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A B S T R A C T   

In this paper, a wireless sensor network (WSN) is combined with Convolutional Neural Network (CNN) forming a 
hybrid framework to detect the pollution state in high voltage insulators. The WSN is formed by the collection of 
sensor readings from each high voltage insulator over the transmission tower. The collected sensor readings from 
the sensor network is sent to the processing unit or detection unit, where CNN is used for the purpose of detecting 
the partial discharged high voltage insulator. The CNN is used with partial discharge diagnosis model to detect 
the dischargers in high voltage insulators. The extraction of relevant features from the CNN helps to improve the 
detection. The experimental validation are conducted on the proposed model with collected training datasets and 
real time testing datasets. The proposed method is compared with existing models to test the partial discharges in 
high voltage insulators, namely Artificial Neural Network, Fuzzy and Ant Colony Optimization. The result shows 
that the proposed method is effective in detecting the partial discharges than the existing methods in terms of 
False Acceptance Rate and Missing Detection Rate.   

1. Introduction 

Erosive discharges, which can cause the failure of HV components 
such as cables, capacitors and inlet coils, also are referred to as Partial 
Discharge (PD) in high voltage technology. In the power industry, par-
tial discharge appearing both inside and outside isolating materials is a 
persistent issue. In faults such as cavities inside an insulation material, 
an inner partial discharge is initiated while an external partial discharge 
at the metal insulator interface occurs. Both types of PD i.e. external and 
internal are of the same type. The town send electron avalanches can 
develop into micro- sparks and streamers [2]. 

One of the main reasons for the isolation reduction between ground 
and phase in high voltage transmission lines is the pollutants accumu-
lation on the HV insulator surface. The pollutants under high humidity 
form a conducting layer on the surface of the isolator. The non-uniform 
flow of leakage current forms dry bands in the conductive layer that 
concentrates on the electric field, which leads to partial discharges at 
these conductive layer. Partial discharge phenomena can increase their 
intensity and rate up to the full discharge of a flashover from line to 
ground. 

One of the most important problems for power transmission is the 

pollution flashover observed with insulators that are used in high 
voltage transmission. The problem is very complex because of several 
aspects such as modeling difficulties with complex isolator shapes, 
different pollution densities across regions. The uniform distribution of 
pollution to the surface of the isolator and unknown effects on pollution 
from humidity [3]. 

One of the guiding factors in the dimensioning and design of insu-
lation on transmission lines is the performance of flashovers in polluted 
conditions. Therefore, flashover on the polluted insulator is a major 
problem that power engineers need to resolve [3]. 

The current leakage signal has sinusoidal waveform, which is 
superimposed on the partial discharges with intermittent and short 
pulses. From previous experiments, the speed, amplitude and duration 
of the sinusoidal pulses are directly linked to the insulator string 
pollution. It has been found that the classification of rate and amplitude 
of short pulses superposed on the current leaking waveform is consid-
ered as a means to deduce the status of insulator pollution [4].Some 
static and dynamic modeling were developed in the literature [5-20] to 
predict the splashing voltage of polluted isolators by making certain 
assumptions or omissions. However, there exist very few machine 
learning or artificial intelligence algorithms like artificial neural 
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network (ANN), Ant Colony Optimization (ACO) and fuzzy systems to 
predict or classify the discharges, which is likely to occur. 

The proposed idea is inspired from Fontana, E., et al. (2012), where 
sensor system network is utilized to monitor the state of pollution 
remotely on HV insulators through satellites. However, the process is 
takes enormous amount of resources to establish link with satellites and 
back to the ground unit for processing. Hence, to reduce the usage of 
resources and to improve the process of monitoring the state of pollution 
in high voltage insulators, the present study uses the concept of machine 
learning to detect the presence discharges or state of pollution caused by 
high voltage insulators. To have an effective utilization of resources and 
to improve the monitoring and processing ability, the proposed system 
integrates the wireless sensor system in the tower [1] and the concept of 
deep learning to monitor and detect the state of pollution in high voltage 
insulators, respectively. 

The outline of the paper is presented as follows: Section 2 discusses 
the framework for monitoring and detection of partial discharges or the 
state of pollution. Section 3 discusses the concept of deep learning i.e. 
Conventional Neural Network (CNN) to detect the state of pollution. 
Section 4 provides the validation of the proposed work. Section 5 con-
cludes the paper. 

2. Proposed method 

The proposed method uses wireless sensors system to collect the real- 
time data of partial discharge from the HV insulator surface where the 
architecture of which is given in Fig. 1. Further, it uses temperature and 
humidity sensors to collect the environmental temperature and humid-
ity, respectively. 

2.1. Monitoring unit 

The optical sensor unit consists of an 840-nm light-emitting diode 
(LED) connected with a pigtail configuration terminated in a ferrule- 
type fiber-optic connector. A direct current of 300 mA with pulsed 
current amplitude of 1A is supported by the optical sensor. This is 
connected in parallel with HV insulator, which lies at closest distance to 
the ground terminal and it helps in shunting the leakage current through 
it. The shunting of leakage current is carried out by grounding the LED 
cathode with tower and anode with second insulator cap. Thus the 
positive excursions are recorded by the system [1]. 

The collected signal from LED sensor, temperature, lightning and 
humidity sensor is sent to processing module that has the ability of 
detecting the partial discharge in HV insulators. In existing system, a PIN 
photo detector is used for detection with four operational amplifier with 
individual adjustable gain. However, the complications associated with 
circuitry is avoided in the proposed method. The proposed detection 
module has a Convolutional Neural Networks (CNN) that extracts the 

relevant features required to detect the presence of partial discharge in 
HV insulators. The CNN detects the PD by setting the inputs at the 
training stage. These inputs at training stage consist of both partial 
discharge and non-partial discharge high voltage insulators inputs. The 
CNN is allowed to train using these inputs and finally, testing is carried 
out to detect the partial discharge in real time environment. 

2.2. Convolutional neural network 

As illustrated in Fig. 2, CNN unit consists of two parts. One of them is 
responsible for extracting features and includes the input layer, convo-
lution layers and pooling layers. Feature extractors are convolutional 
and pooling layers stacked in the network by layers. The second part 
performs classification using fully connected hidden layers and an 
output layer. The functions obtained by the last pooling layer as input 
and classification tasks in this part are fully connected layers. 

The input layer receives data to be classified and the convolutional 
layer then identifies the local characteristics of the inputs collected from 
sensor unit and saves them as a map. As shown in Fig. 2, the receptive 
field establishes a connection between the input layer and the con-
volutional layer. A square weight matrix whose dimensions are signifi-
cantly smaller than that of the input is a responsive field. A feature map 
contains node(s) connected by the receptive field to a particular input 
area. The receptive field runs along the horizontal and vertical axes 
across the input zone and performs convergence operation as shown in 
Eq. (1). 

yi = σ
(
∑Fr

r=1

∑J

c=1
WrcX(r+iSr )(c) + b

)

, 0 ≤ i ≤
K = Fr

Sr
(1)  

where 

y1 is represented as the output value of feature map node; 
H is represented as the vertical dimension or the height of input data, 
W is represented as the horizontal dimensions or width of the input 
data; 
F is represented as the width size and height of the receptive field and 
S is represented as the stride length or the step size. 
(r+iS)(c+jS) is represented as the input data element with coordinate 
(r + i × S, c + j × S), 
wrc  is represented as the weight positioned at (r, c) that relies on the 
receptive field, 
b is represented as the bias, respectively. 
σ is represented as the nonlinear activation function that helps in 
extraction of features from the input data. 

The extraction of features are carried out with rectified linear unit 
(ReLU). All feature map nodes share the same weight in the CNN 

Fig. 1. Proposed Module for Monitoring and Detection.  
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architecture. In other words, a single weight matrix is used in the 
reception field for creating a feature map. It involves attempting to find 
a similar characteristic feature across the whole input field in the 
receptive field. In a convolutional layer, several characteristics are 
generated in general to identify different characteristics by applying the 
receptive field with different weight matrices iteratively. 

In Eq. (1), the computation involves the reduction of input size to in 
convolutional layer that results in the dimensional reduction as the 
convolutional layer stack goes deeper. To preserve the result of the 
processing of the input at the same dimension, a size padding is usually 
added at both ends and the step length is set to one. The pooling layer 
generally lies behind the convolutional layer, which reduces the size of 
the function mapping via the pooling field and at the same time creates a 
condensed characteristic map by selecting location invariant charac-
teristics. The map size is reduced using max-pooling. 

The information of the condensed feature maps in the last pooling 
layer is transferred to the classification part [21-23]. In this part, the 
nodes of the first hidden MLP layer are connected to each of the nodes 
constituting the condensed feature map. 

Finally, the output layer, which comprises the same number of nodes 
as classes, generates the probability score of each class. The model 
performs the classification to a higher class score in particular. In the 
classification part can also be used to improve the model’s generaliza-
tion performance. At every workout the dropout skips the update on the 
weight of certain hidden nodes. It is known to be effective in preventing 
networks from overpowering data training. 

2.3. Diagnosis of partial discharge using CNN 

The receptive field weights and the first convolutional layer feature 
map can be identified in the CNN using the time and variable informa-
tion that is essential for detection of partial discharge. During the CNN 
training stage, weights are updated to minimize the detection error 

using gradient descending method. The greater the magnitude of a 
certain weight, larger is the contribution of previous nodes for extracting 
the classification features. For CNN, the importance of a specific sensor 
reading variable is represented in every weight column in the receptive 
field of the first convolutional layer. Hence, the contribution level of 
variable (CLV) of each sensor variable (j) is defined as: 

CLV(j) = 100
(

d(j) −
̅̅
j

√
med(d)

)+
(2)  

where, 

d(j) =
⃒
⃒
⃒w

′

j − med(w
′

)

⃒
⃒
⃒

w′

j =
1
Fr

∑Fr

r=1

(
wrj
)+

w′

jis represented as the mean value of positive weights of a sensor var-
iable j with relevance to jth receptive field 

w′ is represented as the set of weights that varies between w1, w2, …, 
wjdj. is represented as the difference between the mean value w′

jand 
median value of w′d is represented as the set of variables d1, d2,…, dj. 

If the value of dj is larger than median value of variable j, a high score 
is assigned by the measure in Eq. (2) to variable j, which forms an 
important variable for feature map. It discards the statistical assumption 
to distribute the mean weights. The total number of variables selected is 
controlled by √j in Eq. (2) and the increase in the total number of 
variables is suppressed by the increasing number of sensor variables of 
high CLVs. 

In CNN, if a single sensor variable has a positive contribution level of 
variables, then a single feature is selected by the receptive filed for 
detection of partial discharge. If multiple sensor variables have positive 
contribution level of variables in another receptive field, the receptive 

Fig. 2. Convolutional neural network.  

P. Govindaraju and C. Muniraj                                                                                                                                                                                                              



Microprocessors and Microsystems 79 (2020) 103299

4

field detects the correlation of the variable with positive contribution 
level of variables as an effective feature of detecting the partial 
discharge. If negative contribution level of variables is found in entire 
sensor variables in the receptive field, then it can be considered as a lack 
of meaningful features with relevance to the receptive field. 

The feature map belonging to the first layer of convolution has a 
processing time of same row size similar to the input data. The feature 
map node (i) stores the degree of activation (yi) of the features belonging 
to the local input through the convolution of receiving field weights with 
input data. Therefore, the status of connected input data is reflected by 
each element yi. Hence, the feature map with minimal detection errors 
across the processing time shows similar activation function for the label 
data. To local features of collected sensor pattern is normalized using 
following function. 

z(i) = g
(

y(i) − y′

i̅̅̅̅̅̅̅̅̅̅̅̅̅̅
var(y′

i)
√

)

, 1 ≤ i ≤ (3)  

g(x, a) =
{

min(x, a) if x ≥ 0
min(x, − a) if x < 0

}

where zi is defined as the ith feature map element of the sensors readings, 

which are normalized through mean value and variance value for a 
normal class datasets. 

The function map outliers are restricted to the range of the maximum 
value a to the minimum value -a by function g during the normalization 
process. The importance of the change in the local function is shown by 
the value of z at the end of each data collection. A standard feature map 
with a clear difference between normal and defect classes therefore 
provides data on the time section of the processing, which displays 
different models in the raw data. Thus it can be concluded that if the 
sensor reading shows distortion patterns in a feature map, the changes 
tends to provide the insights for the disturbance in the process of 
transmitting the electricity through it. 

3. Results and discussions 

The data is collected for experimental validation at an interval of 1/ 
10 second from different sensors. The readings of sensor data is scaled 
between 0 and 1. The collected data is used to train CNN and testing is 
carried out in real time environment. The training data is carried out 
with the collected data samples that consists of 5000 normal and 5000 
partial discharge samples. 

Fig. 3. Results of MDR (a) and FAR (b) with 10 feature map.  
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The performance of the detecting the partial discharges in towers is 
performed on a computer with Intel Core i7 3.4 GHz and 16 G RAM. An 
accelerated GPU is used for computing the CNN for detecting the partial 
discharges in towers and the total training time obtained is ~18 s. Since, 
there exist very few existing methods to detect the state of pollution via a 
machine learning framework, the proposed method is tested with those 
systems namely, ANN, ACO and Fuzzy systems. 

Missing detection rates (MDRs) refer to the rate in the monitoring 
process where an abnormal occurrences were incorrectly identified as 
normal, but only in the case of fault detection. False alarm rate (FAR) is 
defined as the monitoring results of normal process of ANN, ACO and 
Fuzzy systems. The MDR and FAR results are given in Fig. 3 for different 
conditions 10, 20, 30 and 40 feature map. The CNN with different 
feature map with layer pair is used for feature extraction. The classifier 
uses 500 hidden fully connected layers. The first convolutional layer 
consists of receptive fields of order (3 × 10) and the succeeding layers 
consists of receptive fields of order (3 × 1) and finally the convolutional 
layer consists of receptive fields of order (3 × 3). In all models, the stride 
length is chosen to be unity. The pooling layer uses max-pooling with the 
size (2 × 1). Finally, the proposed system uses Hotelling statistics (T2) 
squared prediction error (SPE) statistics for the detection of PD by CNN. 

The results of which are given in Fig. 3. 
The result shows that the proposed method has lesser MDR and FAR 

than the existing methods (Fig. 4). The use of 40 feature maps in the 
proposed system ensures that it performs effective than other methods. 
This shows that the proposed method effectively detects the partial 
discharges than the existing methods. 

4. Conclusions 

In this paper, a hybrid framework is designed that consists of a 
wireless sensor network and a CNN model to monitor and detect the 
state of pollution in HV insulators. The wireless sensor network module 
with temperature and humidity sensor collects well the data from 
transmission tower and sends it to the distributed processing unit. The 
processing unit with CNN finds the presence of partial discharge or its 
state of pollution in HV Insulators by the extraction of relevant features 
collected by the sensor unit. The comparison with existing methods to 
detect the fault shows that CNN detects well the state of pollution in HV 
insulators than other methods. Thus the study proves to be effective, 
since it utilizes very minimal resources to detect the state of pollution in 
HV Insulators. However, the study is limited to a smaller region of 

Fig. 4. Results of MDR (a) and FAR (b) with existing method (proposed method uses 40 feature map).  
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interest. In future the size of the area will be increased to check the 
effectiveness of the system against big data problem and to check its 
computational efficiency against this constraint. 

Declaration of Competing Interest 

Thus the study proves to be effective, since it utilizes very minimal 
resources to detect the state of pollution in HV Insulators. However, the 
study is limited to a smaller region of interest. In future the size of the 
area will be increased to check the effectiveness of the system against big 
data problem and to check its computational efficiency against this 
constraint. 
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