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A B S T R A C T

Materials with intrinsic self-healing phenomenon possess the ability to heal in response to external random
shocks. Introducing a recovery factor to quantitatively measure the damage self-recovery efficiency, this paper
designs a self-healing mechanism corresponding to both damage load and shock arrival numbers for a parallel
redundant system consisting of multiple non-identical components. From the actual engineering perspective,
each shock arriving on the system selectively affects one component or more but not necessarily all units in
parallel, and consequently, random shocks are categorized according to their sizes, attributes and affected
components. This study investigates novel reliability models and schedules optimal preventive maintenance
policies, in which the closed-form reliability quantities are derived analytically and the optimum preventive
replacement interval is demonstrated theoretically. In addition, a Nelder-Mead downhill simplex method is
introduced to seek the optimal replacement age in minimizing the long-run average maintenance cost rate for
the condition system failure distribution is rather complex. A micro-electro-mechanical system (MEMS) whose
constitutional materials are integrated by microcrystalline silicon, where polymer binders with self-healing
capability are always synthesized, is designed to verify the results we obtained numerically, illustrating the
significance of considering damage self-healing phenomena.

1. Introduction

Most industrial systems fail to work due to two competing failure
processes incorporating a soft failure process and a hard failure process.
The soft failure occurs owing to internal performance degradation
whereas the hard failure happens as a result of external random shocks.
In general, these two failure processes are dependent as well as com-
peting with each other, i.e., random shocks influence the increments on
degradation amount or accelerate the degradation rate or both. That is,
systems are suffering from dependent and competing failure processes
(DCFP). Degradation modeling and reliability analysis for systems
subject to DCFP have sought a lot of attention from researchers in the
literature (Caballe & Castro, 2019; Hao & Yang, 2018; Qi, Zhou, Niu,
Wang, & Wu, 2018; Wang, Li, Bai, & Zuo, 2020).

For the soft failure process, degradation models such as a general
degradation path, a gamma process or a Wiener process are commonly
developed in previous works (Cha, Finkelstein, & Levitin, 2018). Peng,
Feng, and Coit (2010) considered a linear degradation path for the wear
volume due to internal continuous degradation. Different from Peng

et al.’s work (2010), Shen, Elwany, and Cui (2018) regarded that the
degradation measurement between two adjacent shocks was regulated
by a gamma process, and random shocks caused a jump in degradation
level and accelerated the degradation rate simultaneously. Wei, Zhao,
He, and He (2019) modeled system internal degradation as a two-phase
Wiener process, which has a larger shift and diffusion parameter when
the system transfers from the normal state to the weakened state. On
the other aspect, random shocks resulting in catastrophic failures are
considered as seven different types (Rafiee, Feng, & Coit, 2017): (a)
extreme shock model, in which a system fails as soon as the first shock
exceeds a specified threshold value; (b) standardly cumulative shock
model, when hard failure occurs until the cumulative shock damage is
beyond a critical level; (c) mixed shock model, where a system fails as
soon as an extreme shock failure occurs or a cumulative shock failure
occurs, whichever takes place first; (d) m shock model, where a system
experiences failure after shocks whose magnitudes are all larger than a
threshold level; (e) shock model, where failure happens when the
time lag between two successive shocks is less than a threshold ; (f)
run shock model, in which a system fails if there is a run of n
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consecutive shocks that are larger than a specified threshold; (g) trau-
matic shock model, in which any shock is regarded as traumatic and a
system fails in presence of shocks. These two failure processes affect
system reliability and performability mutually. Other researches on
systems suffering from DCFP are seen, for example, see Dong, Liu, and
Du (2019); An and Sun (2017); Huang, Jin, He, and He (2019); Tang,
Chen, and Huang (2019); Zhao, He, He, and Xie (2018); Huynh, Castro,
Barros, and Bérenguer (2012). It is noted that the two competing pro-
cesses can be regarded as a series system containing two dependent
components, in which system failure occurs when any component fails
(Li & Pham, 2005).

Based on certain applications, it can be argued that it is reasonably
realistic and viable that random shocks are categorized into distinct
shock sets according to their sizes, functions, specifications and affected
components among others. Therefore, shocks with specific sizes or
functions may selectively influence one or more components in a
system, but not necessarily all the components in the meantime. For
example, shocks on an automobile are categorized into mechanical
shocks, voltage shocks, thermal shocks and other types according to
their attributes. All types of shocks work on the whole system of the
automobile, however, one component in the system can only be af-
fected by several types of those shocks belonging to its distinctive shock
set. This phenomenon is intensively common, especially for multi-
component systems. A parallel redundant system is a typical multi-
component system which is widely designed in industrial industries to
meet the demand for a high reliability, and it is described that the
system fails when all units in parallel have failed. Different from tra-
ditional parallel redundant systems, components in parallel in this
current research are failure correlated though structure independent
because their failure times may be affected by the same kind of random
shocks, and all components are not exactly identical.

In order to reduce the occurrence probability of catastrophic failures
and to enhance system reliability and availability, maintenance is al-
ways adopted as an effective approach. Maintenance policies are typi-
cally classified into preventive maintenance (PM) and corrective
maintenance (CM) according to the arrangement time of maintenance
actions (de Jonge and Scarf, 2020). In practical engineering, it is of
significant sense that PM is scheduled on systems before catastrophic
failure when system operations reach a certain usage time or a specific
usage number. Generally, PM is usually adopted at some continuous
measures (e.g., age, damage threshold, operating time), or at some
discrete quantities (e.g., usage number, failure number, shock number)
or at some bivariate maintenance times (Sheu, Liu, Zhang, & Tsai, 2018;
Zhang & Wang, 2019). Besides maintenance policies, researchers have
been devoted to designing a self-healing mechanism for systems or re-
placing components that are sensitive to failure by components with
self-healing characteristics in past decades. Damage self-healing beha-
vior should be noted as it enables a system to have resilience to failure
and to recover part of system performances by itself without any ex-
ternal maintenance resources.

It should be noted that even though both maintenance actions and
self-healing (also called, self-recovery) can recover the system to a
better state, the two phenomena are distinct and dissimilarities do exist.
Distinct from maintenance behaviors which consume outside resources
and may return the system into a brand new state, self-healing ability is
an intrinsic character in material itself and most self-healing processes
recover system performance partially. In fact, self-healing has been
widely designed especially in software integration. For example, built-
in self-repair schemes of 3-dimensional memories containing a built-in
self-test are introduced to guarantee the quality and yield when de-
signing integrated circuits (Kang, Lee, Lim, & Kang, 2015). Conse-
quently, the manufacturing process can be greatly improved after
random shocks resulting from stresses, overloads, or more batch cus-
tomers as the shock events may disclose some weaknesses during the
manufacturing process. Hence, the software can be steadily improved
by itself because of the increasing ability of self-adaptiveness.

Damage self-healing exists in a wide range of products and mate-
rials. Zhong and Yao (2008) conducted experimental tests by using
specimens of normal strength concrete and high strength concrete re-
spectively. They measured the damage degree from decline in ultra-
sonic pulse velocity (UPV) and compared the self-healing effects of
different strength grades concrete, showing that the self-healing of
damaged concrete is a process of crack closing with rehydration pro-
ducts of dehydrated or insufficiently-hydrated cementitious particles in
damage regions. As the successful crack-healing methods require some
forms of manual intervention, White et al. (2001) reported a structural
polymeric material that has the ability to heal crack automatically. In
their conducted experiments, self-healing is achieved through the in-
corporation of a microencapsulated healing agent and a catalytic che-
mical trigger within an epoxy matrix. The damage-induced triggering
mechanism provides site-specific autonomic control of repair. Other
discussions about self-healing mechanism are seen, for example, see
Dong, Liu, Yang, Wang, and Fang (2019); Blaiszik et al. (2010); Frei
et al. (2013). Succeeding in the design of self-healing materials sig-
nificantly influences material safety, product performance and en-
hanced fatigue lifetime (Khalil, Eldash, Kumar, & Bayoumi, 2019;
Psaier & Dustdar, 2011).

In reliability engineering, self-healing mechanism is limitedly no-
ticed by researchers. Cui, Chen, and Gao (2018) introduced the concept
of self-healing effects which may be permanent or limited duration on
system health by building a class of cumulative damage shock models in
terms of integral or counting processes. Motivated by Hawkes processes
(Hawkes, 2018), the quantitative measure on self-healing effect in re-
liability models was firstly proposed. Liu, Yeh, and Cai (2017) built a
novel reliability model for systems subject to DCFP while considering
the self-healing phenomenon. For each random shock, they proposed
the concepts of healing time and healing level to describe the self-
healing process. Zhao, Guo, and Wang (2018) proposed a two-stage
shock model with self-healing mechanism as an extension of cumulative
shock model and shock model. They adopted a change-point to de-
scribe the limit of healing ability under the cumulative shock effects
and damage is healed immediately when the system meets a certain
condition in terms of self-healing mechanism. Shen, Cui, and Yi (2018)
studied a system subject to random shocks by considering the self-
healing action. They assumed that the system cannot be recovered by
itself any more when it is seriously damaged, where the output per-
formance is lower than a predetermined discrete state. Self-healing is
the ability to repair damage and restore lost or degraded performance
using resources inherently without human intervention. As stated by
Blaiszik et al. (2010), the recovery process is triggered by the damage to
materials. Hence, damage self-healing is designed with shock loads and
shock arrival numbers, which are both considered in this research.

In light of the above surveyed literature, this current research in-
tends to investigate the reliability model and schedule a preventive
replacement policy for a parallel system subject to multiple external
shocks. Random shocks are categorized into various finite types and not
each shock set affects all units in the system at the same time. The
significant contribution of this research is that a recovery factor is in-
troduced to quantitatively measure the self-healing efficiency of shock
damages, where the self-healing mechanism is sensitive to both the
number of affected shocks and shock arrival time. As the redundant
system does not fail until all components in parallel have failed, a
systematic preventive replacement policy along with the self-healing
action is developed to reduce the influence of catastrophic failures, in
which the long-run average maintenance cost rate is minimized in order
to determine the preventive replacement age. Numerical examples of a
micro-electro-mechanical system (MEMS) are considered to demon-
strate the effectiveness and viability of the model constructed.

The remainder of this paper is organized as follows. In Section 2, the
problem statement is described, as well as some basic assumptions.
Reliability models for a parallel redundant system considering shock
damage self-healing are built in Section 3. Based on the reliability
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models developed in Section 3, a preventive replacement maintenance
policy is studied in Section 4. In Section 5, illustrative examples are
exhibited to verify the results obtained in this paper numerically. Fi-
nally, we summarize the contents and point out the future research
directions in Section 6.

2. Model description

Consider a parallel redundant system containing n n( 2) non-
identical components, each of which is subject to its categorized shocks
that arrive on random time epochs. Suppose the number of affected
shock type on component =i i n( 1, 2, , ) is | |i and the

=j th j( 1, 2, , | |)i categorized shock set arrives with a non-
homogeneous Poisson process (NHPP) N t t{ ( ), 0}ij . As a simple illus-
tration, we take a parallel system consisting of three components as an
example. As shown in Fig. 1, the system is suffered from two different
types of shocks and the categorized shock set of each component is

= {1}1 , = {1, 2}2 , and = {2}3 , respectively. That is, component 1
and component 2 are sensitive to type I shock while component 2 and
component 3 are sensitive to type Ⅱ shock.

From Fig. 1, components in the parallel system are failure depen-
dent because for example, component 1 and component 2 share the
same type of random shock. In addition, we develop an improved cu-
mulative shock damage model to depict the failure process for each
component in the parallel system, which is shown in Fig. 2. Without
loss of generality, the hard failure thresholds of the three components
are assumed to be the same level l l >( 0). =W k N t( 1, 2, , ( ))ijk ij is
the =j th j( 1, 2, , | |)i shock magnitude of the affected shock set
for component =i i n( 1, 2, , ) until time t .

In Fig. 2, affected shock damages are not standardly cumulative
owing to self-healing mechanism. As a matter of fact, plenty of modified
damage models have been developed, e.g., a damage model with im-
perfect shock where some shocks may produce no damage, a random
failure level with a general distribution, the total damage decreases
exponentially with time, and the total damage increases with time
(Zhao & Nakagawa, 2018). As damage self-healing action should be
associated with random shocks, it is more realistic and practical to
design a self-healing mechanism corresponding to both damage load
and damage arrival numbers. In this paper, a damage recovery factor

( 0) is introduced to quantitatively measure the self-healing de-
gree in components. Specifically, let N t( )ij be the arrival number of the

=j th j( 1, 2, , | |)i affected shock set for component
=i i n( 1, 2, , ), shock load W k N t(1 ( ))ijk ij reduces into

W eijk
N t k( ( ) )ij after its j th effective shock.

To develop generalized reliability models for a system with N
component in parallel and schedule a systematic PM policy, some basic
assumptions are summarized as follows.

(1) At time epoch =t 0, component =i i n( 1, 2, , ) operates from an
as-good-as-new (AGAN) state.

(2) External random shocks are categorized into different shock sets
according to their affected components. Component

=i i n( 1, 2, , ) is just sensitive to its affected shock set whereas
other shocks have no influence on component i itself. When

=d i for any =d i i d n( , 1, 2, , ), the self-healing me-
chanism of component i cannot be triggered. The total number of
random shock types on the whole system is

=m | |.n1 2 (1)

(3) Let li be the failure threshold for component i in the parallel system
and li is considered to be a constant.

(4) Component i fails to work as soon as the total shock damage W t( )i
considering both cumulative shock and damage self-healing ex-
ceeds its failure threshold li. The first passage time to failure
threshold li of component i at time t is

l l= <T inf t W t W{ : ( ) | (0) }.i i i i i (2)

(5) Magnitudes W W W, , ,ij ij ijN t1 2 ( )ij of the =j th j( 1, 2, , | |)i ca-
tegorized shock set for component =i i n( 1, 2, , ) are in-
dependent and identically distributed with a distribution function

=F x P W x( ) ( )W ijkij .
(6) The parallel system needs to operate for a job with a random

working cycle >Y Y( 0). Y is assumed to have a general distribu-
tion =H t P Y t( ) ( ).

(7) As preventive maintenance, the system is arranged to be replaced at
a planned age <T T(0 ) or at the completion of its working
cycle Y independent with T , whichever occurs first. >c c( 0)T T and

>c c( 0)Y Y are supposed to be the costs when the system is pre-
ventively replaced at time T or at the completion of the working
cycle Y , respectively. Though the two preventive replacements re-
store the system to an AGAN state, the costs are not necessarily
identical in practice. Since replacement at the fixed age T may in-
terrupt the operating cycle, we assume that >c cT Y .

(8) A corrective replacement with a maintenance cost cF is adopted
when the system fails. The times to PM and CM are negligible. It is
assumed that >c cF T and >c cF Y .

3. Reliability evaluation models

In this section, the generalized system reliability evaluation models
as well as special cases under some basic distribution assumptions for a
parallel redundant system are derived analytically. It is noted that
components in the parallel system are statistically dependent, and the

Fig. 1. A possible path of a parallel system consisting of three components.

Fig. 2. A possible sample path of shock processes for the three-component
system.
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reliability models for each component should be deduced before as-
sessing system reliability.

3.1. Reliability for component i

Total shock damage W t( )i for component containing its affected
cumulative shocks and damage self-healing is a random process in
terms of t , where W t( )i is defined as

= + + +

=
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= =
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in which ( 0) is designed as a damage recovery factor. The
distribution function of W t( )i at a specific time t is
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and the Laplace-Stiejtjes (LS) transform of G x( )i is
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where s is a complex number and
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Hence, in terms of the inversion formula in LS transform, reliability
function for component =i i n( 1, 2, , ) is derived as
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where =a 1 is an imaginary unit, >b max {0, } and is a radius of
convergence.

3.2. System reliability

Since components in the redundant parallel system are dependent,
= =R t R t( ) 1 [1 ( )]i

n
i1 does not hold in deriving system reliability.

Assume that random shocks arrive independently and the intensity of
the =q th q m( 1, 2, , ) external shock on the system at time t is

t t( ) ( 0)q , we can approach system reliability R t( ) by conditioning
on the total shock arrival numbers as
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Substituting Eq.(8) into Eq.(9), system reliability becomes
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The mean time to failure (MTTF) is
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where X X( 0) is the system failure time and X = max{T1,T2,…,Tn}.
Eqs. (10) and (11) are the generalized representations of system relia-
bility and MTTF, respectively. Although the generalized forms of R t( )
and µn are obtained in Eqs. (10) and (11), it is almost impossible to
solve them analytically because n1 to nm in the aforementioned for-
mulae reach to infinity. Large numbers N1 to Nm are set for substitutes
when we resort to numerical results, and the approximation error is
satisfactory as long as N1 to Nm are appropriately selected (Hao & Yang,
2019; Huynh, Barros, & Bérenguer, 2012; Liu, Xie, Xu, & Kuo, 2016).

Here we show a special case under the normally distributed shock
damage, i.e., W N µ~ ( , )ijk W W

2
ij ij . Because the shock damage should be

larger than zero, we introduce a truncated normal distribution to il-
lustrate the CDF of each shock damage by the

=k th k N t( 1, 2, , ( ))ij shock magnitude of the
=j th j( 1, 2, , | |)i affected shock set. Hence,

=

=

P W x W( | 0)

.

ijk ijk
P W x

P W

x µ µ

µ

(0 )
( 0)

[( ) / ] [ / ]

[ / ]

ijk

ijk

Wij Wij Wij Wij

Wij Wij (12)

The distribution of W t( )i is
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Then the special case of R t( ) is
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A special case of MTTF is

l

=

×

=

=

=

=

=

=

µ

e dt

1 1

.

n

N N

i

n

q

m
d

n
d

0 0
0

1

1

( ( ) )
( ) !

( )

m

i j
i e nj

e
µWij

j

i e nj
e Wij

j
i

µWij
Wij

nj

j
i

µWij
Wij

nj

t
q

nq

q

t
q

1

1
| | 1

1

1

| |
1 2

1 2
2

1
| |

1
| |

0 0

(15)

It is pointed out that the reliability model we have constructed is not
only applied to the parallel connection configuration, but also to other
structures. As long as the component junction is defined, system relia-
bility can be evaluated via the above approach. Denote system failure
distribution as F t R t F t( ) 1 ( ) 1 ¯ ( ). In order to schedule an
optimal preventive replacement maintenance policy, the failure rate
function =h t dR t R t dt( ) ( )/ ( ) should be addressed. Though it is diffi-
cult to prove that h t( ) increases strictly with respect to time t analyti-
cally, it may be easy to draw this conclusion. As the cumulative damage
process for each component is non-decreasing, the failure probability of
any component in the time interval +t t dt[ , ] becomes higher and
higher, given that it operates well at time t (Dong et al., 2019). Hence,
the failure rate h t( ) of the parallel system increases strictly from h (0) to

=h h t( ) lim ( )
t

, i.e., F t( ) belongs to an increasing failure rate (IFR)
category.

4. Optimal random preventive replacement policy

As stated in Section 2, the parallel system has to operate for its
working cycle Y . The system is preventively replaced at time T or at the
completion of Y , or correctively replaced at failure, whichever occurs

first, where T is a predetermined age and Y is a random variable with
distribution H t( ), independent with the fixed replacement age T and
system failure time X . In this section, we denote H t H t¯ ( ) 1 ( ). The
probability that the system is preventively replaced at time T is

= < =p P T X T Y F T H T( , ) ¯ ( ) ¯ ( ),T (16)

the probability that the system is preventively replaced at the com-
pletion of Y is

= < =p P Y X Y T F t dH t( , ) ¯ ( ) ( ),Y
T

0 (17)

the probability that the system is correctively replaced at failure is

= < =p P X Y X T H t dF t( , ) ¯ ( ) ( ),F
T

0 (18)

where should note that + +p p p 1T Y F . Thus, the mean time to a
systematic replacement is

+ +

=

TF T H T tF t dH t tH t dF t

H t F t dt

¯ ( ) ¯ ( ) ¯ ( ) ( ) ¯ ( ) ( )
¯ ( ) ¯ ( ) .

T T

T
0 0

0 (19)

Let D t( ) be the expected cost of the parallel system over time in-
terval t[0, ]. According to the basic renewal theory, the expected long-
run maintenance cost rate is

=

=
+ +

C T D t
t

c c c F t dH t c c H t dF t

H t F t dt

( ) lim ( )

( ) ¯ ( ) ( ) ( ) ¯ ( ) ( )
¯ ( ) ¯ ( )

.

t

T Y T
T

F T
T

T
0 0

0 (20)

Clearly,

= =

= =

C C T

C C T
c c c F t dH t

H t F t dt

(0) lim ( ) ,

( ) lim ( )
( ) ¯ ( ) ( )

¯ ( ) ¯ ( )
.

T

T

F F Y

0

0

0 (21)

The aim is to seek an optimal T which minimizes C T( ) in Eq.(20).
From Section 3, it should be noted that the failure rate h t( ) increases
strictly with time t . Firstly, differentiating C T( ) with respect to T and
setting it equal to zero, we find T satisfies

=

c c h T H t F t dt H t dF t

c c r T H t F t dt F t dH t c

( ) ( ) ¯ ( ) ¯ ( ) ¯ ( ) ( )

( ) ( ) ¯ ( ) ¯ ( ) ¯ ( ) ( ) ,

F T
T T

T Y
T T

T

0 0

0 0 (22)

where =r t dH t H t dt( ) ( )/ ¯ ( ) . The minimum maintenance cost rate is

=C T c c h T c c r T( ) ( ) ( ) ( ) ( ).F T T Y (23)

Let Q T( ) be the left hand side of Eq. (22), i.e.,

=Q T c c h T H t F t dt H t dF t

c c r T H t F t dt F t dH t

( ) ( ) ( ) ¯ ( ) ¯ ( ) ¯ ( ) ( )

( ) ( ) ¯ ( ) ¯ ( ) ¯ ( ) ( ) .

F T
T T

T Y
T T

0 0

0 0 (24)

It has been proved that Q T( ) increases strictly from =Q (0) 0 to
=Q Q T( ) lim ( )

T
with respect to T (Chen, Zhao, & Nakagawa, 2019).

Hence, if Q ( ) is greater than cT , there exists a finite and unique T
which satisfies Eq. (22) and the resulting maintenance cost rate C T( ) is
given as that in Eq. (23). If Q c( ) T , the optimal preventive re-
placement age =T and = =C T C C T( ) ( ) lim ( )

T
is given as that

in Eq. (21).
In fact, as system failure distribution F t R t( ) 1 ( ) obtained from

Eq. (10) is complex, it becomes rather difficult to judge that Q T( ) in
Eq. (24) is greater than cT or not. In addition, the objective function in
Eq. (20) is a nonlinear function, making the problem more laborious.
Nelder-Mead downhill simplex method is one of the most well-known
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direct search approaches to seek the optimum solution of unconstrained
nonlinear function, which does not need the difficult calculation of
derivatives (Li & Pham, 2005). Hence, we develop a step-by-step al-
gorithm based on the Nelder-Mead downhill simplex method for
seeking the optimum decision variable T such that the long-run
average maintenance cost rate C T( ) is minimized.

Nelder-Mead downhill simplex method is an iterative algorithm by
comparing the function values at the +n 1 vertices for n dimensional
decision variables. The initial simplex vertices are iterated through
reflection, expansion and contraction operations with aims to quest for
a better solution. The step-by-step algorithm based on Nelder-Mead
downhill simplex method is shown in Algorithm 1.

Algorithm 1. (Search the termination condition of Eq. (20)).

Step 1: Let T (1) and T (2) denote the list of vertices in the current simplex.
Step 2: Order and relabel the two vertices from lower function value C T( )(1) to

higher function value C T( )(2) , so that C T C T( ) ( )(1) (2) .
Step 3: Compute the reflected point Z (1) by = +Z T T T( )(1) (1) (1) (2) , where the

reflection coefficient > 0.If <C T C Z C T( ) ( ) ( )(1) (1) (2) , then replace T (2)

with Z (1) and go to Step 6; end
Step 4: If <C Z C T( ) ( )(1) (1) , then compute the expanded point by

= +Z T Z T( )(2) (1) (1) (1) , where the expansion coefficient > 1; end
If <C Z C Z( ) ( )(2) (1) , then replace T (2) with Z (2) and go to Step 6; else
replace T (2) with Z (1) and go to Step 6; end

Step 5: If C Z C T( ) ( )(1) (2) , then calculate = +Z T T T( )(3) (1) (2) (1) , where the
contraction coefficient < <0 1; end
If <C Z C T( ) ( )(3) (2) , then replace T (2) with Z (3) and go to Step 6; end

Step 6: Order and relabel the two vertices from the lower function value C T( )(1) to
the higher function value C T( )(2) , so that C T C T( ) ( )(1) (2) .

If + <C T C T C T C T[( ( ) ( ¯ )) ( ( ) ( ¯)) ]1
2

(1) 2 (2) 2 , then stop, where is a

predetermined tolerance and = +T T T¯ ( )1
2

(1) (2) ; else return to Step 3.

5. Numerical examples

With the progress of micro-electro-mechanical systems (MEMS) and
the further development of interface and conditioning circuitry, the tiny
silicon MEMS resonators fabricated on silicon wafers with micro-scale
mechanical structures have been proven reliable and stable in providing
frequency sources for relevant products. Compared with quartz crystals,
MEMS have the features of being cheaper, thinner and easier for system
integration.

A MEMS oscillator is a typical multi-component system consisted of
multiple comb drive resonators (Song, Coit, & Feng, 2014). The external
shocks on MEMS resonators may arise from electrostatic, piezoelectric,
optical, mechanical vibration or magnetic stimuli. In addition, a silicon
resonator needs to be sealed in a vacuum or hermetic environment to
keep its stability. Based on the materials and processes for sealing,
wafer level vacuum packaging for MEMS resonators are categorized
into two different types: wafer bonding and deposition sealing (Hsu,
2008). The choice of two packaging technologies is based on the re-
sonator design as well as vacuum requirements, final package design,
and products specifications. Fig. 3 shows an example of wafer level
packaging for MEMS resonators.

To reduce the silicon’s dramatic volume change during cycling, a
water-soluble polymer binder, poly (acrylic acid)-poly (2-hydroxyethyl
acrylate-co-dopamine methacrylate) is always synthesized to keep a
better wettability to liquid electrolyte (Xu et al., 2018). Formed with
rigid-soft bonds and structured with a multiple network, the polymer
binder enables special self-healing capability in the electrode, which
provides enough mechanical support and buffers the strain caused by

the volume change of Si micro-particle (SiMP).
Consider a redundant MEMS oscillator with five non-identical comb

drive resonators in parallel in Fig. 4. Suppose the MEMS operates in
stable working environments and there are totally three different kinds
of random shocks, in which the arrival intensities are = month0.011

1,
= month0.022

1, and = month0.033
1, respectively. Shocks arrive in-

dependently, but not every random shock affects all components in the
system, as described in Fig. 4.

From Fig. 4, the categorized shock sets for each component are
= {1}1 , = {1, 2}2 , = {1, 2, 3}3 , = {2, 3}4 and = {3}5 , respectively.

The basic parameters for the components are tabulated in Table 1.
According to Eq.(9), system reliability function is

= = = =

×

= = = =

=

R t R t N t n N t n N t n

e

( ) 1 [1 ( | ( ) , ( ) , ( ) )]

.

n

N

n

N

n

N

i
i

i

i t ni
ni

i t

1 0

1

2 0

2

3 0

3

1

5

1 1 2 2 3 3

1

3
( )
( ) !

Which is shown in Fig. 5. In Fig. 5, = 0 means that the polymer
binder synthesized in the silicon MEMS resonator does not show any
self-healing impact in respond to external random shocks. From Fig. 5,
system reliability becomes higher with the increase of damage recovery
factor , showing the self-recovery influence of the synthesized polymer
binder to external shocks. When is small, self-healing ability of the
polymer binder is slightly triggered. Hence, system reliability R t( )
seldom improves from = 0 to = 1. When increases from 1 to 1.5,
system reliability varies greatly owing to the sufficient stimulation of
self-healing materials. When the self-healing ability tends to saturated,
R t( ) changes little as well, corresponding to the condition from = 1.5
to = 2 in Fig. 5.

Fig. 6 plots the failure rate functions under different , which il-
lustrates that failure rate functions increase strictly with time t .

Then we discuss the effects of shock intensities on system reliability.
Assume the recovery factor = 2, Figs. 7 and 8 illustrate the effects of
shock intensities on system reliability and failure rate.

From Figs. 7 and 8, system reliability becomes lower with the in-
crease of shock intensities. As the MEMS resonator is sealed, it is im-
possible to repair the failed components unless replace the packaged
system entirely. Assume that the maintenance costs =c USD100F ,

=c USD15T , and =c USD5Y . Firstly we discuss the change of main-
tenance cost rate when = 0, which means that the maintenance policy
is regarded as a pure age replacement without considering the random
working cycle Y . The results are shown in Fig. 9.

Applying the Nelder-Mead downhill simplex method, the search
results are presented in Table 2.

As can be seen from Table 2, MTTF and the optimal preventive
replacement age of the parallel system increases with the improvement
of recovery factor from = 0 to = 2, while at the same time, the long-
run maintenance cost rate decreases from USD month0.3403 / to

USD month0.0957 / . The conclusion tells that if the damage self-healing is
not considered, the failure probability is overestimated while MTTF of
the redundant system is underestimated.

Fig. 10 plots the maintenance cost rate under different conditions
with the fixed recovery factor = 2. It is clearly seen that the optimum
maintenance cost rate C T( ) becomes higher when becomes larger.

The optimization results are tabulated in Table 3 for Fig. 10 with
Nelder-Mead downhill simplex method.

From Fig. 10 and Table 3, the optimum maintenance cost rate C T( )
becomes from USD month2.5 / to USD month10 / with the increase of . At
the same time, =T for all the cases = 2, which means that we
should preventively replace the system at the completion of its random
working cycle, or correctively replace it at system failures, without
considering the planned replacement age T .
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6. Concluding remarks

Damage self-healing (or self-recovery) exists widely in materials
such as polymers, metals, ceramics and their composites. The design for
self-healing action into materials paves way for the greater lifetime use
of a product and thus is important not only because of economic con-
cerns but for human safety as well. In this present research, we have
attempted to quantify the self-healing efficiency by introducing a da-
mage recovery factor. By quantitatively measuring the self-healing ef-
fectiveness, two reliability quantities including reliability function and
mean failure time are derived. From the actual engineering point of
view, shocks affecting a multi-component system are categorized into
distinct types according to their sizes, functions, affected components
and so forth. After that, we develop a systematic preventive replace-
ment policy considering that the system needs to operate for a random

working cycle. A packaged MEMS oscillator, which is composed of five
non-identical redundant comb drive resonators, is designed as an il-
lustrative example to verify the results numerically.

Degradation is another significant factor leading to product failure
(Hao & Yang, 2019). Meanwhile, random shocks may accelerate in-
ternal degradation rate, changing the product’s failure mechanism or
shrinking its operation duration, especially shocks stemming from ex-
treme environments. More work on the interaction of damage self-
healing and degradation process should be conducted in the future.

Fig. 3. An example of wafer level packaged silicon MEMS resonators (Hsu, 2008).

Fig. 4. A five-units parallel system with three kinds of shocks.

Table 1
Basic parameters of the parallel redundant system.

Units 1 2 3 4 5

li 91 92 93 94 95
Wij N µ( , )W j W j1 1

2 N µ( , )W j W j2 2
2 N µ( , )W j W j3 3

2 N µ( , )W j W j4 4
2 N µ( , )W j W j5 5

2

=µ 72.6W11 ,
= 6.3W11

=µ 71.6W21 ,
= 5.9W21 ;
=µ 72.3W22 ,
= 6.1W22

=µ 72.1W31 ,
= 5.9W31 ;
=µ 69.9W32 ,

= 5.8W32 ;
=µ 72.8W33 ,

= 6.2W33

=µ 72.2W41 ,
= 6.1W41 ;
=µ 68.9W42 ,
= 6.3W42

=µ 73.2W51 ,
= 6.4W51

Fig. 5. System reliability under different recovery factors.
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