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Abstract
Equipment maintenance is momentous for improving production efficiency, how to integrate maintenance into production
to address uncertain problems has attracted considerable attention. This paper addresses a novel approach for integrating
preventive maintenance (PM) into production planning of a complex manufacturing system based on availability and cost.
The proposed approach relies on two phases: firstly, this study predicts required capacity of each machine through extreme
learning machine algorithm. Based on analyzing historical data, the opportunistic periods are calculated for implementing PM
tasks to have less impact on production and obtain the PM interval and duration. Secondly, this study obtains the scheduling
planning and the least number of maintenance personnel through an improved ant colony optimization algorithm. Finally,
the feasibility and benefits of this approach are investigated based on empirical study by using historical data from real
manufacturing execution system and equipment maintenance system. Experimental results demonstrate the effectiveness of
proposed approach, reduce personnel number while guarantee the maintenance tasks. Therefore, the proposed approach is
beneficial to improve the company’s production efficiency.

Keywords Complex manufacturing system · Preventive maintenance · Production-maintenance synchronization · Extreme
learning machine · Ant colony optimization
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β weight matrix of ELM output layer
B bias matrix of ELM hidden layer
C the adjusted parameter of ELM
g(·) activation function
I identity matrix
L number of ELM hidden layer nodes
Llop last overlap list
Lop overlap list
m number of ELM input features
N number of ELM training samples
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n number of ELM output caregories
Np the number of PM tasks
Nant the number of ants in ACO algorithm
Sd total distance
T output matrix of ELM
Tc sum of Tprci , 1 ≤ i ≤ 12 in the past for each

machine
Tcc CM cycle time
Tcdsi hourly CM duration of day shift
Tcds CM duration of day shift
Tcd CM duration of machine
Tmaxc maximum sum of Tprci , 1 ≤ i ≤ 12 in the past

for each machine
Tmaxpd maximum PM duration
Tminc minimum sum of Tprci , 1 ≤ i ≤ 12 in the past

for each machine
Tminpd minimum PM duration
Topi hourly opportunity time
Tpi PM duration of one PM type
Tpc PM cycle time
Tprci hourly predicted required capacity
Tbd distance table
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Tbp path table
X input feature matrix of ELM training samples
W weight matrix of ELM hidden layer

Acronyms
ACO ant colony optimization
CM corrective maintenance
ELM extreme learning machine
EMS equipment maintenance system
MES manufacturing execution system
MSE mean square error
PCA principal component analysis
PdM predictive maintenance
PM preventative maintenance
TSP traveling salesman problem

Introduction

In recent years, under the wave of artificial intelligence, the
traditional manufacturing industry has undergone tremen-
dous changes. Countries have also formulated corresponding
policies to promote the progress ofmanufacturing and rapidly
develop intelligent manufacturing, such as Made in China
2025 (Wübbeke et al. 2016; Butollo and Lüthje 2017; Li
2018), German Industry 4.0 (Lasi et al. 2014; Lee et al. 2015;
Lin 2018) and American Industrial Internet (van Lier 2014).
As an important part of intelligent manufacturing, product
lifecycle management has attracted the attention of many
researchers (Saaksvuori and Immonen 2008; Stark 2015).

Equipment maintenance refers to all action taken to retain
material in a serviceable condition or to restore it to service-
ability (Venkataraman 2007). In view of product lifecycle
management, maintenance is as important as production to
ensure the quality. The former takes an important role on
keeping and improving system availability and safety, as well
as production quality. The latter is concerned about the use
and synergy of equipment capacity and timely delivery of
products. Figure 1 illustrates several effects of proper and
improper maintenance. The improper arrangement of main-
tenance may affect production efficiency and cause work in
process (WIP) accumulation, especially for the complicated
production system with re-entrant flows, specially semicon-
ductor wafer fabrication facility.

Maintenance is usually divided into preventative mainte-
nance (PM), predictive maintenance (PdM) and corrective
maintenance (CM) (Jezzini et al. 2013). PM refers to the
regular maintenance based on maintenance experience. PdM
is to predict the remaining useful life of the equipment and
other factors based on equipment status, historical mainte-
nance and other information. And maintenance before the
equipment goes down. CM refers tomaintenance after equip-

ment failure. Due to the insufficient informationization of the
factory and the lack of effective monitoring of the equipment
status, the research in this paper focuses on PM.

In term of PM interval, PM can be categorized into peri-
odic PM and non-periodic PM. Periodic PM usually means
that the maintenance cycle is fixed. Periodic PM was first
proposed by Barlow and Hunter (Barlow and Hunter 1960),
they considered two policies: (1) perform PM after certain
hours of continuing operation without failure, (2) perform
PM on the system after it has been operating a total of cer-
tain hours regardless of the number of intervening failures.
Based on this basic model, many researchers have proposed
new research results. Periodic PM was used to achieve the
reliability equipment of the fault-tolerant computer systems
(Yak et al. 1985). Cost was considered in (Canfield 1986),
proposed cost optimization of the PM intervention interval
is obtained by determining the average cost-rate of sys-
tem operation. Time interval of maintenance was considered
in (Boland 1982; Berenguer et al. 1997; Ji et al. 2007),
long time intervals lead to poor maintenance results, and
short time intervals increase maintenance costs. Nakagawa
(1986) considered periodic and sequential PM policies for
the system with minimal repair at failure. Non-periodic PM
can be regarded as dynamic PM, and PM period in dif-
ferent time periods is different, but the period of the same
time period is constant. The reason for using Non-periodic
PM is that the equipment status changes due to real envi-
ronmental factors such as order, maintenance, and repair.
Pereira et al. (2010) presented a Particle SwarmOptimization
approach for non-periodic preventive maintenance schedul-
ing optimization. Fitouhi and Nourelfath (2012) dealt with
the problem of integrating noncyclical preventive mainte-
nance and tactical production planning for a single machine.
Lin et al. (2015) indicated that PM activities performed at a
high reliability threshold can not only significantly improve
the system availability but also efficiently extend the sys-
tem lifetime. The optimization objectives of these articles
focus on reliability and cost evaluation. A good way to
achieve these optimization objectives is to integrate themain-
tenance with the production for developing opportunistic
maintenance preserving conjointly the product-production-
equipment performances.

Group maintenance and opportunistic maintenance are
two popular PMmethods (Zhou and Shi 2019). Group main-
tenance methods are intent to reduce the maintenance cost
and improve the system performance by jointly performing
several PMactivities, they aremore suitable forwork-stations
parallel systems. When the time interval or the number of
damagedmachines reach to a threshold, allwork-stations per-
form maintenance tasks (Ab-Samat and Kamaruddin 2014;
Chalabi et al. 2016). Opportunistic maintenance methods
focus on performing the several components maintenance at
opportunities, such as equipment downtime due to failure and
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Fig. 1 Several effects of proper
and improper maintenance

production plan. Xia et al. (2015) considered both machine
degradation and characteristics of batch production in oppor-
tunistic maintenance. Opportunistic maintenance methods
are more suitable for work-stations serial system (Aizpurua
et al. 2017; Sheikhalishahi et al. 2017). The dependencies
among components are usually classified into three kinds:
economic, stochastic and structural dependence (Keizer et al.
2017), in which the economic dependence has been most
studied in maintenance optimization process. Van Do et al.
(2013) firstly proposed a dynamic group maintenance strat-
egy for multi-component systems with positive economic
dependence, they considered the maintenance opportunities
to optimally update online the group maintenance planning.
They further considered both “positive” and “negative” eco-
nomic dependencies (Vu et al. 2014), the maintenance cost
can be significantly reduced by considering system structure
when the shutdown costs cannot be neglected.

For most PM models, they usually assume that the actual
production process follows a mixed distribution of several
common distributions or use simulation software to model
the actual production process. The data from the actual pro-
duction line are rarely used into the algorithm development
process, which causes gap between the model and the actual
application.

In this paper, a novel model is proposed for optimizing the
PM tasks of a complex re-entrant production system and pre-
serving conjointly the product-production-equipment perfor-
mances. The first part uses an extreme learning machine
algorithm to predict the required capacity distribution among
the machines to pursue a smooth job flow, and find the
opportunistic periods for implementing the PM tasks. The
second part is responsible to calculate the PM interval and
duration, optimize the schedule of the PM tasks, and obtain
the least number of repairmen. The main contributions of
this paper include: (1) uses historical data from actual MES

and EMS to predict opportunities for maintenance tasks to
have less impact on production based on availability, (2)
applies improved ant colony algorithm to optimize staffing
and obtains the least number of repairmen based on cost.

The rest of this paper is organized as follows. In “Prob-
lemdescription” sectionbriefly introduces themanufacturing
system and themaintenance problem. In “Proposed approach
based on availability and cost” section details the proposed
approach, including required capacity prediction, ant colony
optimization (ACO) for PMscheduling and repairmen reduc-
tion. In “Experiments and results” section, the data from real
MES and EMS are used to demonstrate the effectiveness of
the proposed approach, and the results obtained from these
experiments are described. In “Discussion” section gives
some discussion of the paper. Finally, conclusion is drawn
in “Conclusion” section.

Problem description

The problem considered in this paper is to integrate mainte-
nance into production of a complex manufacturing system to
have no or less impact on the production and to optimize the
number of repairmen to save cost.

The manufacturing system can be outlined as Fig. 2.

– There are multiple work-centers in a manufacturing
system. The jobs finished on one work-center will be
transferred to the buffer of another work-center accord-
ing to their process flow file.

– There are one or more than one similar machine in a
work-center. They have the similar process ability, but
their capacity may be different. All the machines in a
work-center utilize the common buffer.
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Fig. 2 Scheme diagram of the
manufacturing system

– When a machine becomes idle, it will decide which job
in the buffer is to be processed or which PM task is to be
implemented.

– The whole manufacturing system is always working,
except for the yearly maintenance. There is no specific
stop for the machines’ maintenance tasks. However, this
is possible to find some periods for each machine when
the work-center have less workload for the opportunities
to implement its maintenance tasks without or with less
impact on the production.

When calculate the opportunities for maintenance tasks,
the assumptions are as follows:

– In the real manufacturing system, the maintenance tasks
are implements at day shift (from 8:00a.m. to 8:00p.m.).
As a result, the plan horizon for maintenance optimiza-
tion is set to 12 hours (from 8:00a.m. to 8:00p.m.). The
planning unit is one hour.

– It is assumed that the interval and duration of mainte-
nance tasks are known by predicting with historical data.
Information related to PM tasks include the PM type, PM
cause, PM name, earliest start time, latest start time, best
start time and duration, etc. That of CM tasks include the
CM type, CM name, start time and duration, etc.

– Due to the processing flow of the jobs is re-entrant, it
is difficult to calculate the required capacity of each
machine with theoretical methods. In this paper, the his-
torical data are utilized fromMES and EMS to predict the
required capacity of each machine (shown in “Prediction
model of the required capacity”) using regression algo-
rithm. Then calculate the opportunities of each machine
(shown in “Opportunities distribution and PM tasks
acquisition” section).

The required capacity in this paper refers to the processing
time period of themachine. The total timeminus the required
capacity and CM time is the opportunity of the machine.
For the case where many chips are processed on the same

machine, the start and end time of these are different. The
gap of earliest start time and latest end time are chosen as
the required capacity, and the repeated time period is only
calculated once.

The optimization of maintenance tasks is to distribute the
maintenance tasks to opportunities adequately. In this paper,
an improved ant colony optimization algorithm is utilized
to optimize maintenance tasks. The detailed information is
shown in “ACO algorithm for distributing PM to oppurtuni-
ties” section.

Proposed approach based on availability
and cost

Description of the proposed approach

The main steps of the proposed approach are outlined as
follows, and the corresponding research framework is shown
in Fig. 3.

1. The data from the real production line are processed first,
such as data cleaning and filtering, feature extraction,
dimension reduction, normalization.

2. The extreme learning machine method is applied to the
processed data to predict the required capacity of the
machine.

3. Extract and analyze historical maintenance data, obtain
cycle and duration ofmaintenance time, use improved ant
colony algorithm to assign maintenance tasks to oppor-
tunities, and optimize maintenance personnel.

Predictionmodel of the required capacity

The data from MES that record the production related data,
such as facility code, start time, end time, and data fromEMS
that record themaintenance related data, such as facility code,
actual start time, actual end time, activity cause.
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Fig. 3 The research framework
of the proposed approach

Fig. 4 The Structure of ELM

Thepredictionmodel of required capacity of eachmachine
is constructed by the approach of extreme learning machine
(ELM), which is an emerging feedforward neural network
learning method that was proposed by Huang et al. (2006,
2011). ELM is a three-layer network including input layer,
hidden layer and output layer. It randomly generates input
weights and biases of the hidden layer. At the same time, the
unique optimal solution can be obtained by setting the num-
ber of neurons in the hidden layer without any adjustment
during the training process. Compared with the traditional
feedforward neural network training methods, ELM has the
advantages of fast training speed, global optimal solution
and good generalization performance. Therefore, ELM is
adopted as the training algorithm to construct required capac-
ity prediction model.

The structure of ELM is presented in Fig. 4, wherewi j and
v jk are weight parameters. Therefore, the required capacity
in the current state (i.e., online input data) is predicted.

Let us consider a regression problem of N training sam-
ples with m features X = [x1, x2, . . . , xi , . . . , xN ]T , 1 ≤
i ≤ N , xi = [xi1, xi2, . . . , xi j , . . . , xim], 1 ≤ j ≤ m and n
categories T = [t1, t2, . . . , ti , . . . , tN ]T , 1 ≤ i ≤ N , ti =
[ti1, ti2, . . . , ti j , . . . , tin], 1≤ j ≤n.

Suppose hidden layer has L nodes and all weights
and biases on these nodes are generated randomly, W =
[w1, w2, . . . , wi , . . . , wm]T , 1≤ i ≤m, wi = [wi1, wi2, . . . ,

wi j , . . . , wi L ], 1 ≤ j ≤ L , B = [b1, b2, . . . , bi , . . . , bN ]T ,

1≤ i≤N , bi = [bi1, bi2, . . . , bi j , . . . , biL ], 1≤ j ≤ L .
Therefore, the output of hidden layer is H = g(X ·W+B),

where g is an activation function that is sigmoid func-
tion 1

1+e−x most popularly. Other activation functions have

tanh = ex−e−x

ex+e−x , Relu = max(0, x), etc. The mathematical
model of ELM can be described as:

Hβ= T (1)

where β is the weight matrix of the output layer, the least-
square solution of Eq. (1) is indicated by Eq. (2):

β=H+T=
{
HT (HHT )

−1
T , N ≤ L

(HT H)
−1

HT T , N ≥ L
(2)

where H+ is the Moore–Penrose generalized inverse of the
matrix H . When considering optimization of ELM by using
parameter regularization, the result can be obtained as fol-
lows:

β=H+T=
{

HT (HHT+ I
C )

−1
T , N ≤ L

(HT H + I
C )

−1
HT T , N ≥ L

(3)

where C is a parameter that needs to be adjusted, I is a
identity matrix.
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Table 1 Some inputs of the ELM

Variable Meaning

x1, . . . , xm The average of the difference between the processing start time and the sampling start time in the selected
sampling time for m machines

xm+1, . . . , x2m The standard deviation of the difference between the processing start time and the sampling start time in
the selected sampling time for m machines

x2m+1, . . . , x3m The num of processing in the selected sampling time for m machines

x3m+1, . . . , x4m The average of the difference between the processing finish time and the sampling start time in the
selected sampling time for m machines

x4m+1, . . . , x5m The standard deviation of the difference between the processing finish time and the sampling start time in
the selected sampling time for m machines

x5m+1, . . . , x6m The average of the difference between the maintenance start time and the sampling start time in the
selected sampling time for m machines

x6m+1, . . . , x7m The standard deviation of the difference between the maintenance start time and the sampling start time in
the selected sampling time for m machines

x7m+1, . . . , x8m The num of maintenance in the selected sampling time for m machines

x8m+1, . . . , x9m The average of the difference between the maintenance finish time and the sampling start time in the
selected sampling time for m machines

x9m+1, . . . , x10m The standard deviation of the difference between the maintenance finish time and the sampling start time
in the selected sampling time for m machines

Some inputs of the ELM are described in Table 1, there
may be different depending on the actual problem. The cor-
responding output is the required capacity of each machine.

The ELM weights are determined by using grid search.
The procedure is shown in Algorithm 1.

Algorithm 1 The weight determination of ELM
Require: input and output of train set Ti , To, input and output of val-

idation set Vi , Vo, number of hidden nodes L , parameter of ELM
C , max of parameters Maxc, Maxl , minimum mean squared error
(MSE) msemin , weight Ŵh, Ŵh , MSE of predicting msepred

Ensure: hidden layer weight Wh , output layer weight Wo
1: initialize: Set L ← 10,C ← 1,msemin ← 1e8, Maxc ←

1e6, Maxl ← 6000
2: while C < Maxc do
3: initialize: Set L ← 10
4: while L < Maxl do
5: Calculate weights: Ŵh, Ŵh ← ELM_train(Ti , To,C, L)

6: Calculate MSE of predicting: msepred ←
ELM_predict(Vi , Vo, Ŵh, Ŵh)

7: if msepred < msemin then
8: Update weights: msemin ← msepred ,Wh ← Ŵh,Wo ←

Ŵo

9: L ← L + 10
10: C ← C · 2

Opportunities distribution and PM tasks acquisition

Opportunities distribution

Themain steps of finding opportunities are shown as follows:

1. Calculate CM duration of day shift Tcds for each
machine using historical CM data. For CM, average CM
cycle time Tcc and CM duration Tcd of each machine can
be obtained. In order to simplify the calculation, the actual
CM distribution is not simulated and directly assign them to
the day shift (12h), the unit of these variables is h(hour).

Tcds = 12

Tcc
· Tcd (4)

2. Predict the hourly required capacity of each machine
Tprci , 1≤ i ≤ 12. For example, the data of 8:00p.m. yday-
8:00a.m. are utilized to predict the required capacity of each
machine from 8:00a.m. to 8:00p.m., 9:00a.m.–9:00p.m,…,
7:00 p.m.–7:00a.m. tomorrow. Details on calculating hourly
required capacity of each machine can be found in “Predic-
tion result”.

3. Calculate the hourly opportunity Topi , 1≤ i≤ 12. First,
in order to finish the CM task early, distribute the Tcds in the
initial free time to obtain the opportunity time of each hour.

Topi = 1 − Tcdsi − Tprci , 1≤ i≤ 12 (5)

Next, determine whichmachine take which period as their
opportunities for maintenance according to optimization
objectives. If two or more consecutive hour have opportu-
nities, the opportunities are preferred to be integrated into a
bigger one.

PM tasks acquisition

The main steps of obtaining PM tasks are shown as follows:
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Fig. 5 PM day determination

1. Calculate the average PM cycle time Tpc, maximum
and minimum PM duration Tmaxpd , Tminpd . A machine may
have different maintenance tasks that have different types
and reasons, so subdivide the maintenance according to the
maintenance types and maintenance reasons. The Tpc and
PMdurationdistributionofmaintenance after subdivision are
obtained. According to PM duration distribution, set the con-
fidence interval (default 0.95) to get the Tmaxpd and Tminpd

for avoiding false data interference.
2. PM day determination. According to Tpc of subsystem,

if day satisfies Eq. (6), then will determine which PM need
to be completed on which day. The unit of these variables is
h(hour).

floor((dy + 1) · 24/Tpc) − floor(dy · 24/Tpc) ≥ 1 (6)

where floor is floor function, dy is the index of day, starting
from 0.

Just as shown in Fig. 5, floor((2+1)×24/60)−floor(2×
24/60) ≥ 1, therefore there will be PM on the second day.

3. Determine PM duration Tpd . According to PM day
determination, for a PM task that will be performed on a
certain day after subdivision, corresponding PM duration is
given by Eq. (7).

Tpd = Tminpd + Tmaxc−Tc
Tmaxc−Tminc

· Tpdd

Tpdd = Tmaxpd − Tminpd
(7)

where Tmaxc is the maximum sum of Tprci , 1 ≤ i ≤ 12
in the past for each machine. Tminc is the minimum sum of
Tprci , 1 ≤ i ≤ 12 in the past for each machine. Tc is the sum
of Tprci , 1 ≤ i ≤ 12 for each machine.

Therefore, if the sum of predicted required capacity is
large, PM duration will be small. That is, less time is spent
on maintenance, however it’s not less than the Tminpd .

Now, the PM task and PM duration that needs to be done
on a certain day has been determined, and the opportunity
time has also been obtained. Tpi is PM duration of ith PM
task after subdivision, 1 ≤ i ≤ Np, Np is the number of PM
tasks that need to be done according to Eq. (6). Next step is
to distribute the PM to opportunity reasonably.

ACO algorithm for distributing PM to opportunities

Ant colony optimization (ACO) algorithm is an iterative opti-
mization method (Colorni et al. 1992), which is mainly used
to solve the traveling salesman problem (TSP) (Reinelt 1991;

Valdez et al. 2020). Here, the ACO algorithm is improved for
maintenance scheduling.

Optimization objectives

Two optimization objectives are considered:
1. The first is availability, tominimize the sumof quotients

of Tpi and Topi as Eq. (8). Note that Tp and Top on the same
machine should correspond. During optimization, Tp cannot
be assigned to Top of other machines.

min

Np∑
i=1

Tpi

Topi
(8)

where i is ith PM task.
The reason for choosing this objective is to minimize

the impact of maintenance on production and to ensure that
maintenance is completed as much as possible during oppor-
tunities.

Tp1
Top1

+ Tp2
Top2

+ Σ <
Tp2
Top1

+ Tp1
Top2

+ Σ

TP1Top2 + TP2Top1 < TP2Top2 + TP1Top1
Tp1(Top2 − Top1) < Tp2(Top2 − Top1)

(9)

whereΣ is the sum of other quotients, supposeΣ is constant.

Just as Eq. (9), when Top2 > Top1 , Tp2 > Tp1 ,
Tp1
Top1

+
Tp2
Top2

<
Tp2
Top1

+ Tp1
Top2

. That is to say, this objective enables

small PM tobe placed in small opportunity.While largePM is
placed in small opportunity, and the probability of exceeding
the opportunity is greater than that of large PM is placed in
large opportunity. This will ensure that PM is completed as
much as possible during opportunity. And leave the largest
percentage of opportunity time for the next PM scheduling,
because the actual prediction is always error.

Of course, there are also cases of
Tp1
Top1

> 1 and
Tp2
Top2

> 1.

At this time, the impact of large PM on small opportunity
time will have a greater impact on production than. Because
a large Tpi has a greater probability of affecting i+2 and later
plans, while a small Tpi may only affect i+1 plan. Therefore,
the above optimization objective is eventually adopted.

2. The second is cost, to minimize the number of mainte-
nance personnel.

To simplify the scheduling optimizationmodel. This paper
assumes that a maintenance personnel accepts all mainte-
nance tasks for one or several devices, that is, maintenance
personnel can perform different maintenance tasks on a
devicewithin the same time period. This paper does not allow
maintenance personnel to perform maintenance on different
devices within the same time period. This is because it takes
time for maintenance personnel to switch between different
devices. On the one hand, this part of the time is difficult to
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Fig. 6 Bottleneck machine (case1)

consider. On the other hand, this can improve maintenance
efficiency.

Implementation steps

Some steps for realizing the improved ACO algorithm are
shown as follows:

1. Determine the search space of the ACO algorithm.
From above, the PM tasks and opportunity time of each
machine are obtained, the unit is h(hour). The number of
PM tasks Np is the number of nodes that are need to be
maintained at day shift in the search space, it should be
noted that one machine may have multiple PM tasks.

2. Determine the number of the ants. The number of ants
Nant is set to be the range of 50–90% of Np, this num-
ber is obtained through the analysis of the results of the
iteration.

3. The termination conditions. Two kinds of termination
conditions are set. One is the maximum number of itera-
tions, this number is obtained through the analysis of the
results of the iteration. The other is the minimum change
of the minimum objective values in two consecutive iter-
ations.

4. Initialization of each artificial ant (first optimization
objective). First, a distance table Tbd , path table Tbp
is built for each artificial ant (indexed with x), denoted
by Tbdx and Tbpx , there are two cases when initialize
the Tbdx . One is the bottleneck machine as Fig. 6.

For PM task i , opportunity time i, j , ant x :

Tbdx(i, j) = Tpi
Topi, j +Topi, j+1+···+Topi,z

, i <= Np, z <= 12

(10)

where j is the period of time, ranging from 1 to 12, z is the
smallest index that Tpi can be placed. If the sum of opportu-
nity time (i, j), (i, j +1), . . . (i, 12) is less than the value of
PM task i , the value of Tbdx(i, j) is set to 1e6, in other words,
the opportunity time i, j isn’t suitable for PM task i . The
purpose of this calculating is to merge several opportunities
time together.

The other case is non-bottleneck machine as Fig. 7.

Fig. 7 Non-bottleneck machine (case2)

For PM task i , opportunity time i, j :

Tbdx(i, j) = Tpi
Topi, j

(11)

Then, the start point is randomly distributed to each arti-
ficial ant. The node distributed to ant x is added to Tbpx ,
and the Tbdx(i, j) is added to total distance Sdx . If a machine
contains multiple PM tasks a day, update the distance of next
PM task i + 1 for opportunity time i, j that have placed PM
task i . The rule of updating is the same as above.

5. Optimize the number of repairmen (secondoptimization
objective). For different machines to be maintained at
the same period, punish them to optimize the number of
maintenance personnel. Suppose Llopx is the times list of
last hourly overlap for ant x , in other word, is the number
list of different machine being maintained at the same
period per hour and Lopx is now. Therefore, the Sdx is
updated as:

Sdx = Sdx + Tbdx(i, j) +Lopdx( j)
Lopdx( j) =a · (Lopx( j) −Llopx( j) ), Lopx( j) =Llopx( j)

(12)

where a is a parameter, set to 100 in this paper.
When an ant x finishes the scheduling task, the max of
Lopx is added to Sdx ,

Sdx = Sdx + b · max(Lopx ) (13)

where b is a parameter, set to 200 in this paper.
6. The pheromones initialization. The initial pheromones

on the arcs are set as a small positive number, such as 1.
Then choose next node according to the so-called pseu-
dorandom proportional rule, given by

pi,z(t) = τα
i,z(t)η

β
i,z

12∑
j=0

τα
i, j (t)η

β
i, j

, ηi,z = 1
Tbdx(i,z) (14)

where τα
i,z(t) is pheromone for PM task i and opportunity

time i, z . α, β are parameters, usually set α to 1, β to 2.
7. Pheromoneupdating.Whenall ants complete the schedul-

ing tasks, update the pheromone as:
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τi, j (t + 1) = ρτi, j (t) +
Nant∑
x=1

Δτ x
i, j , Δτ x

i, j = Q/Sdx

(15)

where Q is a parameter, set to 0.001 in this paper. The
deposited pheromone is discounted by a factor ρ, which
results in the new pheromone trail being a weighted aver-
age between the old pheromone value and the newly
deposited pheromone.

8. When iterations of all ants are completed, then need to
save the ants xb with the shortest walking distance. And
themaxof Lopxb

is the number of repairmen that company
want i.e. maximum number of maintenance personnel in
the same time period.

repairmen = max(Lopxb
) (16)

Experiments and results

The experimental data of the actual production line come
fromWeEn semiconductor multi-workstation system. WeEn
Semiconductor is a large enterprise, has 7 work-centers (dif-
fusion, dry etcher, evap, implanter, photo, test, wet etcher),
153 available machines, and 29 repairmen. Historical data
contains production and maintenance data. The period of
empirical study is 2017-01-01 to 2018-06-30. The amount of
data in the work-centers and historical maintenance is shown
in Fig. 8.
where “job_history” is history data of maintenance, “diffu-
sion, dry etch, evap, implanter, photo, test, wet etch” are
history data of production for different work-centers. The
sum of maintenance data and production data can reach mil-
lions.

Maintenance data contain job information and time infor-
mation. The main fields of job information contain job
number, facility code, facility type, activity type, activity
cause and job priority. The main fields of time information
contain raised date, actual start date, actual end date. The

Fig. 8 The amount of data in the work-centers and historical mainte-
nance

main fields of Production data contain facility code, track in
time, track out time, track in operator.

The next step is to process the data. Taking 20% of the
data as the test set and 80% as the train set. The evalua-
tion of the experimental results is divided into two parts:
1) the evaluation of the prediction result of required capac-
ity, the metrics are Mean Squared Error (MSE) and Root
Mean Squared Error (RMSE), 2) the scheduling result of the
maintenance staff, comparedwith the actual number ofmain-
tenance staff. The MSE and RMSE in this paper are defined
in Eq. (17):

MSE = 1
M ·N

M∑
m=1

N∑
n=1

(Tm,n − T̂m,n)
2

RMSE = √
MSE

(17)

where T is actual capacity matrix, each row of the matrix
represents the capacity for all machines a day in the different
time periods, each for the matrix represents the capacity for
a machine all days in the same time period, T̂ is predicted
capacity matrix, M, N are the number of rows and columns
of the matrix.

All the experiments were performed on a PC with Intel
Core Intel i5-7300HQ CPU@2.50GHz, 8GB RAM and
python3.6.

Data processing

The steps of processing the data include data cleaning, sam-
pling time selection, feature extraction (selection of feature
extraction sources, dimension reduction), normalization and
regression models. Based on the basic settings, change the
settings one step at a time to find the relatively optimal set-
tings for processing data. The basic settings are: data cleaning
method (discard error data), sampling time (8:00p.m. yday-
8:00a.m.), feature extraction source (work-center feature:
the features shown in Table 1 are machine-oriented, and
the work-center feature is based on the work center. The
extracted features are similar to those in Table 1), dimension
reduction (principal component analysis (PCA)), normaliza-
tion (global normalization), regression method (ELM with
sigmoid activation function). The experiment uses 3 times
5-fold cross validation, and the ELM parameters are deter-
mined by using grid search, the range of ELMparameter C is:
[2e-10, 2e-9,…, 2e9, 2e10], and the range of ELM parameter
L is: [100, 200,…, 3900, 4000].

Data cleaning

In addition to the general data missing and data duplication,
there is a special kind of data error: erroneous time stamp, as
shown in Fig. 9:
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Fig. 9 Erroneous time stamp

(a)

(b)

Fig. 10 Parameter results of two data cleaning methods

For this type of error, there are two processing methods:
the first discards part of the data (the second row of data in the
Fig. 9), and the second merges the data, taking the minimum
start time and the maximum finish time.

Figure 10 shows how the mean square error (MSE) of
the prediction varies with the ELM parameters under differ-
ent cleaning methods, the abscissa is log(C). The minimum
MSE of discarding data is 5.310087, the minimum MSE of
merging data is 5.588556, there is no significant difference
between the twomethods. The cleaningmethod with the best
prediction effect is discarding data.

Fig. 11 Prediction results (MSE) of different sampling times

Sampling time

Sampling time refers to the sampling period, which deter-
mines the original input data of ELM algorithm. The starting
point and duration of sampling time determine the sampling
time. In this paper, different starting points and durations are
tried. Figure 11 shows the prediction effect of different sam-
pling times. Yellow part is the predicted MSE, and blue part
is the duration for different sampling times.

From Fig. 11, several points can be found:

– With the same sampling duration, the prediction effect is
worse when the starting point of sampling time is earlier.

– Before a specific sampling duration, the increase of dura-
tion can increase the prediction effect.

The final selected sampling time is 8:00a.m. 2days ago-
8:00a.m.

Feature extraction

Feature extraction source determines the original input fea-
tures of the ELM algorithm. dimension reduction algorithm
reduces the size of the original input features by extracting
features that are relatively important to the algorithm, thereby
reducing the runtime of the algorithm. In this paper, PCA
dimension reduction algorithm are used. Figure 12 shows
the prediction effect of different feature sources.

From Fig. 12, several points can be found:

– The more features are extracted after subdivision, the
better the effect is.

– The increase of feature sources does not necessarily
improve the prediction effect.

The final selected feature source is machine feature.
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Fig. 12 Prediction results (MSE) of different feature sources

Fig. 13 Prediction results (MSE) of different normalization methods

Normalization

The normalization operation transforms the data after dimen-
sion reduction to a decimal ranging from 0 to 1. Normal-
ization can speed up the algorithm’s convergence and avoid
excessive values. Figure 13 shows the prediction effect of
different normalization methods. Column normalization is
normalization method that only normalize column vectors.

From Fig. 13, several points can be found:

– There is no significant difference between the prediction
results of no normalization and global normalization.

– Column normalization reduces prediction effect.

The final selected normalization method is global normal-
ization.

Regression methods

In order to predict the continuous required capacity, this paper
has tried some regression methods. Figure 14 shows the pre-
diction effect of different regression methods.

The abscissa lists some common regression methods, sig-
moid ELM is ELM with sigmoid activation function, sin
ELMisELMwith sin activation function, linearELMisELM
with linear kernel function, rbf ELM is ELM with Radial
Basis Function(rbf) kernel function, poly ELM is ELM with

Fig. 14 Prediction results (MSE) of different regression methods

Fig. 15 The result of predicting required capacity for every machine at
12h

polynomial ELM, SVM is support vectormachine, Decision-
Tree is decision tree, KNN is k-NearestNeighbor algorithm.

From Fig. 14 and experiment procedure, several points
can be found:

– The running time of SVM, DecisionTree and KNN is
very long, and the prediction effect is not outstanding,
therefore they are excluded.

– The prediction effect of different ELM algorithms is sim-
ilar, and the best one is rbf ELM.

The final selected regression method is rbf ELM.

Prediction result

Figure 15 shows the result of predicting required capacity for
every machine at 12h.
where x-axis is 12h before and after each machine, such as 0
is machine1 [8:00a.m.–8:00p.m.], 1 is machine1 [9:00a.m.-
9:00p.m.],…, 11 is machine1 [7:00p.m.–7:00a.m.], 12 is
machine2 [8:00a.m.–8:00p.m.],…, machine2 [7:00p.m.–
7:00a.m.]…Each machine has 12 data, and there are the data
for 153 devices. The y-axis is predictive required capacity of
each machine at 12h. The best predictive RMSE is 2.35,
predictive error is within 20% of actual.
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According to machine required capacity at 12h, the
required capacity for every hour can be obtained. Suppose the
required capacity of each hour [8:00–9:00, 9:00–10:00,…,
19:00–20:00,…,6:00–7:00] as x1, x2, . . . , x11, x12, . . . , x22, x23,
the result of predicting as y1, y2, . . . , y11, y13.

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x1 + x2 + · · · + x11 + x12 = y1 1)
x2 + x3 + · · · + x12 + x13 = y2 2)
x3 + x4 + · · · + x13 + x14 = y3 3)
...

x12 + x13 + · · · + x22 + x23 = y12 12)

(18)

There are only 12 equations, but have 23 unknown vari-
ables, the equation has an infinite number of solutions,
therefore set x12, x13, . . . , x22, x23 = y12/12,

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x12 = y12/12
x11 = y11 − 11 · x12
x10 = y10 − x11 − 10 · x12
...

x1 = y1 − x2 − · · · − x12

(19)

The hourly data are calculated separately in order to
make the data distribution relatively uniform and no sudden
changes occur in the processing.

Ant colony optimization

Parameter determination

The number of ants and iterations are two parameters deter-
mined by trying multiple sets of parameters. The number of
ants increases from 50% to 90% of pm_num with an interval
of 5%, determined by analyzing the effect of optimization.
The number of iterations increases from 50 with an inter-
val of 10. When it increases to a certain number, the effect
of iterations doesn’t change, then the certain number is the
number of iterations.

Optimization result

(1) Actual scheduling
Actual scheduling is schedule that required capacity,

opportunity and PM total from actual data. The improved
ACO algorithm be used to redistribute PM to opportunity.

Our scheduling time is 480days from January 1. The num-
ber of ants is 50 and the number of iterations is 50. Figure 16
shows the Gantt chart of the actual scheduling results of
devices Stripper#1 (the actual number of devices is 153, and
all devices cannot be displayed). Black is production, blue
is maintenance, and pink is opportunity. It can be seen that
maintenance can be reasonably allocated to opportunities.

Fig. 16 Actual scheduling Gantt chart

Fig. 17 Predictive scheduling Gantt chart

The result of the scheduling is the number of repairmen
reduced from 29 to 23, and haven’t “1e6” situations i.e. all
PM can be placed reasonably. Compared with the previous
routine scheduling, our algorithm optimizing the staffing and
reducing the number of maintenance personnel.

(2) Predictive scheduling
Predictive scheduling is schedule that required capacity,

opportunity and PM total obtained from historical data as
mentioned earlier.

The parameter and scheduling time are consistent with
the actual scheduling. It should be noted that the predic-
tive scheduling is scheduled for the next day. The predictive
scheduling only has day shift to improve the efficiency.
Because of inconsistency with people’s habits and lack of
supervision, the maintenance efficiency of night shift is rel-
atively low.

Figure 17 shows the Gantt chart of the predictive schedul-
ing results of devices Stripper#1. Black is production, blue
is maintenance, and pink is opportunity. It can be seen that
maintenance can be reasonably allocated to opportunities.

The result of the proposed scheduling method is the num-
ber of repairmen reduced from 29 to 24, and have little “1e6”
situations, it means that some opportunity can’t place PM
task. In other words, some production works need to be
delayed.
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Discussion

Formost PMmodels, the data come from the simulation envi-
ronment, and the actual production line data are rarely used
into the algorithm development process, which causes gap
between the model and the actual application. The reasons
for this situation are: (1) the level of informatization of the
factory is insufficient to obtain complete data, (2) the privacy
of the factory, unable to provide data, (3) the actual data is not
pure and missing, cannot be used, (4) the actual production
line is too complicated to verify the model, etc.

This paper ignores various complex assumptions and
develops a predictive model based on actual production line
data. It schedules maintenance personnel, and optimizes the
configuration of maintenance personnel reasonably. Com-
pared with other models, this model can be more directly
applied to the actual production environment. Experimental
results verify the effectiveness of our method. However, the
above problems also affect this paper. This paper only uses a
real data set to verify the model, and the model’s prediction
accuracy still cannot reach an error of less than 10% when
all parameters are optimal at present, which can be improved
in future research.

Another issue in this paper is that the training time is rela-
tively long, due to the huge amount of data and dimensions. It
is difficult for other machine learning algorithms to improve
training speed. In recent years, the rapid development of
quantum computers and quantum algorithms has made it
possible to develop quantum machine learning. Quantum
computers can solve specific problems such as search and
optimization more effectively than classical computers. In
future research, we can try quantum algorithms to speed up
the training of the model.

Conclusion

In this study, a novel model is proposed to optimize the
maintenance tasks and preserve conjointly the production-
equipment performances for a re-entrant production system.
Superior to other algorithms which were mainly validated in
simulation environment, this study could optimize staffing
and reduce costs in the actual manufacturing system.

However, because the data comes from the real production
line, which is greatly interfered by human beings and has
great randomness, the prediction effect is not very ideal, this
part can be improved in the future research. The second part
to be improved is that although PM simulates the distribution
of the real production line, it only simply selects the mean
value for calculation, and later historical data can be selected
for prediction. Finally, wewill try quantummachine learning
to speed up the training of the model.
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