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A B S T R A C T

Common bus performance sharing (CBPS) abounds in diverse applications such as transportation, power supply
and collaborative computing to facilitate efficient utilization of limited system resources. This paper models such
a CBPS system with repairable components performing the main system function and repairable bus lines for
redistributing surplus performance of some system components to components undergoing performance defi-
ciency. Both time-to-failure and time-to-repair of system units (including components and lines) are random and
may follow any arbitrary types of distributions. A probabilistic model based on discrete-state continuous-time
stochastic processes is proposed for evaluating instantaneous availability of these repairable system units. The
proposed model addresses the general repair policy encompassing minimal repair, perfect repair and imperfect
repair. The universal generating function technique is further implemented for evaluating the system level
performance metrics, including instantaneous system availability, instantaneous expected performance defi-
ciency, expected system availability and total expected unsupplied demand during a specified mission time.
Examples are provided to illustrate the proposed evaluation methodology and its application in prioritizing
maintenance improvement actions.

1. Introduction

In the reliability engineering field, the common bus performance
sharing (CBPS) system model was firstly suggested in [1], as an ex-
tension of the single-directional two-component performance sharing
model studied in [2]. Performance sharing is a desired function of many
real-world systems with limited system resources. In these systems,
each unit has to meet its individual demand. If the performance of a
unit exceeds its required demand level, surplus (unconsumed) perfor-
mance exists, which can be shared with other units experiencing per-
formance deficiency through a common bus redistribution system. For
example, in distributed computing environments (e.g., grid computing,
cloud computing) [3–5], multiple computing units may collaborate to
accomplish a specified large task, which can be divided into many
subtasks. Each computing unit involved has its own demand, char-
acterized by the number of subtasks it needs to handle. During the task
execution, the surplus processing capacity of a computing unit can be
shared with another computing unit with demand exceeding its pro-
cessing capacity. Performance sharing is also typical in power

generating systems. Particularly, the electricity produced in power
generating units located at different sites can be shared through
common power transmission lines [1,6]. Many studies showed that the
performance sharing is valuable to efficient utilization of system re-
sources, reducing system operation cost, and improving system relia-
bility or availability [1,7].

Since the seminal work in [1], the CBPS model has been studied and
extended in different directions, particularly, in system structures and
optimization problems considered. For example, in [8] the optimal
dynamic component connection strategy was investigated for series
CBPSs with limitation on the size of the performance sharing group. In
[9] the optimal component allocation problem was considered for
CBPSs with hierarchical performance sharing groups. In [10] two per-
formance sharing groups with two common bus structures were mod-
eled. In [11], the optimal component allocation problem was solved for
CBPSs subject to phased-mission requirements. In [12], the model of
[11] was further extended to consider common-cause failures. In [13]
reliability analysis was performed for CBPSs with k-out-of-n structures
using the universal generating function based technique. In [14] the
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optimal defense and attack strategies were investigated for CBPSs with
identical components subject to intentional attacks. In [15] the optimal
component allocation and preventive replacement interval problem
was solved for series-parallel CBPSs. In [16] the optimal component
loading and protection from the external impacts were studied for
series-parallel CBPSs.

While most of literature modeling CBPS systems assume unrepair-
able components and bus lines, in [15] periodic preventive replacement
is considered for each system component and corrective maintenance
(repair) is conducted if a component fails between two replacement
actions. The model however is limited to fixed repair time under the
minimal repair policy where the component is restored to an “as bad as
old” condition after each repair. Moreover, only a steady-state achieved
availability can be evaluated in [15]. The model in [7] considers a more
general repair policy for system components, but the continuous time
Markov chain approach is applied to model system components beha-
vior, which limits the model to exponential time-to-failure and time-to-
repair distributions. Both works do not explicitly consider failures of the
common bus performance redistribution system and thus assume non-
repairable bus lines.

This work makes contributions by modeling CBPS systems with
repairable components and repairable bus lines. Both time-to-failure
and time-to-repair of the system components and bus lines are random

and may follow any arbitrary types of distributions. The general repair
policy is addressed, which covers perfect repair (the component after
repair has an “as good as new” condition), minimal repair (the com-
ponent after repair has an “as bad as old” condition), and imperfect
repair (the component is restored to a condition between the former
two) [17,18]. A probabilistic modeling methodology is suggested for
evaluating the instantaneous availability of each repairable unit for any
given time instant. The universal generating function (UGF) technique
is then implemented for assessing instantaneous system availability and
instantaneous expected performance deficiency at any given time in-
stant. The expected system availability and total expected unsupplied
demand during a specified mission time are further evaluated for the
entire system.

The remainder of the paper is organized as follows: Section 2 depicts
the CBPS system considered in this work. Section 3 presents the in-
stantaneous availability evaluation method for a repairable component
(or bus line) subject to random failure time and repair time. Section 4
presents the system performance metrics considered, including in-
stantaneous system availability, expected system availability, in-
stantaneous expected performance deficiency and total expected un-
supplied demand. Section 5 presents the UGF-based technique for
evaluating system performance metrics. Section 6 presents illustrative
examples and application of the proposed methodology in maintenance

Acronyms

cdf cumulative distribution function
pdf probability density function
CBPS common bus performance sharing
UGF universal generating function
DSCTP discrete-state continuous-time process

Nomenclature

τ time horizon
N number of components composing the system
M number of lines composing the common bus
Wn(t) random demand of component n at time t
A(τ) expected system availability during the time horizon τ
a(t) instantaneous system availability at time t
UD(τ) total expected unsupplied demand during the time horizon

τ
e(t) instantaneous expected performance deficiency of the

system at time t
〈Tj,Xj〉 event when the jth failure of a component occurs at time Tj

and the component spends time Xj in operation mode be-
fore the failure

Ωj(t,x) function representing joint distribution of random values
Tj and Xj

an(t) (a t˜ ( )m ) instantaneous availability of component n (line m)

Dn (D̃m) random repair time for component n (line m)
dn

min ,dn
max minimal and maximal possible realizations of Dn

d̃m
min ,d̃m

max minimal and maximal possible realizations of D̃m
Kn number of possible demand levels of component n
gn nominal performance of component n
Jn (Jm) maximal number of failures of component n (line m)

during the mission
cm nominal capacity of line m
fn(t), Fn(t) pdf, cdf of time-to-failure distribution of component n
f t˜ ( )m ,F t˜ ( )m pdf, cdf of time-to-failure distribution of line m
ψn(t), Ψn(t) pdf, cdf of repair time for component n
ψ t˜ ( )m , tΨ̃ ( )m pdf, cdf of repair time for line m
ηn, βn Scale, shape parameters of Weibull time-to-failure dis-

tribution of component n
ρn,j(t) probability that component n is under repair after jth

failure at time t
πn (π̃m) repair efficiency coefficient of component n (line m)
Gn(t) (Cm(t)) random performance of component n (capacity of line

m) at time t
sn(t) random surplus performance of component n at time t
qn(t) random performance deficiency of component n at time t
S(t) DSCTP of the entire system surplus performance
Q(t) DSCTP of the entire system performance deficiency
C(t) DSCTP of common bus capacity
⌊x⌋ maximum integer value not exceeding x

Fig. 1. Structure of CBPS.
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improvement actions. Lastly, Section 7 concludes the work and points
out future directions of this research.

2. System model

The CBPS considered consists of N repairable components. Each
component n ∈ {1, …, N} has its nominal performance gn and must
satisfy its random demand defined as a discrete-state continuous-time
process (DSCTP) Wn(t). All the components are connected through a
common bus performance redistribution system consisting of M re-
pairable lines, as illustrated in Fig. 1. Line m ∈ {1, …, M} has its
nominal transmission capacity cm. During repairs, the performance of
the components and capacity of the transmission lines are zeroed. The
total transmission capacity of the common bus at time instant t equals
to the sum of capacities of all the lines available at this instant. All of
the components that have performance exceeding the demand can send
the surplus performance to the components that experience the per-
formance deficiency through the common bus. The system fails if at
least one of individual component demands Wn(t) is not satisfied.

The time-to-failure of component n (line m) is characterized by a
cumulative distribution function (cdf) Fn(t) (F t˜ ( )m ). When a component
(line) fails, the repair/replacement procedure starts immediately. The
repair time D for component n (line m) relies on external factors such as
availability and efficiency of repair manpower and equipment and is
randomly distributed in the interval [dn

min , dn
max ] ([d̃m

min , d̃m
max ]). The

cdf Ψn(t) ( tΨ̃ ( )m ) of the random repair time of component n (line m) is
known and such that Ψn(t) = 0 for t < dn

min and Ψn(t) = 1 for t > dn
max

( tΨ̃ ( )m = 0 for t < d̃m
min and =tΨ̃ ( ) 1m for t > d̃m

max ). It is assumed that
failures and repairs of all the components and lines are s-independent.

A limited time horizon τ is considered for modeling the system be-
havior. During this time horizon, the maximal number of repairs that
can be conducted for component n (line m) is τ d τ d/ ( / ˜ )n m

min min . Thus, the
maximal number of failures of component n (line m) is given as
Jn = 1 + ⌊τ/dn

min ⌋ (Jm = 1 + ⌊τ/d̃m
min ⌋).

3. Instantaneous availability of repairable components or lines

In this section, a probabilistic model is presented for evaluating the
instantaneous availability an(t) of component n at time t. The same al-
gorithm can be applied to evaluate the instantaneous availability
a t˜ ( )m of line m.

The virtual age-based repair model of [19,20] is adopted. Specifi-
cally, let t0 and t represent the operation time of component n before
and after a repair, respectively. If the hazard rate function of compo-
nent n before a repair is ζn(t), then its hazard rate after the repair is
ζn(πnt0 + t), where the coefficient 0(perfect repair) ≤ πn≤ 1(minimal
repair) models repair efficiency of component n [19]. The pdf of the
time-to-failure of component n after the repair is
fn*(t0,t) = fn(πnt0 + t)/[1− Fn(πnt0)], and the cdf is
Fn*(t0,t) = [Fn(πnt0 + t) − Fn(πnt0)] / [1− Fn(πnt0)].

Consider a random event 〈Tj,Xj〉 (Xj ≤ Tj) for component n, re-
presenting that its jth failure takes place at time Tj (elapsed from the
beginning of the mission) after the component spent time Xj in the
operation mode and time Tj − Xj in the repair mode. Each event 〈Tj,Xj〉
corresponds to an initiation of a repair procedure that takes random
time D∈ [d d,n n

min max ]. Thus, for any realization of Xj, Tj can range from
Xj + (j− 1)dn

min to Xj + (j− 1)dn
max (when component n spends

minimal and maximal time in all of the previous j− 1 repairs, respec-
tively). Next, we derive the joint distribution function of Tj and Xj de-
noted by Ωj(t,x).

Consider the first failure, i.e., j=1. Because the component has not
spent any time in the repair mode before the occurrence of the first
failure, X1 = T1 and

= ⎧
⎨⎩

=t x f t x tΩ ( , ) ( ) if ( )
0 otherwise

n
1

(1)

The transition from event 〈Tj,Xj〉 to event 〈Tj+1,Xj+1〉
(Tj+1 ≥ Tj + dn

min , Xj+1 ≥ Xj) can take place when the component
functions for time Xj+1− Xj after a repair procedure, which takes time
D = (Tj+1− Tj)− (Xj+1− Xj). Because dn

min ≤ D ≤ dn
max , the condi-

tion Tj+1 + Xj− Xj+1−dn
max ≤ Tj ≤ Tj+1 +Xj− Xj+1−dn

min should
hold to make the event transition 〈Tj,Xj〉→〈Tj+1,Xj+1〉 possible. Note
that Xj = Xj+1 when component n fails immediately following the jth
repair.

Expression (2) shows the recursive evaluation of Ωj+1(t,x) (j=0,
…, Jn− 1) using Ωj(t,x), ψn(t) and fn(t). Note that when t< x+ jdn

min or
t > x+ jdn

max , Ωj+1(t,x) = 0.

∫ ∫

∫ ∫

= − −

+ −

= − −

+
+ −

−

+ + − + − −

+ − + − −

+ − + − −

+ − + − −

t x t x ψ t t x

x f x x x dtdx

t x ψ t t x

x
f π x x x

F π x
dtdx

Ω ( , ) Ω (˜, ˜) ( ˜

˜) * (˜, ˜) ˜ ˜

Ω (˜, ˜) ( ˜

˜)
( ˜ ˜)
1 ( ˜)

˜ ˜

j
x

x j d t x x d

x j d t x x d
j n

n

x

x j d t x x d

x j d t x x d
j n

n n

n n

1 0 max(˜ ( 1) , ˜ )

min(˜ ( 1) , ˜ )

0 max(˜ ( 1) , ˜ )

min(˜ ( 1) , ˜ )

n n

n n

n n

n n

min max

max min

min max

max min

(2)

If a failure happens at instant t-δ and the repair following the failure
takes at least time δ, then the component is in the repair mode at time t.
Thus, expression (3) gives the probability that component n is under
repair at time t after the jth failure. Note that =ρ t( ) 0nj for
t < (j− 1)dn

min .

∫ ∫= − −

≥ −

− − −

− − −

ρ t t δ x δ dxdδ t

j d

( ) Ω ( , )(1 Ψ ( )) for

( 1)

nj

t d

t δ j d

t δ j d

j n

n

0

min( , )

( 1)

( 1)

min

n

n

n
max

max

min

(3)

Because the minimal time when the jth failure may happen is
(j− 1)dn

min , the number of failures that can happen at time no later
than t cannot go beyond ( + t d1 / n

min ). Thus, the instantaneous avail-
ability of component n at time t, i.e., the overall probability that com-
ponent n is available (not under repair) at time t can be obtained as

∫ ∫

∑

∑

= −

= − − −

=

⌊ + ⌋

=

⌊ + ⌋

− − −

− − −

a t ρ t

t δ x δ dxdδ

( ) 1 ( )

1 Ω ( , )(1 Ψ ( )) .

n
j

t d

nj

j

t d t d

t δ j d

t δ j d

j n

1

1 /

1

1 /

0

min( , )

( 1)

( 1)

n

n n

n

n

min

min max

max

min

(4)

The numerical algorithm for obtaining instantaneous availability of
repairable component/line based on the derivations above is presented
in [21]. It is shown there that the computational complexity of the al-
gorithm is O(Jnδτ3), where δτ is the number of equal intervals the time
horizon τ is divided into for discretization and Jn is the maximum
possible number of component/line failures during the mission. See in
[21] also discussion about the choice of δτ for providing sufficient ac-
curacy of computations.

4. Instantaneous availability and performance deficiency of the
entire system

Having the instantaneous availability of each component n an(t) and
line m a t˜ ( )m evaluated using the method suggested in Section 3, one can
determine DSCTP of random performance Gn(t) of component n and
transmission capacity Cm(t) of line m respectively as

= = = = −G t g a t G t a tPr( ( ) ) ( ), Pr( ( ) 0) 1 ( )n n n n n (5)

= = = = −C t c a t C t a tPr( ( ) ) ˜ ( ), Pr( ( ) 0) 1 ˜ ( )m m m m m (6)
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The total transmission capacity of the common bus in any time in-
stant t is determined as the sum of capacities of lines available at this
instant. Thus

∑=
=

C t C t( ) ( ).
m

M

m
1 (7)

If component n at time t has performance exceeding its demand, the
surplus performance can be shared with other components through the
common bus. The total surplus performance in the entire system at time
t is

∑= −
=

S t G t W t( ) max( ( ) ( ), 0).
n

N

n n
1 (8)

The total performance deficiency in the system at time t is

∑= −
=

Q t W t G t( ) max( ( ) ( ), 0).
n

N

n n
1 (9)

All components that cannot meet the demand at time t need the
total amount of performance Q(t) to compensate their deficiency,
whereas the components with surplus performance can provide at this
time no more than amount S(t) of performance for this compensation.
Therefore, the amount of performance that should be transmitted by the
transmission system is min(S(t),Q(t)). Due to the limited capacity C(t) of
the transmission system, the total amount of the performance that can
be redistributed at time t is min (S(t),Q(t), C(t)), i.e.,

∑ ∑ ∑⎛

⎝
⎜ − − ⎞

⎠
⎟

= = =

G t W t W t G t C tmin max( ( ) ( ), 0), max( ( ) ( ), 0), ( ) .
n

N

n n
n

N

n n
m

M

m
1 1 1

(10)

S(t) and Q(t) are statistically dependent DSCTPs, whereas S(t) and C(t)
as well as Q(t) and C(t) are statistically independent.

The entire performance deficiency remained after the performance
sharing at time t is

∑

∑

∑

= − =

−

= ⎛

⎝
⎜ −

− ⎛

⎝
⎜

− ⎞

⎠
⎟

⎞

⎠
⎟

=

=

=

t Q t min S t Q t C t max Q t

min S t C t

W t G t

G t

W t C t

Δ( ) ( ) ( ( ), ( ), ( )) (0, ( )

( ( ), ( )))

max 0, max( ( ) ( ), 0)

min max( ( )

( ), 0), ( )

n

N

n n

n

N

n

n
m

M

m

1

1

1 (11)

The instantaneous system availability α(t) at time t is defined as the
probability that the entire system performance deficiency can be fully
compensated by the surplus performance transferred by the common
bus at this time. It can be evaluated as:

∑

∑ ∑

=
⎧
⎨
⎩

⎛

⎝
⎜ −

− ⎛

⎝
⎜ − ⎞

⎠
⎟

⎞

⎠
⎟ =

⎫
⎬
⎭

=

= =

a t W t G t

G t W t C t

( ) Pr max 0, max( ( ) ( ), 0)

min max( ( ) ( ), 0), ( ) 0 .

n

N

n n

n

N

n n
m

M

m

1

1 1 (12)

The expected probability of meeting the demand during the time
horizon τ (i.e., the expected system availability) is

∫=A τ
τ

a t dt( ) 1 ( ) .
τ

0 (13)

The instantaneous expected performance deficiency at time t can be
obtained as the expectation of the random variable e(t) = E(Δ(t)). The
total expected unsupplied demand during the time horizon τ is

∫=UD τ e t dt( ) ( ) .
τ

0

5. Algorithm for determining instantaneous availability and
performance deficiency

The UGF technique is implemented to determine e(t), the in-
stantaneous expected performance deficiency at time t. In general, the
polynomial in (14) defines the UGF representing the distribution of a
DSCTP Yj(t) that can take kj possible values [22].

∑=
=

u z t x t z( , ) ( ) ,j
h

k

j h
ε

1
,

j
j h,

(14)

where xj,i(t) = Pr{Yj(t) = εj,i}. To obtain the UGF representing the
DSCTP of a function of h independent DSCTP φ(Y1(t), …, Yh(t)), the
composition operator defined in (15) is used.

⎜ ⎟

⎜ ⎟

⎛
⎝

∑ ∑ ⎞
⎠

∑ ∑

∑ ⎛
⎝

∏ ⎞
⎠

= ⊗ …

⊗ … = …
= = = =

= =

…

U z t u z t u z t

x t z x t z

x t z

( , ) ( ( , ), , ( , ))

( ) , , ( )

( ) ( )

h

i

k

i
ε

i

k

n i
ε

i

k

i

k

i

k

j

h

j i
ϕ ε ε

1

1
1,

1
,

1 1

1 1
,

, ,

ϕ

ϕ
i

h

h

n
n in

h

h

j
i h ih

1

1

1
1, 1 ,

1

1

2

2

1, 1 ,

(15)

Specifically, Eqs. (16) and (17) give the UGFs representing the
DSCTP of random performance of system component n and line m at
time instant t.

∑=
=

u z t x t z( , ) ( ) ,n
i

n i
ε

0

1

,
n

n
n in,

(16)

Table 1
Parameters of components.

Component n gn ηn βn πn dn
min dn

max μn σn

1 100 50 1.1 0.3 15 20 17 4
2 120 20 2.0 0.7 10 40 15 3
3 50 70 1.5 0.8 18 38 22 6
4 90 80 1.3 0.0 20 30 25 10
5 60 40 2.3 0.2 10 25 15 6

Table 2
Parameters of common bus lines.

Line m cm η̃m β̃m
π̃m d̃m

min d̃m
max μ̃m σ̃m

1 50 50 1.3 0.4 15 25 20 1
2 70 40 1.0 0.2 10 30 23 6
3 100 70 1.7 0.3 12 25 18 6

Table 3
Demand distributions.

Component n wn yn

1 60, 40, 10 0.20, 0.55, 0.25
2 80, 70, 50, 30 0.60, 0.15, 0.15, 0.10
3 60, 30 0.70, 0.30
4 50, 30 0.40, 0.60
5 80, 50, 40 0.40, 0.35, 0.25
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∑=
=

u z t x t z˜ ( , ) ˜ ( ) ,m
j

m j
ε

0

1

,
˜

m
m

m jm,

(17)

where xn,1(t) = an(t), x0(t) = 1− an(t), εn,1 = gn, εn,0= 0,
=x t a t˜ ( ) ˜ ( )m m,1 , = −x t a t˜ ( ) 1 ˜ ( )m m,0 , =ε t c˜ ( )m m,1 and =ε t˜ ( ) 0.m,0

Eq. (18) gives the UGF representing the DSCTP of random demand
of component n at time instant t.

∑=
=

u z t y t z^ ( , ) ( ) ,n
k

K

n k
w

0
,

n
n k,

(18)

here yn,k(t) = Pr(Wn(t) = wn,k) and Kn is the number of possible de-
mand levels.

Any combination of states of all the N components and their demand
levels at any time instant t corresponds to certain realization of surplus
performance S(t) and performance deficiency Q(t). As S(t) and Q(t) are
dependent DSCTPs, they must be represented by a single UGF that re-
lates probabilities of state combinations to the corresponding realiza-
tions of S(t) and Q(t). In order to obtain this UGF one should first obtain
the UGF representing the DSCTPs sn(t) and qn(t) for each component n.

Having UGFs un(z, t) and u z t^ ( , )n representing DSCTPs Gn(t) and Wn(t)
respectively, one can obtain the UGF representing the DSCTPs of sn(t)
and qn(t) using the composition operator ⊗

min,min
defined in (19).

= ⊗

= ∑ ∑

= ∑
= =

− −

=

v z t u z t u z t

x t y t z

γ t z

( , ) ( , ) ^ ( , )

( ) ( )

( ) .

n n n

h k
K

n h n k
ε w w ε

j
I

n j
s q

min,min

0
1

1 , ,
min(0, ),min(0, )

1 ,
,

n n h n k n k n h

n n j n j

, , , ,

, , (19)

The UGF in (19) represents the distribution of probabilities of joint
events:

= = ∩ =γ t s t s q t q( ) Pr{ ( ) ( ) }.n j n n j n n j, , , (20)

Following (8) and (9), one can obtain the UGF V{1,2,…,N}(z,t), re-
presenting DSCTPs = ∑ =S t s t( ) ( )n

N
n1 and = ∑ =Q t q t( ) ( )n

N
n1 using the

following recursive procedure:

1. Assign V{1}(z,t) = v1(z,t);
2. For n=2, …, N obtain V{1,2,…,n}(z,t) = V{1,2,…,n−1}(z,t) ⊗

+
vn(z,t),

Fig. 2. Instantaneous availability a(t), repair time pdf ψ(t) and reliability 1− F(t) of example CBPS components.

G. Levitin, et al. Reliability Engineering and System Safety 189 (2019) 58–66

62



where

⎜ ⎟ ⎜ ⎟
⎛
⎝

∑ ⎞
⎠

⎛
⎝

∑ ⎞
⎠

∑ ∑

⊗ = ⊗

=

… −
= =

= =

+ +

+ +
V z t v z t η t z γ t z

η t γ t z

( , ) ( , ) ( ) ( )

( ) ( ) .

n n
i

I

i
a b

j

I

n j
s q

i

I

j

I

i n j
a s b q

{1, , 1}
1

,

1
,

,

1 1
,

,

i i
n

n j n j

n
i n j i n j

, ,

, ,

(21)

Following (7), one can obtain the UGF Θ{1,2,…,M}(z,t), representing
the DSCTP of the entire common bus capacity = ∑ =C t C t( ) ( )m

M
m1 using

the similar recursive procedure:

1. Assign Θ{1}(z,t) = u z t˜ ( , )1 ;
2. For m=2, …, M obtain Θ{1,2,…,m}(z,t) = Θ{1,2,…,m−1}(z,t)
⊗
+

u z t˜ ( , )m .

Having the UGF V{1,2,…,n−1}(z,t) = ∑ = δ t z( )l
L

i
λ ϕ

1
,i i representing de-

pendent DSCTPs S(t) and Q(t), and the UGF
Θ{1,2,…,M}(z,t) = ∑ = χ t z( )e

E
e1

ϑi representing DSCTP C(t), one can obtain
the UGF U(z,t) representing the DSCTPs Δ(t) of the performance defi-
ciency remained after the performance sharing in accordance with (11).
The corresponding composition operator takes the form of

∑ ∑

∑ ∑ ∑
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(22)

The instantaneous system availability (the probability that the
performance deficiency does not exist at time t) is equal to the prob-
ability that Δ(t) = 0, which corresponds to the coefficient ξh(t) of term

Fig. 3. Instantaneous availability a(t), repair time pdf ψ(t) and reliability 1− F(t) of common bus lines.

Fig. 4. Instantaneous availability a(t), and expected performance deficiency e(t) of the entire CBPS.
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ξh(t)z0 in the UGF U(z,t) (22). The expected performance deficiency at
time t can be obtained from the UGF (22) as

∑=
=

e t ξ t σ( ) ( ) .
h

H

h h
1 (23)

From the description of the procedures presented in this section it
can be easily seen that the worst case complexity of the algorithm for
determining the expected performance deficiency for each time in-
stance is ∏ +=O K( 2 2 ),n

N
n

M
1 which equals to the maximum number of

different state combinations of the components and lines. In practice
the total complexity is much lower because different state combinations
can produce the same surplus performance and performance deficiency
which results in appearance of like terms in the corresponding UGF.
Collection of such like terms considerably reduces the algorithm com-
plexity (see [22]).

The verification of the event transition methodology adopted in this
work for evaluating component instantaneous availability is presented
in [3]. To verify the algorithm designed for the common bus systems,
the expected system performance deficiency obtained for extreme case,
when the line capacities are zeroed and the system reduces to series
multi-state one has been compared with the same index obtained by
Monte Carlo simulations. The results produced by the suggested algo-
rithm always fell between the lower and upper bounds corresponding to
the 95% confidence intervals obtained in the simulations.

6. Illustrative example

Consider a CBPS with five producing components and three bus
lines. It is assumed that the time-to-failure distributions of components
and lines are Weibull with scale (ηn) and shape (βn) parameters [23]
presented in Tables 1 and 2. These tables also present the rest of
parameters for the system components and lines, including the nominal
performance/capacity gn and cm, repair efficiency coefficients πn,
parameters of truncated normal distributions of repair time (lower
bound, upper bound, mean and standard deviation respectively denoted
by dn

min , dn
max , μn, σn) [24].

Table 3 presents the random demand of each component in the form
of vectors of demand values realizations w and corresponding prob-
abilities y. It is assumed that the demand distributions are time in-
dependent (probabilities yn,k(t) = Pr(Wn(t) = wn,k do not depend on
time i.e. yn,k(t) ^ yn,k). The considered time horizon is τ = 50 (weeks).

Figs. 2 and 3 present reliability functions 1− F(t), pdf of repair
times ψ(t) and obtained instantaneous availabilities a(t) of system
components and common bus lines. Fig. 4 presents the entire CBPS
instantaneous availability and performance deficiency for the cases of
lines having parameters presented in Table 2 and perfect lines with
unlimited capacity. Fig. 5 presents the dynamic distribution of the CBPS
performance deficiency in the form of Pr(Δ(t) > x) for the two cases.
The expected CBPS availabilities during the time horizon τ for the two
cases are A(τ) = 0.698 and A(τ) = 0.729, respectively. The total ex-
pected unsupplied demands are UD(τ) = 1078.8 and UD(τ) = 972.3,
respectively. It can be seen that the unreliability and limited capacity of
the common bus lines affect the performance of the entire system sig-
nificantly.

Fig. 6 presents the dynamic distribution of the CBPS performance
deficiency for several system configurations when the CBPS consists of
different groups/subsets of components from Table 1 (with corre-
sponding demands from Table 3). The common bus configuration and
parameters remain unchanged for all the examples. It can be seen that
the number of the possible realizations of the performance deficiency
decreases with a decrease in the number of components. Indeed, the
number of different combinations of component performance levels and
demand values decreases when fewer components compose the CBPS.

The suggested methodology can be used for comparing effects of
possible maintenance improvement actions on the CBPS performance
characteristics. For example, Table 4 presents A(τ) and UD(τ) indices for
cases when the repair time for one of components/lines is improved (by
allocating repair facilities nearby) but remains unchanged for the rest of
components/lines. It also contains the relative indices improvement
ΔA(τ) and ΔUD(τ) over the case when all the repair times remain un-
changed. It is assumed that the improved repair time obeys the trun-
cated normal distribution with parameters =d̃ 9m

min , =d̃ 11m
max ,

=μ̃ 10m and =σ̃ 4m . It follows from data in Table 4 that the main-
tenance improvement of component 2 causes the greatest improvement
of the entire CBPS performance. The maintenance improvement of
component 1 has greater effects on the CBPS availability than the
maintenance improvement of component 4, whereas the maintenance
improvement of component 4 has greater effects on the total unsupplied
demand than the maintenance improvement of component 1. This can
be explained by the fact that component 1 has greater nominal per-
formance, but lower reliability than component 4.

Table 5 presents A(τ) and UD(τ) indices for cases when nominal

Fig. 5. Dynamic distribution of the entire CBPS performance deficiency Pr(Δ(t) > x).
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performance/transmission capacity of one of components/lines is in-
creased by 20 units, whereas it remains unchanged for the rest of
components/lines. It also contains the relative indices improvement
ΔA(τ) and ΔUD(τ) over the case when all the performances/transmis-
sion capacities remain unchanged. It can be seen that the increase in the

nominal performance of component 3 has the greatest effect on the
system performance improvement. The increase in the nominal per-
formance of component 4 affects the system availability greater than
the increase for component 5, but affects the unsupplied demand less
than component 5 does.

Fig. 6. Dynamic distribution of the entire CBPS performance deficiency Pr(Δ(t) > x) for different system configurations (CBPS consisting of four, three and two
components).

Table 4
CBPS performance improvement caused by reduction of repair time.

A(τ) UD(τ) ΔA(τ) % ΔUD(τ) %

Component 1 0.7244 918.4 3.8 14.9
Component 2 0.7375 906.0 5.7 16.0
Component 3 0.7129 993.2 2.1 7.9
Component 4 0.7236 916.5 3.7 15.0
Component 5 0.7143 991.2 2.3 8.1
Line 1 0.7033 1058.6 0.8 1.9
Line 2 0.7067 1043.2 1.2 3.3
Line 3 0.7070 1044.5 1.3 3.2

Table 5
CBPS performance improvement caused by increase of nominal performance.

A(τ) UD(τ) ΔA(τ) % ΔUD(τ) %

Component 1 0.7304 972.4 4.6 9.9
Component 2 0.7093 1048.3 1.6 2.8
Component 3 0.7391 903.2 5.9 16.3
Component 4 0.7334 941.5 5.1 12.7
Component 5 0.7312 935.9 4.8 13.2
Line 1 0.7027 1058.8 0.7 1.9
Line 2 0.7029 1067.9 0.7 1.0
Line 3 0.7015 1071.7 0.5 0.7
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The complex interrelations among demand distributions, perfor-
mances and reliabilities of components and lines as well as repair time
distributions make intuitive ranging the efficiency of maintenance im-
provement actions impossible. The suggested algorithm can help in
making decisions about the priority of maintenance improvement ac-
tions.

The running time of the algorithm for evaluating system dynamic
performance indices on 3.2 GHz PC is about 100 s.

7. Conclusion and future work

The CBPS model has recently attracted much research attention due
to their applications in resource-constrained systems. Most of the ex-
isting works assume non-repairable system components. In very few
works that consider repairs, either fixed repair time or exponential
time-to-repair distribution (or constant repair rate) is assumed for
system components and no repair is possible for the common bus per-
formance redistribution system. We contribute to the body of knowl-
edge on CBPS systems by considering both repairable functioning
components and repairable common bus performance redistribution
system. The proposed methodology is applicable to arbitrary types of
time-to-failure and time-to-repair distributions for system components
and bus lines. The instantaneous availabilities of system components
and common bus lines, instantaneous system availability, instantaneous
expected performance deficiency, expected system availability and total
expected unsupplied demand during a specified mission time are
evaluated for repairable CBPS systems. Examples are provided to de-
monstrate the application and necessity of the proposed evaluation
method in prioritizing maintenance improvement actions for system
components and common bus lines.

Based on the proposed evaluation method, one direction of our fu-
ture work is to formulate and solve the optimal component allocation
problem for the considered repairable CBPS system. Another direction
is to extend the proposed CBPS model to consider multi-state system
components and bus lines that function at several discrete performance
levels [25,26]. Empirical studies showed that workloads applied to
system components can affect their performance and time-to-failure
distributions, and thus the overall system performance [27–29].
Therefore, we are interested in considering component loading for
system performance analysis and solving relevant optimization pro-
blems. We are also interested in considering common-cause failures
with selective effects [30,31] in the analysis and optimization of CBPS
systems.
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