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A B S T R A C T

In this paper, a new shock model is proposed to fit the situation that the damage process of the component is
accelerated with the increase of the degree of damage in shock environments. Shocks with the same magnitude
may have more serious consequences as the component gets worse and component states are divided into dif-
ferent stages according to the degree of damage. Reliability indexes of a series system which consists of two
components with the above characteristics are derived by using a Markov renewal process. Then, an opportu-
nistic maintenance strategy is proposed for the system and an optimization model is constructed to obtain the
optimal maintenance solutions. Finally, a numerical example for a two-rolling bearing system of a wind turbine
is presented to illustrate the proposed shock model and maintenance strategy. Sensitivity analysis of main-
tenance costs is also discussed in order to improve the reliability of the proposed model. This study is of re-
ference value and application significance for similar series systems.

1. Introduction

Multi-stage accelerated damage shock models systems are very
common in engineering applications. Taking the rolling bearings
system as an example, rolling bearing is one of the most important and
vulnerable parts of wind turbines (Li, Jiang, & Xiong, 2019; Chen & Qu,
2019). Due to small internal clearances needed for high-speed opera-
tion, the friction at the roller end, cage pocket and roller end and
guiding flange would result in extremely high contact pressure, sliding
velocity, and instantaneous temperature in the bearing, which can ea-
sily exceed the endurance limit (Mao, Wang, & Zhang, 2018; Alvarez &
Ribaric, 2018). In addition, sandstones and other foreign matters often
enter the raceway. Those shocks may lead to abnormal friction between
the raceway and the rolling body, resulting in increased clearance and
surface roughness of bearings, reducing the running accuracy of bear-
ings, even leading to rolling bearing failures and the shutdown of the
entire wind turbine. Besides, as the damage degree of rolling bearings
increases, rings and shaft walls are becoming thinner due to size and
weight constraints, the elastic ring deformation occurs on the rolling
bearings, its ability of heat dissipation becomes weaker and weaker,
contact pressure becomes larger and larger and risk of bearing failure
due to shocks also becomes higher and higher (Cavallaro & Nelias,
2005; Shi & Wang, 2015). Therefore, it is of great practical significance

to study the above shock model and propose a reasonable maintenance
strategy.

Traditionally, scholars distinguished the classical shock models into
five categories. A cumulative shock model refers to that the system fails
when its cumulative damage exceeds a threshold (e.g., Zhu, Fouladirad,
& Berenguer, 2015; Wang, Wang, & Peng, 2017). If the system fails
when a shock exceeds its maximum bearing threshold, it is called ex-
treme shock model (e.g., Mallor & Omey, 2001; Hao, Yang, Ma, & Zhao,
2017). A continuous shock model means that the system fails when the
number of continuous shocks reaching a certain threshold (e.g.,
Eryilmaz, 2017a; Zhao, Cai, Wang, & Song, 2018). The shock model is
called -shock model (e.g., Eryilmaz, 2017b; Zhao, Guo, & Wang, 2018;
Wang, Zhao, & Sun, 2019), when system fails since the interval between
two consecutive shocks to the system is less than a given threshold . A
mixed shock model is obtained by mixing any two or more of shock
models described above, which has been researched in Rafiee, Feng,
and Coit (2017) and Zhao, Wang, Wang, and Fan (2020). A mixed shock
model composed of extreme shock model and cumulative shock model
is studied in this paper.

In recent years, multi-stage shock models have been also proposed
in many studies. It is very popular to divide the stages based on the
failure process. For example, Li and Pham (2005) developed a gen-
eralized multi-state degraded system reliability model. It subjects to
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multiple competing failure processes, including two degradation pro-
cesses and random shocks. The distribution functions of degradation of
shock model are different in different stages. Yang, Peng, Zhai and Zhao
(2017) developed a single-unit system whose failure has two competing
and dependent causes. The system is subject to a two-stage deteriora-
tion process, i.e., from new to the initial point of a defect and from that
point to failure. In that way, three possible stages are involved for the
system, namely, normal, defective and failed. A defective stage incurs a
greater degradation rate than a normal stage. Moreover, Chen and Li
(2008) and Eryilmaz (2015) studied the situation that stages are di-
vided by the ability of system to withstand shocks.

Although Zhao, Wang, Wang and Cai (2018) classified the shocks
into three types according to its magnitude, they failed to consider the
situation that as the degree of damage to the component increases, its
working performance becomes worse and more fragile and the ability to
withstand shocks becomes weaker and weaker. Shocks with the same
magnitude may have more serious consequences as the component gets
worse, which is common in reality but ignored in their paper. There-
fore, it is necessary to consider the current damage degree to describe
the effect of the random shocks on the component. In this paper, the
situation that the damage process of the component is accelerated with
the increase of the degree of damage is considered and the component
states are divided into multiple stages according to the degree of da-
mage.

Meanwhile, a maintenance measures is vitally significant for shock
models. Common maintenance strategies include corrective main-
tenance, preventive maintenance, opportunistic maintenance, replace-
ment and so on (Liu, Xie, Xu, & Kuo, 2016; Su & Cheng, 2018). The
preventive maintenance is widely studied, for example, see Eryilmaz
(2017a) and Zhao, Guo and Wang (2018). The opportunistic main-
tenance is more and more popular in recent years. Opportunistic
maintenance has been studied in order to simultaneously maintain
other components meanwhile for multi-components or complex system.
Cui and Li (2006) considered about opportunistic maintenance on a
multicomponent cumulative damage shock model with stochastically
dependent components, it shows that a shock model with opportunistic
maintenance experiences less failures stochastically at various compo-
nents than a similar shock model without such a maintenance. Different
from studies which only consider the replacement (eg., Shen, Cui, & Yi,
2018) or the preventive maintenance (eg., Zhao, Cai, et al., 2018) for
the proposed shock model, a maintenance strategy composed of the
replacement, the preventive maintenance and the opportunistic main-
tenance is creatively introduced into a series system which consists of
two components with multi-stage accelerated damage in this paper.

The major challenges and contribution of this paper are summarized
in the following. First, a novel shock model with multi-stage accelerated
damage is proposed firstly in order to accommodate some real situa-
tions. Shocks with the same magnitude may have more serious con-
sequences as the component gets worse. Second, the system perfor-
mance indexes are derived by using a Markov renewal process. The
state space and the semi-Markov kernel are redefined and constructed
according to the characteristics of the model proposed in this paper.
Third, an optimal opportunistic maintenance is determined for the
proposed shock model, which can reduce failures stochastically and
maintenance cost effectively.

The organization of the remainder of this paper is as follows. In
Section 2, a multi-stage accelerated damage shock model is proposed
and assumptions involved in this shock model are listed. In Section 3, a
single component is studied by a Markov renewal process and the
corresponding semi-Markov kernel of the Markov renewal process is
derived. Besides, reliabilities of the component and the probability of
the component state at time t are defined and calculated in Section 3. In
Section 4, an opportunistic maintenance strategy is presented for the
proposed series system in order to minimize the long run expected
average cost per unit time. Section 5 presents a numerical example for
the proposed model and the sensitivity analysis of maintenance costs is

discussed. The whole paper is summarized in Section 6.

2. Model descriptions

Assumptions about the model in accordance with the motivating
example of rolling bearings are described as follows.

(a) At =t 0 both components are new and the system is also perfect.
(b) Components are subject to shocks that follow the Poisson process

N t t{ ( ), 0} with a parameter . The distribution of the interval
between the i - th shock and +i( 1) - th shock is exponential dis-
tribution. The interval between shocks does not affect the type of
the next shock. The results of each shock are independent of each
other.

(c) The component can be divided into different states according to the
performance of the component. Let = …E N{1, 2, , } note the state
space of the component, working states of the components are

= …W N{1, 2, , 1}. State 1 indicates that the component is as good
as new. State N indicates that the component fails. The component
is worse in state i than it is in state j, if >i j, i j E, .

(d) Component states are divided into L stages according to the degree
of damage. If >l l2 1, when the component is in stage l2, the ampli-
fication factor of shocks is larger than that in stage l1. Let l( ) de-
note the amplification factor of shocks in stage l and the values of

l( ) belong to [1, 2].
(e) Transitions among component states caused by shocks are not only

on the magnitude of shocks, but also on the state of the component
when the shock arrives. The random variable di represents the
magnitude of the i - th shock, di are independent with identical
distribution G d( )i . Then, if the component transfers from state
i i W( ) to state j, after it suffers a shock with the magnitude of d,
the state j meets the following conditions,

=
<

< = + + …
>

j
i l d D
k D l d D k i i N
N l d D

, 0 ( )
, ( ) 1, 2, , 1
, ( )

,
i i

i k i k

i N

,

, 1 ,

. 1

where …+D D D, , ,i i i i i N, , 1 , 1 are pre-determined thresholds.
Assumption (b) is based on the practical experience that a defective

or a wear-out system will be more susceptible to the environmental
impact such as shocks (Chen & Li, 2008; Yang, Ma, & Zhao, 2017).
Based on the fact that the system is subject to shocks of random mag-
nitudes and cause different damages on the system, which has been
discussed in Shen et al. (2018), assumption (e) is proposed in this paper.
These two assumptions suggest that the worse the component is, the
more likely it is to transfer to a worse state after a shock.

A possible sample path realization of the component is depicted in
Fig. 1. Here a three-stage accelerated damage shock model is shown. It
is assumed that component states can be divided into 1 to 6, where state
1 means the component is new and state 6 means the component fails.
Let = =L L2, 41 2 and =L 63 . In Fig. 1, the 4 - th, 6 - th and 7 - th
shocks are invalid shocks, which cannot cause the transfer of states; the
magnitudes of the 2 - nd and 3 - rd shocks are <D d D(1)1,1 2 1,2 and

<D d D(1)2,2 3 2,3, which lead to one-step shift in component states;
the magnitude of the 5 - th shock is <D d D(2)3,4 5 3,5, which leads to
two-step shift in component states; the 8 - th shock is a fatal shock,
which directly leads to component failure.

3. Reliability and performance evaluation

In this section, the reliability of the individual component is cal-
culated by using a homogeneous Markov renewal process and the re-
liability of the proposed series system is analyzed.

Let Ti and Xi represent the epoch of the i - th state transition and the
system state after time Ti respectively. Then the homogeneous Markov
renewal process = …X T n{( , ), 0, 1, }n n is constructed. Let
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= = …Q t Q t i j N( ) { ( ), , 1, 2, , }i j, be the semi-Markov kernel corre-
sponding to the process = …X T n{( , ), 0, 1, }n n , where

= = = = …Q t P X j T t X i i j N and j i( ) { , | }, , 1, 2, .i j, 1 1 0 (1)

The interval between the i - thshock and +i( 1) - th shock +si 1 sa-
tisfies an exponential distribution with a parameter because compo-
nents are subject to shocks that follow the Poisson process N t t{ ( ), 0}.
The cumulative distribution function (cdf) of the time interval between
two consecutive shocks is as follows.

=F t e t( ) 1 , 0.s
t

i (2)

The random variables s s s, , , n1 2 are independent and identically
distributed (i.i.d), so = + + +S s s sn n1 2 satisfies Gamma distribu-
tion with parameters of n and . Its cdf is as follows.

=
=

F t e t
m

t( ) 1 ( )
!

, 0.S
t

m

n m

0

1

n
(3)

The values of Q t( )i j, under different conditions are discussed in the
following.

If the component state transfers from i to < <j i j N( ) after M
shocks, then

= = =
= = = =
= = = = =

=

=

Q t P X j T t X i
P X j T t M n X i
P X j S T T M n X i

( ) { , | }
{ , , | }
{ , , | }.

i j

n

n M

, 1 1 0

1 1 1 0

1 1 1 0 (4)

In this case, after =M n shocks, the state can be transferred, so the
magnitudes of the previous n 1 shocks are <l d D( ) i i i, and the
magnitude of the n - thshock is <D l d D( )i j n i j, 1 , . Substituting the
above conditions and Eq. (3) into Eq. (4), we have

= = = = =

= … < <

=
=

=

=

= =

Q t P X j S T t M n X i

P d d d D D d D S

t X i
G D G D G D e

( ) { , , | }

{0 , , , , ,

| }
[ ( )] [ ( ) ( )][1 ],

i j n M

n n i i i i n i j M

n i i
n

i j i j
t

m
n t

m

, 1 1 1 0

1 1 2 1 , , ,

0

1 ,
1

, , 1 0
1 ( )

!
m

(5)

where di represents l d( ) i, similarly hereinafter.
When =j N ,

=
= =

Q t G D G D e t
m

( ) [ ( )] [1 ( )][1 ( )
!

].i N
n

i i
n

i N
t

m

n m
,

1
,

1
, 1

0

1

(6)

In order to calculate it conveniently, the Laplace transform is taken
on Q t( )i j, , where <i N1 and < <i j N , we have

=

=

= = +

= = +

+

+

Q s G D G D G D

Q s G D G D
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i j n i i
n

i j i j s m
n

s

i N n i i
n

i N s m
n

s

, 1 ,
1

, , 1
1

0
1 ( )
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, 1 ,
1

, 1
1

0
1 ( )
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m
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1

1

(7)

After obtaining the component transition probability, the steady-
state probability can be calculated according to the following formula,

=

=

Q t i j E

i E

( ) , ,

1 .
i j j i j

i i

,

(8)

3.1. The reliability of the system

In this part, a new semi-Markov process is established, the process
satisfies =Z t X( ) n at +t T T[ , )n n 1 . Based on assumption (c), the system
is considered to be failed when it enters state N . Then the life of the
system, TL, can be expressed as = =T t Z t Ninf{ 0, ( ) }L . It is assumed
that the component is in state k k W( ) at time 0. The reliability of the
component can be expressed as follows.

= > =
= > > = + > =

R t P T t X k
P T t T t X k P T t T t X k

( ) { | }
{ , | } { , | }.

L

L L

0

1 0 1 0 (9)

Considering that the component is in working state at time T0 and
T TL 1, Eq. (9) is

Fig. 1. A possible sample path realization of the component with external shocks.
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= > > = + > =
= = + > =
= = =

+ > = =
= + > = =

R t P T t T t X k P T t T t X k
P T t X k P T t T t X k

P X i T t X k

P T t X j T t X k
Q t P T t X j T t X k

( ) { , | } { , | }
1 { | } { , | }
1 { , | }

{ , , | }
1 ( ) { , , | },

L L

L

i E

j W L

i E k i j W L

1 0 1 0

1 0 1 0

1 1 0

0 1 0

, 0 1 0

(10)

where

> = =
= > = = = = =

= =

P T t X j T t X k
P T t X j T u X k dP X j T u X k

R t u dQ u R t Q t

{ , , | }
{ | , , } { , | }

( ) ( ) ( ) ( ).

L
t

L
t

j k j j k j

0 1 0

0 1 1 0 1 1 0

0 , ,

(11)

Substituting Eq. (11) into Eq. (10), we have

= +R t Q t R t Q t( ) 1 ( ) ( ) ( ).
i E

ki
j W

j kj
(12)

The Laplace transform is taken for Eq. (12) and the result is as
follows.

= +R s
s

Q s R s Q s( ) 1 ( ) ( ) ( ),
i E

k i
j W

j k j, ,
(13)

where

= =

=

R s e R t dt Q s e dQ t

Q s e Q t dt

( ) ( ) , ( ) ( ),

( ) ( ) .

st
k j

st
k j

k i
st

k i

0 , 0 ,

, 0 ,

In order to obtain the reliability of the component, Let

= =

=

R s
R s

R s

Q s

Q s

Q s

Q s Q s
Q s

A B C

( )
( )

( )

,

( )

( )

( )
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N

s j

s j

s N j

N

N

1
*

2
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1
*

1
1,

1
2,

1
1,

1,2 1, 1

1, 1

R s( )i can be obtained by calculating =A C B1 . The component
reliability can be obtained by the inverse Laplace transform.

Since the system is composed of two identical components in series,
the reliability of the system can be obtained from the following formula.

=R t R t R t( ) ( ) ( ).Z 1 2 (14)

3.2. The state of the component at time t

In this part, it is assumed that the component enters state i at time 0.
The probability G t( )i j, that the component state is j at time t can be
calculated, where

= = =
= = > = + = =

G t P X j X i
P X j T t X i P X j T t X i

( ) { | }
{ , | } { , | }.

i j t

t t

, 0

0 0 (15)

Then, the values ofG t( )i j, of the component can be considered under
three different cases as follows.

CASE 1: The component state has not been transferred before time t
at the case of =X i i W( )0 and we have

= = > = + = =G t P X i T t X i P X i T t X i( ) { , | } { , | }.i i t t, 0 0 (16)

Since the state has not been transferred, the second term on the
right side of Eq. (16) is 0 and the first term on the right is

= > = =
= +

P X i T t X i Q t{ , | } 1 ( ).t
j i

N

i j0
1

,
(17)

Substituting Eq. (17) into Eq. (16), we have

=
= +

G t Q t i W( ) 1 ( ), .i i
j i

N

i j,
1

,
(18)

The Laplace transform is performed on Eq. (18), where

=
= +

G s
s

Q s i W( ) 1 ( ), .i i
j i

N

i j,
1

,
(19)

CASE 2: The component state is < <j i j N( ) at time t at the case of
=X i i W( )0 and we have

= = > = + = =
= + = = =

= = = = = =

= = = =

= =

G t P X j T t X i P X j T t X i
P X j X k T t X i

P X j T u X k dP X k T u X i

P X j T u X k dQ u

G t u dQ u G t Q t

( ) { , | } { , | }
 0 { , , | }

{ | , } { , | }

{ | , } ( )

( ) ( ) ( ) ( ).

i j t t

k W t

k W
t

t

k W
t

t i k

k W
t

k j i k k W k j i k

, 0 0

1 0

0 1 1 0

0 1 ,

0 , , , , (20)

In Eq. (20), the first term on the right side is 0 because of the
transition of component states. After taking the Laplace transform of
Eq. (20), the following equation can be obtained.

=G s G s Q s( ) ( ) ( ).i j
k W

k j i k, , ,
(21)

CASE 3: The component state is N at time t at the case of
=X i i W( )0 and we have

= = > = + = =G t P X N T t X i P X N T t X i( ) { , | } { , | }.i N t t, 0 0 (22)

In Eq. (22), the first term on the right side is 0 and the second term on
the right side can be derived according to the following formula.

= = =
= = = = + = =

= +
= +

P X N X k T t X i
P X N X k T t X i P X N T t X i

G t u dQ u Q t
G t Q t Q t

{ , , | }
{ , , | } { , | }

( ) ( ) ( )
( ) ( ) ( ).

k E t

k W t

k W
t

k N i k i N

k W k N i k i N

1 0

1 0 1 0

0 , , ,

, , ,

(23)

Substituting Eq. (23) into Eq. (22), we have

= +G t G t Q t Q t( ) ( ) ( ) ( ).i N
k W

k N i k i N, , , ,
(24)

Taking Laplace transform on Eq. (24), we have

= +G s G s Q s Q s( ) ( ) ( ) ( ).i N
k W

k N i k i N, , , ,
*

(25)

In summary, the values of G t( )i j, of the component have been cal-
culated in this section.

4. Maintenance strategy

In this section, a periodic inspection strategy is considered for the
proposed series system. It is assumed that the system is inspected at
every interval T . The inspection time is assumed to be negligible and
the inspection cost is ci. The state of the component can be known only
through inspection, but component failure can be found immediately.

Three maintenance methods are taken into consideration for
maintenance decisions. When the component fails, the replacement is
executed and the cost of replacement is cf . When the component state is

<i N i N( )2 at the epoch of inspection, preventive maintenance is
executed immediately at the cost of cp. The component is inspected
immediately when the other component fails during the inspection

X. Zhao, et al. Computers & Industrial Engineering 137 (2019) 106029

4



interval. If the state of the inspected component is <j N j N( )1 2 ,
opportunistic maintenance is executed on it. If the state of the inspected
component is <j N j N( )2 , preventive maintenance is executed on it,
otherwise no repair action is needed. The cost of opportunistic main-
tenance is co. The replacement, preventive maintenance and opportu-
nistic maintenance of component are all instantaneous and perfect. The
relationship among the costs involved in those three maintenance ac-
tions is < <c c co p f .

The objective is to minimize the long run expected average cost per
unit time by choosing the best combination of N N,1 2 andT *. Let i1 and

i2 represent the steady-state probability of components. G t( )i1 and
G t( )i2 represent states of components at time t respectively.

The following three scenarios may occur at the epoch of the in-
spection.

Scenario 1: If both components are in state N[1, )2 , no repair action
is needed.
Scenario 2: If one component is in state N[1, )2 , no repair action is
needed for it. The other component is in state N N[ , )2 , preventive
maintenance is executed on the component immediately.
Scenario 3: If both components are in state N N[ , )2 , preventive
maintenance is executed on the two components immediately.

If one of the components fails during the inspection interval, the
failed component shall be replaced and the state of the other compo-
nent shall be inspected at the same time. The following four scenarios
may occur.

Scenario 4: If the state of the other component is in N[1, )1 , no repair
action is needed for this one.
Scenario 5: If the state of the other component is in N N[ , )1 2 , op-
portunistic maintenance is executed immediately for the compo-
nent.
Scenario 6: If the state of the other component is in N N[ , )2 , pre-
ventive maintenance is executed immediately for the component.
Scenario 7: If the two components happen to be failed at the same
time, failure replacement is executed immediately for the two
components.

Costs and the corresponding probabilities for the above seven sce-
narios are listed in Table 1.

In a word, the period length of the system is

= + >L T I TI ,L X T X T{ } { }

where TL represents the lifetime of the component, I{} denotes the

indicator function which equals 1 if the argument is true and 0 other-
wise.

Therefore, the average period length is

= +

=

=

= =

= =

= =

E L tdF t TdF t

F t dt

R t R t dt

( ) [ ( ) ( )]

(1 ( ))

( ) ( ) ,

i
N

i
N

i i
T

z T z

i
N

i
N

i i
T

z

i
N

i
N

i i
T

i i

1 1 0

1 1 0

1 1 0

1
2

2
2

1 2

1
2

2
2

1 2

1
2

2
2

1 2 1 2

where F t( )z represents the lifetime function of the system.
The expected cost of a period is

=
=

E C C P( ) .
n

n n
1

7

For preventive and opportunistic maintenance thresholds, the ob-
jective function Cmin can be obtained by solving the following linear
equation.

=

= ==

= =

=

= =

Cmin

.

E C
E L

C P

F t dt

C P

R t R t dt

( )
( )

(1 ( )) ( ) ( )
n n n

i
N

i
N i i

T
z

n n n

i
N

i
N i i

T
i i

1
7

1 1
2

2 1
2 1 2 0

1
7

1 1
2

2 1
2 1 2 0 1 2 (26)

5. Numerical examples

5.1. Parameter setting

In this part, a realistic example of rolling bearings in Section 1 is
used to demonstrate the proposed model. It is assumed that a system is
composed of two identical rolling bearings in series and states of the
rolling bearing can be divided into different stages according to the
degree of damage.

Here a three-stage accelerated damage shock model is considered.
Let = =L L2, 41 2 and =L 63 which means that states of the first stage
are {1, 2}, states of the second stage are {3, 4} and states of the third
stage are {5, 6}respectively, where state 1 represents a totally new state
and the rolling bearing is considered to be failed when it is in state 6. It
is assumed that l( ) is modeled by the function of

= +l l L( ) (1 )l L
L

2
1 . In this model, =L

= = =3, (1) 1, (2) 1.5 and (3) 2.
Rolling bearings are subject to shocks that follow the Poisson

process N t t{ ( ), 0} and = 0.5/month. The magnitude of each shock
satisfies exponential distribution with the rate parameter =0.2/GpaD .
The Di j, set in assumption (e) for this model are listed in Table 2.

Table 1
Costs and the corresponding probabilities under different scenarios.

Scenario Cost Probability

1 =C ci1 = <P G T G T i i j j N( ) ( ), 1 , , , .i i i j i j1 1 2 1, 1 2, 2 1 2 1 2 2

2 = +C c ci p2 = +
= < <
= < <

P P P
P G T G T i i j N N j N
P G T G T i i j N N j N

.
( ) ( ), 1 , , and .
( ) ( ), 1 , , and .

i i i j i j

i i i j i j

2 21 22

21 1 2 1, 1 2, 2 1 2 1 2 2 2

22 1 2 1, 1 2, 2 1 2 2 2 2 1

3 = +C c c2i p5 = < <P G T G T i i N N j j N( ) ( ), 1 , and , .i i i j i j5 1 2 1, 1 2, 2 1 2 2 2 1 2
4 = +C c ci f4 = +

= <
= <

P P P
P G t G t i i j N
P G t G t i i j N

.
( ) ( ), 1 , , .
( ) ( ), 1 , , .

i i i N i j

i i i j i N

4 41 42

41 1 2 1, 2, 2 1 2 2 1

42 1 2 1, 1 2, 1 2 1 1

5 = + +C c c ci f o5 = +
= < <
= < <

P P P
P G t G t i i N
P G t G t i i N N j N

.
( ) ( ), 1 , and N j N .
( ) ( ), 1 , and .

i i i N i j

i i i j i N

5 51 52

51 1 2 1, 2, 2 1 2 2 1 2 2

52 1 2 1, 1 2, 1 2 2 1 1 2

6 = + +C c c ci f p6 = +
= < <
= < <

P P P
P G t G t i i N
P G t G t i i N N j N

.
( ) ( ), 1 , and N j N.
( ) ( ), 1 , and .

i i i N i j

i i i j i N

6 61 62

61 1 2 1, 2, 2 1 2 2 2 2

62 1 2 1, 1 2, 1 2 2 2 1

7 =C c2 .f7 = <P G t G t i i N( ) ( ), 1 , .i i i N i N7 1 2 1, 2, 1 2 2
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5.2. System reliability evaluation

The evolution of rolling bearing states can be described by a Markov
renewal process = …X T n{( , ), 0, 1, }n n with kernel

= = …Q t Q t i j N( ) { ( ), , 1, 2, , }i j, can be calculated by Eqs. (5)–(7), we
have

=
= < <

= =
= =

=

=
Q s

H G D G D H

i i j
H G D H i j

i j
otherwise

( )

[ ( ) ( )] ,

1, 2, 3, 4, 5 and 6,
[1 ( )] , 1, 2, 3, 4, 5 and 6,

1, 6 6,
0, ,

i j

n
n

i j i j

n
n

i,

1 1
1

, , 1 2

1 1
1

,5 2

(27)

where =H G D( )i i1 , and = = + +H s m
n

s2
1

0
1 ( )

( )

m
m 1 .

Then, the rolling bearing reliability R t( ) can be derived from Eqs.
(12), (13) and the inverse Laplace transform. Fig. 2 shows the reliability
of the rolling bearing given that the rolling bearing enters state 1 at
time 0.

Then, the system reliability R t( ) can be obtained through Eq. (14).
The result is shown in Fig. 3.

The rolling bearing state at time t can be obtained according to Eqs.
(18), (20) and (24). In Fig. 4, curves are drawn for probabilities of
transferring to state 1, 2, 3, 4, 5, 6 respectively at time t when the
rolling bearing is in state 1 at time 0. It can be seen that the probability
from state 1 to 1 decreases monotonically from 1 to 0. The probability
from state 1 to 6 increases monotonically from 0 to 1. Probabilities that
go from state 1 to intermediate states go up and then go down to 0
gradually.

5.3. Opportunistic maintenance strategy

After obtaining relevant indexes of the rolling bearing, the main-
tenance strategy of the system is going to be constructed.

It is assumed that the system is inspected at every intervalT and the
inspection time can be ignored. Replacement, preventive maintenance
(PM) and opportunistic maintenance (OM) of bearings are all in-
stantaneous and perfect. Let = = =c c c5, 10, 30i o p and =c 60f .N1 and
N2 represent the thresholds of opportunistic maintenance and pre-
ventive maintenance respectively and < < <N N N1 1 2 .

The optimal inspection interval T * under different N N,1 2 combina-
tions is calculated based on Eq. (26) in order to minimize the average
cost per unit time. Fig. 5 shows cost curves under different N N,1 2
combinations. The minimum cost in each curve and the corresponding
inspection interval are recorded in Table 3.

As shown in Table 3 and Fig. 5, when the opportunistic maintenance
threshold, preventive maintenance threshold and inspection interval
are 2, 3 and 2.40 respectively. The average cost per unit time can be
minimized to 18.28. The calculation methods and results of the optimal
inspection interval, the optimal opportunistic maintenance threshold
and preventive maintenance threshold in this paper are valuably
managerial suggestions for engineers in order to minimize average cost
per unit time in reality.

Table 2
Values of thresholds Di j, when = …i 1, 2 5 and = + …j i i, 1, , 5.(Unit: Gpa.)

i j/ 1 2 3 4 5

1 2.40 4.80 7.20 9.60 14.40
2 1.60 4.00 6.40 9.60
3 \ \ 1.60 4.80 7.20
4 \ \ \ 0.80 4.00
5 \ \ \ \ 0.80

Fig. 2. Reliability of the rolling bearing given that the rolling bearing enters
state 1 at time 0.

Fig. 3. Reliability of the system given that both rolling bearings enter state 1 at
time 0.

Fig. 4. Probabilities of transferring to state 1, 2, 3, 4, 5, 6 at time t when the
rolling bearing is in state 1 at =t 0.
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5.4. Sensitivity analysis of maintenance costs

In this part, the impacts of maintenance and replacement costs in-
volved in this model on the optimal inspection interval, the optimal
opportunistic maintenance threshold and preventive maintenance
threshold are analyzed in order to improve the credibility of the pro-
posed model. In Table 4, the optimal inspection interval, minimum cost
and maintenance threshold under different maintenance costs combi-
nations are recorded.

According to the sensitivity analysis of maintenance costs, the re-
sults are recorded in Table 4. Concretely as,

a) The optimal threshold of opportunistic maintenance and preventive
maintenance is (3,4) at the case of = =c T0 and 0o , which can be
considered as the condition that the states of rolling bearings are
continuously monitored by a sensor, otherwise the value of optimal
threshold is (2,3) and the optimal inspection interval increases with
the increase of inspection cost. Therefore, it is necessary to increase
the inspection interval for the rolling bearings when the inspection
cost increases.

b) With the increase of the cost of preventive maintenance, the value of
optimal threshold turns from (2,3) to (3,4). The preventive main-
tenance cost is positively correlated with the optimal inspection
interval. It is a wise choice to take measures of opportunistic
maintenance and preventive maintenance for rolling bearings later
when the cost of preventive maintenance increases.

c) The result of sensitivity analysis is consistent with the fact that the
higher the replacement cost, the shorter the inspection interval.
That is, as the cost of rolling bearings increases, rolling bearings
should be inspected more frequently in order to minimize main-
tenance costs.

6. Conclusions

In this paper, a series system which consists of two components with
multi-stage accelerated damage is studied. External shocks with the
same magnitude may have different effects on the component which is
in different stages. Based on these assumptions, relevant reliability in-
dexes of the component and the system are derived. Then, a periodic
inspection strategy for the system is constructed. The combination of
the optimal opportunistic maintenance threshold, preventive main-
tenance threshold and the optimal inspection interval is determined by
taking the minimum average cost per unit time as the objective func-
tion. Finally, a three-stage accelerated damage shock model is pre-
sented in the numerical example and sensitivity analysis of main-
tenance costs is also discussed, explaining the model presented in this
paper.

The establishment and realization of this model are more practical
and enrich the research content of shock models. In future studies, not
only the shock-induced degradation but also internal degradations
should be considered for shock models. The situation that the overall
system has a parallel or more complicated structure could be considered
in future studies. In addition, other popular maintenance strategies
could be considered in shock models in future studies, such as time-
based maintenance and condition-based maintenance.
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