
Expert Systems With Applications 177 (2021) 114913

Available online 19 March 2021
0957-4174/© 2021 Elsevier Ltd. All rights reserved.

ExEm: Expert embedding using dominating set theory with deep
learning approaches

Narjes Nikzad-Khasmakhi a, Mohammadali Balafar a,*, M. Reza Feizi-Derakhshi a,
Cina Motamed b

a Department of Computer Engineering, University of Tabriz, Tabriz, Iran
b Department of Computer Science, University of Orléans, Orléans, France

A R T I C L E I N F O

Keywords:
Social and collaborative networks
Graph embedding
Node representation
Dominating set
Expert recommendation system

A B S T R A C T

A collaborative network is a social network that is comprised of experts who cooperate with each other to fulfill a
special goal. Analyzing this network yields meaningful information about the expertise of these experts and their
subject areas. To perform the analysis, graph embedding techniques have emerged as an effective and promising
tool. Graph embedding attempts to represent graph nodes as low-dimensional vectors. In this paper, we propose a
graph embedding method, called ExEm, that uses dominating-set theory and deep learning approaches to capture
node representations. ExEm finds dominating nodes of the collaborative network and constructs intelligent
random walks that comprise of at least two dominating nodes. One dominating node should appear at the
beginning of each path sampled to characterize the local neighborhoods. Moreover, the second dominating node
reflects the global structure information. To learn the node embeddings, ExEm exploits three embedding methods
including Word2vec, fastText and the concatenation of these two. The final result is the low-dimensional vectors
of experts, called expert embeddings. The extracted expert embeddings can be applied to many applications. In
order to extend these embeddings into the expert recommendation system, we introduce a novel strategy that
uses expert vectors to calculate experts’ scores and recommend experts. At the end, we conduct extensive ex-
periments to validate the effectiveness of ExEm through assessing its performance over multi-label classification,
link prediction, and recommendation tasks on common datasets and our collected data formed by crawling the
vast author Scopus profiles. The experiments show that ExEm outperforms the baselines especially in dense
networks.

1. Introduction

Social networks have emerged as a great platform to generate and
share information. Social networks consist of entities and the in-
teractions between them. A common representation for the social
network has nodes for entities, and edges linking two nodes to denote
the relationships between entities (Powell & Hopkins, 2015).

A collaborative network is observed as a specific type of social net-
works that is comprised of experts who cooperate with each other to
fulfill a special goal. Analyzing this network yields meaningful infor-
mation about the expertise of these experts and their subject areas.
Although a collaborative network provides a rich source of information
about experts, a major challenge surrounding this network is how to
analyze both its structure and content. By the way of illustration,

Question Answering Community (QAC) is one types of collaborative
network in which the users’ collaborations are asking or answering
questions (Zhao, Yang, Cai, He, & Zhuang, 2016). One of the key
problems in QAC is how to find users, called experts, to answer the given
questions (Nikzad-Khasmakhi, Balafar, & Feizi-Derakhshi, 2019). An
ordinary solution to this issue is analyzing the social interactions of users
and content of the questions asked and the answers replied by them
(Wang, Jiao, Abrahams, Fan, & Zhang, 2013). As another example, ac-
ademic papers are composed of several co-authors. The development of
cooperation among academic authors constitutes a collaborative
network, called the co-author network where the connections demon-
strate the corresponding authors have published at least one paper
together (Li, Zhang, Luo, & Jiang, 2017). In the co-author network,
analyzing the interactions of authors and the content of their papers

* Corresponding author.
E-mail addresses: n.nikzad@tabrizu.ac.ir (N. Nikzad-Khasmakhi), balafarila@tabrizu.ac.ir (M. Balafar), mfeizi@tabrizu.ac.ir (M.R. Feizi-Derakhshi), motamed@

free.fr (C. Motamed).

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

https://doi.org/10.1016/j.eswa.2021.114913
Received 4 February 2020; Received in revised form 7 December 2020; Accepted 13 March 2021

mailto:n.nikzad@tabrizu.ac.ir
mailto:balafarila@tabrizu.ac.ir
mailto:mfeizi@tabrizu.ac.ir
mailto:motamed@free.fr
mailto:motamed@free.fr
www.sciencedirect.com/science/journal/09574174
https://www.elsevier.com/locate/eswa
https://doi.org/10.1016/j.eswa.2021.114913
https://doi.org/10.1016/j.eswa.2021.114913
https://doi.org/10.1016/j.eswa.2021.114913
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2021.114913&domain=pdf

Expert Systems With Applications 177 (2021) 114913

2

have created a way to recognize the key researchers in a specific area,
who are defined as experts (Liu et al., 2015).

Representing data in particular social networks in the form of graphs
has been attracting increasing attention in recent years. On the other
hand, performing analysis on this type of data structure helps us gain
more information and insights. Graph analytic appears in a wide variety
of applications such as node classification, link prediction, clustering,
node recommendation, visualization, and etc (Cai, Zheng, & Chang,
2018; Goyal & Ferrara, 2018). Although many methods have been
proposed for the graph representation and analysis, they encounter
several challenges such as memory cost and time complexity. Graph
embedding is an effective solution that tries to overcome these issues. It
changes the form of representing a graph and maps the nodes into a low-
dimensional space. Also, it’s able to maintain consistent structural in-
formation and properties of the graph.

As mentioned before, applying a graph embedding method on the
resulting graph of a social network creates a better understanding of the
network entities and its structure (Keikha, Rahgozar, & Asadpour,
2018). By taking a glimpse of the previous graph embedding techniques,
it’s obvious that a group of proposed approaches denote a graph as a set
of random walks which preserve the graph characteristics (Cai et al.,
2018). After that, the deep learning methods such as skip-gram are
applied to the random walks to maximize the likelihood of observing
neighborhoods of nodes. The crucial difference between these methods
is the way of generating random walks. DeepWalk (Perozzi, Al-Rfou, &
Skiena, 2014) and Node2vec (Grover & Leskovec, 2016) are two ex-
amples of this category. Although DeepWalk uses a simple depth-first
search process for making random walks, it suffers from the repeated
nodes problem and does not consider the efficacy of breadth-first
neighbor structure. On the other hand, Node2vec develops biased-
random walks using the breadth-first and depth-first search strategies.
Node2vec has two parameters P and Q that help control over the search
space. One of the drawbacks of Node2vec is the necessity to always set
the outperform values for these parameters for every network (Gu &
Milenkovic, 2018).

In this research, we propose a deep learning graph embedding with
random walk that is called ExEm. We aim to transform a graph into a
low-dimensional vector space using dominating nodes in creating
random walks. We also investigate the effect of modified random walks
on the quality of produced node embeddings. Dominating set theory has
been a classic subject studied in graph theory that is considered as a
virtual backbone in these areas (Du & Wan, 2012). A set is dominating if
every node in the network is either in the set or a neighbor of a node in
this set (Wu, Cardei, Dai, & Yang, 2006). ExEm generates a set of
random walks that satisfy two conditions: starting random walk with a
dominating node and containing at least another dominating node in the
sampled path. The existence of dominating nodes in the sampled path
enables ExEm to capture the local and global network structures. In
short, the dominating set is an approximation of the network that
manages the entire network (Sun, Yang, & Ma, 2019). Hence, these
intelligent random walks are the main cause in learning rich feature
representation for the graph. After producing the desired random walks,
they are stored as the sentences of a corpus. Then, skip-gram neural
network model is used to map the nodes into the embedding vectors. We
train this neural network by Word2vec and fastText. Also, we consider
another node representation which is the combination of the embed-
dings extracted from Word2vec and fastText. Moreover, the effective-
ness of graph embedding in different real-world applications motivates
us to explore its potential usage in the expert recommendation system
and proposes a strategy to compute experts’ scores and recommends
experts. On the other hand, we present a collaborative network that is
constructed based on the gathered information from Scopus. In this
network, nodes with multi labels are represented as authors. The node
labels demonstrate the author’ subject areas. Edges between authors
denote their co-author relationship.

Research Questions: we aim to answer the following research

questions in this study:

RQ.1 Does the data gathered from Scopus provide a suitable real
dataset for the different tasks such as classification, link predic-
tion, recommendation and so on?

RQ.2 How does using dominating set theory affect the performance of
node representation learning?

RQ.3 How can we extend the obtained node representations into expert
recommendation systems to recommend experts?

The remainder of the paper is outlined as follows: Section 2 reviews
the related works. Section 3 explains our proposed method in detail.
Section 4 presents the descriptions of the gathered dataset from Scopus.
In order to verify the proposed approach, extensive experiments are
conducted on real-life datasets. The descriptions of these datasets and
baseline approaches, parameter setting and the evaluation metrics used
to test our proposed method are presented in Section 5. The experi-
mental results and their analysis are given in Section 6. Section 7 dis-
cusses the test results. Section 8 answers the research questions. Finally,
Section 9 concludes the paper.

2. Related work

To analyze social network data, previous studies have proven that
the representation of social network as a graph structure and using
graph theories have achieved successful results. On the other hand, deep
learning based approaches have been demonstrated to be a promising
technique to analyze information from social networks with compli-
cated structures. Hence, the incorporation of graph-structured data and
the deep learning models results in an outstanding feature learning
technique, called graph embedding. Graph embedding learns a map of
the graph’s nodes to a low-dimensional space features. It provides
insight into analyzing users’ activity patterns and their relationships in
social networks. In this section, we investigate some of the proposed
graph embedding methods by different researches.

GraRep (Cao, Lu, & Xu, 2015) learns the node representations of
weighted graphs. It uses the matrix factorization version of skip-gram to
obtain high-order proximity (Cai et al., 2018). On the other hand, it
catches the k-step (k = 1,2, 3,…) neighbour relations and integrates
global structural information of the graph into the learning process. The
final representation of nodes are provided by concatenating k-step node
representations together (Cui, Wang, Pei, & Zhu, 2018; Zhang, Yin, Zhu,
& Zhang, 2018).

TriDNR (Pan, Wu, Zhu, Zhang, & Wang, 2016) utilizes the structure,
content, and labels of nodes for constructing the graph embedding. It
learns the network structure by the help of DeepWalk approach. More-
over, TriDNR couples two neural networks to capture the node content
and label information. Finally, the obtained representations from
network structure, and the node label and attribute are linearly com-
bined together (Liao, He, Zhang, & Chua, 2018; Zhang et al., 2018; Cai
et al., 2018).

Mahmood et al. (Mahmood, Small, Al-Maadeed, & Rajpoot, 2016)
have proposed a geodesic density gradient (GDG) algorithm that is
divided a network into a series of relatively small communities (Wang,
Wu, Hu, & Wu, 2019; Ahuja & Singh, 2018). This study considers a
vector for each node with dimensionality equals the number of all nodes.
In this vector, every dimension represents the geodesic distance of that
node from all other network nodes (Cai et al., 2018). Thus, the network
structure can be captured from the geodesic distance vectors. In this
way, the nodes with the same region of space belong to the same com-
munities in the original network.

DNGR (Cao, Lu, & Xu, 2016) is based on deep learning that aims to
construct the low-dimensional vector representations from the PPMI
matrix. To achieve this target, DNGR comprises of three steps. At the
first step, it obtains information related to the graph structure by pro-
posing a random surfing model which is inspired by the PageRank

N. Nikzad-Khasmakhi et al.

Expert Systems With Applications 177 (2021) 114913

3

model. Then, DNGR creates a probabilistic co-occurrence matrix. Sub-
sequently, the PPMI matrix is built based on the probabilistic co-
occurrence matrix. Finally, a stacked denoising auto-encoder is
applied to the PPMI matrix to learn the embeddings (Cui et al., 2018).

HOPE (Ou, Cui, Pei, Zhang, & Zhu, 2016) is a matrix factorization
based method. It captures the asymmetric transitivity property of a
directed network in embedding vectors (Cui et al., 2018). Asymmetric
transitivity describes the correlation among directed edges. HOPE
measures the high-order proximity from four measurements including
Katz Index, Rooted Page Rank, Common Neighbors, and Adamic-Adar
score. Then, a generalized Singular Value Decomposition (SVD) is
applied to the high-order proximity to obtain the low-dimensional rep-
resentations (Goyal & Ferrara, 2018; Zhang et al., 2018).

Although many network embedding methods are proposed for static
networks, recent attempts have investigated the embedding methods
over the dynamic networks that evolve over time (Zhu, Cui, Zhang, Pei,
& Zhu, 2018; Mahdavi, Khoshraftar, & An, 2018; Taheri, Gimpel, &
Berger-Wolf, 2019). Goyal et al. (Goyal, Chhetri, & Canedo, 2019) rec-
ommends a deep learning model to capture temporal patterns in dy-
namic networks for the link prediction task. This study introduces three
different architectures using an auto-encoder, LSTM, and combination
of these both. These architectures take as input the adjacent matrix
At− l[i],At− l+1[i],…,At− 1[i] and produce a vector vti corresponding to the
embedding of vi at time t. They allow predicting interactions between
vertices at each time step. Moreover, in another study (Sankar, Wu, Gou,
Zhang, & Yang, 2018), the authors propose to compute a dynamic node
representation by employing self-attention mechanisms over its neigh-
bors and previous historical representations. The survey (Kazemi et al.,
2019) reviews the recent representation learning methods for dynamic
graphs.

Additionally, some studies have focused on the knowledge graph
embedding. A knowledge graph is a directed graph that represents
structured information of entities as nodes and their relations as edges
(Huang, Zhang, Li, & Li, 2019; Zhang et al., 2018). The research (Guo,
Wang, Wang, Wang, & Guo, 2017) embeds the knowledge graph in this
manner that entities are closed to each other in the embedding space if
they belong to the same semantic category. Authors in (Wang, Mao,
Wang, & Guo, 2017) provides a review of existing approaches presented
for knowledge graph embedding.

In spite of the fact that graph embedding is a powerful tool for
converting graph data into low dimensions, employing all features for
this purpose may lead to noise (Chen, Tsang, Tan, & Cham, 2014). To
handle this challenge, one solution is dimensionality reduction. In recent
years, many studies have focused on the usage of dimensionality
reduction for graph embedding. Dimensionality reduction methods are
categorized into two groups: feature selection and feature extraction
(Zhu, Dornaika, & Ruichek, 2019). Chen et al. (Chen et al., 2014) pro-
poses a binary feature selector by exploiting the least squares formula-
tion of graph embedding. The paper (Nishana & Surendran, 2013)
conducts a discussion of the most popular linear dimensionality reduc-
tion methods.

Moreover, a number of surveys have been conducted to categorize
the existing graph embedding methods based on their proposed tech-
niques. Cai et al. (Cai et al., 2018) summarizes the researches into five
categories: matrix factorization, deep learning, edge reconstruction,
graph kernel, and generative model. In this study, deep learning based
graph embedding is divided into two groups, deep learning graph
embedding with and without a random walk. Based on the viewpoint of
this review, an edge reconstructing based graph embedding technique
minimizes the distance loss to preserve first- and second-order proxim-
ities. On the other hand, a matrix factorization based method represents
the connections between nodes as a matrix and factorizes this matrix to
extract node embedding. Moreover, deep learning based graph embed-
ding techniques with random walks represent a graph as a set of random
walks and these random walks are fed into a deep learning method like
skip-gram to optimize their neighborhood preserving likelihood

objectives. In comparison, deep learning based graph embedding
methods without random walks apply deep neural networks such as
auto-encoders or convolutional neural network, on the whole graph.
Zhang et al. (Zhang et al., 2018) reviews the state-of-art graph embed-
ding techniques with a different outlook. They classify the studies into
two classes: unsupervised and semi-supervised network representation
learning. Also, this survey summarizes the existing approaches from
methodology perspective into five types: matrix factorization, random
walk, edge modeling, deep learning and hybrid. Goyal et al. (Goyal &
Ferrara, 2018) and Cui (Cui et al., 2018) present the graph embedding
techniques in three categories: factorization, random walk and deep
learning based.

Unlike previous studies, we employ a graph theory to learn nodes’
representations. By using the dominating set theory, our proposed
method creates intelligent random walks that can preserve both local
and global information.

3. Proposed method

The aim of our study is to incorporate the dominating set concept
from graph theory to the graph embedding. We propose a new model,
which is called ExEm, that is able to map a graph, our case study a co-
authorship network, to a low-dimensional vector space. The overall
structure of ExEm is shown in Fig. 1. ExEm initially extracts the
adequate dataset from1Scopus which is the largest abstract and citation
database. The gathered dataset includes the features of expert candi-
dates such as their subject areas, affiliations, h-index, and their co-
author interactions. In the next phase, ExEm converts the extracted in-
formation into a labeled collaborative network where nodes and their
labels represent authors and their subject areas, and edges show authors’
co-author collaborations. Then, ExEm gets the constructed graph as
input and applies the dominating set theory on it. Since dominating set
acts as a backbone and governs the graph, it enables ExEm to create
comprehensive and meaningful representation of a graph. To capture
nodes’ representations, ExEm constructs intelligent random walks that
comprise of at least two dominating nodes. One dominating node should
appear at the beginning of each path sampled to characterize the local
neighborhoods. While, the other one reflects the global structure in-
formation of a graph. Finally, ExEm adapts a skip-gram neural network
to obtain the node embeddings. To train the skip-gram model, ExEm
exploits three embedding methods including Word2vec, fastText and the
concatenation of these two. The embedding results can be applied to
many applications such as multi-label classification, link prediction, and
node recommendation, which can achieve much better performance
than existing graph embedding approaches. The following subsections
describe the procedures of ExEm in detail.

3.1. Step 1: preprocessing

Data preprocessing plays an important role in the social network
analysis. The goal of preprocessing is to convert the original dataset to
an acceptable format for discovering beneficial information or recog-
nizing patterns from the social network dataset (Gupta & Bhatnagar,
2013). In this way, the first step of ExEm is preprocessing the dataset. So,
the relations between the nodes of the dataset are considered and the
graph of the dataset is constructed. Also, nodes may contain assigned
elements such as attributes, labels, and tags. So, the output of this step is
a graph G =< V, L,E > that V, L and E demonstrate the nodes of the
graph, the corresponding element values of nodes, and edges between
nodes, receptively. The first block of Fig. 1 (noted as input) shows the
preprocessing task that is applied on Scopus dataset. As it is observable
from this figure, ExEm transforms the extracted information from Sco-
pus which includes experts id, their fields of interest, and their

1 https://www.Scopus.com.

N. Nikzad-Khasmakhi et al.

https://www.Scopus.com

Expert Systems With Applications 177 (2021) 114913

4

connections into a labeled collaborative graph format. Experts and their
subject areas are defined as nodes and their labels, respectively. The
graph edges originate from the authors’ co-author collaborations.

3.2. Step 2: finding a dominating set

This step aims to find a dominating set (DS) of the corresponding
graph G which was created in the previous step. A subnet of nodes, D, is
called a DS if every node is either in D or adjacent to a node in D (Du &

Fig. 1. The overall structure of ExEm.

N. Nikzad-Khasmakhi et al.

Expert Systems With Applications 177 (2021) 114913

5

Wan, 2012). Research demonstrates that DS constructs a virtual back-
bone on the graph and plays an important role in monitoring and con-
trolling the connections of nodes (Sun et al., 2019). Dominating sets are
able to perform various critical tasks in different networks such as the
study of social influence propagation in social networks or finding high-
impact optimized subsets in protein interaction networks (Molnár Jr
et al., 2014).

Since finding a DS is classical NP-complete decision problem, many
greedy, approximation and heuristic approaches have been proposed to
detect a dominating set in the given graph. Talking about the advantages
and disadvantages of these techniques and investigating the best solu-
tion for constructing the DS is out of the scope of this paper. In ExEm,
dominating set D is produced by the algorithm 7 in (Esfahanian, 2013)
that is a simple and distributed approach. The pseudo code of this al-
gorithm is shown in Algorithm 1. Based on the algorithm, one of the
nodes is randomly selected and added to the dominating set D. After
that, this node and its neighbours are removed from the graph nodes.
Then, another random node is chosen from remaining nodes and
inserted into D. The mentioned steps are continued until there is no node
in graph node set V. As an example, in Fig. 2, after applying the domi-
nating set algorithm on the graph, one possible selection set of domi-
nating nodes is A3 and A5. It is obvious that all nodes in the graph are
accessible by A3 and A5.

Algorithm 1. Finding a dominating set

Require A connected non–trivial graph G = (V,E)
D = ∅
loop

if IsEmpty(V − [D ∪ Neighbors(D)])
STOP

end if
Select randomly a vertex w ∈ V − [D ∪ Neighbors(D)]
D ← D ∪ {w}

end loop
return D

Furthermore, the first sub-block (from left to right) of second block in
Fig. 1 indicates the result of applying the dominating set theory on
Scopus graph. Green nodes represent dominating nodes.

Ideally a graph embedding approach should fulfill two objectives
including homophily and structural role. Homophily indicates the ten-
dency of each pair of nodes in the graph to be similar. Based on
homophily, all nodes in a community should have similar embeddings.
On the other hand, the structural role objective ensures that the nodes
with the similar functions in the graph, should be embedded closely
together. In other words, homophily emphasizes connectivity, whereas
the nodes in a particular structural role may inhabit in very different
parts of a graph. We observe that using dominating nodes allows a
flexible method that can convert graph nodes into vectors obeying the
above equivalences. Dominating nodes are an approximation of the
whole network and administer the rest of nodes. As another way of
looking, the DS allows a clustering scheme on the graph that dominating
nodes operate as cluster heads from which all nodes in the cluster can be
reached in one-hop. As each dominating node supervises the nodes of
the community which it belongs to, it can obtain a local view of the
underlying subset. Consequently, this utility promotes ExEm to properly
learn that dominating nodes and their dominated nodes should share
similar embeddings because of pertaining to the same cluster or com-

munity. For example, in Fig. 2, we can see that nodes A3 and A1 have
similar neighbourhoods and are a part of a community. So, ExEm ach-
ieves the homophily target by embedding these two nodes to similar
vector representations. Additionally, dominating nodes provide a
backbone between communities. The connections between these back-
bones develop the awareness of the global graph structure. That is to say
that the choice of DS for networks as the virtual backbones facilitates
ExEm to accomplish the structural role objective. In Fig. 2, nodes A3 and
A5 are not close in terms of graph distance, but they have similar local
structural roles. ExEm coverts these nodes into similar vectors because
both of them play the same roles as the heads of their communities. The
other key advantage of DS is that no global information is required to
construct it. The employed algorithm for finding dominating set uses
only local information to get the DS and based on the studies (Yang &
Wu, 2003; Esfahanian, 2013) it is shown to be the fastest one.

3.3. Step 3: random walks

With having the dominating nodes from the previous step, we
introduce our intelligent random walk strategy in this subsection. Before
giving full details of the proposed random walks, we are going to
describe what random walk is and why it is important in graph
embedding. A random walk on the graph is defined as a random
sequence of nodes where consecutive nodes are neighbors (Liu, Ji, &
Mittal, 2016). Random walks can obtain the information hidden in the
graph structure. The importance of random walks in graph embedding
domain is adopted from natural language processing (nlp) after great
success of word embedding models. In graph embedding, the graph
properties are preserved by a set of random walk paths sampled from it
(Cai et al., 2018). In other words, each random walk in the graph
embedding presents other concept which is the equivalent of a sentence
definition in nlp domain. That means random walk and sentence have
the same responsibilities in their scopes. Additionally, the nodes of the
random walk take on the role of words or vocabularies in the sentence.
There are some advantages of random walk based graph embedding
approaches including the acceptable level of time and space complexity
(Pimentel, Castro, Veloso, & Ziviani, 2019), no need for feature engi-
neering, and investigation of diverse parts of the same graph at the same
time by a number of sampled paths (Grover & Leskovec, 2016; Cai et al.,
2018; Liu et al., 2016). Hence, many graph embedding methods have
been proposed based on random walks such as DeepWalk and Node2vec
where their difference comes from their sampling strategies. However,
these approaches suffer from finding optimal sampling procedure.
DeepWalk uses a uniform random walks which can not control over the
search space. Node2vec suggests a biased random walks in which some
node neighbors have a higher or lower probability of being selected in
each step by two parameters. The problem is finding the best values for
these parameters which determine the likelihood of observing nodes in
the each random walk for every network.

ExEm is a random walk based technique that modifies the random
walk strategy used in DeepWalk and Node2vec by hiring dominating
nodes. Our proposed intelligent random walks offer the flexibility in
sampling nodes from a network. The concept of this intelligence ema-
nates from appearing two dominating nodes in the sampled paths. For
each random walk, ExEm starts the path by randomly selecting one node
from the dominating set found in the previous step. Then, one of the
neighbors of this dominating node is chosen by chance and added to the
walk. After that, walk moves to the neighbors of the last added node. The
procedure of adding new nodes into the walk continues until the
following two conditions are met. The main condition is the appearance
of at least another dominating node in a sampled path. The other
requirement for ending the process is achieving the fixed lengths LR. The
second sub-block in the second block of Fig. 1 shows the examples of
random paths created by ExEm from Scopus graph. In this instance, each
node is presented by an expert id, red nodes indicate dominating nodes
and the length of walk equals 5. Obviously, each walk starts with a Fig. 2. An example of a graph with 6 nodes and 5 edges and its dominating set.

N. Nikzad-Khasmakhi et al.

Expert Systems With Applications 177 (2021) 114913

6

dominating node and the second dominating node can be visited in
different places of a walk except the second position. The explanation is
that based on Algorithm 1, in the process of finding dominating nodes,
we remove a node and its neighbours after adding this node into the
dominating set. So, there are not any dominating nodes in one-hop of
this node and other dominating nodes. Note that it is possible to see
more than two dominating nodes in each path like the third random
walk in the figure.

With the presence of these two dominating nodes, we see a reduction
in runtime of creating random walk process. There are two aspects of
how using dominating nodes decreases runtime. Starting the random
walk with a node from dominating set instead of the graph set nodes
reduces the size of the search space from |V| to |D|where |V| and |D| show
the sizes of graph nodes and DS, respectively. Also, after appending the
first dominating node into the sample, we should add LR − 1 nodes to our
walks to reach the maximum length LR . On the other hand, based on our
strategy, we should have one dominating node in the rest length LR − 1 to
fulfill the condition and finish adding nodes to the random walk. Note
that all nodes have a uniform probability of being chosen in a walk and
also the probability of selected node being a dominating is |D|

|V|. Therefore,
the probability of the absence of a dominating node in the length LR − 1
is equal to LR − 1 trials and all of them are non-dominating node. The
probability of each node being dominating directly affects this paradigm
and it is a large number according to straight forward computation of
Algorithm 1. Based on the explanation, it is not necessary to investigate
the existence of the second dominating node in each random walk. In
this way, the execution time significantly reduces.

Additionally, we observe that by the help of dominating nodes, ExEm
can convert graph nodes into low-dimensional vectors obeying the
homophily and structural role equivalences. The first dominating nodes
ensures that ExEm selects a node within this dominating node commu-
nity; so ExEm learns the node representations with respect to homophily
and embeds nodes of a community into similar vectors. What it means
that due to the first dominating node in the random walk, the local
neighborhoods are depicted accurately. Moreover, this condition in-
creases the probability of repeating nodes in the sampled neighborhoods
plenty of times because each node has at least one neighbor from the
dominating set. On the other hand, there are two reasons why ExEm
selects the second dominating node in its random walks. The first phi-
losophy behind it is that our sampled paths observe nodes which are far
from starting node and belong to the other clusters. The algorithm of
finding the dominating set proves this outlook. Since after inserting a
node into DS, this node and its neighbors are removed from the node set
in each step of this algorithm, there is no dominating node in one-hop of
each dominating node. So, the second dominating node assists ExEm to
preserve the global structural information of the graph. The next wis-
dom for the existence of the second dominating node is that dominating
nodes are the heads of their communities and have the same roles to
play. This allows ExEm to perceive the nodes with the same roles in each
sampled path and understand that these node should be embedded
closer and this is what the structural role objective emphasizes on. So,
the mentioned details confirm why using dominating set theory in
creating random walks enables a flexible method that can well charac-
terize the local and global network structure in generating node
embeddings.

Moreover, ExEm can adapt to the graph topology changes and pre-
sent its dynamic characteristics. When a node is added or dropped from
the graph, only its neighbors will be notified. For instance, for a new
coming node, if a dominating node is within its neighborhood, ExEm
constructs walks that start from its neighbor dominating node and adds
them to the corpus; otherwise, it is itself considered as a dominating
node and walks start from it. This demonstrates that it is just necessary
to add new random walks from the changed part instead of the whole
graph.

3.4. Step 4: learning part

The only required input of this step is a corpus which is created from
the intelligent random walks of previous step. As mentioned before, in
random walk models, node and random walk are regarded as a word and
sentence, respectively. Hence, the neighborhood of a node can be
observed as the co-occurrence of words in the sentence. Furthermore,
there are many deep learning based approaches that can map the word
co-occurrences into vector-space model. One of the most simplest and
efficient techniques is skip-gram model (Mikolov, Sutskever, Chen,
Corrado, & Dean, 2013). The aim of skip-gram is predicting the words
surrounding a target word. The same effort can be performed in graph
embedding. Accordingly, in graph embedding, the skip-gram counts the
number of times node j appears within a certain window of w. For
instance, in the random walks “n1 n2 n3 n4 n5”, the skip-gram gets node
“n3” as input, and predicts the output “n1”, “n2”, “n4”, and “n5”,
assuming w is 5. Ski-gram architecture is a feed-forward network that is
the simplest deep learning model for node representations. As shown in
Fig. 3 this model views a graph as a bag of nodes. For a node ni, it
captures a E-dimensional vector yi using an embedding model such as
Word2vec (Mikolov, Chen, Corrado, & Dean, 2013) or fastText (Joulin
et al., 2016). Word2vec learns to convert the nodes that appear in
similar random walks to similar vector representations. While, fastText
takes the advantage of a bag of n-grams as extra features to obtain local
node order information.

Considering the above explanations, in this step of ExEm, random
walks from the previous step are injected as corpus into the input of the
skip-gram network. ExEm exploits three embedding methods including
Word2vec, fastText and the concatenation of these two to extract em-
beddings, as presented in the third sub-block in the second block of
Fig. 1. There are two important points in this step that should be noted.
The first one is that there are at least three common ways to combine
embedding vectors and create a single vector including: summing,
averaging and concatenating (Damoulas & Girolami, 2009). In this
study, we consider the concatenation of two embeddings as the basic
combination approach and for further investigation, we test the sum-
ming and averaging of Word2vec and fastText embeddings in the eval-
uation results. The second subject is that in skip-gram model the context
window has an important effect on the resulting vector representations.
The context window defines which neighbours are kept in mind when
computing the vector representations (Lison & Kutuzov, 2017). There-
fore, having at least two dominating nodes in the context window en-
sures that ExEm properly understands the local and global graph
information and respects for homophily and structural role objectives.
Due to this procedure is in the manner of sampling each node nj with a
probability that relies on the distance |j − i| to the focus node ni, as
proved by (Lison & Kutuzov, 2017):

p
(
ni|nj

)
=

∑W

w=1
p
(
ni|nj,w

)
p(w) =

1
w
(w − |j − i| + 1) (1)

where w is the real window size from 1 to W. For example, with the
window size 5, the second dominating node at the position 3 will be
sampled with the probability of 35 in Word2vec (Lison & Kutuzov, 2017).
In other words, skip-gram model maximizes the co-occurrence proba-
bility among dominating nodes that exist within a window w (Cai et al.,
2018)

3.5. Output and applications

The result of learning step is the semantic embeddings of graph
nodes. As the first sub-block of the third block in Fig. 1 shows, the output
of ExEm on Scopus graph is an expert embedding vector. In this way,
experts of the same subject area are embedded into the similar vectors.
The learned ExEm representations perform some simple algebraic op-
erations on expert embeddings. For example, if we denote the vectors for

N. Nikzad-Khasmakhi et al.

Expert Systems With Applications 177 (2021) 114913

7

two experts i and j with subject areas nlp and ml (machine learning), and
ml as Ei(nlp,ml) and Ek(nlp), respectively, we observe that Ei(nlp,ml) − Ej(ml) =

Ek(nlp). As another instance, Ex(nlp) +Ey(bio) = Ez(nlp,bio) results in an expert
embedding that focuses on nlp approaches in bioinformatics research.

The last part is providing evaluations on ExEm with regard to its
capability on real-world applications. The reason for these experiments
is that a good graph embedding method should be able to effectively
perform on the tasks including multi-label classification, link prediction
and recommendation using the obtained representations. In the next
paragraphs, we enumerate the characteristics of these tasks.

Multi-label classification: One of the tasks increasingly used by
modern applications is multi-label classification. In this task, it is
assumed that each node in the graph is associated with one or more
labels from a limited set L (Tsoumakas & Katakis, 2007). To conduct
multi-label classification task, we have a model that is trained with a
portion of nodes and all their labels. Then, the model gets the node
representations to predict the labels for the rest of nodes. As presented in
the first row of the second sub-block related to third block in Fig. 1, a
classifier like Logistic Regression is applied on a certain fraction of the
expert embeddings whose subject areas are known. Then, the model
predicts the subject areas for the remaining experts. That means that
with help of expert embeddings and multi-label classification task we
can anticipate the subject areas of experts whom no specific information
is available, and only their co-author connections with other experts are
provided.

Link prediction: Because the low-dimensional vectors of nodes
encode rich information about the network structure, we can analyze the
efficacy of predictive capacity of various embedding models through a
link prediction task (Cai et al., 2018). To perform the link prediction, we
arbitrarily conceal a fraction of the existing links between nodes and our
desire is to predict these missing edges by using the node embeddings
(Wang, Cui, & Zhu, 2016; Grover & Leskovec, 2016). As investigated in
the study (Chen, Hua, Yuan, & Jin, 2018), the link prediction can be
addressed as a binary classification problem. In this case, a pair of nodes
is labeled as positive if a link exists between the nodes. On the other
hand, if there is no link between the node pair, then the label of the
paired node is negative. As shown in the second row of the second sub-
block related to the third block in Fig. 1, two node embeddings are fed
into the binary classifier. The output of the classifier is “yes” if there is a
link connecting the nodes, otherwise, the result is “no”. Thus, better
results can be retrieved in the link prediction task by using a graph
embedding technique that learns a deep representation of the nodes on
the network.

Also, we can explore the link prediction potential usage in the expert
recommendation system. For this purpose, the classifier accepts two
expert embeddings as inputs and anticipates that these two experts can
whether be co-authors or not. If they have similar expert embeddings,
which show their expertise is closed, then the classification result is
“yes”.

Recommendation: Graph embedding approaches have demon-
strated to be beneficial for the node recommendation that is the task of
recommending top nodes of interest to a given query according to
certain specifications (Cai et al., 2018). To extend the graph embedding
algorithms specifically ExEm into the recommendation task, we need a
strategy for computing nodes’ scores and ranking nodes by using the
generated vector representations of the nodes. In the following para-
graphs, we introduce how ExEm and other graph embeddings can
leverage the embeddings for the expert recommendation task by pro-
posing a novel scheme. It should be noted that the types of recom-
mended nodes are miscellaneous and the proposed procedure can be
applied to them with a few changes. In this paper, the recommendation
items are experts whose research interests and expertise are most similar
to a given topic. Clearly, an expert recommendation system takes a
user’s query in the term of input and then provides a list of experts sorted
by the degree of their relevant expertise with the given query (Nikzad-
Khasmakhi et al., 2019). Fig. 4 indicates our proposed method to make
recommendation experts based on expert embeddings. The user’s query,
that is a topic, is injected into the input of the recommendation system.
Then, experts whose subject areas include this topic are extracted to
make a cluster. Note that we can predict the subject areas of experts with
unknown labels through multi-label classification task by using experts’
low-dimensional vectors. After constructing the community, the center
of this cluster is found by taking the average of all the expert embedding
vectors in the group. Finally, the similarity measure functions such as
Euclidean, Cosine, and Manhattan can be employed to calculate the
distance between each expert and the centroid. This similarity is
considered as an expert’s score.

4. Data description

As mentioned before, we also gathered a collaborative network in
this paper. We figured out Scopus is an adequate source that consists of a
wide number of authors and their articles from scientific areas. Authors
with publications indexed in Scopus have their own profiles and a
unique Scopus author identifier. Fig. 5 shows an example of an author’s
profile in Scopus. Different types of information can be extracted from

Fig. 3. Skip-gram architecture.

N. Nikzad-Khasmakhi et al.

Expert Systems With Applications 177 (2021) 114913

8

the authors’ profiles. This information includes the content and non-
content features of authors such as their published articles, subject
areas, affiliations, h-index, co-authors and number of citations of each
paper. We use a part of this data and build a co-author network. In this
network, we call authors as experts. Therefore, experts’ ids and their
subject areas are presented as graph nodes and their labels. Also, the
experts’ co-author collaborations form the graph edges.

To create this labeled collaborative network, there are several mo-
tivations that are enumerated in the following. Recently, there has been
an increasing interest in graph embedding techniques. The obtained
representations from graph embedding methods are evaluated on
learning tasks such as multi-label classification. Karate, BlogCatalog,
Wikipedia, and Protein–Protein Interactions(PPI) are the most used
labeled datasets to estimate the efficiency of a proposed graph embed-
ding approach on multi-label classification task. These labeled datasets
are types of social networks and biology networks. Lack of a labeled
collaborative network is felt in testing graph embedding approaches.
Moreover, there is a demand on a labeled collaborative network dataset
for the usage in supervised machine learning methods in expert finding
system or detecting communities of experts in collaborative networks. In
summary, the usage of our collected dataset can be listed as: multi-label
classification, link prediction, recommendation, community detection,
and expert finding tasks.

To collect data, we initially selected 20 experts from the Arnetminer
expert list related to “Information Extraction” topic and obtained these
experts’ information from Scopus. Then, we extended the extraction of
information related to the co-authors with a two-hop expansion. It means
that we gathered the information of co-authors of these experts and the
co-authors of these co-authors in the next steps.

To provide a clear understanding of our constructed network, we
have shown structural information of this graph as diagrams using Gephi
which is an open-source network analysis and visualization software
(Bastian, Heymann, & Jacomy, 2009). Fig. 6a presents the visualization
of the created collaborative network from gathered data. Dominating
experts of this network are highlighted in Fig. 6b. Moreover, Fig. 6c is

the visualization of experts by this overview that the larger numbers in
size of the expert’ identifier denotes the higher degree of the expert.
Based on this representation, the expert with id 34769751400 is the one
with the highest degree, 2147, in the graph. On the other hand, Fig. 6d
displays the communities detected by applying the proposed method in
the study (Blondel, Guillaume, Lambiotte, & Lefebvre, 2008) on Scopus
graph; nodes are colored according to their communities. The value of
modularity of our constructed graph is 0.912 that exposes Scopus graph
has dense connections between the experts within communities and
sparse connections between experts in different communities. Also, the
average clustering coefficient is 0.889 that shows the tendency of ex-
perts to cluster together. Finally, Table 1 shows how many experts
belong to each label. It can be observed that Scopus graph covers experts
from different scientific areas and also the most number of experts have
label “COMP”. It should be noted that labels with a higher percentage of
5% are listed in this table. Summary of Scopus dataset is demonstrated in
Table 2.

5. Experimental evaluation

In the present section, we will provide an overview of the datasets on
which the ExEm is applied. Next, we will introduce four baseline algo-
rithms to compare ExEm against them. Then, we are going to describe
the used parameter settings. Finally, we will specify the metrics hired to
evaluate our proposed algorithm.

5.1. Dataset

In the succeeding paragraphs, we are going to characterize the
datasets on which our experiments were conducted.

BlogCatalog (Zafarani & Liu, 2009): This is a social blog directory
where nodes demonstrate the bloggers and edges show the friendship
connection among the bloggers. Each blogger is labelled by at least one
category that represents the blogger’s interests.

Protein–Protein interactions(PPI) (Chatr-Aryamontri et al., 2017):

Fig. 4. The process of our proposed method for computing experts’ scores in an expert recommendation system.

Fig. 5. An author profile in Scopus.

N. Nikzad-Khasmakhi et al.

Expert Systems With Applications 177 (2021) 114913

9

This is a biological network. In this graph, nodes are proteins and edges
indicate the pairwise physical interactions between proteins in humans.
The labels of nodes are obtained from the protein-coding gene sets.

Wikipedia (Mahoney, 2011): This is a network of co-occurrence
words related to Wikipedia’s articles. The node labels indicate the
Part-of-Speech (POS) tags assigned to the node.

arXiv(Astro-PH) (Leskovec & Krevl, 2014): This is a collaborative
network that is constructed from the collaborations between authors’
papers submitted to the e-print arXiv and Astro Physics category. On the

other hand, the nodes of this graph determine authors and edges express
the co-authored relationships between authors.

We also evaluated the performance of our algorithm on Scopus
dataset. The descriptions of all datasets are summarized in Table 3. The
column task shows the tasks hired to evaluate methods on that specific
dataset. The details of tasks were represented in subsection 3.5.

5.2. Model variations

We have experimented with several variants of the ExEm model.

Fig. 6. Various visualizations of Scopus graph.

Table 1
Percentage of authors related to each label.

Label Percentage

COMP 12.81%
ENGI 10.28%
MEDI 7.49%
BIOC 7.08%
SOCI 6.16%
DECI 5.74%
ARTS 5.71%
NEUR 5.22%

Table 2
Summary of Scopus dataset.

Number of nodes 27473
Number of edges 285231
Average degree 20.7645
Maximum degree 2147
Average clustering coefficient 0.889
Number of triangles 4582111
Modularity 0.912
Modularity with resolution 0.912
Number of Communities 49
Number of labels 27

N. Nikzad-Khasmakhi et al.

Expert Systems With Applications 177 (2021) 114913

10

ExEmft: It is a version of ExEm that engages fastText method to learn
the node representation.

ExEmw2v: This one is another form of ExEm that allows to create
node representations by using Word2vec approach.

ExEmcom: It is defined as the concatenation of the node embeddings
learned by ExEmft and ExEmw2v.

ExEmsum: It is the other model of ExEm that creates node embeddings
by computing the addition of ExEmft and ExEmw2v vectors.

ExEmavg: It applies average function to ExEmft and ExEmw2v repre-
sentations to obtain node embeddings.

5.3. Baseline algorithms

To approve the performance of ExEm, we will compare it against the
following baselines. Among them, DeepWalk and Node2vec are deep
learning graph embedding methods with random walks that capture the
neighbourhood pattern of the graph through sampled paths on it (Cai
et al., 2018). While, SDNE is a deep learning based graph embedding
approach that applies auto-encoders on the whole graph. Finally, Line is
an edge modeling based method that minimizes an objective function to
preserve first- and second-order proximities.

DeepWalk (Perozzi et al., 2014): represents a graph as a set of simple
random walks starting on each node, Then these random walks are
trained using the skip-gram algorithm to create node embeddings
(Pimentel et al., 2019).

Node2vec (Grover & Leskovec, 2016): is the extended version of
DeepWalk with a more elaborate random walk. Node2vec introduces a
biased-random walk using the breadth-first and depth-first search
techniques. Node2vec governs the search space through two pre-
assigned parameters p and q.

SDNE (Wang et al., 2016) uses two auto-encoders on the whole
graph to learn representation. For each node, auto-encoders are struc-
tured to take the second-order proximity as inputs and are trained to
reconstruct the neighborhood structure of that node. SDNE connects two
auto-encoders through a loss function, L1st, that preserves the first-order
proximity (Zhang et al., 2018). The auto-encoder loss function shown by
L2nd and L1st are combined linearly to minimize the total loss of the
network given by

L = L2nd +αL1st + νLreg (2)

here Lreg represents a regularization term.
Line (Tang et al., 2015) is an edge modeling based method that

optimizes an edge reconstruction. Three different models of Line are
proposed: Line(1st), Line(2nd) and Line(1st + 2nd). The objective
functions of Line(1st) and Line(2nd) are designed to preserve the first-
order and second-order proximities, respectively. While, Line(1st +
2nd) minimizes the differences between the first- and second-order
proximities. We use Line(1st + 2nd) for comparison, as the original
study states that it outperforms all other methods of Line. Note that we
refer to Line(1st + 2nd) as Line in the whole paper.

5.4. Parameter settings

We optimized the optimizer with Stochastic gradient descent (SGD)
and performed SGD parameters similar to the method proposed by

(Grover & Leskovec, 2016). Also, for all embedding methods, we used
the same parameters that are reported in (Grover & Leskovec, 2016):
number of walks per node K : 10; length of random walks LR : 80; node
vector dimension Ed : 128 (ExEmcom : 256); context window size w : 10.
Further, for Node2vec, we selected the best values of parameters p and q
from [0.25,0.5,1, 2,4] as proposed in (Grover & Leskovec, 2016). For
SDNE, we optimized the parameters as suggested in (Wang et al., 2016):
the architecture with [10300,1000,128] nodes on each layer, α = 0.2,
β = 10 and γ ∈ [1e − 4,1e − 5]. For Line, we set the numbers of iterations
and negative samples to 50 and 5, respectively.

5.5. Evaluation metrics

To assess the quality of ExEm on node classification, we use Micro-F1
and Macro-F1 scores as our metrics. For link prediction, we use Area
Under Curve (AUC) score. Finally, Normalized Discounted Cumulative
Gain (nDCG) is used to evaluate the performance of ExEm over recom-
mendation task. These metrics are defined as follows.

F1 score can be explained as a weighted average of the precision and
recall. The formula of the F1 score is presented in Eq. (3).

F1 = 2 ×
Pr × Re
Pr + Re

(3)

where Pr and Re denote precision and recall, accordingly.
Micro-F1 calculates the F1 score of the accumulated contributions of

all labels. In the other words, this score highlights the common labels in
the dataset by considering the equal importance for each instance. Eq.
(4) represents the definition of Micro-F1.

Micro − F1 = 2 ×
microPr × microRe
microPr + microRe

(4)

here microPr and microRe are defined by Eqs. (5) and (6), respectively.

microPr =
∑

l∈LTPl∑
l∈L(TPl + FPl)

(5)

microRe =
∑

l∈LTPl∑
l∈L(TPl + FNl)

(6)

where TPl and FNl present the number of true positives and false neg-
atives within samples which are assigned to the label l.

Macro-F1 is interpreted as the mean of label-wise F1 scores. This
score equally treats all labels. The low value of Macro-F1 for a model
shows that the model performs well on the common labels while it has
poor performance on the rare labels. Macro-F1 is calculated as
following:

Macro − F1 =

∑
l∈LF1(l)
L

(7)

where F1(l) denotes the F1 score for label l.
AUC score is the most common evaluation metric to evaluate the

accuracy of the prediction in the link prediction task. AUC value reflects
the probability that a randomly chosen existing link is positioned to the
right of a randomly chosen non-existent link. The larger AUC score is the
higher the probability that there is a connection between node u and

Table 3
Summary descriptions of datasets.

Name |V| |E| Labels Task

Multi-label classification Link prediction Recommendation

BlogCatalog 10,312 333,983 39 ✓ ✓ –
PPI 3,890 76,584 50 ✓ ✓ –
Wikipedia 4,777 184,812 40 ✓ – –
arXiv(Astro-PH) 18,772 396,160 – – ✓ –
Scopus 27,473 285,231 27 ✓ ✓ ✓

N. Nikzad-Khasmakhi et al.

Expert Systems With Applications 177 (2021) 114913

11

node v for the pair of nodes (u, v) (Chen et al., 2018). AUC is defined as

AUC =
n1 + 0.5n2

n
(8)

here n, n1 and n2 illustrate samples, samples which have a higher score
for existing links, and samples have resulted in the same scores,
respectively (Ahmad, Akhtar, Noor, & Shahnaz, 2020).

nDCG is a ranking measurement that evaluates the gold standard
ranked list of experts against the ranked list outputs from recommen-
dation task. The more the correlation between these two ranked lists
yield the higher value of nDCG. The DCG for k recommendations
(DCG@k) sums the true scores ranked in the order induced by the pre-
dicted scores, meanwhile adding a logarithmic discount. DCG@k is given
by

DCG@k = ereli +
∑k

i=2

ereli
log2(i − 1 + 1)

= ereli +
∑k

i=2

ereli
log2(i)

(9)

where ereli is the true relevance of the recommendation at position i for
the current expert e. Then we can obtain nDCG@k as follow:

nDCG@k =
DCG@k
IDCG@k

(10)

here IDCG is the DCG of ideal order.

6. Evaluation results

In the following paragraphs, firstly, we will evaluate and compare
ExEm with other embedding methods on the three tasks presented
before. For each task, we are going to present results by varying the size
of the training set and, then, we will examine the effect of number of
embedding dimensions on the performance. Finally, in the last subsec-
tion, we will study the parameter sensitivity of ExEm measured by the
classification performance.

6.1. Multi-label classification

Multi-label classification is one of the tasks for evaluating the per-
formance of a graph embedding approach. A good node embedding

method can give the graph embeddings as an input and predicts the node
labels. So, we valuated ExEm accomplishments under the multi-label
classification task. Firstly, we captured the node embeddings of the
input graph for each algorithm. The dimensions of node embedding are
256 and 128 for ExEmcom and others, respectively. Then, we randomly
selected a portion (10% to 90%) of nodes along with their labels as
training data to analyze the achievements on the remaining nodes. We
trained a one-vs-rest Logistic Regression classifier which was imple-
mented by LibLinear (Fan, Chang, Hsieh, Wang, & Lin, 2008). For the
purpose of ensuring a fair comparison, we repeated the above procedure
10 times and reported the results in terms of average Micro-F1 and
average Macro-F1. In the paragraphs that follow, firstly, we are going to
present the obtained results for each dataset, then we will show the ef-
fect of number of embedding dimensions on the performance of classi-
fication task.

6.1.1. Results
Fig. 7 shows the results of the classification task based on Micro-F1

and Macro-F1 scores for different approaches under PPI, BlogCatalog,
Wikipedia and Scopus datasets. From the results, we have the following
observations and analysis based on each dataset:

–PPI dataset: It is evident that various versions of ExEm gain the
highest Micro-F1 and Macro-F1 scores under PPI dataset. Given 10% of
nodes as training data, as an example, ExEm outperforms DeepWalk,
Node2vec, Line and SDNE on Micro-F1 by 8.94%, 14.84%, 28.07% and
45.90%, respectively. Also, ExEm achieves 3.89%, 12.29%, 26.35%
and 17.44% improvements in terms of Macro-F1 over DeepWalk,
Node2vec, Line and SDNE, individually. Both DeepWalk and Node2vec
that are based on random walks perform better than Line and SDNE
which use first- and second-order proximities, and auto-encoders,
accordingly. Additionally, the results demonstrate that the learned
node embeddings of DeepWalk can better generalize to the classification
task on PPI dataset than Node2vec, since appropriate values are not
assigned to Node2vec’s parameters. Also, we find SDNE the winner of
the competition against Line.

–BlogCatalog dataset: We have observed that using dominating set
theory allows ExEm to exhibit significant advantage over baselines for
the task of node classification on BlogCatalog. ExEm strengthens the
performance by 115.23%, 61.90%, 60.71% and 53.83% compared

Fig. 7. Micro-F1 and Macro-F1 scores on node classification task for different datasets over the diverse train ratio (dimension of ExEmcom is 256).

N. Nikzad-Khasmakhi et al.

Expert Systems With Applications 177 (2021) 114913

12

with SDNE, Line, DeepWalk and Node2vec on Micro-F1 metric by
considering 80% data as training. Moreover, ExEm shows 53.51%,

35.69%, 30.81% and 28.71% performance gains than SDNE, Line,
DeepWalk and Node2vec based on Macro-F1 quality with the same
amount of training data. These results indicate how effective ExEm
variation models are on BlogCatalog which is a denser network than PPI.
Node2vec and DeepWalk follow a similar trend and both of them
outperform Line and SDNE, similar observations to PPI. In contrast to
PPI, Node2vec works better than DeepWalk with a gain of 0.34% and
3.73% with regards to Micro-F1 and Macro-F1. And Line operates more
effectively than SDNE.

–Wikipedia dataset: The result shows that there is an improvement
between the results of ExEm and other methods on Wikipedia dataset
specifically in terms of Macro-F1. ExEm acquires benefits of 18.99%,

16.75%, 15.34% and 13.32% comparing to SDNE, Line, DeepWalk and
Node2vec on Micro-F1 by selecting 10% of nodes for training. Also, we
have seen that ExEm boosts the efficiency by 59.75%, 48.86%, 48.48%
and 36.93% percents above SDNE, Line, DeepWalk and Node2vec,
respectively, for Macro-F1 score. These outcomes are as evidence to
imply the potential of our random walk based method to represent
Wikipedia’s network structure better, which is also a dense word co-
occurrence network (Qiu et al., 2018), comparing to the baselines.
Selecting the best values for Node2vec parameters evinces this method
outperforms DeepWalk. Still the performance of SDNE is the worst
among the graph embedding techniques in this case.

–Scopus dataset: As can be seen from the results, ExEm obtains a
great improvement in performance over the classification task on Scopus
dataset. ExEm enhances the performance, given 80% amount of training
data, about 5.82%, 2.80% and 2.52% over Line, DeepWalk and
Node2vec in terms of Micro-F1 score. For Macro-F1 metric, the gains
obtained by ExEm over these three baselines are 15.88%,8.30% and
10.07%, individually. We have made three observations on obtained
results from Scopus dataset. Firstly, it is obvious that no results are
presented for SDNE. The reason is the SDNE’s prohibitive memory ne-
cessities for the input adjacency matrix. In other words, SDNE could only
be run for smaller graphs and it fails to finish successfully for large
graphs such as Scopus. Secondly, since Scopus network has the highest
density in comparison to three other datasets, it has the largest values of

Micro-F1 and Macro-F1 scores. Thirdly, we used a trial-and-error pro-
cedure in the selection of Node2vec parameters as its first running on
Scopus. Despite DeepWalk and Node2vec generate rather similar out-
comes based on Micor-F1 score, DeepWalk is superior to Node2vec in
terms of Macro-F1.

6.1.2. Effect of dimension
Also, we studied the effect of embedding dimensions on node clas-

sification task for different approaches. We conducted the investigations
by following the same experimental procedure done for different train
ratios, with a change that we fixed the train ratio with a value of 50%. It
should be noted that the dimensions of ExEmcom in this experiment equal
64, 128, 256 and 512 with regard to the embedding vector sizes 32, 64,
128 and 256 for both ExEmft and ExEmw2v. Fig. 8 illustrates the impacts
of different embedding dimension sizes on various graph embedding
approaches. The observations from the results lead to the conclusion
that although the performance of all these graph embedding techniques
go up gradually over the train ratios in the most datasets, we saw the
uptrend and downtrend or sideways trends in the performance of
techniques by varying the number of dimensions. The reason is that
despite high-dimensional embedding presents more features of nodes, in
some cases using a large dimensionality results in overfitting. In PPI
dataset, the performance of all methods with the exception of SDNE
degrades as the number of dimensions increases. While SDNE’s perfor-
mance enhances as embedding dimension increases above 128, ExEm
achieves the best performance on PPI with 32 and 64 dimensions for
ExEmft and ExEmw2v, and ExEmcom, respectively. With a couple of ex-
ceptions, Micro-F1 and Macro-F1 scores increase as embedding dimen-
sion increases in BlogCatalog, Wikipedia and Scopus datasets. Also, it
appears that ExEm outperforms other methods. ExEmft and ExEmw2v,
and ExEmcom are able to embed nodes to vectors with 128 and 256 di-
mensions, correspondingly, with high scores over all datasets. Among
different forms of ExEm, ExEmw2v’ results are closer to ExEmft except in
a few cases. Due to the drawback of SDNE to operate over large net-
works, no result is reported for it on Scopus.

Fig. 8. Micro-F1 and Macro-F1 scores on node classification task for different datasets over the diverse number of dimensions (dimensions of ExEmcom are 64, 128,
256 and 512 and the train ratio is 50%).

N. Nikzad-Khasmakhi et al.

Expert Systems With Applications 177 (2021) 114913

13

6.2. Link prediction

By taking the learned node representations as inputs, we accomplish
the link prediction experiment to compare the effectiveness of ExEm
method with four other approaches. As mentioned before, link predic-
tion can be treated as a binary classification task where the objective
function is defined by the AUC score. After obtaining embeddings that
are 128-dimensional vectors, we randomly hid 50% of the network
edges for each dataset. Then, we predicted the existence or non-
existence of links between pairs of nodes in the rest of network by
training a Logistic Regression classifier. To guarantee a reasonable ex-
amination, we repeated the prediction process for 10 times and reported
the mean value of AUC score. Moreover, to provide an edge represen-
tation for node pair (u,v), we extended algorithms with different binary
operators. These operators are defined by the following equations
(Keikha et al., 2018; Grover & Leskovec, 2016; Crichton, Guo, Pyysalo,
& Korhonen, 2018):

Average =
V(u)i + V(v)i

2
(11)

Hadamard = V(u)i × V(v)i (12)

Weighted − L1 = |V(u)i − V(v)i| (13)

Weighted − L2 = |V(u)i − V(v)i|
2 (14)

where V(u)i and V(v)j are the ith features of u and v, respectively.

6.2.1. Results
Table 4 shows the summarized results of the AUC score for different

methods on the task of link prediction over four datasets. According to
these results we have the following observations: (i) LINE and SDNE are
blamed for their poor performance in link prediction, as they can not

find the pattern of edge existence in graphs. (ii) DeepWalk and Node2-
vec perform better than LINE and SDNE because of employing the
random walk based model which can better obtain proximity informa-
tion within nodes. (iii) By large margins the improvement of ExEm over
the baselines is more obvious in link prediction task. ExEm promotes the
efficiency of link prediction on Weighted-L2 operator about 55.53%,

45.49%, 28.63%, and 25.59% over SDNE, Line, DeepWalk and Node2-
vec, accordingly. Based on the obtained results of average operator from
Astro-PH graph, we see the 22.26%,26.35%, 19.99%, and 16.93% im-
provements of ExEm than SDNE, Line, DeepWalk and Node2vec,
respectively. ExEm improves AUC scores on BlogCatalog by 19.80%,

53.20%, 27.88%, and 41.40% over SDNE, Line, DeepWalk and Node2-
vec for Weighted − L1 operator. For Scopus dataset, ExEm achieves gains
of 23.91%, 29.85%, and 21.04% in comparison with Line, DeepWalk
and Node2vec for average operator and also there is no result for SDNE
due to its inability to operate on large network. Our explanation for the
performance of ExEm on link prediction task is that each node in the
network has at least one neighbor of dominating nodes which effectively
dominate the connections of nodes in a network, so ExEm can predict the
most likely edges which are not observed in the training data from the
learned embedding. The comparison of different models of ExEm pre-
sents that ExEmcom reveals a better performance than two other forms
After ExEmcom, ExEmw2v gains the second place on all datasets.

6.2.2. Effect of dimension
Additionally, we investigated the effect of embedding dimensions on

only different methods of ExEm in the link prediction task. We followed
the same strategy as mentioned above, just using differed dimension
sizes and the average operator to provide more insights on the perfor-
mance of ExEm. Fig. 9 illustrates the effect of embedding dimensions on
ExEm models. Overall, the AUC score increases over the dimension
given. As with node classification, we observed that ExEmft and
ExEmw2v, and ExEmcom achieve the best performance on all datasets with
128 and 256 dimensions, respectively. Based on the results, ExEmcom
outperforms ExEmft and ExEmw2v since the higher number of dimension
makes it capable of storing more information. Also, we found that
ExEmft and ExEmw2v show the same trends by increasing the size of node
embeddings. In BlogCatalog and Scopus, ExEmw2v is the winner, while
ExEmft overcomes ExEmw2v in PPI and Astro-PH.

6.3. Recommendation

The purpose of this experiment is to show how a graph embedding
approach can be effectively used to order item recommendations with
the help of the learned node embeddings. As previously described, this
paper introduces a novel strategy for computing experts’ scores using
the expert embedding vectors and recommending top experts whose
scores are high. So, we conducted a case study to demonstrate the effi-
cacy of ExEm in the recommendation task. We selected three topics:
information extraction (IE), natural language processing (NLP), and
machine learning (ML) from Arnetminer data. The lists of people in these
topics are used as experts to construct the ground truth to evaluate the
recommendation task on the Scopus dataset. Note that our task is not to
predict the exact score value of each expert but to rank them in terms of
their positions in the list. That means we take into account the position
of the experts in these lists as their ranks for the ground truth. We used
cosine similarity to measure the distance between the node embedding
vectors and centroid. We recommended the nearest nodes to the
centroid as experts. The dimension of expert vectors is fixed to 128. We
announced the results in terms of nDCG@k. In using nDCG@k, we set k to
5, 10 and 15. Because of the weakness of SDNE to run on large dataset,
we compared ExEm with Line, DeepWalk, Node2vec approaches.

6.3.1. Results
Table 5 demonstrates nDCG score provided by the identified top k

experts in three specific topics. As can be seen, except in a few cases,

Table 4
AUC score of link prediction for different datasets on various operators
(dimension of ExEmcom is 256). (a) Average, (b) Hadamard, (c) Weighted-L1,
and (d) Weighted-L2.

Op Algorithm Dataset

PPI Astro-PH BlogCatalog Scopus

SDNE 0.6782 0.6262 0.6965 –
LINE 0.6424 0.6059 0.7829 0.5398

DeepWalk 0.627 0.638 0.7636 0.5151
Node2vec 0.7543 0.6547 0.7493 0.5526

(a) ExEmft 0.8041 0.7636 0.7829 0.6661
ExEmw2v 0.8034 0.7612 0.7976 0.664
ExEmcom 0.8098 0.7656 0.7999 0.6689

SDNE 0.6981 0.7117 0.66 –
LINE 0.7314 0.9352 0.7766 0.8364

DeepWalk 0.7441 0.9335 0.7256 0.9607
Node2vec 0.7719 0.9583 0.7632 0.9693

(b) ExEmft 0.9278 0.9765 0.8041 0.9874
ExEmw2v 0.9262 0.9766 0.8026 0.9875
ExEmcom 0.9454 0.983 0.8335 0.9908

SDNE 0.6436 0.6066 0.6001 –
LINE 0.6796 0.8948 0.7674 0.8428

DeepWalk 0.8753 0.8966 0.7189 0.9656
Node2vec 0.6292 0.9132 0.6502 0.975

(c) ExEmft 0.9657 0.9886 0.9078 0.9929
ExEmw2v 0.971 0.988 0.9141 0.9934
ExEmcom 0.9726 0.9876 0.9194 0.9935

SDNE 0.636 0.5761 0.5978 –
LINE 0.6799 0.8932 0.7507 0.8304

DeepWalk 0.6118 0.8981 0.7234 0.9864
Node2vec 0.6236 0.9146 0.6529 0.9757

(d) ExEmft 0.9708 0.9892 0.9137 0.9928
ExEmw2v 0.9749 0.985 0.9207 0.9929
ExEmcom 0.9753 0.9892 0.9212 0.9938

N. Nikzad-Khasmakhi et al.

Expert Systems With Applications 177 (2021) 114913

14

ExEmft has gained the highest values among the competitors. Then,
ExEmcom takes the second-ranking position and provides better perfor-
mance in comparison to ExEmw2v, Node2vec, DeepWalk and Line. Also,
it is clear that unlike node classification and link prediction tasks, Line
shows comparable performance to Node2vec, and DeepWalk performs
poorly. Over and above that we compared ExEm against of Experti-
seRank (Zhang, Ackerman, & Adamic, 2007) in order to compare its
performance with studies in the expert recommendation system domain.
ExpertiseRank is a PageRank-like algorithm used to calculate experts’
score in the user-user graph based on ask-answer relations of the users.
ExpertiseRank considers the number and quality of connections of a
candidate expert to determine a rough estimate of how important the
candidate is. It is clear that ExEm outperformed the ExpertiseRank in all
three topics. The reason is that ExpertiseRank tries to find experts based
on the degree of connections of experts with others in the collaborative
network. While ExEm raises its awareness of experts’ expertise through
their embeddings which present rich information about experts. The
other explanation for the success of our proposed method is its way of
calculating expert scores.

In summary, we provided two important feedbacks form the results.
Primarily, the high values of nDCG scores for graph embedding methods
in comparison with ExpertiseRank show that our introduced strategy
provides an efficient solution for computing experts’ scores based on
expert embeddings. In addition, as ExEm generates more appropriate
embeddings for experts of different topics than comparative baselines,
using the expert embeddings obtained by ExEm models specially ExEmft
makes significant gains in the expert recommendation system.

6.3.2. Effect of dimension
Also, we explored the effect of embedding dimensions on only

different methods of ExEm for recommendation task. We used the same
strategy as mentioned before, by merely limiting our test into ML topic
and nDCG@15. Fig. 10 illustrates the effect of embedding dimensions on
ExEm models in our case study. It is clear that although ExEmft out-
performs, it reveals an identical trend to ExEmcom. The performances of
both ExEmft and ExEmcom decline with a small slope at the beginning and
then their performances saturate as the number of dimensions increase.
However, we see that the performance of ExEmw2v initially increases

slightly faster, but it finally shows a fixed-performance like two other
methods with the increase in the size of expert embeddings.

6.4. Parameter sensitivity

As mentioned before, there exist three common ways to combine the
features obtained from fastText and Word2ve and create a single rep-
resentation for each node. So we examine how different choices of
merging features affect the performance of ExEm. For this evaluation,
we measured the Micro-F1 and Macro-F1 scores for the node classifi-
cation task on the BlogCatalog dataset using 10% to 90% splits between
labeled and unlabeled nodes with embedding size 128. Besides, ExEm
involves a number of parameter that may effect its performance.
Therefore, we conduct a sensitivity analysis of ExEm to context window
size w and length of random walks LR parameters. For sensitivity
investigation we followed the first test setting just using 50% as training
data and the remaining as test data.

6.4.1. Results
As we can see in Fig. 11a, ExEmcom consistently and significantly

Fig. 9. AUC score of link prediction for different datasets with varying dimensions on the average operator (dimensions of ExEmcom are 64, 128, 256 and 512).

Table 5
nDCG score of recommendation for Scopus dataset based on top k experts (dimension of ExEmcom is 256).

Topics ML NLP IE

nDCG@ 5 10 15 5 10 15 5 10 15

Line 0.5005 0.6137 0.7218 0.6112 0.6295 0.6032 0.4052 0.5028 0.6089
DeepWalk 0.3119 0.4183 0.6156 0.2720 0.4268 0.4329 0.4666 0.4898 0.6203
Node2vec 0.5286 0.5897 0.7055 0.5124 0.5570 0.5971 0.4865 0.5382 0.6361
ExpertiseRank 0.4924 0.5796 0.6646 0.5477 0.5539 0.6036 0.5200 0.5467 0.6799
ExEmw2v 0.6455 0.6415 0.8374 0.6243 0.6486 0.6538 0.5734 0.5602 0.7089
ExEmft 0.7029 0.6462 0.8428 0.6239 0.6482 0.6403 0.5882 0.5724 0.7202
ExEmcom 0.7020 0.6459 0.8414 0.6240 0.6494 0.6411 0.5747 0.5719 0.7114

Fig. 10. nDCG@15 score of recommendation for ML topic with varying di-
mensions (dimensions of ExEmcom are 64, 128, 256 and 512).

N. Nikzad-Khasmakhi et al.

Expert Systems With Applications 177 (2021) 114913

15

outperforms ExEmsum and ExEmavg in terms of both metrics. This in-
crease in performance can be based on concatenation function that
conducts the dimension of node vector space becomes higher, and so
ExEmcom can preserve most of the meaningful information about nodes
without altering data. Although summing and averaging reduce node
embedding size, they lose some information and hence they perform
poorly. Moreover, according to Micro score, ExEmavg works better than
ExEmsum, while Macro score shows different deduction.

Moreover, Fig. 11b and c suggest that context window size and
length of random walks are positive to the node classification perfor-
mance. However, they have relatively little relevance to the perfor-
mance and the differences are not that large in these cases. Briefly,
according to the analysis, various models of ExEm are not strictly sen-
sitive to these parameters and can achieve high performance under a
affordable parameter choice.

7. Discussion

It can be inferred from the results that Line as an edge modeling
based approach which uses first- and second-order proximities and
SDNE as a deep learning based method that employs auto-encoders do
not make any additional gains as compared to random walk based
methods in all tasks. It can be seen that in all instances except for PPI
network over node classification, SDNE performs poorly. This is because
SDNE focuses on the homophily objective to map the connected node
pairs closer to each other and ignores the structural roles of nodes. Also,
the other drawback of SDNE is that it is not scalable to large graphs such
as Scopus because of its memory consumption in order to feed the
complete adjacency nodes as inputs. By the same token, Line embeds
nodes closer which share common one-hop neighborhood, while it does
not pay attention to their roles. On the other hand, random walk based
graph embedding methods, ExEm, DeepWalk and Node2vec, show
promising results over node classification, link prediction and recom-
mendation tasks. Since random walks can tend to spread quickly over a
local area, they can better capture local community structure and
concurrently investigate different parts of the same graph (Perozzi et al.,
2014). Additionally, we observed that Node2vec and DeepWalk
outperform Line and SDNE especially in link prediction and node clas-
sification tasks, although there are a number of problems with them that
are solved by ExEm through using dominating set. One of the issues that

DeepWalk encounters is its randomness which provokes Deepwalk not
to preserve the local neighborhood of the node well and makes a lot of
noises mostly for nodes with high degrees (Wang et al., 2016). Another
drawback of DeepWalks is that it does not embed nodes from this
outlook that nodes with similar roles should be embedded closely
together. However, Node2vec proposes a biased random walk that ad-
dresses the problems related to DeepWalk by virtue of two arguments p
and q. The common problem of Node2vec is that these arguments should
be valid for a certain set of values for each network in order to properly
produce node representations that take into consideration the homo-
phily and structural equivalence assumptions. Therefore, because of the
dependency of Node2vec’s performance on adjusting the values of these
parameters, we see that in some cases DeepWalk performs well
compared to Node2vec. For example, we set parameters as p = 0.25,
q = 2 and p = 0.5, q = 4 for PPI and BlogCatalog networks, respec-
tively. For PPI dataset those values are the worst choices and the
outcome has the poor performance of Node2vec than DeepWalk in node
classification task, while in Blogcatalog the parameters put Node2vec in
the second highest Macro-F1 and Micro-F1 scores after various versions
of ExEm. Thus, the values of these parameters must be carefully chosen
for each network to achieve a good performance. Based on the obser-
vations we found out that ExEm is more robust and effective technique
for capturing node representations on all test graphs. Taking advantage
of dominating nodes in random walks helps ExEm to work efficiently on
a variety of networks including large and dense graphs like Scopus or
BlogCatalog. The reason is that the virtual backbone formed by domi-
nating nodes can efficiently control the structure of graph and retrieve
information from it (Spisiak, 2011). Moreover, having the second
dominating node in the walk makes the connections between different
parts of a graph. In other words, the attendance of the first and second
dominating nodes encourages ExEm to obey homophily and structural
role equivalences in encoding nodes and provides ExEm a higher
learning flexibility than baselines. In brief, the main differences between
ExEm and the other methods are: (i) ExEm uses an intelligent random
walk sampling strategy which is based on dominating nodes. (ii) ExEm is
more effective than Line, SDNE, DeepWalk and Node2vec, as is illus-
trated by our experiments in three different tasks on various graphs. (iii)
ExEm is efficient for dense graphs and scalable for very large applica-
tions. (iv) ExEm has the lowest execution time among both DeepWalk
and Node2vec since ExEm’s intelligent random walk starts from only

Fig. 11. (a) Analysis of different combinations of the features obtained from fastText and Word2ve, (b) and (c) parameter sensitivity for node classification on the
BlogCatalog network.

N. Nikzad-Khasmakhi et al.

Expert Systems With Applications 177 (2021) 114913

16

dominating nodes instead of all nodes. Also, the second reason is that the
second dominating node exists in the rest of the walk with probability
values 0.44,0.33,0.50 and 0.30 and 0.27 obtained from experiments
over different datasets PPI, Wikipedia, BlogCatalog, arXiv(Astro-PH)
and Scopus, respectively. Hence, it is not necessary to investigate the
expression of second dominating node in each random walk. While the
computation of transition probabilities for going from one node to
another in Node2vec is taking more time to generate random walks. For
instance, we calculated the execution time of ExEmw2v, DeepWalk and
Node2vec on Blogcatalog for node classification task and the results
show that DeepWalk learns node representations in 114.62 seconds
which is faster than Node2vec with runtime 294.94 seconds. We found
that in ExEm the time of finding a dominating set and generating
random walks equal to 0.039 and 28.19 seconds, respectively. By adding
the training time, the total execution time of ExEmw2v is 106.439 sec-
onds which is shorter than Node2vec and DeepWalk. (v) ExEm can easily
accommodate itself to dynamic networks only by adding new random
walks from the changed part, while Node2vec, Line and SDNE can not
cope with dynamic graphs.

Besides, we also note that our proposed scheme for estimating ex-
perts’ scores based on expert embeddings addresses the issue of expert
finding in a social network. Using expert embeddings created by ExEm
in the proposed method significantly outperforms all works to rank
candidate experts and recommend top experts accurately. In addition,
we highlighted the fact that almost all methods conducted on our
collected dataset, Scopus, are better than the experiments conduced on
other datasets. One of the reasons is higher density of Scopus compared
to other datasets.

8. Answers to research questions

In what follows, we are going to answer the research questions from
Section 1 based on the observations from extensive experimental
comparison:

RQ.1 The results proved the advantage of our collected dataset for
different usages. The value of the modularity shows the efficiency of
Scopus data for community detection task. Moreover, the values of
various scores obtained from conducting graph embedding techniques
on Scopus graph underline the usefulness of this dataset for multi-label
classification, link prediction and recommendation tasks.

RQ.2 Experimental results demonstrated that creating intelligent
random walks by using dominating nodes not only declines runtime, but
also provides key insight into the organization of network. ExEm hires
two dominating nodes in each path sampled to simultaneously preserve
the local and global network structures. The first dominating node
characterizes the local neighborhoods accurately, while the second
dominating node helps ExEm to learn the node embeddings based on
their similar structural roles within the network topology.

RQ.3 We proposed a novel strategy that computes experts’ scores
based on the expert embedding vectors and accurately recommends
experts. The proposed method extracts experts whose subject areas
include the given topic and makes a cluster by them. Then, the center of
this cluster is found by taking the average of all the expert embedding
vectors in the group. Then, cosine similarity measures the distance be-
tween the embedding vectors and centroid. Finally, the nearest nodes to
the centroid are recommended as experts. We observed that using expert
embeddings created by ExEm in the proposed method significantly
outperforms all works to rank candidate experts. Note that this approach
can be applied to any types of graph with a special example of the graph
related to the relationship between questioner and answerer in QACs
such as StackOverflow and Quara.

9. Conclusion

In this paper, we have proposed two approaches and presented a new
dataset. Our first proposed approach is a random walk based graph

embedding technique, called ExEm, that incorporates the dominating
set from graph theory to graph embedding. Starting random walks with
dominating nodes and existing another dominating node in the
following of each sampled path help ExEm to fulfill homophily and
structural role objectives. ExEm uses three embedding methods
including Word2vec, fastText and the concatenation of these two to
extract node embeddings from these random walks. Experimental re-
sults demonstrated that ExEm is significantly more effective and appli-
cable than SDNE, Line, DeepWalk and Node2vec over multi-label
classification, link prediction and recommendation tasks. Also, this
research represented another approach used to compute experts’ scores
based on expert embedding vectors. This proposed framework achieved
much better performance than ExpertiseRank approach in the recom-
mendations of top experts. Finally, we presented a dataset related to a
co-author network formed by crawling the vast author profiles from
Scopus.

CRediT authorship contribution statement

Narjes Nikzad-Khasmakhi: Conceptualization, Methodology, Vali-
dation, Investigation, Software, Writing - original draft. Mohammadali
Balafar: Project administration, Conceptualization, Methodology,
Validation. M. Reza Feizi-Derakhshi: Supervision, Investigation. Cina
Motamed: Writing - review & editing, Validation.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

References

Ahmad, I., Akhtar, M. U., Noor, S., & Shahnaz, A. (2020). Missing link prediction using
common neighbor and centrality based parameterized algorithm. Scientific Reports,
10(1), 1–9.

Ahuja, M. S., & Singh, J. (2018). Finding communities in social networks with node
attribute and graph structure using jaya optimization algorithm. International Journal
of Future Generation Communication and Networking, 11(2), 33–48.

Bastian, M., Heymann, S., & Jacomy, M. (2009). Gephi: An open source software for
exploring and manipulating networks. In Third international AAAI conference on
weblogs and social media.

Blondel, V. D., Guillaume, J.-L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of
communities in large networks. Journal of Statistical Mechanics: Theory and
Experiment, 2008(10), P10008.

Cai, H., Zheng, V. W., & Chang, K. C.-C. (2018). A comprehensive survey of graph
embedding: Problems, techniques, and applications. IEEE Transactions on Knowledge
and Data Engineering, 30(9), 1616–1637.

Cao, S., Lu, W., & Xu, Q. (2015). Grarep: Learning graph representations with global
structural information. In Proceedings of the 24th ACM international on conference on
information and knowledge management (pp. 891–900). ACM.

Cao, S., Lu, W., & Xu, Q. (2016). Deep neural networks for learning graph
representations. In Thirtieth AAAI conference on artificial. Intelligence.

Chatr-Aryamontri, A., Oughtred, R., Boucher, L., Rust, J., Chang, C., Kolas, N. K.,
O’Donnell, L., Oster, S., Theesfeld, C., Sellam, A., Stark, C., Breitkreutz, B. J.,
Dolinski, K., & Tyers, M. (2017). The BioGRID interaction database: 2017 update.
Nucleic Acids Research.

Chen, B., Hua, Y., Yuan, Y., & Jin, Y. (2018). Link prediction on directed networks based
on auc optimization. IEEE Access, 6, 28122–28136.

Chen, M., Tsang, I. W., Tan, M., & Cham, T. J. (2014). A unified feature selection
framework for graph embedding on high dimensional data. IEEE Transactions on
Knowledge and Data Engineering, 27(6), 1465–1477.

Crichton, G., Guo, Y., Pyysalo, S., & Korhonen, A. (2018). Neural networks for link
prediction in realistic biomedical graphs: a multi-dimensional evaluation of graph
embedding-based approaches. BMC Bioinformatics, 19(1), 176.

Cui, P., Wang, X., Pei, J., & Zhu, W. (2018). A survey on network embedding. IEEE
Transactions on Knowledge and Data Engineering, 31(5), 833–852.

Damoulas, T., & Girolami, M. A. (2009). Combining feature spaces for classification.
Pattern Recognition.

Du, D.-Z., & Wan, P.-J. (2012). Connected dominating set: Theory and applications (Vol. 77).
Springer Science & Business Media.

Esfahanian, A.-H. (2013). Connectivity algorithms. In Topics in structural graph theory (pp.
268–281). Cambridge University Press.

Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., & Lin, C.-J. (2008). Liblinear: A
library for large linear classification. Journal of Machine Learning Research, 9(Aug),
1871–1874.

N. Nikzad-Khasmakhi et al.

http://refhub.elsevier.com/S0957-4174(21)00354-7/h0005
http://refhub.elsevier.com/S0957-4174(21)00354-7/h0005
http://refhub.elsevier.com/S0957-4174(21)00354-7/h0005
http://refhub.elsevier.com/S0957-4174(21)00354-7/h0010
http://refhub.elsevier.com/S0957-4174(21)00354-7/h0010
http://refhub.elsevier.com/S0957-4174(21)00354-7/h0010
http://refhub.elsevier.com/S0957-4174(21)00354-7/h0015
http://refhub.elsevier.com/S0957-4174(21)00354-7/h0015
http://refhub.elsevier.com/S0957-4174(21)00354-7/h0015
http://refhub.elsevier.com/S0957-4174(21)00354-7/h0020
http://refhub.elsevier.com/S0957-4174(21)00354-7/h0020
http://refhub.elsevier.com/S0957-4174(21)00354-7/h0020
http://refhub.elsevier.com/S0957-4174(21)00354-7/h0025
http://refhub.elsevier.com/S0957-4174(21)00354-7/h0025
http://refhub.elsevier.com/S0957-4174(21)00354-7/h0025
http://refhub.elsevier.com/S0957-4174(21)00354-7/h0035
http://refhub.elsevier.com/S0957-4174(21)00354-7/h0035
http://refhub.elsevier.com/S0957-4174(21)00354-7/h0040
http://refhub.elsevier.com/S0957-4174(21)00354-7/h0040
http://refhub.elsevier.com/S0957-4174(21)00354-7/h0040
http://refhub.elsevier.com/S0957-4174(21)00354-7/h0040
http://refhub.elsevier.com/S0957-4174(21)00354-7/h0045
http://refhub.elsevier.com/S0957-4174(21)00354-7/h0045
http://refhub.elsevier.com/S0957-4174(21)00354-7/h0050
http://refhub.elsevier.com/S0957-4174(21)00354-7/h0050
http://refhub.elsevier.com/S0957-4174(21)00354-7/h0050
http://refhub.elsevier.com/S0957-4174(21)00354-7/h0055
http://refhub.elsevier.com/S0957-4174(21)00354-7/h0055
http://refhub.elsevier.com/S0957-4174(21)00354-7/h0055
http://refhub.elsevier.com/S0957-4174(21)00354-7/h0060
http://refhub.elsevier.com/S0957-4174(21)00354-7/h0060
http://refhub.elsevier.com/S0957-4174(21)00354-7/h0065
http://refhub.elsevier.com/S0957-4174(21)00354-7/h0065
http://refhub.elsevier.com/S0957-4174(21)00354-7/h0070
http://refhub.elsevier.com/S0957-4174(21)00354-7/h0070
http://refhub.elsevier.com/S0957-4174(21)00354-7/h0075
http://refhub.elsevier.com/S0957-4174(21)00354-7/h0075

Expert Systems With Applications 177 (2021) 114913

17

Goyal, P., & Ferrara, E. (2018). Graph embedding techniques, applications, and
performance: A survey. Knowledge-Based Systems.

Goyal, P., Chhetri, S. R., & Canedo, A. (2019). dyngraph2vec: Capturing network
dynamics using dynamic graph representation learning. Knowledge-Based Systems.

Grover, A., & Leskovec, J. (2016). Node2vec: Scalable feature learning for networks. In
Proceedings of the ACM SIGKDD international conference on knowledge discovery and
data mining.

Gu, S., & Milenkovic, T. (2018). Graphlets versus node2vec and struc2vec in the task of
network alignment. arXiv preprint arXiv:1805.04222.

Guo, S., Wang, Q., Wang, B., Wang, L., & Guo, L. (2017). SSE: Semantically smooth
embedding for knowledge graphs. IEEE Transactions on Knowledge and Data
Engineering.

Gupta, P., & Bhatnagar, V. (2013). Data preprocessing for dynamic social network
analysis. In Data mining in dynamic social networks and fuzzy systems (pp. 25–39). IGI
Global.

Huang, X., Zhang, J., Li, D., & Li, P. (2019). Knowledge graph embedding based question
answering. In Proceedings of the twelfth ACM international conference on web search and
data mining (pp. 105–1130). ACM.

Joulin, A., Grave, E., Bojanowski, P., Douze, M., Jégou, H., & Mikolov, T. (2016).
Fasttext. zip: Compressing text classification models. arXiv preprint arXiv:1612.03651.

Kazemi, S. M., Goel, R., Jain, K., Kobyzev, I., Sethi, A., Forsyth, P., & Poupart, P. (2019).
Relational representation learning for dynamic (knowledge) graphs: A survey. arXiv
preprint arXiv:1905.11485, abs/1905.11485.

Keikha, M. M., Rahgozar, M., & Asadpour, M. (2018). Community aware random walk
for network embedding. Knowledge-Based Systems, 148, 47–54.

Leskovec, J., & Krevl, A. (2014). Snap datasets: Stanford large network dataset collection.
Liao, L., He, X., Zhang, H., & Chua, T.-S. (2018). Attributed social network embedding.

IEEE Transactions on Knowledge and Data Engineering, 30(12), 2257–2270.
Lison, P., & Kutuzov, A. (2017). Redefining context windows for word embedding models: An

experimental study. arXiv preprint arXiv:1704.05781.
Liu, Y., Ji, S., & Mittal, P. (2016). Smartwalk: Enhancing social network security via

adaptive random walks. In Proceedings of the 2016 ACM SIGSAC conference on
computer and communications security (pp. 492–503).

Liu, J., Li, Y., Ruan, Z., Fu, G., Chen, X., Sadiq, R., & Deng, Y. (2015). A new method to
construct co-author networks. Physica A: Statistical Mechanics and its Applications,
419, 29–39.

Li, Y., Zhang, D., Luo, P., & Jiang, J. (2017). Interpreting the formation of co-author
networks via utility analysis. Information Processing & Management, 53(3), 624–639.

Mahdavi, S., Khoshraftar, S., & An, A. (2018). dynnode2vec: Scalable dynamic network
embedding. In 2018 IEEE international conference on big data (Big Data) (pp.
3762–3765). IEEE.

Mahmood, A., Small, M., Al-Maadeed, S. A., & Rajpoot, N. (2016). Using geodesic space
density gradients for network community detection. IEEE Transactions on Knowledge
and Data Engineering, 29(4), 921–935.

Mahoney, M. (2011). Large text compression benchmark. URL: http://www.mattmahoney.
net/text/text.html.

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word
representations in vector space. arXiv preprint arXiv:1301.3781.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed
representations of words and phrases and their compositionality. In Advances in
Neural Information Processing Systems (pp. 3111–3119).

Molnár, F., Jr, Derzsy, N., Czabarka, É., Székely, L., Szymanski, B. K., & Korniss, G.
(2014). Dominating scale-free networks using generalized probabilistic methods.
Scientific Reports, 4, 6308.

Nikzad-Khasmakhi, N., Balafar, M., & Feizi-Derakhshi, M. R. (2019). The state-of-the-art
in expert recommendation systems. Engineering Applications of Artificial Intelligence,
82, 126–147.

Nishana, S., & Surendran, S. (2013). Graph embedding and dimensionality reduction-a
survey. International Journal of Computer Science & Engineering Technology (IJCSET), 4
(1), 29–34.

Ou, M., Cui, P., Pei, J., Zhang, Z., & Zhu, W. (2016). Asymmetric transitivity preserving
graph embedding. In Proceedings of the 22Nd ACM SIGKDD international conference on

knowledge discovery and data mining, KDD ’16 (pp. 1105–1114). New York, NY, USA.
ACM.

Pan, S., Wu, J., Zhu, X., Zhang, C., & Wang, Y. (2016). Tri-party deep network
representation. Network, 11(9), 12.

Perozzi, B., Al-Rfou, R., & Skiena, S. (2014). Deepwalk: Online learning of social
representations. In Proceedings of the 20th ACM SIGKDD international conference on
Knowledge discovery and data mining (pp. 701–710). ACM.

Pimentel, T., Castro, R., Veloso, A., & Ziviani, N. (2019). Efficient estimation of node
representations in large graphs using linear contexts. In 2019 International joint
conference on neural networks (IJCNN) (pp. 1–8). IEEE.

Powell, J., & Hopkins, M. (2015). 14 - social networks. In J. Powell, M. Hopkins, (Eds.), A
Librarian’s guide to graphs, data and the semantic web, chandos information professional
series (pp. 111–116). Chandos Publishing.

Qiu, J., Dong, Y., Ma, H., Li, J., Wang, K., & Tang, J. (2018). Network embedding as
matrix factorization: Unifying deepwalk, line, pte, and node2vec. In Proceedings of
the eleventh ACM international conference on web search and data mining (pp.
459–467).

Sankar, A., Wu, Y., Gou, L., Zhang, W., & Yang, H. (2018). Dynamic graph representation
learning via self-attention networks. arXiv preprint arXiv:1812.09430.

Spisiak, J. (2011). Local construction of dominating set. Master’s thesis.
Sun, X., Yang, Y., & Ma, M. (2019). Minimum connected dominating set algorithms for

ad hoc sensor networks. Sensors, 19(8), 1919.
Taheri, A., Gimpel, K., & Berger-Wolf, T. (2019). Learning to represent the evolution of

dynamic graphs with recurrent models. In Companion proceedings of the 2019 world
wide web conference (pp. 301–307). ACM.

Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., & Mei, Q. (2015). Line: Large-scale
information network embedding. In Proceedings of the 24th international conference on
world wide web (pp. 1067–1077). International World Wide Web Conferences
Steering Committee.

Tsoumakas, G., & Katakis, I. (2007). Multi-label classification: An overview. International
Journal of Data Warehousing and Mining (IJDWM), 3(3), 1–13.

Wang, D., Cui, P., & Zhu, W. (2016). Structural deep network embedding. In Proceedings
of the 22nd ACM SIGKDD international conference on knowledge discovery and data
mining (pp. 1225–1234). ACM.

Wang, G. A., Jiao, J., Abrahams, A. S., Fan, W., & Zhang, Z. (2013). Expertrank: A topic-
aware expert finding algorithm for online knowledge communities. Decision Support
Systems, 54(3), 1442–1451.

Wang, Q., Mao, Z., Wang, B., & Guo, L. (2017). Knowledge graph embedding: A survey of
approaches and applications. IEEE Transactions on Knowledge and Data Engineering,
29(12), 2724–2743.

Wang, H., Wu, J., Hu, W., & Wu, X. (2019). Detecting and assessing anomalous
evolutionary behaviors of nodes in evolving social networks. ACM Transactions on
Knowledge Discovery from Data (TKDD), 13(1), 12.

Wu, J., Cardei, M., Dai, F., & Yang, S. (2006). Extended dominating set and its
applications in ad hoc networks using cooperative communication. IEEE Transactions
on Parallel and Distributed Systems, 17(8), 851–864.

Yang, C., & Wu, J. (2003). Dominating-set-based searching in peer-to-peer networks. In
International conference on grid and cooperative computing (pp. 332–339). Springer.

Zafarani, R., & Liu, H. (2009). Social computing data repository at asu.
Zhang, J., Ackerman, M. S., & Adamic, L. (2007). Expertise networks in online

communities: structure and algorithms. In Proceedings of the 16th international
conference on world wide web (pp. 221–230).

Zhang, D., Yin, J., Zhu, X., & Zhang, C. (2018). Network representation learning: A survey.
IEEE transactions on Big Data.

Zhao, Z., Yang, Q., Cai, D., He, X., & Zhuang, Y. (2016). Expert finding for community-
based question answering via ranking metric network learning. In Proceedings of the
twenty-fifth international joint conference on artificial intelligence (pp. 3000–3006).
AAAI Press.

Zhu, D., Cui, P., Zhang, Z., Pei, J., & Zhu, W. (2018). High-order proximity preserved
embedding for dynamic networks. IEEE Transactions on Knowledge and Data
Engineering, 30(11), 2134–2144.

Zhu, R., Dornaika, F., & Ruichek, Y. (2019). Joint graph based embedding and feature
weighting for image classification. Pattern Recognition, 93, 458–469.

N. Nikzad-Khasmakhi et al.

http://refhub.elsevier.com/S0957-4174(21)00354-7/h0095
http://refhub.elsevier.com/S0957-4174(21)00354-7/h0095
http://refhub.elsevier.com/S0957-4174(21)00354-7/h0095
http://refhub.elsevier.com/S0957-4174(21)00354-7/h0105
http://refhub.elsevier.com/S0957-4174(21)00354-7/h0105
http://refhub.elsevier.com/S0957-4174(21)00354-7/h0105
http://refhub.elsevier.com/S0957-4174(21)00354-7/h0110
http://refhub.elsevier.com/S0957-4174(21)00354-7/h0110
http://refhub.elsevier.com/S0957-4174(21)00354-7/h0110
http://refhub.elsevier.com/S0957-4174(21)00354-7/h0130
http://refhub.elsevier.com/S0957-4174(21)00354-7/h0130
http://refhub.elsevier.com/S0957-4174(21)00354-7/h0135
http://refhub.elsevier.com/S0957-4174(21)00354-7/h0140
http://refhub.elsevier.com/S0957-4174(21)00354-7/h0140
http://refhub.elsevier.com/S0957-4174(21)00354-7/h0150
http://refhub.elsevier.com/S0957-4174(21)00354-7/h0150
http://refhub.elsevier.com/S0957-4174(21)00354-7/h0150
http://refhub.elsevier.com/S0957-4174(21)00354-7/h0155
http://refhub.elsevier.com/S0957-4174(21)00354-7/h0155
http://refhub.elsevier.com/S0957-4174(21)00354-7/h0155
http://refhub.elsevier.com/S0957-4174(21)00354-7/h0160
http://refhub.elsevier.com/S0957-4174(21)00354-7/h0160
http://refhub.elsevier.com/S0957-4174(21)00354-7/h0170
http://refhub.elsevier.com/S0957-4174(21)00354-7/h0170
http://refhub.elsevier.com/S0957-4174(21)00354-7/h0170
http://refhub.elsevier.com/S0957-4174(21)00354-7/h0185
http://refhub.elsevier.com/S0957-4174(21)00354-7/h0185
http://refhub.elsevier.com/S0957-4174(21)00354-7/h0185
http://refhub.elsevier.com/S0957-4174(21)00354-7/h0190
http://refhub.elsevier.com/S0957-4174(21)00354-7/h0190
http://refhub.elsevier.com/S0957-4174(21)00354-7/h0190
http://refhub.elsevier.com/S0957-4174(21)00354-7/h0195
http://refhub.elsevier.com/S0957-4174(21)00354-7/h0195
http://refhub.elsevier.com/S0957-4174(21)00354-7/h0195
http://refhub.elsevier.com/S0957-4174(21)00354-7/h0200
http://refhub.elsevier.com/S0957-4174(21)00354-7/h0200
http://refhub.elsevier.com/S0957-4174(21)00354-7/h0200
http://refhub.elsevier.com/S0957-4174(21)00354-7/h0210
http://refhub.elsevier.com/S0957-4174(21)00354-7/h0210
http://refhub.elsevier.com/S0957-4174(21)00354-7/h0230
http://refhub.elsevier.com/S0957-4174(21)00354-7/h0230
http://refhub.elsevier.com/S0957-4174(21)00354-7/h0230
http://refhub.elsevier.com/S0957-4174(21)00354-7/h0230
http://refhub.elsevier.com/S0957-4174(21)00354-7/h0245
http://refhub.elsevier.com/S0957-4174(21)00354-7/h0245
http://refhub.elsevier.com/S0957-4174(21)00354-7/h0260
http://refhub.elsevier.com/S0957-4174(21)00354-7/h0260
http://refhub.elsevier.com/S0957-4174(21)00354-7/h0270
http://refhub.elsevier.com/S0957-4174(21)00354-7/h0270
http://refhub.elsevier.com/S0957-4174(21)00354-7/h0270
http://refhub.elsevier.com/S0957-4174(21)00354-7/h0275
http://refhub.elsevier.com/S0957-4174(21)00354-7/h0275
http://refhub.elsevier.com/S0957-4174(21)00354-7/h0275
http://refhub.elsevier.com/S0957-4174(21)00354-7/h0280
http://refhub.elsevier.com/S0957-4174(21)00354-7/h0280
http://refhub.elsevier.com/S0957-4174(21)00354-7/h0280
http://refhub.elsevier.com/S0957-4174(21)00354-7/h0285
http://refhub.elsevier.com/S0957-4174(21)00354-7/h0285
http://refhub.elsevier.com/S0957-4174(21)00354-7/h0285
http://refhub.elsevier.com/S0957-4174(21)00354-7/h0300
http://refhub.elsevier.com/S0957-4174(21)00354-7/h0300
http://refhub.elsevier.com/S0957-4174(21)00354-7/h0300
http://refhub.elsevier.com/S0957-4174(21)00354-7/h0305
http://refhub.elsevier.com/S0957-4174(21)00354-7/h0305
http://refhub.elsevier.com/S0957-4174(21)00354-7/h0310
http://refhub.elsevier.com/S0957-4174(21)00354-7/h0310
http://refhub.elsevier.com/S0957-4174(21)00354-7/h0310
http://refhub.elsevier.com/S0957-4174(21)00354-7/h0310
http://refhub.elsevier.com/S0957-4174(21)00354-7/h0315
http://refhub.elsevier.com/S0957-4174(21)00354-7/h0315
http://refhub.elsevier.com/S0957-4174(21)00354-7/h0315
http://refhub.elsevier.com/S0957-4174(21)00354-7/h0320
http://refhub.elsevier.com/S0957-4174(21)00354-7/h0320

	ExEm: Expert embedding using dominating set theory with deep learning approaches
	1 Introduction
	2 Related work
	3 Proposed method
	3.1 Step 1: preprocessing
	3.2 Step 2: finding a dominating set
	3.3 Step 3: random walks
	3.4 Step 4: learning part
	3.5 Output and applications

	4 Data description
	5 Experimental evaluation
	5.1 Dataset
	5.2 Model variations
	5.3 Baseline algorithms
	5.4 Parameter settings
	5.5 Evaluation metrics

	6 Evaluation results
	6.1 Multi-label classification
	6.1.1 Results
	6.1.2 Effect of dimension

	6.2 Link prediction
	6.2.1 Results
	6.2.2 Effect of dimension

	6.3 Recommendation
	6.3.1 Results
	6.3.2 Effect of dimension

	6.4 Parameter sensitivity
	6.4.1 Results

	7 Discussion
	8 Answers to research questions
	9 Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	References

