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A B S T R A C T   

This paper presents a method to determine the optimal location, energy capacity, and power rating of distributed 
battery energy storage systems at multiple voltage levels to accomplish grid control and reserve provision. We 
model operational scenarios at a one-hour resolution, where deviations of stochastic loads and renewable 
generation (modeled through scenarios) from a day-ahead unit commitment and violations of grid constraints 
are compensated by either dispatchable power plants (conventional reserves) or injections from battery energy 
storage systems. By plugging-in costs of conventional reserves and capital costs of converter power ratings and 
energy storage capacity, the model is able to derive requirements for storage deployment that achieve the 
technical-economical optimum of the problem. The method leverages an efficient linearized formulation of the 
grid constraints of both the HV (High Voltage) and MV (Medium Voltage) grids while still retaining fundamental 
modeling aspects of the power system (such as transmission losses, effect of reactive power, OLTC at the MV/HV 
interface, unideal efficiency of battery energy storage systems) and models of conventional generator. A proof- 
of-concept by simulations is provided with the IEEE 9-bus system coupled with the CIGRE’ benchmark system for 
MV grids, realistic costs of power reserves, active power rating and energy capacity of batteries, and load and 
renewable generation profile from real measurements.   

1. Introduction 

The use of energy storage systems (ESSs) has been advocated to 
cope with the intermittency of distributed stochastic renewable gen
eration and mitigate its impact on operational practices of transmission 
system operators (TSOs) and distribution system operators (DSOs). 
Proposed applications of ESSs range from energy arbitrage, support to 
primary frequency control and reserve provision for services at the 
system level, up to grid control, congestion management, dispatch of 
local systems and self-consumption for services at the level of dis
tribution systems [1–5]. It is also well understood that ESSs can be used 
to provide multiple grid services, leading to increased exploitation of 
their energy capacity and power rating, and a shorter return on in
vestment, thus making relevant to plan ESSs accounting for multiple 
services[6–10]. A fundamental question for grid operators considering 
ESSs is how to determine their size (i.e., energy capacity and apparent 
power rating) and location. This problem has been extensively 

investigated in the existing technical literature (see, e.g., [11]), with 
methods ranging from optimal power flows (OPFs) [12] to heuristics  
[13,14]. More tractable linearized grid models are also widely, as in  
[15] for the siting and sizing problem and in [16,17] for volt/var 
control. 

Most of the existing literature focuses on a single voltage level (i.e., 
transmission grid or distribution grid) and a single set of services at a 
time, which are specific to TSOs or DSOs only. In this paper, we propose 
a modeling framework to determine the optimal location, energy ca
pacity and power rating of distributed battery energy storage systems 
accounting for multiple voltage levels simultaneously and modeling the 
provision of ancillary services to both a DSO and TSO. We refer to this 
formulation as vertical and horizontal planning of ESSs, as opposed to 
the works discussed above that consider a single voltage level and a 
single class of services at a time (horizontal planning). Especially, we 
consider the case of voltage control and congestion management in 
distribution grids, and the provision of regulating power to the TSO. 
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The work in [18] tackles a problem similar to ours. It considers the joint 
ESSs siting and sizing problem in distribution and transmission grids 
(modeled with a SOCP-based OPF and DC load flow, respectively). Its 
objectives are, for DSOs, maximizing the revenue from energy trading 
and achieving local grid control and, for the TSO, maximizing the social 
welfare by minimizing the electricity price in a wholesale market. This 
paper approaches the same problem with a different perspective: we 
consider intra-day reserve procurement and perform an economic 
evaluation between when it is provided by battery-based ESSs versus 
conventional generation. The proposed decision problem relies on a 
linear optimal power flow model, that computes the nodal injections 
(from ESSs or conventional power plants) to compensate for variations 
with respect to a day-ahead unit commitment by minimising an eco
nomical cost and while subject to grid constraints. The economic cost is 
the sum of the operational costs of activating reserves from conven
tional power plants and the capital costs to install ESSs (i.e., apparent 
power rating and energy storage capacity). As energy storage devices, 
we consider lithium-ion batteries, that are modeled as lossy bulk energy 
reservoirs (i.e., charge/discharge efficiency is taken into account), and 
limits due to energy storage capacity and apparent power rating of the 
converters. Grid constraints on nodal voltages, cables ampacities, and 
apparent power flows at the grid connection point are modeled with 
linearized grid models that, while trading some accuracy, allow for an 
efficient (convex) formulation of the problem and retain the possibility 
of modeling important operational aspects, like the effects of reactive 
power and losses, and on-load tap changer (OLTC) transformers. A 
proof-of-concept of the proposed planning algorithm is delivered by 
simulations considering a case study with both HV and MV grids 
(modeled according to the specifications of the IEEE 9-bus test system 
and CIGRE’ benchmark system for MV networks) equipped with con
ventional power plants, demand, and distributed photovoltaic (PV) 
generation. These lasts are modeled using measurements from real 
systems. 

The rest of the paper is organized as follows: Section 2 describes the 
problem to be solved, Section 3 introduces the adopted formulation and 
modeling solutions, Section 4 presents the study case and simulation 
scenarios used to test the proposed algorithm. Section 5 introduces and 
discusses the results and, finally, Section 6 draws the conclusions and 
future developments. 

2. Problem Statement 

We refer to the case study shown in Fig. 1, that illustrates a power 
system with a meshed HV transmission grid and a MV distribution grid. 
The HV system interfaces conventional power plants G1-G3 through 
step-up transformers. At HV bus 9, two OLTC transformers feed two MV 
networks with demand and distributed renewable generation. HV nodes 
5 and 7 feature aggregated demand and renewable generation from 
downstream networks, modeled in a lumped way as nodal apparent 
power injections. HV node 1 is the slack bus of the system. The system 
topology is fixed, so we do not model possible operational topological 
changes (see, e.g., [12]). The problem is determining the optimal lo
cation in the system (both at the HV and MV levels) and specifications 
(energy capacity and power rating of the converter) of battery energy 
storage systems. 

The operational paradigm that we model and exploit to determine 
ESSs locations and specifications is the power balance with an one-hour 
sampling. We first assume that a unit commitment process performed in 
the day-ahead stage determines the schedule of the conventional gen
eration units and tap position of OLTC transformers. This achieves the 
(active) power balance in the system according to day-ahead forecasts 
of the aggregated nodal injections at the HV level as a function of the 
generation costs and subject to the constraints of the transmission ca
pacity. Then, in real-time, the realization of the stochastic demand and 
renewable generation might vary from day-ahead forecasts. This 

determines a power imbalance in the system and deviations from the 
day-ahead plan with, possibly, new violations of network constraints. 
The power balance mismatch and network violations are compensated 
for and solved by activating power reserves from conventional gen
eration unit or injection from ESSs by solving an optimal inter-temporal 
power flow problem. This mechanism is the base of the siting and sizing 
problem proposed in this paper and is thoroughly described in the next 
section. Thanks to assigning operational costs to the activated reserve 
from conventional power plants and capital costs for the installation of 
ESSs (i.e., connection costs, energy capacity costs, and converter power 
rating costs), the algorithm determines an optimal economic trade-off 
between the reserve to deploy from conventional units and installed 
energy storage capacity and power rating. We leverage different sce
narios of the stochastic demand and distributed generation to derive 
siting and sizing guidelines that account for multiple realizations of the 
uncertain elements. 

At this stage, we consider power reserves for secondary regulation, 
and we do not model the grid frequency. 

3. Methods 

We now describe the foundational models used in the formulation 
and, as the last element, the siting and sizing problem. 

3.1. Grid model 

We implement a grid model to determine the nodal injections and 
position of the OLTCs’ tap such that the grid constraints on voltage 
magnitudes and line ampacities are respected, while accounting for 
losses in the power lines. Load flows are notoriously non-linear, and 
their inclusion in optimization problems leads to non-convex formula
tions. For tractability, we model grid constraints with linear functions 
using the notion of sensitivity coefficients (SCs). When solving the load 
flow with the Newton-Raphson method, the SCs of the voltage magni
tudes can be derived easily by extracting the proper submatrix from the 
inverse Jacobian at the last iteration of the algorithm. In this paper, we 
compute SCs with the method described in [19] that derives the SCs of 
the voltage magnitudes not only against the active and reactive power 
injections but also the slack voltage. As illustrated in [19], SCs are 
determined by solving a system of linear equations as a function of the 
grid’s admittance matrix and voltage and currents phasors at a working 

Fig. 1. The case study with an HV and MV grids, conventional generators, 
loads, and distributed PV generation (not shown). The green icon denotes the 
location of the batteries (step-up transformers are omitted for simplicity), that is 
an output of the problem together with their power rating and energy capacity 
requirements. Load A and Load B refer to aggregated injections of other MV 
networks. 
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point.1 Voltage and current phasors at the working point are de
termined offline with a load flow as a function of the nominal nodal 
injections, which correspond to the same demand and distributed 
generation day-ahead point predictions used to determine the day- 
ahead schedule of the power plants (similarly to [21]). Let t denote the 
time index, vt and it be vectors collecting all nodal voltage magnitudes 
and line currents of a given network at time t, and Pt and Qt nodal 
active and reactive power injections, and v0t the voltage magnitude of 
the grid’s slack bus. Nodal voltages and line currents are: 

= + +v P Q b cK v[ ]t t t tt vt
T

t0 (1a)  

= + +i P Q d eK v[ ]t t t tt it
T

t0 (1b)  

where matrices Kvt, Kit and vectors bt, ct, dt, et are derived from the 
so-called sensitivity coefficients [19]. The active and reactive power 
flow at the slack bus of the grid P0t, Q0t at time t is modeled as 

= + +K P QP Q v f g[ ] [ ]St t tt t
T T

t t t0 0 0 (1c)  

where KSt is a vector, and ft and gt are scalar. They are also derived 
from the sensitivity coefficients. 

All the (time varying) parameters of linear models (1a)-(1c) depend 
on respective linearization points, that, in this work, correspond to the 
day-ahead forecasts of the nodal injections. Though depending on the 
state, Kvt and Kit are supposed to change smoothly with respect to state 
variations. 

3.2. Grid continuity constraints 

The linear grid models (1) of the HV and MV network are derived 
separately for each grid, i.e., without integrating all the grid informa
tion into a single admittance matrix. For a coherent representation of 
the whole system and obeying to conservation principles, we need 
continuity constraints on the apparent power flow and voltage at the 
MV-to-HV interface. Let b the bus of the HV grid that interfaces the MV 
network, Pbt

(HV) and Qbt
(HV) the active and reactive power flow at the 

substation transformer, and P t0
(MV) and Q t0

(MV) the active and reactive 
power at the slack bus of the MV grid. Substation transformers are in
cluded in the topology of the MV grids, therefore their losses do not 
appear here. The continuity on the apparent power flow reads as: 

=P Pbt t
(HV)

0
(MV) (2a)  

=Q Q .bt t
(HV)

0
(MV) (2b) 

for each t. For the voltage magnitude, we model the approximated 
operations of an OLTC by allowing the voltage at its secondary to vary 
within a certain range: 

c v v c v1/ · ·bt t bt
(HV)

0
(MV) (HV) (2c) 

where c > 1 is a design parameter. The expression above is linear, and 
it does not impact on convexity. We assume that the impact of tap 
changes on the equivalent circuit model of the transformer (thus on the 
sensitivity coefficients of the grid) is negligible. The optimal voltage 
magnitude at the MV slack is a decision variable of the problem. In this 
case, we do not impose any continuity constraint on the voltage phase 
angle between because the downstream network is single port and all 
its nodes consist of PQ injections that are invariant to phase angle. 

3.3. Conventional power plants 

Conventional power plants are modeled with constrained voltage- 
independent nodal active and reactive power injections, denoted by 
Pb

G( ) and Q ,b
G( ) where b is the node index. They should respect the 

apparent power capacity S̄b of the synchronous machine, the capability 
curve of the generator, and the minimum/maximum generating power 
capacity Pb and P̄b of the unit. As we focus on time constants related to 
secondary frequency regulation and we use input time series at 1 hour 
resolution, we do not model ramping rates, which normally refer to 
faster dynamics. 

For all the nodes where generators are installed and for all time 
intervals =t 1, 2, , constraints read as follows: 

+P Q S̄bt
G

bt
G

b
( )2 ( )2 2 (3a)  

Q P| | 0.8·bt
G

bt
G( ) ( ) (3b)  

P P P̄ ,b bt
G

b
( ) (3c) 

where 0.8 is the limit imposed by technical regulations [22]. 

3.4. Demand and distributed generation 

The power demand of the loads and the production of distributed 
PV generation at the various nodes of the grids are modeled with vol
tage-independent active and reactive power injections time series. For 
the case of the MV grids, time series are from measurements of real 
loads at the EPFL campus [23] of similar size as those considered. PV 
generation is simulated from measurements of the irradiance with the 
same modeling toolchain as in [24], that consists in transposing the 
irradiance, correcting it for the estimated cell temperature and air 
temperature, and scaling it for the average panel efficiency at Standard 
Test Conditions (STC). 

We assume that PV power plants are operated at unitary power 
factor, as in most current commercial configurations. 

Day-ahead forecasts (used to linearize grid models and determine 
the unit commitment of the generators) are developed, for the demand, 
with a forecaster based on the k-nearest neighbor method as in [3], and, 
for a PV generation, starting from real forecast of the irradiance (pro
vided by MeteoTest, Bern, CH) and processed with the same models 
described above. 

For the injections of the lumped MV systems, we aggregate MV 
nodal injections until reaching the nominal demand of the respective 
primary substation. 

3.5. Energy storage systems 

Modeling principle The injections of the ESSs are modeled as additive 
apparent power injections at each network node. In other words, each 
nodal injection at each time interval is the algebraic sum of the original 
apparent power injection (given by the demand or distributed genera
tion time series) and two free variables (one for active power, another 
for reactive) which model the potential contribution of the battery. In 
this way, at each time interval, the free variables are ”modulated” to 
allow the optimal power flow for solving grid congestions or for pro
viding reserve according to the cost function. The activation of a free 
variable (thus, battery injection) at a certain node denotes that a ESS 
should be installed at that location. This intuition explains how the 
siting principle works. The battery energy storage capacity and the 
rating of the associated power converter are derived from the evolution 
over time of the battery injection as now explained. 

Apparent power rating of the power converter Let P Q,tb
B

tb
B( ) ( ) denote the 

battery injection at node b. Then the apparent power rating Snom,b of the 
power converter at node b is the maximum apparent power observed 
over time (maximum of norms, convex): 

= + =S P Q tmax , 1, 2, ,b
t tb

B
tb

B
nom,

( )2 ( )2

(4) 

We assume that the power capability of the power converter does not 
depend on the grid voltage. 

1 The linear system has a unique solution when the load-flow Jacobian is 
locally invertible [20]. 
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Energy capacity For evaluating the required energy capacity, we first 
introduce the notion of battery state-of-energy (SOE). For the moment, 
we assume a lossless battery (the extension to a non-ideal battery is 
straightforward and implemented as described in the next paragraph), 
so that the SOE at time t is the discrete integral over time of the battery 
injection (assuming zero initial state-of-charge): 

=
=

T PSOE ,tb s

t

b
B

1

( )

(5) 

where Ts is the sampling time. The value of the series SOEtb can be 
regarded to as the energy capacity required to accomplish the active 
power trajectory P P P, , ,b b tb1 2 . One could simply estimate the required 
energy capacity by evaluating the final value of the time series. 
However, in this way, the energy capacity would depend on the length 
of the optimization horizon, thus invalidating this sizing principle. For 
instance, batteries persistently charging or discharging to compensate 
recurrent daily over-voltages would have a monotonic SOE pattern 
(eventually unbounded). To avoid patterns of this kind, we enforce that 
the SOE at the end of each day is the same as the starting value. In this 
context, the required energy capacity for each day can be estimated by 
evaluating expression (5) in blocks of 1-day duration, and for each 
taking the difference between the maximum and the minimum values. 
For the formal definition, we proceed with assuming a scheduling 
horizon of 1 day for the sake of clarify. Any other time interval can be 
equally accommodated by adapting the following definitions. We first 
introduce the sets , ,day day0 1 ; each contains all the time indexes that 
belong to the respective day. The battery energy capacity required for 
one day of operation 

=

+

E t

t

(day ) max{SOE , }

min{SOE },

b
t

t

t
t

day

day

0 0

0 (6) 

and similarly for the other days. The final energy storage capacity re
quired at node b is modeled as the maximum value over all days: 

=E E Emax{ (day 0), (day 1), }.b b bnom,
days (7) 

By forcing the SOE at the end of each day to return to its initial value, 
we ensure that the problem does not take advantage of the starting 
energy stock. 

Model properties and approximation Expression (5) did not account 
for energy conversion losses. To model them, we use the approach 
proposed in [25] that relies on an approximated Thevenin equivalent 
circuit of whole battery’s power conversion toolchain that is added in 
series to node of the grid that hosts the battery, thus achieving a 
seamless integration of the notion of charging/discharging efficiency in 
the load flow problem. Fig. 2 shows the equivalent circuit model: Pt b,
and Qt b, are the active and reactive power injections of the battery as 

seen from the grid, whereas P*
t b, is the lossy battery power output that 

feeds the battery state-of-energy model in (5). The new controllable 
variables of the model are and Q ,t b, whereas the injection Pt b, is calcu
lated by the grid model. The additional node is a modelling abstraction 
to represent conversion losses, and no grid voltage and line current 
constraints are added to that. 

3.6. Decision problem 

3.6.1. Model of the power balance in the system 
During real-time operations, stochastic realizations of the demand 

and distributed PV deviate from forecasted profiles. To maintain the 
balance, injections of the power plants and of ESSs will be activated 
according to the cost function described next. Let P̃ t0

(HV) the real power 
flow at the slack bus of the HV network at time t determined by the day- 
ahead unit commitment2. The active power balance of the system is 
modeled by enforcing that the realization of the active power flow at 
the slack bus P t0

(HV) matches with the respective day-ahead flow P̃ t0
(HV): 

=P P(·) ˜ ,t t0
(HV)

0
(HV) (8) 

where P (·)t0
(HV) is a function of all controllable injections (ESSs and 

conventional generators) and stochastic realizations and it is computed 
with (1c). By imposing the slack power to equal the day-ahead com
mitment with (8), we force all the other units, including ESSs in dis
tribution grids, to provide balancing power. 

3.6.2. Cost of operations 
Let cbt be the (symmetric) cost of activating a unit of power reserve 

for the time interval t and for the power plant at bus b. is the set of 
bus indexes that interface conventional power plants. We assume that 
reserve is provided at the day-ahead spot price3. The total cost of 
providing regulation from conventional power plants is the sum over 
time and over all the plants: 

=PJ c P( ) ,G G

t b
bt bt

G( ) ( )

,

( )

(9) 

where P(G) collects all the power injections of conventional generators. 
The costs related to batteries are the capital investments required to 
manufacture them. In doing so, we assume that batteries can be es
sentially recharged (and discharged) for free, for instance, by taking 
advantage of low prices in the day-ahead spot market (viceversa). Fixed 
installation costs are disregarded. Let be the set of bus indexes of both 
HV and MV grids candidate for hosting a ESS4, and cP and cE be the 
unitary cost of apparent power rating (€ /MVA) and energy storage 
capacity (€ /MWh). With reference to models (4) and (7), the cost of 
installing ESSs is: 

=
+

P Q
P Q P

J
c S c E

( , )
( ( , ) ( )),

B B

b
B

b
B

b
B

B

b P b E b

( ) ( ) ( )

nom,
( ) ( )

nom,
( )

(10) 

where variables P(B), Q(B) collect all ESSs’ active and reactive power 
injections. The total system cost is the sum of the last two: 

= +P P QJ J J(·) ( ) ( , )B BG G B( ) ( ) ( ) ( ) ( ) (11) 

where the arguments of J are omitted for brevity. 

3.6.3. Complete formulation 
The decision problem consists of minimizing costs (11) subject to 

the power balance constraint in (8), conventional power plants con
straints (3), ESSs’ power rating (4) and energy storage requirements (7), 
grid models (1) for both the HV and MV grids, continuity constraints  
(2), grid constraints on statutory voltage limits and line ampacities. We 
model multiple daily scenarios of the realizations (by stacking them 
along the time dimensions) so to compute storage deployment guide
lines that are valid for multiple stochastic outcome. The formal for
mulation is omitted due to lack of space. 

Fig. 2. Equivalent circuit model of the battery energy storage system. P Q,t b t b, ,
are the active and reactive power injections of the battery. Pt b, is the ’lossy’ 
active power injection that is used to drive the model of state-of-energy of the 
battery. 

2 Computed by an optimal power flow fed with with day-ahead point pre
dictions of the stocastic realizations. 

3 For up regulation this can be a very conservative estimation, see for instance  
[26]. 

4 Not all the nodes might be available to host an ESS due to, for instance, land 
use constraints. 
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4. Case study 

We provide a proof-of-concept of the proposed formulation by nu
merical simulations considering the system shown in Fig. 1. Grid 
topologies for the HV and MV systems are according to the specifica
tions of the 9-bus IEEE test system and CIGRE’ benchmark system for 
MV grids, respectively. The nominal demand and PV capacity at each 
node are reported in 1. We model power demand as described in  
Section 3 and with nominal nodal values according to the specifications 
of the benchmark systems. Instead, the PV installed capacity is chosen 
to create mild reverse power flow conditions during peak production 
hours to reflect conditions of future distribution grids with pervasive 
distributed generation. Equivalent loads A and B in Fig. 1 are modelled 
also starting from real measurements: the former refers to MV a grid 
with large presence of PV generation, the second to a grid with loads 
only. 

To model PV generation and demand, we consider four typical days 
of PV generation time series, one per season. For the demand, we 
consider the same daily profile for all four days because the considered 
measurement data set does not include thermal loads and, thus, does 
not exhibit significant seasonal patterns, that are, instead, dominated 
by PV generation. For each day, we consider 5 possible scenarios of the 
stochastic PV generation and demand realization, for a total of 20 
scenarios. At the current stage, the number of scenarios is chosen so as 
to have tractable computational times. An higher number of scenarios 
with guaranteed robust performance, as in [27], will be considered in 
future works. Scenarios are derived as follows considering real mea
surements and forecast for Lausanne (CH) from 2018. For each season, 
we first group similar PV generation forecasts with the k-means algo
rithm, where k is estimated with the silhouette analysis. The cluster 
with the largest number of elements is chosen as the most re
presentative for the current season and retained for the next analysis. 
For each forecast series in the retained cluster, we select the associated 
realization of PV production (from measurements) and consider them 
as a possible scenario. These scenarios are reduced to the final number 
by re-applying the k-means algorithm with =k 5. 

We consider a constant cost of the power reserve from conventional 
generation of 50 € /MWh. This value is chosen because it is near the 
average spot price in Europe (see, e.g., [28]) and a good proxy for the 
regulation price [26]. Reactive compensation is ”for free” and subject to 
the capability curves of the generators. The operational constraints 
enforced in the decision problem refer to voltage limits for all HV and 
MV nodes in the range 0.95-1.05 pu, power factor at the primary 

substation equal to or larger than 0.8, tap changer position at the 
middle plus/minus 10%. 

The costs of batteries costs are 280 € /kWh for energy capacity [29], 
and 80 € /kVA for power converter rating. 

5. Results 

We first show the output of the proposed method, that refers to the 
locations, and apparent power rating and energy capacity requirements 
of the battery systems to deploy. In a second illustrative analysis, we 
show that by forcing batteries’ injections to zero (so as to activate re
serve from conventional power plants only), the problem is feasible and 
converges at a similar cost only when constraints are relaxed, thus 
demonstrating that the use of battery energy storage systems improves 
grid control performance while subject to similar implementation costs. 

5.1. Vertical and horizontal siting and sizing 

The siting and sizing results for the HV and MV grids are shown in  
Figures 3 and 4, respectively. In the HV grid, three ESSs are installed: at 
nodes 5 (together with aggregated load A), 6 (where a generator is also 
connected, as visible in Fig. 1), and 9. The C-rate (i.e., active power 
rating over energy capacity) of the installed ESSs is between 1/2 and 1, 
which is well within the technical capability range of commercially 
available Lithium-ion ESSs. The relatively low C-rate of the proposed 
application denote an energy-intensive use of ESSs and can be therefore 
couple well with power-intensive services, such as primary frequency 
control. In the MV grid, the largest ESS is installed at the end of the first 
feeder, at node 11 (almost 1/2C). Smaller devices are installed at nodes 
6, 4, 14, 1, and 12, all with C-rates slightly smaller than 1. 

Table 2 reports the total ESSs requirements and costs. In order to 
compare the capital cost for the ESSs installation and the operational 
cost for reserve provision from conventional generation, we project the 
costs of reserve over the life-span of the energy storage facilities, that 
we assume of 20 years. At this stage we consider calendar ageing only, 
that for certain battery technologies, such as lithium-titanate, is domi
nant over the power cycling aging. 

Fig. 5 shows how the different reserve providers contribute to 
achieving the power balance and the day-ahead schedule in a certain 
time period: the contribution of the ESSs in MV grids (cyan area) 
complements the injections of the generators at the slack bus (blue) and 
at the other nodes (yellow) so to ensure that the total generation 

Table 1 
Nominal demand, power factor (pf) and installed PV capacity of traditional 
generation per node         

Node MV network HV network  

Residential demand PV Nominal demand Generation  

MVA pf MWp MW Mvar MVA-MWp  

1 15.3 0.9 5.7 0 – 250 
2 0 – 5.0 0 – 300 
3 0.28 0.9 4.4 0 – 270 
4 0.44 0.9 2.2 0 – 0 
5 0.75 0.9 1.3 35 30 40 
6 0.56 0.9 0.1 0 – 0 
7 0 – – 100 50 0 
8 0.6 0.9 – 0 – 0 
9 0 – 1.1 (34.3) (31) (37.8) 
10 0.49 0.9 1.6    
11 0.34 0.9 5.7    
12 15.3 0.9 5.7    
13 0 – –    
14 0.22 0.9 5.0    
Total 34.28  37.8 169.3 111 820-77.8 

Fig. 3. Sizing requirements as a function of the nodal locations in HV grid.  

Fig. 4. Sizing requirements as a function of the nodal locations in MV grid.  
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(dashed green) follows the schedule (red). As visible in Fig. 5, also 
variations of the HV slack voltage (orange) for voltage regulation de
termines variations of the power balance due to different levels of 
power losses in the lines. 

Figures 6 and 7 shows the voltage magnitudes and line currents (the 
seconds expressed in per unit of the respective ampacity limit) before 
and after the control action of the batteries for a period of interest 
where violations occur. The considered case study is dominated by 
voltage violations, whereas Line ampacity violations are less frequent 
and mild. As visible in Fig. 6, voltage levels are often considerably 
above the 1.05 pu limit due to PV generation. The action of distributed 

storage is able to restore voltage levels within the prescribed limits. 
Current violations are small (up to 1% recorded during the 5 PV-peak- 
production hours of the summer period in the MV grid) and are also 
corrected by distributed ESSs. 

5.2. Comparison with conventional generation only 

Due to excess PV generation in the MV networks, the problem 
without ESSs is not feasible under the tight constraints of the previous 
case study. Thus, we allow larger constraints on the voltage magnitude 
(from   ±  5% to   ±  7%). Power plants are assumed to have enough 
capacity to provide all the reserve required by the system. The costs for 
reserve procurement projected on 20 years is €  15.18 million, thus 
higher than the former case (i.e., €  13.23 million, Table 2). It is im
portant to acknowledge that ESSs achieved to implement voltage con
trol in the MV network compared to the case with conventional gen
eration only; if this service is remunerated in the future, it will 
contribute to shortening the payback time of ESSs. The average reactive 
injections supplied by conventional generators when ESSs are not 
available is 7.78 MVAR, with a maximum of 45.09 MVAR. 

6. Conclusions 

We proposed a modeling framework to determine the optimal lo
cation, energy capacity and power rating of distributed battery energy 
storage systems at multiple voltage levels for local grid control (voltage 
regulation and congestion management) and reserve provision to the 
transmission system operator. The decision model relies on an optimal 
power flow problem with a representation of the grid constraints of MV 
and HV grids and the regulation capacity of conventional generation 
units connected at the HV level. We model grid operations at a one-hour 
resolution, where stochastic realizations of the demand and distributed 
generation determine power imbalances from a day-ahead schedule. 
The imbalances are compensated by changing the set-point of con
ventional power plants (i.e., conventional reserves) and, possibly, by 
injections of the batteries. By assigning an operational cost to conven
tional reserves and a capital cost to batteries power rating and energy 
capacities, we derive the technical-economical optimum for storage 
systems deployment. Batteries injections are also activated to enforce 
grid constraints (in case, for example, of excess distributed PV gen
eration in distribution grids) and, thus, provide both regulating power 
and perform grid control. Because we consider the needs of both dis
tribution and transmission system operators, we refer to this formula
tion as vertical and horizontal planning of energy storage systems, as 
opposed to horizontal planning that includes a single voltage level only. 
We use linearized models of the HV and MV grids and retain funda
mental modeling aspects of the power system (transmission losses, ef
fects of reactive power, OLTC at the MV/HV interface, non-unitary ef
ficiency of battery energy storage systems) with a tractable convex 
formulation of the decision problem. Demand and distributed genera
tion are modeled with a bottom-up approach with real measurements 
and forecasted with methods from the literature. We model the 

Table 2 
Optimal ESS sizes and cost comparison against generators’ reserve      

Complete optimization results Value Cost  

HV Energy capacity 0.41 MWh 0.12 M€ 
Apparent power (real power) 0.46 MVA (0.30 MW) 0.04 M€ 

HV Energy capacity 13.16 MWh 3.68 M€ 
Apparent power (real power) 19.30 MVA (8.25 

MW) 
1.54 M€ 

Generators active reserve 157.05 GW 7.85 M€ 
Total cost  13.23 M€ 
Comparison with traditional reserve Total energy Cost 
Generators active reserve 303.67 GWh 15.18 M€ 
Requred reactive injections Mean value Max value 
Reactive injections required 0.05 MVA 0.18 MVAR 
Reactive injections required 1.50 MVAR 6.94 MVAR 
Reactive injections required 5.25 MVAR 40.08 MVAR 
Only with traditional reserve 7.78 MVAR 45.09 MVAR 

Fig. 5. Compensation of the imbalances by the various reserve providers.  

Fig. 6. Evolution in time of the maximum and minimum voltage magnitudes 
over all the grid nodes before and after ESSs actions for a selected period. 
Voltage limits are 1 pu  ±  5%. 

Fig. 7. Evolution in time of the maximum and minimum line currents over all 
the lines before and after ESSs actions for a given period where a mild violation 
occurs. Values are reported in per unit of the line’s ampacity limit. 
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stochastic outcomes of the loads and distributed generation with sce
narios. 

We test the performance of the planning algorithm by simulations 
on a joint power system that includes the IEEE 9-bus system and the 
CIGRE’ benchmark model for MV systems. Results show that the pro
posed method determines energy storage deployment plans that meet 
the required specifications. A comparison against the case without 
storage denotes that the capital costs for ESSs deployment are compe
titive compared to accumulated operational costs for reserves and that 
ESSs successfully achieves voltage regulation in grids with large 
amounts of PV generation. 

Vertical and horizontal planning determines an optimized strategy 
for the deployment of energy storage systems to serve the needs both 
the needs of transmission and distribution grids and is, therefore, a 
useful resource for system planners. Moreover, it can also be adopted by 
policy-makers to design specific policies encouraging the deployment of 
energy storage systems in distribution networks. Future developments 
are in the direction of developing a distributed formulation of the load 
problem to improve the scalability of the algorithm and extend its ap
plication to large networks. In addition to identifying the technical- 
economical optimum for storage deployment, this work also opens to 
the possibility of designing optimal policies and incentives to foster the 
adoption of storage accounting for its inherent multi-service nature. 
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