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A B S T R A C T

Nowadays, manufacturers often sell different products (models of a product) through both online and offline
channels. To face challenges such as legislation or competition, manufacturers often need to provide warranties
for their products. On the one hand, customers are more attracted to goods covered with a warranty; on the other
hand, warranties generate additional costs for manufacturers. This study investigates a case that a manufacturer
sells through online and offline channels and offers a two-dimensional warranty policy including a warranty-age
and a warranty-usage package for sold products through online channel. Because different models share several
components, failures of all manufacturer’s portfolio products are statistically dependent. A model to optimize
both the pricing and warranty policies is proposed. Given that the claim rates for warranties are stochastic, the
value-at-risk approach is implemented to solve the optimization problem. Furthermore, the covariance between
warranty claims associated with different products is computed through a copula. The findings indicate the
importance of considering the covariance among different models claims when optimal warranty policy is of-
fered to customers along with the proper pricing strategy in an online channel.

1. Introduction

Often sales revenue and costs of after-sales services affect the profit
of a company. Since customers concern about the affordability and
reliability of products when making a purchase decision, a good war-
ranty policy and pricing will influence and eventually maximize the
profit of the company. Thus, companies need to implement related
marketing tools, like pricing, advertising, warranty, etc. to affect cus-
tomers’ decisions (Xie, 2017). Typically, customers judge the reliability
of products through warranty length because a warranty forces the
company to be responsible for all failures during the warranty contract.
Also, the product's price has always been the most important factor to
be considered in purchasing. Therefore, a company must study the joint
effect of warranty policy and price to understand the economic con-
sequence (Mas-Colell, Whinston, & Green, 1995). Warranty, as an ex-
pensive after-sale service, plays a significant part in the sale promotion.
According to the customer behaviors study, the warranty can improve a
company’s image and attract more customers (Boulding & Kirmani,
1993; Purohit & Srivastava, 2001).

Many companies often implement a 2-dimensional (2D) warranty
policy in which warranty age and warranty usage are limited simulta-
neously. The warranty policies typically possess both age and usage
dimensions for capital-intensive industries, including engines,

automobiles, heavy equipment. Implementation of 2D warranty has
successful in these industries (Blischke, Karim, & Murthy, 2011).

By increasing the use of the Internet, many companies sell their
product in two different channels, (i.e., online and offline channels).
The Internet is used by a growing number of customers for different
shopping purposes. Ernst and Young (2015) surveyed about 7000
consumers and about 70 CEOs in 12 developed countries and dis-
covered that multi-channel companies are more popular among custo-
mers. According to the features of each sale channel, different policies
and different pricing can be used to sell products.

On the other hand, companies often produce multiple products or
different models of a product by using similar components. Note that in
this study, we use products and different models of a product inter-
changeably. With the increasing personalization of products by custo-
mers, most industries, such as automobiles industry, have turned to
produce different models of a base product. Using similar components
causes dependency between the products’ failure rates, which means
there is statistical dependency among the number of different products’
warranty claims. For example, the sunroof of several models of auto-
mobiles may be similar or several types of automobiles may use the
same kind of engine.

Therefore, motivated by the important topics mentioned above, this
study proposes an integrated model for optimal pricing of multi-
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products by considering 2D warranty policy and dual sale channels.
Since a company’s profit depends on its warranty policy and product
pricing in each channel, the proposed model seeks to maximize the
company's profits by optimally determining product price per each
channel, warranty age and warranty usage.

Regarding the uncertainty on the number of failure (warranty)
claims (NFC) over time, the value at risk (VaR) method is implemented
to solve this model. Under a specified probability, VaR is a measure of
the risk-of-loss for investments and determines how much a set of in-
vestments might lose. Usually, the financial industries employ VaR to
assess the number of assets needed to cover possible losses. Also, for
modeling the dependency among products, the copulas as a more
flexible tool than simple tools such as covariance estimations are used.
Therefore, according to VaR's definition, the optimal price of each
product is determined to maximize the profits of a company under a
VaR constraint by considering the covariance among the products.

The remainder of this study is arranged as follows: in Section 2, the
related works are surveyed and the contributions of this study are
highlighted; in Section 3, the proposed model and related concepts are
developed; in Section 4, two solution methodologies namely mean-
variance and VaR are proposed to solve the problem; finally, in Section
5, the study is concluded and the important results and future oppor-
tunity are mentioned.

2. Literature review

The published works related to this study consists of two main
streams: the pricing-warranty problem and the online/offline sales
channel problem.

Research in the first category seeks to investigate the various war-
ranty-related impact, like warranty packages on the companies’ profit.
Glickman and Berger (1976) studied the effect of the warranty period
on companies’ pricing and profits for the first time. They showed the
benefits of both pricing and warranty policy on the company’s profit.
Later, Murthy (1990) proposed a model that consists of the product
price, warranty policy, and reliability. Wu, Lin, and Chou (2006) ex-
tended Glickman and Berger’s model by considering two different
strategies: fixed and dynamic pricing. Huang, Liu, and Murthy (2007)
further developed the idea in Glickman and Berger (1976) by in-
tegrating R&D and production costs. By categorizing customers ac-
cording to their maintenance data, Huang, Huang, and Ho (2017)
provided a pricing model for a 2D warranty policy. Hereby, it was
showed that customer categorization is important for an effective
warranty pricing mechanism and marketing strategy. Also, regarding
the maximization of the total profits of a company, Aggrawal, Anand,
Singh, and Singh (2014) developed a 2D innovation diffusion model for
determining the price and warranty length. Yazdian, Shahanaghi, and
Makui (2016) introduced a model to optimize the price and length of
warranty applying linear and nonlinear demand functions. Xie (2017)
proposed a model to optimize the profit of a new product by con-
sidering a 2D warranty policy. In this model, warranty usage limitation,
product price, and warranty age limitation, as three decision variables,
were considered. Also, they assumed that the arrival rate of warranty
claims follows the Nonhomogeneous Poisson Process.

Zhang, He, He, and Dai (2019) considered trade-off between war-
ranty cost and boosted demand for optimizing a 2D warranty policy.
For this, they proposed a demand function based on attractiveness
index to model the customer’s demand function and validated their
model in the automobile market. Shang, Si, Sun, and Jin (2018) in-
corporated condition-based maintenance to optimize the warranty
policy, by which the product reliability in the warranty period can be
tracked. Through this model, the warranty period, sale price, and re-
placement threshold are determined, which showed that the replace-
ment threshold should be equal and below the failure threshold for
monopoly and competitive markets, respectively. Cheong, Cheong,
Zhang, and Zhang (2019) proposed a dynamic optimization model the

price under limitation of both warranty length and usage. Accordingly,
they proposed a nonlinear optimal control problem to solve their pro-
blem and developed a new sales function to characterize the joint in-
fluence of pricing and warranty policy on customers’ demands. Tang, Li,
Li, Liu, and Huang (2019) analyzed the pricing and warranty decisions
using a Stackelberg game for a two-period closed-loop supply chain.
Through it, they identified the conditions under which warranty for
remanufactured products is offered and its effects.

Since in the real world, products are often made up of several
components, researchers have investigated pricing under this situation.
Matis, Jayaraman, and Rangan (2008) proposed the optimal length of
pro-rated warranty and price for a product which consists of multi-
component under various repair options of the components. Ahmadi
(2016) developed a model for optimizing the replacement problem of
complicated multi-part systems and seeking the optimal operating
period, which should consider the tradeoffs between the incomes and
the associated costs. Chen, Lo, and Weng (2017) presented a total profit
maximization model for each item through optimizing the warranty
length and production run length. As the recent study in this area, Luo
and Wu (2017) considered dependencies among the arrival rates of
warranty claims of different products which use common components.
They used a VaR approach to optimize the warranty period and price of
a portfolio of products. Luo and Wu (2018) developed a mean-variance
approach to determine the pricing and warranty policy for a portfolio of
products and used copulas for depicting the dependence among the
warranty claims of different products.

In the second category of studies, with the increasing popularity of
the Internet and application of dual sales channels, researchers sur-
veyed the impact of the online channel. In this regard, many studies
examined the behavior of customers on the Internet or investigated the
optimal choice of sales channels. The impact of the transaction cost on
choosing a channel was examined by Chintagunta, Chu, and Cebollada
(2012), who discover it as a vital factor in the grocery retailers. Melis,
Campo, Breugelmans, and Lamey (2015) investigated the creation of a
channel for online sales and the choice of sales channels by customers.
By assuming that customers want to maximize their utility, they in-
dicated that customers tend to buy from online stores which have been
previously purchased with the offline channel. Wang, Lin, Tai, and Fan
(2016) examined the impact of characteristics of sales channels on
customers’ channel selection. Also, Feng, Li, Xu, and Deng (2019) de-
veloped a model for implementing a trade-in programme through retail
and direct channels simultaneously and finding the optimal price and
trade-in policies.

Chu, Arce-Urriza, Cebollada-Calvo, and Chintagunta (2010) ex-
amined the behavior of customer purchases in multi-channel stores and
realized that loyalty and brand reputation in online sales have a greater
impact on the sales of the offline than the price of the product. Arce-
Urriza, Cebollada, and Tarira (2017) investigated the effects of price
promotion in the brand selection of the online and offline channels for a
retailer, and they found that price promotion has more impact on the
offline channel. Dan, Zhang, and Zhou (2017) investigated the warranty
policy in a two-channel supply chain system that includes a producer
and a retailer, but with the only producer providing warranty service.
In their study, additional free services were included to attract more
customers, and subsequently, the optimal warranty policy and compe-
tition outcomes were compared with and without such an assumption.

Based on our literature review, there are too few studies that have
investigated covariance among different components/models of pro-
ducts for a company establishing a product portfolio. Since the products
are made by common components, the failure rates of these products
are related. Accordingly, considering the covariance among the com-
ponents and products can significantly improve warranty policy and
consequently optimal pricing and profits. In addition, due to the
growing use of the Internet, multiple sales channels are used in many
companies, i.e. online and offline channels with respectively dedicated
customers. Also, many companies implement a 2D warranty policy

A.A. Taleizadeh and M. Mokhtarzadeh Computers & Industrial Engineering 148 (2020) 106674

2



based on the features of their products by which the warranty policy
can be determined more profitably. In short, it is important to consider
all these attributes to understand their effect on pricing and warranty
policy and consequently the profit of a company. Due to the research
gap in the literature, the current study is dedicated to integrate two sale
channels, 2D warranty policy, and multi-products with the considera-
tion of covariance among them and find the optimal pricing as well as
warranty length and usage by a Value-at-Risk (VaR) approach.
Therefore, the main novelties of this study are as follows:

• Developing a VaR approach for simultaneously optimizing the 2D
warranty policy and pricing in a dual-channel sales manufacturer for
the first time
• Considering the covariance among the different products which are
produced by the manufacturer and modeling it using a Copula
• Analyzing the optimal solutions under different scenarios through
numerical examples

3. Problem description and modeling

3.1. Problem definition

Consider a company that produces a portfolio of products. These
products consist of some common components. The company sells its
products through two channels, i.e. products can be sold directly in the
online channel and alternatively by retailers in the offline channel. The
company assigns a policy that the warranty is only granted to online
sales. The company has a 2-dimensional non-renewing free replacement
warranty (2D NFRW) policy. Accordingly, the company is obligated to
repair or replace the failed components of a product without any cost
until the termination of the warranty term. When time or usage of a
product reaches a specified limit level, the warranty term would be
terminated. Suppose that the time of repair is negligible and products
are new at the time of sale, and all the failures in the warranty are
rectified by minimal repair (Bernard & Vanduffel, 2015; He, Zhang,
Zhang, & He, 2017). Therefore, NFC can be modeled by the non-
homogeneous Poisson process (NHPP) (He et al., 2017). Also, it is as-
sumed that there is no statistical dependency between the NFC and
claim costs.

There are two critical factors that affect the sales volume of a pro-
duct. The price of the product is negatively related to its sales volume.
Whereas warranty strategy positively increases the sales volume. More
specifically, by increasing the time or usage of limit in a warranty
strategy, the sales volume of the product increases (Chen et al., 2017).
There are different models representing the above relation between the
volume of sales and pricing and warranty strategy (e.g. (Lin, Wang, &
Chin, 2009; Yazdian et al., 2016; He et al., 2017; Huang, Gau, & Ho,
2015) proposed linear models and (Huang et al., 2007; Xie, Liao, & Zhu,
2014) proposed nonlinear models). This study combines the models of
(Huang et al., 2015; Yazdian et al., 2016) and introduces a new model
for 2-D warranty strategy and two sales channels, proposed as Eqs.
(1)–(3). All notations are summarized in Table 1.

= + + +V C P T U Pk o k o, , k,o k,o k k k k f k,f k,f (1)

= +V C P ( T U P )k f k f, , k,f k,f o k k k k k,o k,o (2)

Accordingly, the total profit of the product kcalculated as follows.

= +W V P V P O T U( , )k k o k o k f k f k k k, , , , (3)

The Standard probability distributions such as lognormal, Gamma
can be used for modeling the cost of failure (Klugman, Panjer, &
Willmot, 2012; McNeil, Frey, & Embrechts, 2005). It is assumed that
Xk j, follows a log-normal distribution, which is subexponential. The
aggregated warranty cost of product k is subexponential. Therefore, Xk j,
and O T U( , )k k k are tail equivalent (Bee, 2017; Bernard & Vanduffel,
2015). To make our paper concise, we implemented the log–normal

distribution. For more information on tail equivalent, please refer to
(Bee, 2017). Also, assuming the costs of failures to be independent, we
can calculate O T U( , )k k k as:

=
=

O T U X( , )k k k
j

N T U

k j
1

( , )

,

k k k

(4)

It is assumed that the suitable process of two-dimensional warranty
claims model is the bivariate Weibull process (Lu & Bhattacharyya,
1990). This follows the same thought as in Huang et al. (2015), where a
bivariate Weibull process is used for 2-D NFRW. Therefore, we have:

=(T , U ) ( T ) ( U )k k k
k
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k

k,2
k,1 k,2

(5)

where > 0k i, for =i 1, 2. The distribution function of N T U( , )k k k is
eV T U

n
V T U( ( , ))

!
( , )k o k k k n

k o k k k, , . The cost of the j th claim of product kis
shown by Xk j, which follows a log-normal distribution with its mean as
µk and variance k

2. With these assumptions, the expected value (E) and
variance (Var) of O T U( , )k k k can be expressed as:
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Denote that (t, u)Xk is equal to + +f x e dx( )X
i t u x( )

k , where i is a
unit imaginary number. Also, (O)k is equal to =

+ o pn
n

k n0 , , where
= =p N T U nPr( ( , ) )k n k k k, . Based on Levy–Khintchine formula, it can be

obtained that:

= =
=

+

(t, u) ( (t, u)) p eS
n 0

X
n

k,n
V (T ,U )( (t,u) 1)

k k
k,o k k k Xk

(8)

Then, the density function of O T U( , )k k k , which is positive, can be
calculated using inverse two-dimensional Fourier transform as follows:

Table 1
Notations and description.

Notation Description

Vk i, Sale volume of product k in channel i o f T{ , , } o for online, f for
offline and T for total

Pk i, Price of product k in channel i o f{ , } o for online and f for offline
Xk j, The cost of the j th claim of product k
Wk The total profit of product k

>C ( 0)k i, Market size of product k in channel i o f{ , } o for online and f for
offline

Tk Warranty time of product k in online channel
Uk Warranty usage of product k in online channel
TLk The minimum threshold of the warranty usage of product k
ULk The minimum threshold of the warranty time of product k
O T U( , )k k k The aggregated warranty cost of product k
N T U( , )k k k The number of failures over the warranty contract

(T , U )k k k Intensity function of 2-D warranty policy which follows NHPP
fOk The PDF of O T U( , )k k k

FOk The CDF of O T U( , )k k k
(t, u)Xk

The characteristic function (CF) of Xk j,

(t, u)Ok The CF of O T U( , )k k k

(O)k The probability generation function of N T U( , )k k k

k,i Price elasticity of product k in the channel i o f{ , } o for online and
f for offline

k Warranty time elasticity of product k in online channel
k Warranty usage elasticity of product k in online channel

,k,1 k,2 The shape (law power) parameters of bivariate Weibull process
i Percent of channel i selling that goes to another channel because of

price or warranty strategy in that channel, i o f{ , } o for online and
f for offline
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The cumulative function of O T U( , )k k k is calculated as:

=F x y f t u dtdu( , ) ( , )O T U
y x

O T U( , ) 0 0 ( , )k k k k k k (10)

In practice, calculating PDF and CDF by the Fourier transform re-
quires great computational power to overcome the overflow and un-
derflow errors. The well-known method is employing an approximating
function to bypass direct computation of Eqs. (9) and (10). According to
Bee (2017), for each Xk with subexponential function, the compound
O T U( , )k k k inherits the subexponentiality attribute. In current study, it is
assumed that Xk follows the log-normal distribution, which is sub-
exponential. Thus, O T U( , )k k k is subexponential too. Accordingly, the
log-normal distribution for the approximation ofO T U( , )k k k is used here.
The characteristics (µ ,l n l n

2 ) of log-normal distribution are as follows:

= =µ µE(O (T , U )) V (T , U )l n k k k k,o k k k k (11)

= = + µVar(O (T , U )) V (T , U )( )l n
2

k k k k,o k k k k
2

k
2 (12)

3.2. Single and multiple product scenarios

In a single product system, the profit is calculated by Eq. (3). The
expected value and variance of profit can be derived as:

= +

= +

E W E V P V P O T U

V P T U µ

[ ] [ ( , )]
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k
2 (14)
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1 ( )

W k k o k o k f k f k k k

k k k k o k o k f k f

O T U k o k o k f k f

, , , ,

, , , ,

( , ) , , , ,

k

k k k (15)

Whereas in a company with multiple products, a portfolio of pro-
ducts exists. In this situation, the company's profit is equal to the total
profit of the products (e.g. Luo and Wu (2017)). Then its profit is cal-
culated as follows:

= = +
= =

W W V P V P O T U( ( , ))T
k

N

k
k

N

k o k o k f k f k k k
1 1

, , , ,
(16)

= =F x y P W z F z( , ) ( ) ( )W T
N( )

T (17)

where F z( )N( ) is the N-fold convolution of the distribution ofWk. Based
on Eq. (11), the expected value of the product portfolio becomes:

= +
=

E W V P T U µ[ ] ( ( ( , ) ) V P )T
k

N

k o k o k k k
1

, , k k,f k,f
(18)

The arrival process of warranty claims of the products could be
correlated since the company produces different products consisting of
some components. Hence the variance of a portfolio of products de-
pends on the correlation between them. Assuming that the correlations
are linear, the variance calculation of WT is expressed as follows:

=Var W I QI( )T
T (19)

where =I [1, 1, ...,1]T and Q is covariance matrix with the expression:

=Q
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1 1 1 1 1 1

2 2 2

1 1 1

2 2 2 1
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2 2 2

2 2 2

2 2 2

1

1 1 2 2 2

(20)

where =Cov O T U O T U( ( , ), ( , )) Var(O (T , U ))Var(O (T, U ))k k k i i i k,i k k k i i i
and k,i is the Pearson correlation coefficient. There exist different types
of dependency between the warranty costs of different products (e.g.,
tail-dependence and rank correlation). Using the metrics that just
measure a linear correlation is inappropriate in the case where the re-
lationship of the variables is nonlinear. For this reason, a powerful tool
named copula is used to model the dependence between the products.
The copula parameters, mainly the Archimedean copula parameters,
are used as substitutes for measuring relationships in the covariance
matrix in multi-products optimization, with the relationship to be linear
or non-linear (Boubaker & Sghaier, 2013).

4. Solution methodology

In this study, we use the mean-risk optimization for maximizing the
expected profit under the constraint of considering a risk level. Eqs.
(13) and (16) express the objective function for one product scenario
and a portfolio of products scenario, respectively. By considering Eqs.
(1), (2), (5) and (13), we have the profit of one product scenario as:

= + + +

+

+

E W C

µ

C

[ ] ( P T U P )(P

( ) ( ) )

( P ( T U P ))P

k k o

k f

, k,o k,o k k k k f k,f k,f k,o

T U
k

, k,f k,f o k k k k k,o k,o k,f

k
k,1

k,1 k
k,2

k,2

(21)

In this case, we may have in total 4 decision variables, namely Pk o, ,
Pk f, , Tk, and Uk. We now introduce Proposition 1 based on the above
expression.

Proposition 1. Depending on whether Pk o, , Pk f, , Tk, and Uk are decision
variables or given ones, we have:

If more than one variables are decision variables, there is no global
optimum solution for E W[ ]k .

If one of the above variables is decision variable and others are
given, there is a global optimum solution for E W[ ]k .

The proving of this proposition is illustrated in Appendix A.
Also, the profit in multi-product scenario is calculated as follows:

= + + +

+

+

E W C

µ

C

[ ] [( P T U P )(P

( ) ( ) )

( P ( T U P ))P ]

T k o

k f

, k,o k,o k k k k f k,f k,f k,o

T U
k

, k,f k,f o k k k k k,f k,f k,f

k
k,1

1 k
k,2

2

(22)

Since no dependency is considered between the prices and sales
volumes in this study, Proposition 1 is also valid in the multi-product
scenario. The dependence amongst the warranty claims of the products
is reflected in the constraints of optimizations. The risk is defined as a
position’s future value instability because of unknown issues (Artzner,
Delbaen, Eber, & Heath, 1999). It describes a position where a portfolio
is subjected to vulnerabilities and enforces damages to the business
(Babaei, Sepehri, & Babaei, 2015). It is measured by the variable's
variance in some original models for selecting the portfolio. However,
Value-at-Risk (VaR) and Conditional-Value-at-Risk (CVaR) are then
used by researchers, and these approaches indicate a more valid con-
cept of risk (Babaei et al., 2015). VaR is one of the most popular
downside risk measures, which indicates a more valid concept of risk.
The variance as a risk measure is normally applied under the
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assumption that the correlation is linear, which is not forced in the VaR
and CVaR theories (Luo & Wu, 2017). Although, maximum possible loss
cannot be determined only by VAR and VaR gets difficult to calculate
with large portfolios, its advantages outweigh its disadvantages, which
can be seen through its popularity in financial management (Babaei
et al., 2015). So that in this study, by considering profit maximization
under the mean-risk, the mean-variance and VaR metrics are used to
measure the risk.

4.1. Optimizing mean-risk value in one product scenario

In this scenario, three different types of optimization are conducted
to maximize the product’s expected profit with a given risk.

4.1.1. Mean-Variance model
In this model, the profit maximization has a constraint level of

variance is the goal. The optimization model is expressed in Eqs.
(23)–(27).

= +MAX µE(W ) V (P ( T ) ( U ) ) V Pk k,o k,o
k

k,1

k

k,2
k k,f k,fk,1 k,2

(23)

Subject to

+V T U µ( ) ( ) ( )k o
k

k

k

k
,

,1 ,2
k
2

k
2kk,1 ,2

(24)

= + + +V C P T U P 0k o k o, , k,o k,o k k k k f k,f k,f (25)

= +V C P ( T U P ) 0k f k f, , k,f k,f o k k k k k,o k,o (26)

P , P 0, T TL , U ULk f, k,o k k k k (27)

Where Eq. (23) indicates our objective, and Eq. (24) ensures that
variance does not exceed an acceptable level. Eqs. (25) and (26) ensure
that the sales volume should be non-negative. And Eq. (27) ensures that
the price of the product should be greater than or equal to zero, and
meanwhile warranty time and warranty usage should be greater than or
equal to their minimum threshold. According to Proposition 1, one
variable can act as the decision variable. For example, if Pk o, is the
decision variable, then Eq. (24) can rewrite as follows:

+ + +

+
=

( ) ( )

P C

µ
P

1 T U P

( )

k o k o

k o

,
k,o

, k k k k f k,f k,f

T U
k
2

k
2

,
1

k
k,1

k,1 k
k,2

k,2

(28)

Therefore, to satisfy the constraint (24), Pk o, must be equal or
greater than Pk o,

1 . Using the derivative of Eq. (21) with respect to Pk o, ,
we have the optimal Pk o, for global maximum computed as:

=
+ + +

=
( ) ( )

P
C µ

P
T U P

2 Pk o
k o

k o
k o,

, k k k k f k,f k,f k,o
T U

k

, o k,o k,f
,

2
k

k,1

k,1 k
k,2

k,2

(29)

Regarding the value of Pk o,
1 and Pk o,

2 , the optimal point can be ob-
tained since the model is only constrained by Eq. (24), therefore if
P Pk o k o,

1
,

2 , Pk o, is not constrained by Eq. (24) and then the global
maximum of expected profit is at Pk o,

2 , otherwise, it is at Pk o,
1 . This

procedure can be applied to all other variables. Then, Proposition 2 is
expressed.

Proposition 2. The global maximum of expected profit under a predefined
variance level exists when one variable is the decision variable and others are
known and the power-law parameters ( ,k,1 k,2) is greater than 1.

The proof of Proposition 2 is illustrated in Appendix B.

4.1.2. Mean value at risk model
The quantile of a distribution, where is a proposed confidence

level, is called VaR. Here, VaR W( )k is defined as the amount of lost
profit at the (1 ) level. So, (1 )is the probability that VaR W( )k of
profit of product k may lose. Then, it can be calculated as follows:

=VaR W F( ) ( )k W
1
k (30)

Using Eq. (15), we have the expression re-written as:

= +VaR W V P V P F( ) (1 )k k o k o k f k f O T U, , , , ( , )
1

k k k (31)

Then, it is possible to develop the VaR model as follows:

= +MAX µE(W ) V (P ( T ) ( U ) ) V Pk k,o k,o
k

k,1

k

k,2
k k,f k,fk,1 k,2

(32)

Subject to

= +VaR W V P V P F( ) (1 )k k o k o k f k f O T U, , , , ( , )
1

k k k (33)

V 0, V 0, P , P 0, T TL , U ULk o, k,f k,f k,o k k k k (34)

Where Eq. (33) indicates that the VaR W( )k of the product at the
(1 ) confidence level must be less than , ( 0). Now, suppose that
we want to find the optimal Pk o, . In this case, all other variables are
known, then V Pk o k o, , in VaR W( )k is a parabola with a negative coeffi-
cient on the quadratic term (Luo & Wu, 2017). F (1 )O T U( , )

1
k k k ob-

tained from the warranty cost’s distribution. As we suppose other
variables are known, the expected value and variance of O T U( , )k k k
depend only on Pk o, , and furthermore these two values monotonously
reduce with an increase of Pk o, . Also, F (1 )O T U( , )

1
k k k monotonously

reduces with an increase ofPk o, .
Due to Propositions 1 and 2, and above discussion, the following

proposition can be obtained.

Proposition 3. The global maximum of expected profit under a VaR level
exists if one variable is the decision variable and others are known.

4.2. Optimizing mean-risk value in multi-product scenario

In this section, we will develop mean-variance and mean VaR fra-
meworks for maximizing expected profit in the multiple product sce-
nario. Suppose that a company produces N products having common
components. In such cases, it is reasonable to assume the dependency
among warranty claim arrival processes. By considering this statistical
dependency, it is possible to model this problem in mean-variance and
mean VaR frameworks. In the following, we investigate this problem.

4.2.1. Mean-Variance model
With a portfolio of products, we optimize the expected profit of N

products with defined variance as Eqs. (35) and (36).

= +
=

MAX µE[W ] (V (P ( T ) ( U ) ) V P )T
k 1

N

k,o k,o
k

k,1

k

k,2
k k,f k,fk,1 k,2

(35)

Subject to

= +
= = =

Var W Var W Cov O T U O T U( ) ( ) 2 ( ( , ), ( , ))T
k

N

k
k

N

i
i k

N

k k k i i i
1 1 1

(36)

where =

+ +

Cov O T U O T U

µ µ

( ( , ), ( , ))

V V ( ) ( ) ( ) ( ) ( )( )
k k k i i i

k,i k,o i,o
T T U U

k
2

k
2

i
2

i
2k

k,1
k,1 i

i,1
k,1 k

k,2
k,2 i

i,2
i,2

,

and k,i is Pearson correlation coefficient which is used to measure
dependency among warranty claim of products. Using Proposition 2,
the following proposition can be obtained.
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Proposition 4. The global maximum of expected total profit under a
predefined variance level exists if one variable is the decision variable and
others are known.

4.2.2. Mean VaR model
The following model is created for optimization of the expected

total profit of N products under mean VaR model:

= +
=

MAX µE[W ] (V (P ( T ) ( U ) ) V P )T
k 1

N

k,o k,o
k

k,1

k

k,2
k k,f k,fk,1 k,2

(37)

Subject to

=VaR W F( ) (1 )T
N1,( ) (38)

Although the interpretation and definition of the VaR are easy and
understandable, the calculation of VaR of a portfolio of products is not
easy (Babaei et al., 2015). There are common methods to calculate VaR
in finance including historical or stochastic simulation and the var-
iance-covariance methods. In practice, it is possible and suitable to
calculate VaR using simulation. The variance-covariance assumes that
risk factors follow normal distributions, which makes it not appropriate
in this case (Luo & Wu, 2017). Here, stochastic simulation is applied.
One of the exact and efficient simulation methods in the probability
theory is copula which is used to formalize the dependence structures
between a portfolio of products, as we need in this study. This method
enables us to compute the optimal solution of our VaR model.

Copula is used to construct multivariate distributions and formalize
the random variables' dependency structures. This approach can be
applied whether the variables are continuous or not (Sklar, 1959). It is
feasible to rewrite each cumulative distribution of random variables
using its marginal distribution and a copula with which the dependence
structure among them is expressed. Recently, considerable attention
has attracted the study of copulas, both from theoretical and practical
viewpoints. Any cumulative distribution function of a random vector
can be written in terms of marginal distribution functions and a copula
that describes the dependence structure between the variables. This
feature of Copula makes it an extremely powerful tool in statistical
applications. Both Wu (2014) and Luo and Wu (2017) have im-
plemented this method to model warranty claims of a portfolio of
products.

Consider =Z Z Z Z( , , ..., )n1 1 as a random vector of variables that its
CDF is =C z z z P Z z Z z Z z( , , ..., ) ( , , ..., )n n n1 1 1 1 2 2 and its marginal
distribution function of each variable is =Md z P Z z( ) ( )k k k k for

=k n1, 2, ..., . It can be proved that C
=z z z Co Md z Md z Md z( , , ..., ) ( ( ), ( ), ..., ( ))n n n1 1 1 1 2 2 where Co (.) is a copula

(Sklar, 1959). Then using this method, we have:

= ( )C z z z Co F z F z F z F z( , , ..., ) ( ), ( ), ..., ( ), ..., ( )n
N N N

k
N

n1 1
( )

1
( )

2
( ) ( )k n1 2 (39)

=
=

( )c z z z co F z F z F z f z( , , ..., ) ( ), ( ), ..., ( ) ( )n
N N N

n
k

N
N

k1 1
( )

1
( )

2
( )

1

( )n k1 2

(40)

where C z z z( , , ..., )andc(z , z , ...,z )n1 1 1 1 n are the joint distribution (JD) of
NFC of the product and its density. F z( )andf (z )N( )

1
(N )

k1 k are CDF and
PDF of NFC of a product. And the density of copulaCo (.)is co (.). Finally,
C z z z( , , ..., )n1 1 can be simulated using Eqs. (9), (10), (39), and (40).
Since the calculation of Eqs. (9) and (10) is difficult and complex, the
log-normal distribution is used to approximate them. Then, Eqs. (11)
and (12) are used instead of Eqs. (9) and (10).

Consider F z( )WT as the total profit distribution of the portfolio,
where = =W WT k

N
k1 . Using a copula-based model, enable us to esti-

mate VaR through simulation. Computing F is mainly a numerical
problem (Bernard & Vanduffel, 2015).

Then using Proposition 3, the following proposition can be ob-
tained.

Proposition 5. The global maximum of expected total profit under a
predefined VaR level exists if one variable is the decision variable and others
are known.

In practice, a variety of copula families exists. A proper copula can
be built or chosen in two steps. First, according to the physical condi-
tion of the products or the features of empirical operating, the form of
marginal distribution, and the tail-dependence, etc., a fitting copula
family can be chosen (Luo & Wu, 2017). For instance, an Elliptical fa-
mily copula form can be chosen for linear dependency; an Archimedean
family copula form can be chosen for data in which rank correlation is
observed. Second, the performance of the chosen copulas must be ex-
amined by some tools like Bayesian Information Criterion or mean
squared errors (Luo & Wu, 2017).

5. Numerical examples with a case study

As highlighted in Section 1, the 2D-warranty is applied widely in the
automotive industry where products share different components and
are sold through both online and offline channels. To test the validity of
our model, we collected data from an automotive company producing 5
types of vehicles. An ABC survey on the failures of different models
shows that about 90% of the failures are correlated to 7 components.
The warranty data (claims’ date and cost) are collected for estimated
the related parameters and other parameters such as price, warranty
time, and warranty usage elasticity of products are estimated by ex-
perts. To validate the assumptions used in this model, a simulation
model is implemented to check the fitness of real data to the model. For
example, the simulation model generated warranty claims using the
NHPP and then generated NFC are tested against real NFC. Therefore,
the model assumptions are checked and fitted to the real data. Table 2
shows the components used in each model. For example, components
AA, BB, DD, and FF are used for producing model 1001 while compo-
nents BB, CC, DD, and GG are used for producing model 1002. The
failures are rectified by minimal repair and arrival of warranty claims is
NHPPs with cumulative failure intensity as shown in Eq. (5). The
parameters’ values associated with each component are summarized in
Table 3. For example, the claim of model 1001 is

+ + +( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T U T U T U T U
370

1.02
220

1.03
620

1.04
240

1.02
520

1.01
280

1.05
450

1.02
450

1.03k k k k k k k k .
Furthermore, the sales information is reported in Table 4, with nota-
tions explained in our model. We also have =T 720k and =U 400k days
for all models. Finally, the offline prices of each model (Pk f, ) are dis-
played in Table 4. Using the data collected in Tables 3 and 4, we aim at
find how the pricing of the online products can influence and finally
maximize profits. This investigation can provide an empirical evidence
to support our theoretical developments.

Before going deep, we solved and obtained the optimum price and
warranty policy for product model 1001 by considering only offline sale
channel, only online sale channel, both channels together (the study’s
case). For this, the related parameters of sales channels are considered
equal (i.e., Ck o, = Ck f, = 1000, k,o= k,f= 0.20). If only one channel
without warranty policy (offline channel is our case) is considered. By
deriving Eq. (3), after removing online channel related parts, the op-
timum price is 2500 and the profit is 1250000. If only one channel with
warranty policy (offline channel is this case) is considered. By solving

Table 2
Characteristics of models.

Model Components

AA BB CC DD EE FF GG

1001 ✓ ✓ ✓ ✓
1002 ✓ ✓ ✓ ✓
1003 ✓ ✓ ✓ ✓ ✓
1004 ✓ ✓ ✓ ✓ ✓
1005 ✓ ✓ ✓ ✓
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Eqs. (28) and (29), after removing offline channel related parts, the
optimum price is 2750 and the profit is 1801085. Finally, considering
both channels leads to a 2,181,950 profit under Ck o, = Ck f, = 500, k,o=

k,f= 0.20, and Pk f, = 2700 values. This simple analysis shows that it is
preferred to implement both channels.

To better investigate the covariance between different models, we
conduct an empirical analysis under two situations: single-product and
multi-product scenario.

5.1. Single-product scenario

In this section, we deal with a single product scenario while dealing
with two cases. First, we assume that there is no restriction onVar W( )k ,
therefore we can use Eq. (29) to determine the optimal online price Pk o,
and the optimal manufacturer’s profit E W[ ]k . Second, we assume that
there is a restriction ( ) on Var W( )k , therefore we use Eq. (28) rather
than Eq. (29). Also, if manufacturers seek to make a decision on other
variables, the same procedure is followed for determining the optimal
value.

5.1.1. Mean-Variance model
First when there is no restriction onVar W( )k . By using the equations

in Sections 3.1, 3.2, and 4.1.1, the expected profit and the related
variance on each model are computed as follows:

=E W P P P[ ] 324 (0.2 1449.1)( 811.5116) 11772k o k o k o1 , , , (41)

=Var W P( ) 111450000 15382 k o1 , (42)

= +E W P P P[ ] 437.5 ( 542.5418)(0.25 1098.8) 1114600k o k o k o2 , , ,

(43)

=Var W P( ) 48413000 11015 k o2 , (44)

= +E W P P P[ ] 180 (0.15 1625.2)( 740.3222) 1463760k o k o k o3 , , ,

(45)

=Var W P( ) 95864000 8847.9 k o3 , (46)

=E W P P P[ ] 384 (0.2 928)( 876.9144) 80640k o k o k o4 , , , (47)

=Var W P( ) 74172000 15985 k o4 , (48)

=E W P P P[ ] 140 (0.1 1108)( 617.5376) 347200k o k o k o5 , , , (49)

=Var W P( ) 48151000 4345.7 k o5 , (50)

We depict the relationship between Pk o, and the manufacturer’s

profit for model 1001 in Fig. 1. The pattern of the profit functions of
other models is similar, and therefore we will not include in the paper.
All results are summarized in Table 5.

As can be seen from Fig. 1, there exists an optimal warranty length
that maximizes the manufacturer’s profits. As can be seen, the form of
Fig. 1 graph is because of the quadratic form of the objective function.

5.1.2. Mean VaR model
Now, we assume that there is a restriction on Var W( )k . Specifically,

we use the mean-VaR model by assuming a confidence level of 0.05.
The VaR W( )k0.05 for each model of the product is computed in Eqs.
(51)–(55).

=VaR W F( ) 324P - P (0.2P - 1449.1) - 11772 (0.95)k o k o k o O T U0.05 1 , , , ( , )
1

1 1 1

(51)

= +
VaR W

F
( )

437.5P - P (0.25P - 1098.8)  1114600 (0.95)k o k o k o O T U

0.05 2

, , , ( , )
1
2 2 2 (52)

= +VaR W F( ) 180P - P (0.15P - 1625.2)  1463760 (0.95)k o k o k o O T U0.05 3 , , , ( , )
1
3 3 3

(53)

=VaR W F( ) 384P - P (0.2P - 928) - 80640 (0.95)k o k o k o O T U0.05 4 , , , ( , )
1

4 4 4 (54)

Table 3
Parameters’ value for each component.

Component k,1 k,1 k,2 k,2 Cost of each claim

AA 370 1.02 220 1.03 100
BB 620 1.04 240 1.02 80
CC 480 1.06 400 1.01 90
DD 520 1.01 280 1.04 120
EE 550 1.01 300 1.05 100
FF 450 1.05 450 1.03 50
GG 600 1.04 340 1.01 60

Table 4
Parameters’ value for each vehicle.

Model (k) Ck o, Ck f, k,o k,f k k o f µk k Pk f,

1001 1000 500 0.20 0.15 0.13 0.18 0.60 0.70 89.36 21.99 2700
1002 800 800 0.25 0.10 0.14 0.12 0.70 0.60 78.16 15.44 2500
1003 1200 1000 0.15 0.15 0.16 0.10 0.40 0.60 75.25 18.25 3000
1004 400 600 0.20 0.20 0.20 0.12 0.80 0.70 85.40 22.15 2400
1005 700 500 0.10 0.20 0.10 0.14 0.50 0.50 68.80 10.40 2800

Fig. 1. Relationship between total profit and online price of product model
1001.

Table 5
Optimal Pk o,

2 and E W[ ]k using the mean–variance model.

Model (k) Pk o,
2 E W[ ]k Var W( )k

1001 4838.5 3,494,500 37,023,000
1002 3343.9 3,313,800 11,580,000
1003 6387.5 6,380,600 39,348,000
1004 3718.5 1,871,000 14,731,000
1005 6548.8 3,257,200 19,691,000

A.A. Taleizadeh and M. Mokhtarzadeh Computers & Industrial Engineering 148 (2020) 106674

7



=VaR W F( ) 120P - P (0.1P - 1068) - 105600 (0.95)k o k o k o O T U0.05 5 , , , ( , )
1

5 5 5

(55)

As we already mentioned in Section 3.1, we cannot obtain closed
forms for the CDF of O T U( , )k k k and F (0.95)O T U( , )

1
k k k . Consequently, we

use a log-normal distribution to approximate the distribution of
F (0.95)O T U( , )

1
k k k . The results of the log-normal distribution for approx-

imating F (0.95)O T U( , )
1

k k k are displayed in Table 6, in which mean and
variance are derived from Eqs. (11)–(12). Using these equations along
with Eqs. (32)–(34), we obtain the optimum value of Pk o, , which are
reported in Table 7.

As can be seen in Table 7, if there is a restriction on VaR, the
maximum profit will decrease by 25%. The total lost profit under VaR
restriction is 5728251.77, which is calculated based on Tables 5 and 7.
There is a trade-off between maximum expected profit and this re-
striction. As the VaR is limited more, the expected value is decreased
more since the price of products is decreased. Therefore, high expected
profit comes with high value at risks. So far, it has been assumed that
we have only one decision variable whereas other variables are con-
sidered to be known. To study the effect of these variables on the op-
timal online price, we can draw Figs. 2–13. Fig. 2, Fig. 4, and Fig. 6
show relationship between profit, variance, and VaR with warranty
length for product model 1001. Fig. 3, Fig. 5, and Fig. 7 show re-
lationship between profit, variance, and VaR with warranty usage for
product model 1001. Fig. 8, Fig. 9, and Fig. 10 show relationship be-
tween total profit and warranty length and usage. Also, Fig. 11, Fig. 12,
and Fig. 13 show relationship between total profit and offline price and
warranty length. The behavior of these functions for other models is
similar. In the next section, we can see that paying attention to the
dependencies between products leads to better pricing and thus more
profit.

Fig. 8 indicates that an increase in warranty length and usage could
positively and negatively effect on total profit. Indeed, if we increase
the warranty length and usage until they reach their optimal point, the
total profit increases, while after that point, the total profit decreases.
Similarly, such a relationship exists between total profit and offline
price and warranty length (Fig. 11). Fig. 9 indicates that an increase in
warranty length and usage leads to an increase in variance. An increase
in warranty length and usage attracts more customers and

simultaneously increase the number of warranty claims. That is why
such a relationship exists.

Fig. 12 also indicates such a relationship between variance and
offline price and warranty length. Fig. 10 reveals a linear relationship
between VaR and warranty length and usage, while Fig. 13 indicates a
quadratic relationship between VaR and offline price and warranty
length, which is because of the quadratic relationship between VaR and

Table 6
Characteristics of log-normal distribution for approximating F (0.95)Ok Tk Uk( , )

1 .

Model (k) µl n l n
2 F (0.95)Ok Tk Uk( , )

1

1001 P1176000 162.3023 o1, P111450000 15382 o1,

+
P

P
1.65 111450000 15382

1176000 162.3023
o

o

1,

1,
1002 P596140 135.6354 o2, 48413000 11015P o2,

+ P
1.65 48413000 11015P

596140 135.6354
o

o

2,

2,
1003 P1203200 111.0483 o3, P95864000 8847.9 o3,

+
P

P
1.65 95864000 8847.9

 1203200 111.0483
o

o

3,

3,
1004 P813780 175.3829 o4, P74172000 15985 o4,

+
P

P
1.65 74172000 15985

 813780 175.3829
o

o

4,

4,
1005 P684230 61.7538 o5, P48151000 4345.7 o5,

+
P

P
1.65 48151000 4345.7

 684230 61.7538
o

o

5,

5,

Table 7
Optimum values of Pk o,

2 in the VaR model by considering a restriction on .

Model (k) Pk o,
2 E W[ ]k VaR W( )k0.05

1001 3,000,000 3286.8 3012914.209 3,000,000
1002 3,000,000 2237.9 3008038.381 3,000,000
1003 3,000,000 1520.8 2827900.000 3,000,000
1004 3,000,000 3718.5 1871000.000 1,703,008
1005 3,000,000 4971.7 3008499.303 3,000,000

Fig. 2. Relationship between total profit and warranty length in the optimal
online price of product model 1001.

Fig. 3. Relationship between total profit and warranty usage in the optimal
online price of product model 1001.
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offline price. An increase in the offline price leads to an increase in the
amount of soled products until we reach optimal offline price, which
leads to an increase in profit and VaR. After that, the amount of soled
products decreases, which leads to a decrease in profit and VaR.

Also, we can determine the offline price by considering constant
values for other variables. The results are shown in Table 8 and Table 9.
For this, 2800, 1800, 1300, 3000, and 4500 are considered for Pk o, of
model 1001, 1002, 1003, 1004, and 1005 respectively. The optimum
value of warranty length and warranty usage can be obtained using
similar calculations.

5.2. Multi products case

As mentioned before, there are dependencies between different
products. For considering these dependencies, in Sections 3.3 and 4.2
formulas are developed. In this section, the modeling’s results are ap-
plied to this instance to improve the pricing decision.

As it was mentioned before, copula is a useful tool for modeling the
dependence of products. In this study, due to the potential upper tail-
dependence and non-elliptical marginal distributions, Gumbel copula is
implemented. For more information about copulas, one can see
(Hutchinson, 1990). The JD of NFC is expressed as follows:

= + + + +{ }
C z z z

u

( , , ..., ; )

exp [( ln ) ( ln u ) ( ln u ) ( ln u ) ( ln u ) ]
n1 1

1 2 3 4 5
1

(56)

where =u F z( )i
N

i
( )i and +1 is copula parameter which denotes

the correlation between products. Also, = 1 means that there is no
correlation between products. The density of the JD is presented by Eq.
(40). The CDF of the total NFCs of all products = =N Ni i1

5 is presented
by Eq. (57):

=F z c z z z( ) ( , , ..., )N n1 1 (57)

Suppose that the online prices of products are set (in this case we
suppose the prices are the prices of Table 7), Then the VaR of this
scenario can be determined using Eqs. (40), (56), and (57), and the
results are presented in Table 10. Also, an approximation relationship
between and the VaR is shown in Fig. 14.

As can be seen in Table 10, taking into account the dependency
between products leads to a realization of the VaR. This has two ad-
vantages: first, if the company wants to enter the market with a certain
VaR (for example13703008), it can increase its prices to reach the de-
sired VaR. Second, if the company wants to enter the market with the

Fig. 4. Relationship between variance and warranty length in the optimal on-
line price of product model 1001.

Fig. 5. Relationship between variance and warranty usage in the optimal online
price of product model 1001.

Fig. 6. Relationship between VaR and warranty length in the optimal online
price of product model 1001.

Fig. 7. Relationship between VaR and warranty usage in the optimal online
price of product model 1001.
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optimal prices for the state of the products without interdependence, it
can enter the market more confidently.

6. Conclusions

Manufacturers often offer different kinds of products or different
models of a product through various sales channels like online and
offline channels. Regularities or competitions force manufacturers to
provide services such as warranties for their products which cause ad-
ditional costs. This study is conducted to investigate the effect of war-
ranty claim rates of products with similar components on the optimal

pricing. Sales are made through online and offline channels and a two-
dimensional warranty policy including warranty age and warranty
usage of products are considered. The proposed model seeks to max-
imize company profits under conditions in which the VaR does not
exceed by a certain value. Two models for situations where the re-
lationship between product warranty claims is considered and not
considered are developed and numerical experiment showed that con-
sidering the covariance between products leads to better pricing and
more profit. Also, due to the high complexity of covariance, Copulas has
been used to estimate covariance and value at risk. In this study, the
warranty claims and warranty costs are assumed that follow the NHPP

Fig. 8. Relationship between total profit and warranty length and usage in the optimal online price of model 1001.

Fig. 9. Relationship between variance and warranty length and usage in the optimal online price of model 1001.
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and log-normal distribution, which may not model some industries,
particularly where the warranty is not rectified by minimal repair.
Therefore, it is suggested to investigate the problem under such as-
sumptions. Moreover, one can apply CVaR and compare the result to
VaR. It is also proposed to explore various Coppola models according to
their features and problem features. Also, one can analyze the effect of
pricing and warranty policy on the manufacturer's sale behavior, par-
ticularly on the preference of manufacturer’s sales amount through

online or offline channels respect to a fixed quantity of products on
hand.
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Fig. 10. Relationship between VaR and warranty length and usage in the optimal online price of model 1001.

Fig. 11. Relationship between total profit and offline price and warranty length in the optimal online price of model 1001.
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Fig. 12. Relationship between variance and offline price and warranty length in the optimal online price of model 1001.

Fig. 13. Relationship between VaR and offline price and warranty length in the optimal online price of model 1001.

A.A. Taleizadeh and M. Mokhtarzadeh Computers & Industrial Engineering 148 (2020) 106674

12



Appendix A. The proof of Proposition 1

Proving. Assume that there is more than one decision variable. Consider Pk o, and Tk as decision variables. Then, the Hessian matrix (HM) of
E W[ ]k is as follows:
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Then by calculating the eigenvalues of E W[ ]k , it can be seen that <x 01 and >x 02 . The global minimum of E W[ ]k does not exist because the HM
is indefinite. These calculations are available for interested readers upon request.

Also, the HM of Var W( )k is as follows:
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Then by calculating the eigenvalues of Var W( )k , it can be seen that <x 01 and >x 02 . The HM is indefinite and the feasible region of +P T( )k o k,
defined by the constraint is therefore infinite. As a result, the objective function’s global maximum does not exist. It can be shown for other states of
this problem like this one that if more than one decision variable exists then the global maximum does not exist.

Appendix B. Proposition 2’s proving

Proving. From Appendix A, we know that just one variable can act as the decision variable. Assume that Pk o, is decision variable and others are
known, then the first-order derivative (FOD) of the objective function E W P[ ]( )k k o, is as follows:
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The second-order derivative (SOD) of the E W P[ ]( )k k o, is as follows:

= <
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It implies that E W P[ ]( )k k o, is concave for P 0k o, which means E W[ ]k achieves the global maximum at

=
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. Also, if Pk f, is known, this procedure can apply to find the maximum value of Pk f, .

Table 8
Optimum values of Pk f, in the VaR model without considering a restriction on .

Model (k) Pk f, E W[ ]k VaR W( )k0.05

1001 3151 2.6940e+06 4,161,249
1002 5431 3.5773e+06 4,024,698
1003 3554 2.5443e+06 3,372,437
1004 3059 1.8546e+06 2,223,151
1005 2623 2.8375e+06 2,800,200

Table 9
Optimum values of Pk f, in the VaR model by considering a restriction on .

Model (k) Pk f, E W[ ]k VaR W( )k0.05

1001 3,000,000 1644 2.3531e+06 3,000,000
1002 3,000,000 2388 2.6510e+06 3,000,000
1003 3,000,000 4680 2.3542e+06 3,000,000
1004 3,000,000 3059 1.8546e+06 2,223,151
1005 3,000,000 2623 2.8375e+06 2,800,200

Table 10
The VaR of total profit in multi products mode under different .

Copula parameter ( ) 1 2 3 4 5 6

VaR 13,703,008 13,603,008 13,574,358 13,563,045 13,559,905 13,557,058

A.A. Taleizadeh and M. Mokhtarzadeh Computers & Industrial Engineering 148 (2020) 106674

13



Now, Assume that Tk is decision variable and others are known, then the FOD of E W T[ ]( )k k is as follows:
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It implies that E W T[ ]( )k k is concave for T 0k . Also, the FOD of Var W T( )( )k k is as follows:

= + +

+ + + + >

µ

µ

( ) ( ) ( )

( ) ( ) ( )(C P U T P )/ 0

Var W T
T

( )( )
k

T U
k
2

k
2

k,1
T 1 U

k
2

k
2

k,o k,o k,o k k k k f k,f k,f k,1

k k
k

k
k,1

k,1 k
k,2

k,2

k
k,1

k,1 k
k,2

k,2
(2.5)

The SOD of the Var W T( )( )k k is as follows:
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It means thatVar W T( )( )k k is convex and monotonously grows for T 0k and the feasible space of Tkrestricted byVaR W( )k is infinite. So, there
is an optimal solution to this problem. Also, if Ukis not known, this procedure can apply to find the maximum value of Uk.
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