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� A combined microgrid sizing and energy management methodology is proposed.
� The bi-level problem is solved using an evolutionary algorithm and a MILP algorithm.
� Results are compared with a rule-based approach.
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Microgrids are small scale power systems with local resources for generation, consumption and storage,
that can operate connected to the main grid or islanded. In such systems, optimal sizing of components is
necessary to ensure secure and reliable energy supply to loads at the least cost. Sizing results are however
dependent on the energy management strategy used for operating the system, especially when compo-
nents with different dynamics are considered. Results are also impacted by uncertainty on load as well as
renewable generation. In this paper, we propose a combined sizing and energy management methodol-
ogy, formulated as a leader-follower problem. The leader problem focuses on sizing and aims at selecting
the optimal size for the microgrid components. It is solved using a genetic algorithm. The follower prob-
lem, i.e., the energy management issue, is formulated as a unit commitment problem and is solved with a
mixed integer linear program. Uncertainties are considered using a form of robust optimization method.
Several scenarios are modeled and compared in simulations to show the effectiveness of the proposed
method, especially with respect to a simple rule-based strategy.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

In order to limit global warming and reduce fossil fuel con-
sumption, renewable energy sources (RES) such as photovoltaic
panels (PV) and wind turbines (WT) are more and more commonly
used to generate electricity. The integration of such intermittent
sources is a challenge for grid operators, as the balance between
generation and demand must be met in real-time. This is especially
a concern for small power systems such as microgrids, that can
operate islanded, i.e., not connected to the main grid. Microgrids
typically include distributed generation and storage [1,2], and are
increasingly found in remote areas [3,4] or where power system
resilience is a crucial concern [5,6].
To enable RES integration, energy storage systems are consid-
ered as a key solution, as they enable storing excess generation
for later use [7]. Battery storage systems (BSS) are typically used
for short-term storage [8], but seem inappropriate for long-term
storage due to their low energy density and non-negligible self-
discharge rate [9]. Hydrogen storage systems (HSS), on the other
hand, are used for long-term storage, such as seasonal storage.
HSS combine an electrolyzer to produce hydrogen from electricity,
an hydrogen storage tank and a fuel cell (FC) to produce electricity
from hydrogen. [10] discusses FC systems, while [11] researches
about the PV/FC hybrid systems. In [12], a Matlab/Simulink model
is built to simulate such a PV/FC hybrid energy system. [13] also
builds a simulation model of another PV/FC/ultacapacitors stand-
alone microgrid.

In this work, we focus on the optimal sizing of microgrids where
PV panels are used as the primary energy source, and BSS and HSS
are used as storage units (Fig. 2). Finding the optimal size for each
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Nomenclature

Acronyms
BSS battery storage systems
EA evolutionary algorithms
EMS energy management systems
ESS energy storage system
FC fuel cell
GA genetic algorithm
HSS hydrogen storage systems
LOH level-of-hydrogen
LPSP loss of power supply probability
MILP mixed integer linear programming
PV photovoltaic panels
RBS rule-based strategies
RES renewable energy sources
SOC state-of-charge
UC unit commitment
WT wind turbines

Symbols
a penalty value for load shedding
b penalty value for curtailed PV output
Dt sampling time
gbat BSS charging efficiency
gPV PV panels efficiencygPloadðtÞ actual load in time tgPPV ðtÞ actual output of PV in time t
Bch
costðtÞ BSS charging cost in time t

Bdich
cost ðtÞ BSS discharging cost in time t

Cinv investment cost of components
Cmnt annual maintenance costs of components
CT PV temperature coefficient
Ccap capital cost of microgrid
Cmnt annual maintenance cost of microgrid
Cop operation cost
Cinv
bat investment cost for the BSS

Cinv
ele investment cost of the electrolyzer

Co&m
ele operation and maintenance costs of the electrolyzer

Cstart
ele startup cost of the electrolyzer

Cinv
fc investment cost of the FC

Co&m
fc operation and maintenance costs of the FC

Co&m
fc startup cost of the FC

CRF capital recovery factor
EOC open-circuit voltage of one FC cell
Erload error bound of load
ErPV error bound of PV output
F Faraday constant

Fð:Þ total cost function
GA global solar radiation

Hele
costðtÞ utilization cost of the electrolyzer in time t

Hfc
costðtÞ utilization cost of the FC in time t

IelðtÞ current of the electrolyzer in time t
IelðtÞ=Ael current density of the electrolyzer
ifcðtÞ current density in one FC cell in time t
Nbat;cyc number of cycles of the BSS

Nele
bat;hr operation hours of the electrolyzer over its lifetime

Nfc
bat;hr operation hours of the FC over its lifetime

Nel number of electrolyzer cells
Nfc number of FC cells
ninv expected life span of the microgrid
PloadðtÞ forecasted load in time t
PPV ðtÞ output power of PV panels in time t
PSTC PV array rated power
r real interest rate
T working temperature of the electrolyzer
TC temperature of panels
Thor time horizon
VelðtÞ voltage of the electrolyzer in time t
VfcðtÞ voltage of the FC in time t
Vrev reverse voltage of the electrolyzer

Variables
Ddele status of the electrolyzer (starting or not)
Ddfc status of the FC (starting or not)
deleðtÞ state (on or off) of the electrolyzer
dfcðtÞ state (on or off) of the FC
_nH2
el ðtÞ production rate of hydrogen of the electrolyzer in time t

_nH2
fc ðtÞ consumption rate of hydrogen of the FC in time t

Cbat capacity of the BSS
LOHðtÞ state of hydrogen tanks in time t
NPV number of PV panels
PchðtÞ BSS charging power in time t
PcurtðtÞ curtailed PV output in time t
PdischðtÞ BSS discharging power in time t
PelðtÞ input power of the electrolyzer in time t
Pmax
el maximum input power of electrolyzer

PfcðtÞ output power of th FC in time t
Pmax
fc maximum output power of fuel cell

PjðtÞ output power of unit j in time t
PLSðtÞ shed load in time t
SOCðtÞ state of BSS in time t
Vmax
H2

maximum volume of hydrogen tanks
ZjðtÞ actual output power of unit j in time t
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of these components, i.e., finding the capacity or rated power for
each component that ensures adequate supply at minimum cost,
is a challenge because the sizing result is affected not only by the
architecture of the system, but also by the adopted energy man-
agement strategy [14]. Depending on how components such as
storage units are used, the necessary capacity may change signifi-
cantly, which in turn impacts the size of other components as well
as overall costs. Another aspect to consider is the impact of uncer-
tainty on PV output and load. Forecasting errors change the input
data profiles and lead to suboptimal scheduling results, which in
turn influences sizing results. To address these challenges, this
paper presents a leader-follower co-optimization method to size
islanded microgrids, which also considers uncertainty on input
data.
The optimal sizing problem is a non-convex and non-linear
combinatorial optimization problem [15], and for the solution of
this problem, various optimization methods have been presented
in [16]. In [17], authors review 68 computer tools which can be
used for analyzing RES integration, but the results show that there
is no tool that can address all aspects of hybrid microgrid system.
As the part of artificial intelligence, evolutionary algorithms (EA)
are optimization algorithm which can be used to solve combinato-
rial and nonlinear optimization problems. For example, [18,15]
compare several EA for the optimal sizing of a hybrid system,
where the objective function is the total annual cost. Other papers
use various metaheuristics, [19] uses ant colony optimization
(ACO) to get size values of PV/wind hybrid system. In [20], artificial
bee swarm optimization (ABSO) used to solve the sizing problem of
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PV/WT/FC hybrid system considering loss of power supply proba-
bility (LPSP). Simulated annealing and tabu search (TS) are used
in [3]. [21] studies the performance of different particle swarm
optimization (PSO) algorithm variants to determine the size results
of hybrid (PV/wind/Batt) system.

In most of these papers, a simple control strategy is selected:
when there is surplus power, the excess energy is stored in the
ESS, and when there is a shortage of power, the ESS discharges,
or controllable generators (diesel gensets or FC) are turned on. Eco-
nomic criteria are not considered in most cases. Some papers use
more advanced strategies based on rules (rule-based strategies
(RBS)) to control energy flows. Various algorithms are used, such
as a multi-objective genetic algorithm (GA) [22], a hybrid GA
[23], or an improved bat algorithm [24]. However, the limits of
RBS are quickly reached when more than a few components are
included in the system, as the number of required rules signifi-
cantly increases. Moreover, these strategies cannot provide opti-
mal results regarding how the state-of-charge of storage units is
controlled over time. More advanced energy management systems
(EMS), that primarily focus on economic dispatch with EA, are also
presented in the literature. [25] presents a decentralized energy
management strategy based on multi-agent systems and fuzzy
cognitive Maps. In [26], authors propose a non-cooperative game
theory-based EMS. [27] proposes a bi-level optimization energy
management approach of multiple microgrids. Economic dispatch
is solved in each microgrid, and then a secondary-level optimiza-
tion is used to seek the minimum operation cost for the set of
microgrids. Multiperiod ABCO [28], multi-layer ACO [29], multi-
period gravitational search algorithm [30], and multi-period impe-
rialist competition algorithm [31] are also used for economic dis-
patch applications. [32] presents an operational architecture for
Real Time Operation (RTO) of an islanded microgrid. A limit of eco-
nomic dispatch approaches for EMS is that set points are deter-
mined only based on current conditions, but future conditions
are not considered.

An improved method for energy management, that can take
into account multiple objectives and constraints, is thus required.
Model-predictive control (MPC) offers a solution, and is commonly
used in power systems in the form of unit commitment (UC). UC
enables scheduling the use of multiple generation units over a
given time horizon [33], for example over a day. It can also be
extended to consider storage units and other devices. For example,
in [9], the authors present a UC optimization method to economi-
cally schedule BSS and HSS. [34] studies the thermal power plant
UC problem integrated with a large scale ESS. In [35], an integrated
framework for a stand-alone microgrid with objectives of increas-
ing stability and reliability and reducing costs is described. The UC
method is used to determine generators outputs for the next day.
[36] presents a two-stage planning and design method for micro-
grids. GA is used to solve the optimal design problem and a mixed
integer linear programming (MILP) algorithm enables determining
the optimal operation strategy. In [37], a mixed integer nonlinear
programming (MINLP) approach for day-ahead scheduling a com-
bined heat and power plant is proposed. Another MINLP-based
EMS algorithm is presented in [38]. [39] describes an approach
for security-constrained UC with integrated ESS and wind turbines.
Overall, the above research papers show that the UC method is
commonly used and adequate for scheduling the use of microgrid
components, including energy storage units. However, contrary to
works focusing on sizing that primarily focus on EA, papers on UC
mainly use classical non-linear or linear programming techniques
(MINLP or MILP) [40,37].

A UC algorithm does however rely on forecast data to compute
schedules. As forecasting errors are inevitable, the scheudling algo-
rithm must consider these errors. In the case studied in this paper,
errors on PV output and load impact schedules as well as sizing
results. Two main approaches to consider forcasting uncertainty
are found in the literature: scenario-based method [41–43] and
robust optimization [44–47]. [41] presents a stochastic method
based on cloud theory to handle uncertainty, and uses a krill herd
algorithm to solve the optimization problem. [42] describes a
stochastic optimization for microgrid energy and reserve schedul-
ing. Wind and PV generation fluctuations for each hour are repre-
sented by 5-interval discrete probability distribution functions. A
scenario tree technique is then used to combine different states
of wind and PV fluctuations. [43] presents a scenario-based robust
energy management method. Taguchi’s orthogonal array testing
method is used to provide possible testing scenarios, and deter-
mine the worst-case scenario. At last, the Monte Carlo method is
used to verify the robustness of the approach. In [44], uncertainty
is quantified in terms of prediction intervals by a non-dominated
sorting genetic algorithm (NSGA-II) trained by a neural network.
Robust optimization is then used to seek the optimal solution to
the problem. [45] uses robust optimization-based scheduling for
multiple microgrids considering uncertainty. The problem is trans-
formed to a min-max robust problem, and is then solved using lin-
ear duality theory and the Karush-Kuhn-Tucker (KKT) optimality
conditions. [47] presents a robust EMS for microgrids. Authors
use a fuzzy prediction interval model to obtain the uncertainty
boundary of wind output, and then the upper and lower bound-
aries of wind energy are interpreted as the best and worst-case
operating conditions. In the above papers, scenario-based methods
usually require generating many scenarios, which can take a lot of
time to simulate. On the other hand, robust methods are used to
find the worst case, which requires less computation time,
although results are more conservative. As a consequence, in this
paper, a robust optimization method is selected to find the worst
case and best case based on the forecasting error.

The above review of the state-of-the-art has shown that a sizing
methodology needs to use an appropriate energy management or
scheduling approach, and that MPC-based UC fits these needs. Sev-
eral papers have considered such combinations of sizing and
energy management algorithms. For example, [48] presents a co-
optimization method to size stand-alone microgrids with two
GA: one for the sizing, and another one for the scheduling. In
[49], authors present a co-optimization method for microgrid plan-
ning in electrical power systems. The leader problem optimizes the
planning decisions for the microgrids and the main grid, and, with
the proposed plan, the short-term and economic operation sub-
problems are solved to check whether constraints are met or not.
In [50], authors also present a microgrid planning model. The prob-
lem is decomposed into an investment master problem and an
operation subproblem. The two problems are linked via the ben-
ders decomposition method. Finally, in [51], the authors present
a bi-level program for the sizing of islanded microgrids with an
integrated compressed air energy storage (CAES). The upper level
problem is solved using GA, and the lower level problem is solved
using the MILP technique.

This paper introduces a general method to size a stand-alone
microgrid (PV-BSS-HSS) considering technical and economic crite-
ria, with a combination of EA and UC optimization. Compared to
existing literature, contributions include:

1. A bi-level optimization method to perform microgrid sizing. A
genetic algorithm is used to compute the sizing of the compo-
nents to minimize the total annual cost (capital, maintenance
and operation) of the system. Each candidate solution (set of
components sizes) is evaluated with a MILP UC algorithm. The
design bi-level optimization framework is shown in Fig. 1.

2. The used UC optimization is used to control energy flows con-
siders technical and economic criteria, such as the operation
costs of the components, the startup costs of the fuel cell and



Fig. 1. Bi-level optimization framework.
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the electrolyzer, the state-of-charge (SOC) of the BSS, the level-
of-hydrogen (LOH) of hydrogen tanks. In addition to these, the
load shedding and PV power curtailments resulting from sizing
values are determined and used to evaluate candidate solutions.

3. A 1-h resolution rolling-horizon simulation is used to verify the
validity of the obtained sizing solutions, and to adjust the sizing
values if required, especially as the sizing algorithm input data
uses a 1-week resolution to improve computation speed.
Fig. 2. Microgrid
4. Uncertainty on PV generation and load is taken into account
using a robust method. Sizing results are adjusted depending
on forecasting errors.

5. The impact of different initial states for SOC and LOH and differ-
ent penalty values for load shedding and power curtailments is
assessed to determine the sensitivity of results with respect to
these parameters.

6. Finally, results are compared with a rule-based strategy com-
monly used in the literature, in order to further evaluate the
performance of the algorithm.

The rest of this paper is structured as follows. Section 2 intro-
duces the system model. Section 3 describes the UC strategy and
Section 4 the EA-based sizing problem formulation. Finally, Sec-
tion 5 presents the simulation results while Section 6 concludes
the paper.
2. System model

A stand-alone microgrid with four main components is consid-
ered (Fig. 2): PV panels, a BSS, an HSS (with an electrolyzer, hydro-
gen tanks and a fuel cell), and a load corresponding to a building.
Static converters are not modeled, as their impact is negligible
on sizing results.
2.1. PV panels

The output of the PV panels is calculated using [52,11]:

PPV ðtÞ ¼ NPV � gPV � PSTC � GAðtÞ
GSTC

� ð1þ ðTCðtÞ � TSTCÞ � CTÞ ð1Þ

where NPV is the number of panels, gPV is the panels efficiency, PSTC

is the PV array rated power in Wp under standard test conditions
(STC), GA is the global solar radiation received by the panels in
kW/m2, GSTC is the solar radiation under STC (1 kW/m2), TC is the
temperature of the panels, TSTC is the STC temperature, and CT is
the PV temperature coefficient.
architecture.
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2.2. Battery

The state of the BSS is represented by its state-of-charge:

SOCðtÞ ¼ SOCðt � DtÞ þ gb � PchðtÞ � Dt
Cbat

� PdischðtÞ � Dt
Cbat

ð2Þ

where gbat is the charging efficiency, PchðtÞ is charging power,
PdischðtÞ is the discharging power, Dt is the sampling time, and Cbat

is the capacity of the battery pack.

2.3. Electrolyzer

Electrolyzers are used to produce hydrogen (H2) from electric-
ity. The characteristic of the electrolyzer can be described as fol-
lows [53,54]:

VelðtÞ ¼ Nel � Vrev þ r1 þ r2 � Tð Þ � IelðtÞ
Ael

þ s1 þ s2 � T þ s3 � T2
� �

� log 1þ t1 þ t2
T
þ t3
T2

� �
� IelðtÞ
Ael

� �
ð3Þ

where VelðtÞ is the voltage of the electrolyzer, Nel is the number of
cells, Vrev is the reversible cell potential, T is the working tempera-
ture (assumed constant), and IelðtÞ=Ael (in A/m2, with Ael the area) is
the current density. Variables r1; r2; s1; s2; s3; t1; t2; t3 are empirical
constant coefficients.

The production rate of hydrogen of the electrolyzer is then
given by Faraday’s law:

_nH2
el ðtÞ ¼ gFðtÞ

Nel IelðtÞ
2F

ð4Þ

where F is the Faraday constant, and Iel is the current in the elec-
trolyzer. gF is Faraday’s efficiency, which provides a relation
between the actual production rate of hydrogen and its theoretical
value, namely:

gFðtÞ ¼
ðIelðtÞ=AelÞ2

f 1 þ ðIelðtÞ=AelÞ2
f 2 ð5Þ

where f 1 and f 2 are empirical coefficients.
Using the above equations, an equation relating PelðtÞ and _nH2

el ðtÞ
is obtained, in the form of:

PelðtÞ ¼ f ð _nH2
el ðtÞÞ ð6Þ

where f ð:Þ is a nonlinear function. Due to constraints described in
Section 3, this function is linearized, such that:

PelðtÞ ¼ kel � _nH2
el ðtÞ ð7Þ

where kel is a constant. The linearization is done via a linear regres-
sion on the curve obtained from (6). The maximum value of Pel is
noted Pmax

el .

2.4. Fuel cell

Fuel cells consume H2 and oxygen to produce electricity and
water [10–12,55]. A simple electrical model is used to describe
the characteristic voltage curve of the FC [55]:

VfcðtÞ ¼ ðEOC � rfc � ifcðtÞ � a � lnðifcðtÞÞ �m � es�ifcðtÞÞ � Nfc ð8Þ

where Vfc is the voltage of the FC, EOC is the open-circuit voltage of
one cell, ifcðtÞ is the current density in one cell, Nfc is the number of
cells, and rfc; s; a, and m are empirical coefficients.

The hydrogen consumption of the FC depends on its current and
is given by:
_nH2
fc ðtÞ ¼

Nfc IfcðtÞ
2F U

ð9Þ

where U is the utilization efficiency of hydrogen by the fuel cell.
As for the electrolyzer, the model is linearized to obtain:

PfcðtÞ ¼ kfc � _nH2
fc ðtÞ ð10Þ

where kfc is a constant. The maximum value of Pfc is noted Pmax
fc .

2.5. Hydrogen tank

Hydrogen tanks are used to store the hydrogen produced by the
electrolyzer. The stored hydrogen is then supplied to the FC to gen-
erate electricity. Similarly to the BSS, a quantity named level of
hydrogen (LOH) is used to represent the state of the tank:

LOHðtÞ ¼ LOHðt � DtÞ þ _nH2
el ðtÞ � Dt � _nH2

fc ðtÞ � Dt ð11Þ
Then, using the ideal gas law (PV ¼ nRT), the volume of the tank

VH2 can easily be determined.

3. Scheduling strategy

As the results of the sizing process depend on how the different
components are used (i.e., what is their output), an appropriate
control strategy is required. Contrary to classical components,
ESS introduce a temporal link between time steps and scheduling
algorithms have to consider this link to ensure that the SOC
remains within allowed bounds. This constraint is necessary to
ensure that the results of the sizing are adequate, and components
oversizing is avoided. As a consequence, it is necessary to predict
the evolution of the entire system, including the PV generation
which is the primary source of energy for the microgrid.

This paper uses a form of MPC to plan the operation of the sys-
tem in advance, using forecasts. This MPC strategy is a UC algo-
rithm. Due to the presence of mixed logical and integer variables,
the problem is expressed as a MILP problem.

3.1. Cost function

In order to achieve economically efficient operation, the utiliza-
tion cost of the BSS and the HSS need to be quantified and mini-
mized over a given time horizon [9,56,48]. For the BSS, aging is a
major concern that limits the lifetime of the device. As a conse-
quence, the investment cost and the degradation of the BSS have
to be taken int account in the operation cost. The utilization cost
for charge and discharge are then implemented as follows [56]:

Bch
costðtÞ ¼

Cinv
bat � PchðtÞ � gb

2 � Nbat;cyc
ð12Þ

Bdisch
cost ðtÞ ¼

Cinv
bat � PdischðtÞ
2 � Nbat;cyc

ð13Þ

where Cinv
bat is the investment cost for the BSS, and Nbat;cyc the number

of cycles over its lifetime.
For the HSS, the O&M and the startup costs must also be consid-

ered. The utilization cost of the electrolyzer and the FC can be com-
puted as follows [56]:

Hele
costðtÞ ¼

Cinv
ele

Nele
bat;hr

þ Co&m
ele

 !
� deleðtÞ þ Cstart

ele � DdeleðtÞ ð14Þ

Hfc
costðtÞ ¼

Cinv
fc

Nfc
bat;hr

þ Co&m
fc

 !
� dfcðtÞ þ Cstart

fc � DdfcðtÞ ð15Þ
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where Cinv
ele and Cinv

fc are the investment costs for the electrolyzer and

the FC. Co&m
ele and Co&m

fc are the operation and maintenance costs of

both components. Similarly, Cstart
ele and Cstart

fc are their startup cost.
Nbat;hr represents the number of hours of operation of the HSS over
its lifetime. deleðtÞ and dfcðtÞ describe their state (i.e., 1 for on, 0 for
off). Finally, Ddi represents whether the unit is starting or not, and
is defined as:

DdiðtÞ ¼ maxfdiðtÞ � diðt � 1Þ;0g; i ¼ fele; fcg ð16Þ

Based on the previous cost functions, the total operation cost
function for the entire microgrid, over a time horizon of Thor steps,
can be built:

Cop ¼
XThor
t¼1

Bch
costðtÞþBdis

costðtÞþHele
costðtÞþHfc

costðtÞþa �PLSðtÞþb �PcurtðtÞ
� �

ð17Þ
where PLSðtÞ is the shed load, PcurtðtÞ is the curtailed PV output, and
a and b are the corresponding penalty values. Load shedding (LS)
and PV curtailment (PVC) are two means of flexibility to ensure a
balance between generation and demand. However, their use has
to be minimized due to their impact on customer comfort and sys-
tem efficiency, respectively. The values of penalty coefficients a and
b are thus chosen to discourage the use of LS and PVC. A form of
demand response could however also be used [57,58], but is kept
for future work.

3.2. Constraints

The operation of the various components is subject to several
constraints, as is the islanded operation of the system. In the fol-
lowing equations, i ¼ fele; fcg and j ¼ fele; fc; ch; dischg. First, all
component outputs have to be between their minimum and max-
imum values:

Pmin
j 6 PjðtÞ 6 Pmax

j ð18Þ

In order to consider the status of each device (on or off), the
above equation becomes:

djðtÞ � Pmin
j 6 ZjðtÞ ¼ djðtÞ � PjðtÞ 6 djðtÞ � Pmax

j ð19Þ

Due to linearity constraints, this equation can then in turn be
transformed into the following two inequalities:

ZjðtÞ 6 PjðtÞ � ð1� djðtÞÞ � Pmin
j

ZjðtÞ P PjðtÞ � ð1� djðtÞÞ � Pmax
j

ð20Þ

Another constraint is that the electrolyzer and the FC should not
be working at the same time, i.e., the HSS is either charging or
discharging:

deleðtÞ þ dfcðtÞ 6 1 ð21Þ

A similar constraint is used for the BSS:

dchðtÞ þ ddischðtÞ 6 1 ð22Þ

The SOC and LOH constraints also have to be verified:

SOCmin 6 SOCðtÞ 6 SOCmax ð23Þ

Vmin
H2

6 VH2 ðtÞ 6 Vmax
H2

ð24Þ
Then, Eq. (16) can be rewritten as:

DdiðtÞ ¼ diðtÞ � ð1� diðt � 1ÞÞ; i ¼ fele; fcg ð25Þ
From [59], the above nonlinear equation can be transformed
into the following linear constraints:

� diðtÞ þ DdiðtÞ 6 0 ð26Þ
� ð1� diðt � 1ÞÞ þ DdiðtÞ 6 0 ð27Þ
diðtÞ þ ð1� diðt � 1ÞÞ � DdiðtÞ 6 1 ð28Þ

Finally, as the system is islanded, the balance between genera-
tion and demand has to be met at all time steps, so:

PPV ðtÞ � PcurtðtÞ � ðPloadðtÞ � PLSðtÞÞ
¼ ZeleðtÞ � ZfcðtÞ þ ZchðtÞ � ZdisðtÞ ð29Þ
3.3. Problem formulation

Using the above cost function and constraints, the microgrid UC

problem can be summarized as follows, where eS is the set of
variables:

mineS fCopg s:t: ð2Þ; ð7Þ; ð10Þ; ð11Þ; ð18Þ � ð29Þ ð30Þ
4. Sizing algorithm

The scheduling strategy presented in the previous section
requires several input variables. Some of these variables corre-
spond to the maximum rating or capacity of each component, what
are the results of the sizing algorithm. Other inputs are parameters
set by the user, such as the initial SOC and LOH values, and the pen-
alty coefficients a and b. The impact of these parameters on results
will be discussed in Section 5.

4.1. Leader-follower structure

The sizing problem aims at finding the optimal size of the PV,
BSS, electrolyzer and FC components to achieve the most cost-
effective solution over a given time period. Let
NPV 2 NPV;Cbat 2 Cbat;V

max
H2

2 VH2 ; P
max
el 2 Pel; P

max
fc 2 Pfc. Set U repre-

sent the whole set, namely, U ¼ NPV [ Cbat [ VH2 [ Pel [ Pfc, and
U 2 U.

The problem can then be formulated as a leader-follower prob-
lem [60]. The leader problem (the sizing problem) is as follows:

min
U2U

fFðUÞg ð31Þ

where Fð:Þ is a function representing the total cost of the system
over the simulation duration.

The follower problem (the scheduling problem), is defined as:

min
U� ;eS fCopg s:t: ð2Þ; ð7Þ; ð10Þ; ð11Þ; ð18Þ � ð29Þ ð32Þ

where U� is the set of sizing values obtained from the leader.
In other words, the leader first returns a candidate set of values

for NPV ;Cbat ;V
max
H2

; Pmax
el , and Pmax

fc . Then the follower uses these val-
ues to calculate the total operation cost using the algorithm
described in Section 3. Based on this cost information, the leader
adjusts the sizing values until an optimal value that minimizes
the overall cost is found.

4.2. Leader problem objective function

To obtain a valid estimate of the actual cost of the system, oper-
ation cost is insufficient as capital and maintenance costs must also
be considered [15,48,18]. In order to convert the initial capital cost
to an annual capital cost, the capital recovery factor (CRF) is used
[15]:
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CRF ¼ rð1þ rÞninv
ð1þ rÞninv � 1

ð33Þ

where r is the real interest rate and ninv is the expected life span of
the microgrid.

The total capital cost corresponds to the cost of buying the
equipment, given by:

Ccap ¼ CRF � NPV � Cinv
PV þ Pmax

fc � Cinv
fc þ Pmax

el � Cinv
ele þ VH2 � Cinv

tank þ Cbat � Cinv
bat

� �
ð34Þ

where Cinv variables represent the prices of the PV, FC, electrolyzer,
hydrogen tanks and battery components.

Similarly, the annual maintenance cost is given by:

Cmnt ¼ NPV � Cmnt
PV þ VH2 � Cmnt

tank þ Cbat � Cmnt
bat ð35Þ

where Cmnt variables represent the annual maintenance costs of the
PV, hydrogen tanks and battery components. As the O&M cost of the
FC and the electrolyzer are considered in the operation strategy Eqs.
(12)–(15), they are not included in the annual cost.

The fitness function of the leader problem is thus the total cost
function Fð:Þ given by:

F ¼ Ccap þ Cop þ Cmnt ð36Þ
Finally, the overall problem can be formulated as:

min
U2U

fCcap þmin
U� ;eS fCopg þ Cmntg

s:t: ð2Þ; ð7Þ; ð10Þ; ð11Þ; ð18Þ � ð29Þ
ð37Þ
Fig. 3. Optimization
4.3. Simulation process

In order to obtain the optimal sizing for the system, the MILP-
based scheduling algorithm and the EA-based sizing algorithm
are combined.

A GA [23,61] is used to solve the leader problem. GA are based
on the natural selection process similar to biological evolution.
Operators such as mutations, crossover and selection enable gener-
ating candidate solutions. The decision variables of the GA are
rounded to the nearest higher value for use in the UC MILP
algorithm.

The simulation process is shown in Fig. 3:

1. The population of N candidate solutions for the GA is randomly
initialized.

2. Each of these solutions is then used with the follower problem.
The UC MILP optimization is run. If the solution is infeasible, a
new candidate solution is generated.

3. The GA fitness function value is then computed to determine
the total cost of each candidate solution.

4. The process continues until any stopping criterion is met. An
adaptive method is selected. Firstly, if the fitness function val-
ues for two consecutive steps are the same, then counter Num
is incremented. If Num exceeds a given maximum value (here
Nummax ¼ 50), the simulation stops as the fitness function is
not improving anymore. The second criterion is on the number
of iterations, for which a maximum number (here Genmax ¼ 200)
is set.
process outline.



Table 1
Component and simulation parameters.

Fuel cell [10–12,55,48]
A 0.03
rfc 2:45� 10�4

m 2:11� 10�5

n 0.008

Cinv
fc

4000 €/kW

Co&m
fc

0.2 €/h

Life cycles 30,000 h

Pmin
fc

1 kW

Electrolyzer [53,54,48]
r1 0.0015
r2 �6.019 � 10�6

s1 2.427
s2 �0.0307
s3 3:9� 10�4

t1 0.214
t2 �9.87
t3 119.1
f 1 150
f 2 0.99

Cinv
ele

3200 €/kW

Co&m
fc

0.2 €/h

Life cycles 30,000 h

Pmin
ele

1 kW

Battery [48]

Cinv
bat

470 €/kW h

Cmnt
bat

1 €/kW�year
Nbat;cyc 2000
SOCmin 0.5
SOCmax 0.9

Hydrogen tanks [48]

Cinv
tank

150 €/Nm3

Cmnt
tank

10 €/Nm3.year

Vmin
H2

1 Nm3

PV panels[48]

Cinv
PV

7400 €/kW

Cmnt
PV

6 €/kW�year
CRF [48]

ninv 20 years
r 0.05

Table 2
Simulation cases assumptions.
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5. Simulation results

In order to validate the sizing methodology, we run several sim-
ulation cases.

5.1. Simulation setup

Simulations are performed using Matlab R2014a and Gurobi
6.5.1, running on a desktop computer with an Intel Xeon 3.1 GHz
processor, 16 GB RAM, and Microsoft Windows 7. Input data pro-
files for solar radiation and load (Fig. 4) are obtained and adapted
from a research building located on the UTBM campus in Belfort,
France. In order to analyze the sensitivity of sizing results to load
levels, we use two load profiles. As shown in Fig. 4, load profile 2
is 50% larger than load profile 1. Component parameters used in
the simulations are given in Table 1.

In order to keep simulation time to reasonable durations,
weekly average data is used for the input data. The approximate
duration for each run is then of approximately 30 min. Although
resolutions of 1 h or more could be used, simulation durations
would increase significantly and could not be performed on a reg-
ular computer.

5.2. Cases overview

To evaluate the impact of initial conditions and parameters, five
cases are compared. Each case assumes different values for
SOCini; LOHini;a and b, and one of the two load profiles. Case
assumptions are summarized in Table 2. Cases 1A and 1B, and
Cases 2A and 2B are designed to compare the influence of different
initial states for SOC and LOH on the sizing results. Case 2 is also
used to analyze the influence of different load levels on the sizing
of the HSS and the BSS. Case 3 is designed to analyze the influence
of the penalty values (a and b) on sizing results, with values rang-
ing from 105 to 101. Results are summarized in Table 3.

5.3. Results for Case 1

For Case 1A, the sizing results return 52 PV panels, a 6 kW FC, a
7 kW electrolyzer, tanks with a capacity of 7178 Nm3, and
189 kW h of batteries, for a total cost of €201,970. Here, unit
Nm3 corresponds to the volume under normal conditions (1 bar,
0 �C). Based on the ideal gas law, we can estimate the volume for
a higher pressure and temperature. For example, under
Fig. 4. Weekly average solar radiation and load profiles.

Cases 1A 1B 2A 2B 3

SOCini 0.5 0.9 0.5 0.9 0.5
LOHini 5000 3000 8000 7000 5000
a 105 105 105 105 103

b 105 105 105 105 103

Load profile 1 1 2 2 1
700 bar/15 �C, the above volume would amount to 10.82 m3. Con-
vergence results of the GA are shown in Fig. 5, and indicate that
200 generations seem sufficient. Similar convergence results are
obtained for other cases.

Fig. 6 shows the scheduling results. The HSS is more frequently
used than the BSS, as the HSS is cheaper to use when the power gap
between PV output and load demand is large. Fig. 7 shows the
change in hydrogen level in the tanks. As in winter the PV output
is insufficient, the HSS discharges mostly to supply the load, but
in summer, PV output is large enough to enable the HSS to
recharge and store hydrogen. Due to the large penalty values
(105) for LS and PVC, these two options are almost not used.



Table 3
Sizing results.

Case Load SOCi LOHi Total cost [€] Cop [€] Ccap [€] NPV Pmax
fc [kW] Pmax

el [kW] VH2 [N�m3] Cbat [kW h]

1A 1 0.5 5000 201,970 1697.8 127,980 52 6 7 7178 189
1B 1 0.9 3000 160,070 1663.2 105,070 52 6 7 5283 179
2A 2 0.5 8000 219,410 1725.1 137,210 50 11 6 8000 158
2B 2 0.9 7000 200,290 1674.5 128,090 54 10 7 7000 190
3 1 0.5 5000 205,160 4562.2 125,120 52 7 7 7515 2

RBS 1 0.5 5000 276,560 151.9 174,640 57 7 8 10,100 407

Fig. 5. Comparison of the convergence of all three EA for Case 1A.

Fig. 6. Scheduling results for case 1A. The curve labeled ‘Power’ corresponds to the
PV output minus the load.

Fig. 7. LOH and SOC for Case 1A.

Fig. 8. LOH and SOC for Case 1B.
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Fig. 7 also shows the SOC profile of the BSS, that is used as an
auxiliary storage system to ensure the balance between generation
and demand, while avoiding load shedding and PV curtailment.

For Case 1B, the initial SOC is larger and the initial LOH lower.
The capacity of the hydrogen tank decreases to 5283 Nm3, while
the battery capacity decreases to 179 kWh. Consequently, the total
cost also decreases to €160,070. The scheduling results for Case 1B
are similar to the ones obtained for Case 1A, and are thus not
shown. Fig. 8 shows the LOH and SOC levels. As the initial SOC is
larger than for 1A, the total required capacity is lower. For the
LOH, the profile is almost the same as in Case 1A. For the SOC, in
Case 1A, the initial state is the minimum SOC, so the BSS cannot
discharge at the beginning, but for Case 1B, the initial state is the
maximum SOC and the BSS can then discharge.
5.4. Results for Case 2

For Cases 2A and 2B, the second load profile with a 50% higher
demand is used. For Case 2A, the sizing results return 50 PV panels,
a 11 kW FC, a 6 kW electrolyzer, tanks with a capacity of 8000 Nm3,
and 158 kW h of batteries, for a total cost of €219,410. Fig. 9 shows
the scheduling results, and Fig. 10 the LOH and SOC profiles. The



Fig. 9. Scheduling results for Case 2A. The curve labeled ‘Power’ corresponds to the
PV output minus the load.

Fig. 10. LOH and SOC for Case 2A.

Fig. 11. LOH and SOC for Case 2B.
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HSS is sufficient to provide energy to the load, especially at the
beginning, so the needed battery capapcity is lower. However, in
Case 2B, the HSS is insufficient to meet the load, so more PV panels
and battery energy are needed. We can also see that the rating of
the FC is larger than in Case 1. As more energy is needed, it
becomes cheaper to use the FC than the battery, hence the higher
FC rating.

For Case 2B, the sizing results return 54 PV panels, a 10 kW
FC, a 7 kW electrolyzer, tanks with a capacity of 7000 Nm3,
and 190 kW h of batteries, for a total cost of €200,290. As the
load is higher than that of Case 1, more storage, in the form
of BSS and HSS is needed. As the cost of the energy initially con-
tained in the storage units is not accounted for, the algorithm
increases the size of the storage units rather than increasing
the number of PV panels. The obtained scheduling results are
close to the ones shown in Fig. 9. Fig. 11 shows the LOH and
SOC profiles. Due to slight differences in the scheduling results,
the SOC curve is difference from the one in Case 2A. However,
the curves for LOH is similar, as the HSS operates as a longer
term storage unit.
5.5. Results for Case 3

In this case, as the penalty values are lower (103 instead of 105),
more energy is shed or curtailed. As a consequence, the sizing
results return 52 PV panels, a 7 kW FC, a 7 kW electrolyzer, tanks
with a capacity of 7515 Nm3, and 2 kW h of batteries, for a total
cost of €205,160. Detailed LS, PVC, LOH and SOC profiles are shown
in Fig. 15.

The size of the battery is significantly smaller than in other
cases. This can be explained by the lower values of the penalties
for LS and PVC, which make these two options more competitive
compared to using the BSS. In order to futher evaluate the influ-
ence of the different penalty values, we simulate different com-
binations of a and b with Case 1A. The results are shown in
Table 4 and Figs. 12 and 13, and indicate that the smaller the
values of a and b, the larger the magnitude of LS and PVC,
respectively.

Scheduling results are shown in Fig. 14, where we observe that
limited LS and PVC occur, although for Cases 1 and 2 the BSS was
used to supply the load (due to its cheaper cost). As expected,
the algorithm choses the most economical way to operate the
system.

5.6. Discussion of Cases 1–3

From the summary of results shown in Table 3, it can be
observed that the sizing results and the total cost are impacted
by the use of different input data and initial states. A compar-
ison of the breakdown of costs for all cases is shown in
Fig. 16. Results indicate that the capital costs are the highest,
while O&M costs remain relatively small. As the only primary
energy source is PV, these results are not surprising. The initial
energy contained in the BSS and the HSS is however not consid-
ered. Case 3 has the largest O&M cost, due to the penalty values
combined to LS and PVC. For Case 2A, more fuel cell and hydro-
gen tanks are needed, which results in the largest capital and
total cost.

Simulations also show that the HSS is more appropriate for long
term (seasonal) storage, as expected. This is especially valid as FC
and electrolyzers have limited dynamics, and require BSS or other
fast dynamics storage units to complement them and act as an
auxiliary unit. On the other hand, because the discharge and charge
power of the HSS are separate, the degration of the HSS will be
slower than for the BSS.



Table 4
Sizing results with different penalty values for Case 1A.

Case 3 PThor
t¼1PLSðtÞ [kW]

PThor
t¼1PcurtðtÞ [kW] NPV Pmax

fc [kW] Pmax
el [kW] VH2 [N�m3] Cbat [kW h]

a ¼ 105; b ¼ 103 0 4.4576 51 7 7 6823 58

a ¼ 105; b ¼ 101 0 84.8847 50 7 1 5026 2

a ¼ 104; b ¼ 101 0 84.7377 50 7 2 5543 2

a ¼ 104; b ¼ 103 0.0839 2.4054 55 7 8 8341 2

a ¼ 104; b ¼ 104 0.0352 0 52 6 7 7601 170

a ¼ 104; b ¼ 105 0.1297 0 59 7 8 11,123 113

a ¼ 103; b ¼ 101 0 84.1643 50 7 2 7015 2

a ¼ 103; b ¼ 103 2.209 0.7691 52 7 7 7515 2

a ¼ 103; b ¼ 104 3.0844 0 52 7 8 10,978 11

a ¼ 103; b ¼ 105 1.9553 0 54 7 8 8315 38

a ¼ 101; b ¼ 101 57.3662 89.4729 50 2 2 5793 2

a ¼ 101; b ¼ 103 60.5996 0 50 2 7 9110 1

a ¼ 101; b ¼ 104 60.3302 0 50 2 7 9023 2

a ¼ 101; b ¼ 105 60.5804 0 50 2 7 9157 2

Fig. 12. Load shedding vs. a & b.

Fig. 13. Curtailed power vs. a & b.
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Fig. 14. Scheduling results for Case 3. The curve labeled ‘Power’ corresponds to the
PV output minus the load.

Fig. 16. Comparison of costs for all cases.
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Regarding LS and PVC penalty values, results have shown that
values in the range of value ½103;105� are reasonable and enable
limiting the use of LS and PVC only to necessary cases. Values lar-
ger than 105 result in no LS or PVC at all, which can be problematic
are they can be seen as flexibility means of last resort.
5.7. Comparison with a rule-based operation strategy

In order to compare the obtained results with a simpler, refer-
ence case, we implement a rule-based operation strategy (RBS)
[13,62]. The outline of the algorithm is shown in Fig. 17. The prin-
ciple is to use the HSS first, and if it is unavailable, to use the BSS. It
should be noted that the algorithm does not try to maintain the
SOC or LOH level for future use, contrary to the proposed algo-
rithm. Case 1A is run again with the RBS. Results, also given in
Fig. 15. Shed and curtailed power, L
Table 3, show that because using HSS is cheaper, the operation cost
is low, but then more BSS capacity is required to ensure power bal-
ance. As a consequence, the total capital cost is the largest of all
cases.
5.8. Influence of time resolution

In the above simulation, one-week average data is used. A bet-
ter time resolution (for example, one day or one hour) may provide
more accurate results; however, this would also significantly
increase computation time to several days or more. In order to
check the validity of the obtained results with more precise input
data, a rolling-horizon scheduling simulation with a 1-h time res-
olution is conducted. This resolution is selected as it is the maxi-
mum resolution available for the input data. In summary, the
algorithm runs a scheduling task with 1-h data over 1 day, and
repeats this every day for a year.

Results are shown in Figs. 18 (SOC, LOH, LS and PVC) and 19
(scheduling results from 2000 h to 2300 h). From these curves, it
can be observed that large LS and PVC occur during some periods
of the year. As LS and PVC use are supposed to remain rare, this
means that the sizing results are insufficient. A reason for this
OH and SOC profiles for Case 3.



Fig. 17. Rule-based strategy algorithm.

Fig. 18. One-hour one-day rolling horizon scheduling simulation.
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Fig. 19. One-hour one-day rolling horizon scheduling simulation (2000–2300 h).
The curve labeled ‘Power’ corresponds to the PV output minus the load.

Fig. 20. PV output minus load demand.
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result is that the average data reflects the average load in the sys-
tem, but does not consider peak load situations. A similar reason-
ing may be used for PV generation.

In order to adjust sizing results, the difference between PV out-
put and load demand is computed and shown in Fig. 20. Then we
adopt the maximum shortage value (i.e., the minimum value in
Fig. 20) as the capacity of fuel cell, and the maximum surplus value
(i.e., the maximum value in Fig. 20) as the capacity of electrolyzer.
And sizing value of the HSS are adjusted, so that
Pmax
fc ¼ 13; Pmax

ele ¼ 37.
After this adjustment, the rolling-horizon simulation is run

again. Fig. 21 shows the resulting SOC, LOH, LS and PVC, and
Fig. 22 shows the scheduling results from 2000 h to 2300 h with
the new sizing values. After adjusting the sizing value based on
the peak load demand, no LS or PVC occur. And with the adjusted
sizing values, we run MILP scheduling for case1A, and total cost is
Fig. 21. One-hour one-day rolling horizon schedulin
€212160, operation cost Cop is €1788.7, and capatical cost Ccap is
€138080.
5.9. Influence of uncertainty

As discussed earlier, uncertainty on forecasts of PV output and
load can impact sizing results. To account for this uncertainty,
the upper bound and lower bounds of estimated values are used.

In the following, gPPV ðtÞ and gPloadðtÞ are the actual PV output and
load values, and ErPV and Erload the error on PV output and load,
respectively. The lower and upper bounds are then obtained withgPPV ðtÞ ¼ PPV ðtÞ � PPV ðtÞ � ErPV and gPloadðtÞ ¼ PloadðtÞ � PloadðtÞ � Erload.

Two cases are defined. The worst case (the case where the dif-
ference between PV output and load is the largest) is when PV out-
put is equal to the upper bound value, and load is equal to the
lower bound value; or when PV output is equal to the lower bound
value, load is equal to the upper bound value. For the best case (the
g simulation with the new sizing value of HSS.



Fig. 22. One-hour one-day rolling horizon scheduling simulation with the new
sizing value of HSS (2000–2300 h). The curve labeled ‘Power’ corresponds to the PV
output minus the load.

Fig. 23. Difference between PV output and load demand in 4 cases.
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case where the difference between PV output and load is the low-
est), the opposite is used.

Values for gPPV ðtÞ minus gPloadðtÞ are shown in Fig. 23. If the sizing
results can satisfy the worst and best cases, then others cases can
also be satisfying by the obtained sizing results. This means that
the worst and best case data must be used to run the co-
optimization method and obtain the sizing results. Table 5 shows
the sizing results when ErPV ¼ Erload ¼ 0:1. For the worst-case, the
HSS used frequently because it is cheaper than BSS. For the best
case, the BSS is used frequently due to limitations of the HSS (min-
imum startup power), so more BSS capacity is needed.
Table 5
Sizing results considering uncertainty. The worst case is defined as the case where the dif

Case Total cost [€] Cop [€] Ccap [€] NPV

Worst case 279,270 1761.7 166,960 50
Best case 174,400 1617.2 113,450 50
6. Conclusion

In this paper, we present a methodology to determine the opti-
mal sizing for a stand-alone microgrid. This methodology combi-
nes an EA for sizing and MILP for scheduling, and enables
considering advanced energy management strategies, capable of
anticipating decisions (especially with respect to storage), com-
pared to classical rule-based approaches. Results show that the
operation strategy, initial conditions, time resolution as well as
uncertainty on input data influence the sizing of the components,
and consequently the total cost of the microgrid. A comparison
with a rule-based operation strategy is run, and sizing results show
that co-optimization method performs better. A rolling-horizon
simulation is used to adjust the sizing values due to the influence
of input data time resolution. At last, forecasting errors are taken
into account using a robust method, to further adjust sizing results.
With the proposed method and complements, the proposed
method can therefore be used for economically sizing a microgrid
containing PV panels, a BSS and an HSS.
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ference between PV output and load is the largest, and the lowest for the best case.

Pmax
fc [kW] Pmax

el [kW] VH2 [N�m3] Cbat [kW h]
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