows 

wearable device designers and manufacturers to evaluate the security of the devices in a simulated 
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Fig. 11: The cybersecurity framework for manufacturing implementation from NIST. 
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environment. Saeed et al. [134] used random neural networks to develop an intrusion detection and 

prevention scheme for IoT systems. Vincent et al. [135] was inspired by side-channel schemes used to 

detect Trojans in integrated circuits, and then proposed a product/process design approach to enable real-

time attack detection, i.e., changes to a manufactured part’s intrinsic behavior. Thames et al. [136] 

developed a cyberattack detection algorithm based on ensemble learning with neural networks, and further 

integrated response mechanisms into the cloud-based manufacturing architecture. 

Blockchain Technology: As a new approach to decentralized computation and assets management in 

the BitCoin system, the blockchain technology [137, 138] has promised to help to address scalability and 

security challenges in IoMT. Ghuli et al. [139] proposed a decentralized system to register and assign IoT 

devices to an owner based on the blockchain technology. Bahga et al. [140] developed a decentralized, 

peer-to-peer platform to implement IoT systems based on the blockchain technology. This platform will 

enable users in a decentralized, trustless, peer-to-peer network to interact with each other without the need 

for a trusted intermediary so as to improve the cybersecurity of IoT systems. 

VI. IoT Manufacturing Policies and Strategies 

This section briefly discusses IoT manufacturing policies and strategies from various countries and 

industrial organizations.  Such policies and strategies are the main drivers for the development and practical 

implementation of IoT technologies, and play important roles in pushing the paradigm shift towards smart 

manufacturing in the next few decades.  Currently, there are many policy initiatives across the world 

aiming to promote smart manufacturing and stimulate economic growth.  

USA: The PCAST
*
 report in 2012 identified Advanced Manufacturing as a path towards to revitalizing 

U.S. leadership in manufacturing, creating high-quality jobs, and ensuring national security [141]. Next-

generation manufacturing is envisioned to depend on the effective use and coordination of automation, 

sensing, networking, data, information, and computation. The goal is to enable high-rate, cost-effective, 

repeatable production for practical industrial implementation. In particular, advanced sensing, networking 

and process control are identified as key technology areas for smart manufacturing. In the past few years, 

smart manufacturing has attracted significant interest. To build a robust, sustainable R&D infrastructure, 

Manufacturing USA - formerly known as National Network for Manufacturing Innovation - has established 

several networked Manufacturing Innovation Institutes as follows: 

 AFFOA (Advanced Functional Fabrics of America): http://www.rle.mit.edu/fabric/ 

 AIM Photonics (American Institute for Manufacturing Integrated Photonics): 

http://www.aimphotonics.com/ 

 America Makes: https://americamakes.us/ 

 ARM (Advanced Robotics Manufacturing): http://www.arminstitute.org/ 

 ARMI (Advanced Regenerative Manufacturing Institute): http://www.armiusa.org/ 

 CESMII (Clean Energy Smart Manufacturing Innovation Institute): https://cesmii.org/ 

 DMDII (The Digital Manufacturing and Design Innovation Institute): http://dmdii.uilabs.org/ 

 IACMI (The Institute for Advanced Composites Manufacturing Innovation): http://iacmi.org/ 

 LIFT (Lightweight Innovations For Tomorrow): http://lift.technology/ 

 NextFlex: http://www.nextflex.us/ 

 NIIMBL (The National Institute for Innovation in Manufacturing Biopharmaceuticals): 

http://www.niimbl.us/ 

 Power America: http://www.poweramericainstitute.org/ 

 RAPID (Rapid Advancement in Process Intensification Deployment Institute): 

http://processintensification.org/ 

 REMADE (Reducing EMbodied-energy And Decreasing Emissions): 

http://www.rit.edu/gis/remade/index.html 

China: Manufacturing industry in China increasingly faces persistent challenges from environmental 

issues, resource shortage, rising labor costs, and a slowdown in economic growth.  As a result, the “Made in 

                                                           
* President’s Council of Advisors on Science and Technology 
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China 2025” strategy that began in 2015 to provide a 10-year action plan to radically transform the 

manufacturing sector.  The goal is to turn the country from a quantity manufacturer to a high-end quality 

manufacturer. This strategy targets ten important areas that are vital for economic growth, i.e., information 

technology, aviation, railway equipment, power-grid, new materials, machinery, robotics, maritime 

equipment, energy-saving vehicles, and medical devices. Smart manufacturing is also identified as an 

opportunity for Chinese manufacturers to take the lead in the global competition. Three directions are 

highlighted to improve the “smartness” level of manufacturing, i.e., 𝑖)  Developing new unmanned 

manufacturing systems with smart sensors, industrial robots, RFIDs, control systems, and automated 

production lines; 𝑖𝑖) Realizing the internet-based information infrastructure to effectively and efficiently 

coordinate the manufacturing network; 𝑖𝑖𝑖) Developing industrial cloud platforms and big data analytical 

tools to help manufacturing enterprises make better decisions. The “Made in China 2025” strategy is seeking 

to promote data-driven innovation and smart technologies to pursue sustainable economic growth and 

upgrade China from the largest manufacturer in the world to a pioneering manufacturing power.  

European Union: EU economy relies heavily on the manufacturing sector, which contributes 80% of all 

EU exports. However, the EU economic crisis has led to a decline of manufacturing throughput with more 

than 3.8 million jobs lost between 2009 and 2013. As such, EU Commission has organized several task 

forces to put together action plans to increase the competitiveness of EU manufacturing, including digitizing 

European industry, factory of the future, smart anything everywhere, and advanced manufacturing for clean 

production. Digital opportunities to make industry smarter that have been identified include the IoT, big 

data, artificial intelligence (AI), additive manufacturing (AM), robotics, and blockchain technologies. The 

“factory of the future” is a multi-year roadmap (2014-2020) to realize a smart factory that is clean, highly 

performing, environmental friendly and socially sustainable. The priority of the EU Commission is to 

digitalize the industry to make the best use of new technologies and manufacture high-quality digitalized 

products or service. A number of digital innovation hubs have also been established across Europe to help 

small, medium or large companies make the most of digital opportunities. The policies and strategies from 

the EU Commission are complemented and integrated by many national initiatives, for e.g., 

 Germany: Industry 4.0, Smart Service World, High-Tech Strategy 2020 

 Netherlands: Smart Industry 

 Italy: Internet of Things and Industry 4.0 

 Belgium: Made Different, Marshall 4.0, Flanders make 

 France: Alliance Industry of the Future, Industrie du Futur, Nouvelle France Industrielle 

 Spain: Industria Conectada 4.0 

In short, the EU Commission aims to lead a smooth transition to a smart economy, prepare to manufacture 

products & services of the next generation, improve innovation capacity across manufacturing industries, 

and increase the total Gross Domestic Product of the European Union.   

In addition, United Kingdom announced the foresight project “Future of Manufacturing” in 2013 that 

provides the 2013-2050 strategical plan for the country to adapt to the megatrend of the global 

manufacturing revolution. This foresight project joins other initiatives such as High Value Manufacturing 

Catapult, Innovate UK, and EPSRC Manufacturing the Future to address key challenges on the UK 

manufacturing sector, e.g., 

 Adapt to increasing demands for personalized products and services 

 The lack of highly skilled labor well trained in new technologies 

 Sustainable manufacturing that is efficient in the use of materials and energy 

 Digitalize manufacturing to realize the full potential of IoT sensing, big data analytics, 

intelligent systems, 3D printing, robotics, and new materials. 

Furthermore, General Electric, Cisco, Intel, AT&T, and IBM founded the “Industrial Internet 

Consortium (IIC)” in 2014 to shape the future of industrial IoT systems.  Currently, the IIC consists of 

more than 258 academic and industrial members who have invested heavily in IoT and CPS related projects. 

Thus far, the IIC has put together over 20 testbeds to demonstrate the implementation of IoT systems and 

data analytics to provide transformational outcomes in the industry. It is expected that IoT applications in 

manufacturing and factory settings will generate $1.2 to $3.7 trillion annually by 2025 [5]. Clearly, IoT and 

smart manufacturing will lead to significant economic and societal impacts. 
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VII. IoT Challenges and Opportunities in Manufacturing 

As the infrastructure of manufacturing systems become smarter, more and more operations are being 

carried out by an increasing number of machines. We observe that different machines may carry out the 

same or different functions or tasks, and some machines rely strongly on the output of other machines, just 

like a pipelined product line. Such strong connections may also vary dynamically depending on the 

different tasks being executed. In a word, the synergy of various machines has become critical for the 

overall performance of existing and future systems. The IoMT deploys a multitude of sensors to 

continuously monitor machine conditions. Sensor outputs, known as machine signatures, provide an 

unprecedented opportunity for optimal decision making in manufacturing. However, realizing the full 

potential of IoMT for smart manufacturing depends, to a great extent, on addressing the following 

challenges. 

The first challenge is knowing the status of each machine. This status includes not only the fact of 

being busy or not, but also the health condition, in the sense of whether it is functioning properly or not. 

This status information is very important as it determines whether this machine can be counted on for task 

execution. The most straightforward method is to use sensors that can carry out both the sensing task and 

also provide some analysis based on signal processing of the sensed data. These sensors may be powered 

by wired supply or batteries. However, with the increasing number of machines, considering their expected 

lifetime of one to two decades, in some scenarios it is difficult to provide wired power or battery support. 

For example, wires limit the portability of sensors. Battery replacement is also sometimes challenging and 

time-consuming for these sensing systems. Also, batteries may not be safe or efficient in some extreme 

environments.  

The second challenge is how to make use of the status of various machines to distribute tasks to each 

machine. Should each machine follow a strict static schedule? The potential malfunction of machines, and 

also dynamic changes in system-level tasks will result in schedule differently optimized towards energy, 

total operation time, etc. Under these circumstances, distributing tasks dynamically to machines based on 

the sensed status of each machine is key.  

The third challenge originates from the communications between machines, possibly including the 

coordinating machines if they exist. It is noted that nowadays some tasks are carried out by machines from 

different sources, even from different countries. This reveals the possibility of problems in communication 

reliability and its impact on the collaboration between these machines. In addition, manufacturing assets are 

closed systems that cannot be controlled fully from the outside even if a two-way flow of information exists. 

Take a machine tool as an example. One can send G code to the machine to run it, but one cannot control 

the servos and spindles of the machines directly. This is yet another big challenge that must be overcome to 

enable full control and automation. Addressing these challenges will lead to new avenues of fundamental 

and applied research in manufacturing, sustainable manufacturing, IIoT and Cognitive Supply Chains. 

 

Opportunity 1. Retrofit legacy machines for smart manufacturing 

Although new manufacturing technologies and upstart companies arise, there are many existing 

manufacturing firms falling behind the wave of digital evolution. It is not uncommon that legacy (or old) 

Fig. 12: The IoT retrofitting of legacy machines for smart manufacturing 
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machines exist in many small manufacturing firms. While legacy machines are invaluable assets for 

manufacturing firms and are fully utilized in production, they lack real-time and in-process sensing and 

control systems.  As a result, small manufacturers increasingly lose competitive advantage in the global 

market because they are limited in information visibility and in the ability to cope with the greater 

complexity of modern manufacturing environments. Fundamental to the problem is establishing IoT 

connectivity between legacy machines. As shown in Fig. 12, IoMT sensing provides an unprecedented 

opportunity to retrofit legacy machines for digital manufacturing. As a result, there is an urgent need to 

develop new plug-and-play IoT sensors that continuously collect in-situ machine data, transmit the data to 

cloud storage, and communicate with other “things” and stake holders.   

Opportunity 2. Self-powered machine status sensing 

It is imperative to sense the status of a machine with a self-powered supply mechanism. By making the 

sensors self-powered, no wireline connection or battery is needed to provide a power supply. With 

additional wireless pairing and data transition, such a sensing system could be used efficiently in many 

machines, enhancing portability and reducing maintenance costs. Signal processing techniques, either 

preliminary raw data processing or end-to-end implementation of functions, could also be added to the 

sensor node. 

Opportunity 3. Machine service and tasks scheduling and distributing 

There is an opportunity to study optimized task distribution (scheduling) methodology between a 

group of machines for a set of tasks or services considering, in particular, the assistance of sensed machine 

data. For example, in a centralized system with a server center, there will the following questions to be 

answered: • When and what tasks should be distributed to which machines (in a dynamic distribution 

system)? • How to assess the potential contribution of a machine that is currently malfunctioning but may 

be fixed? How will this affect task scheduling and distribution policies? • What are the energy consumption 

and utilization of each machine? 

Opportunity 4. The synergy between IoMT machines 

It is also important to optimize the synergy between a set of machines collaborating remotely. Due to 

physical distance and unreliable message channels, there may be a temporary block in communication 

between machines in different places. What should a machine do when it finds itself isolated from other 

machines? How should the central coordinator be designed?  

Opportunity 5. Cloud computing and analytics 

The cloud data platform is a centralized data repository, which will include not only historical data 

collected from a large number of machines, but also on-line data from the machines in-situ. This data can 

be retrieved easily from the cloud platform to local computers to extract useful information and prototype 

algorithms that can be deployed in either the cloud or the IoT sensor devices. Data-driven system 

informatics and control is an indispensable step to the next generation of digital manufacturing. Cloud 

computing and analytics will open avenues of opportunity to optimize the management and planning of 

manufacturing operations, from quality management, power management, heat and cooling, sustainability 

and safety, to distribution and supply chain management. 

Opportunity 6. Blockchain enabled IoT 

IoMT things communicate with each other through the internet. Data security and privacy emerge as a 

big issue for the design, development, and deployment of IoT systems. Manufacturing industry is a part of 

the critical infrastructure of each country. Cyber-attacks on the IoMT system will directly disrupt 

manufacturing operations and other essential functions in pertinent industries. On the other hand, 

manufacturing is becoming global and distributed. IoMT things are not necessarily controlled by a 

centralized system. How to enable secure data sharing between IoMT things? Also, how to realize the 

decentralized control of IoMT things. One possible solution is the blockchain technology which is a 

distributed system managed by a peer-to-peer network to validate and ensure secure data transport using 

cryptography. Because blockchain offers an effective means of sharing data securely under decentralized 

control, it also provides a natural solution as a data sharing framework for IoMT systems. Though there is 

preliminary commercial work being done in this domain, more fundamental research is needed. 

Acc
ep

te
d 

M
an

us
cr

ipt



 

27 

VIII. Conclusions 

To achieve competitive advantages in the global market, manufacturing industry is striving to create 

new products and services. As a result, advanced sensor technologies are used widely in manufacturing 

systems to increase information visibility and system controllability. Note that although sensors, data and 

IT systems may already be available in physical factories, they are not closely integrated up to the level of 

IoT.  Recently, Industry 4.0 aims to boost the manufacturing system to a new generation of cyber-physical 

systems for smart manufacturing. IoT sensing collects enormous amounts of data from manufacturing 

systems in the physical world. Realizing the full potential of IoT for smart manufacturing requires new 

advances in analytical methodologies. The challenges now are “how to reflect physical manufacturing in 

cyberspace through data-driven information processing and modeling?” and “how to exploit the useful 

information and knowledge extracted from data to provide better manufacturing operations in the physical 

world?”  

Indeed, smart manufacturing depends to a great extent on data-driven innovations to realize the 

seamless integration of cyber and physical spaces. Industry companies, trade groups, and standard 

organizations are racing against the clock to lead the evolution of Industry 4.0. A number of IoT 

architectures such as RAMI 4.0 and OPC UA have been proposed to define the communication structure of 

Industry 4.0.  Note that RAMI 4.0 provides a reference architectural model to define 3 critical dimensions 

of manufacturing industry 4.0, i.e., Factory Hierarchy (i.e., product, field device, control device, station, 

work center, and enterprise), Architecture (i.e., Asset, Integration, communication, information, function, 

and business), and Product Life Cycle (i.e., from the initial design to the scrapyard). In addition, 

commercial IoT platforms such as GE Predix, ThingWorx, IBM Watson, Microsoft Azure, and Amazon 

AWS are readily available to enable physical “Things” and cyber-world applications to communicate and 

integrate with each other. The diverse types of IoT architectures and platforms are conducive to the 

acceleration of the development of IoT systems.  

It may be noted that industry focuses more on the establishment of IoT standards and platforms, which 

help integrate existing sensors, IT and OT systems into the new IoT framework. There are many IoT case 

studies available from company websites for marketing purposes (also see Table III). However, IoT is still 

under development and faces technical issues for cyber-physical integration in the manufacturing system 

such as communication, big data, and control. For example, a single vibration sensor in the machine 

condition monitoring system generates data streams at high velocity. However, the cloud database has a 

limited bandwidth for data transmission and update frequency. Is it necessary to transmit all the raw data to 

the cloud, or just extract useful information for control decisions via embedded computing? In addition, 

data are “big” not just in terms of volume, but also in terms of variety and veracity. Note that there are a 

variety of data in manufacturing, from power profiles to machining parameters to acoustic emission to 

cutting force signals, each requiring a particular signal acquisition parameter. Also, veracity is particularly 

important in the IoT paradigm given the uncertainty (and the lack of quantification of uncertainty) of 

statistical models. Further, IoMT data analytics require manufacturing domain expertise to steer and gain 

value from the data. Most of commercial IoT platforms (e.g., Preidx, Azure) are not specifically designed 

and customized for the manufacturing industry, and are therefore limited in ability to fulfill the needs of 

smart manufacturing. In addition, the manufacturing industry is critical to national security. Cyber-attacks 

on manufacturing systems will impact the national economy and prosperity directly. Therefore, 

manufacturing assets are closed systems that cannot be fully controlled from the outside. A critical question 

is “how to enable secure data sharing and decentralized control of IoMT things?” 

Manufacturing researchers have traditionally been less concerned about the issues of big data analytics, 

cybersecurity, cloud computing, system optimization in the large-scale IoT context. These research 

problems are critically important to improving the performance of manufacturing enterprises and achieving 

a high level of “smartness” in manufacturing. This paper presents a review of the development of IoT 

technologies and existing applications in manufacturing enterprises.  Further, we provide a preliminary 

study to leverage IoMT and cloud computing to build virtual machine networks, thereby improving 

manufacturing decision-making capability through the cyber-physical integration of manufacturing 

enterprises. We hope our focused and limited review can serve as a catalyst to stimulate more in-depth and 

comprehensive studies that will focus on the development of novel IoMT technologies and analytical 

methodologies to improve manufacturing services and optimize manufacturing systems. Without a doubt, 
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IoMT and smart manufacturing present a promising research paradigm with strong potential to 

revolutionize next-generation manufacturing enterprises. 
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