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A B S T R A C T   

A collaborative network is a social network that is comprised of experts who cooperate with each other to fulfill a 
special goal. Analyzing this network yields meaningful information about the expertise of these experts and their 
subject areas. To perform the analysis, graph embedding techniques have emerged as an effective and promising 
tool. Graph embedding attempts to represent graph nodes as low-dimensional vectors. In this paper, we propose a 
graph embedding method, called ExEm, that uses dominating-set theory and deep learning approaches to capture 
node representations. ExEm finds dominating nodes of the collaborative network and constructs intelligent 
random walks that comprise of at least two dominating nodes. One dominating node should appear at the 
beginning of each path sampled to characterize the local neighborhoods. Moreover, the second dominating node 
reflects the global structure information. To learn the node embeddings, ExEm exploits three embedding methods 
including Word2vec, fastText and the concatenation of these two. The final result is the low-dimensional vectors 
of experts, called expert embeddings. The extracted expert embeddings can be applied to many applications. In 
order to extend these embeddings into the expert recommendation system, we introduce a novel strategy that 
uses expert vectors to calculate experts’ scores and recommend experts. At the end, we conduct extensive ex
periments to validate the effectiveness of ExEm through assessing its performance over multi-label classification, 
link prediction, and recommendation tasks on common datasets and our collected data formed by crawling the 
vast author Scopus profiles. The experiments show that ExEm outperforms the baselines especially in dense 
networks.   

1. Introduction 

Social networks have emerged as a great platform to generate and 
share information. Social networks consist of entities and the in
teractions between them. A common representation for the social 
network has nodes for entities, and edges linking two nodes to denote 
the relationships between entities (Powell & Hopkins, 2015). 

A collaborative network is observed as a specific type of social net
works that is comprised of experts who cooperate with each other to 
fulfill a special goal. Analyzing this network yields meaningful infor
mation about the expertise of these experts and their subject areas. 
Although a collaborative network provides a rich source of information 
about experts, a major challenge surrounding this network is how to 
analyze both its structure and content. By the way of illustration, 

Question Answering Community (QAC) is one types of collaborative 
network in which the users’ collaborations are asking or answering 
questions (Zhao, Yang, Cai, He, & Zhuang, 2016). One of the key 
problems in QAC is how to find users, called experts, to answer the given 
questions (Nikzad-Khasmakhi, Balafar, & Feizi-Derakhshi, 2019). An 
ordinary solution to this issue is analyzing the social interactions of users 
and content of the questions asked and the answers replied by them 
(Wang, Jiao, Abrahams, Fan, & Zhang, 2013). As another example, ac
ademic papers are composed of several co-authors. The development of 
cooperation among academic authors constitutes a collaborative 
network, called the co-author network where the connections demon
strate the corresponding authors have published at least one paper 
together (Li, Zhang, Luo, & Jiang, 2017). In the co-author network, 
analyzing the interactions of authors and the content of their papers 
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have created a way to recognize the key researchers in a specific area, 
who are defined as experts (Liu et al., 2015). 

Representing data in particular social networks in the form of graphs 
has been attracting increasing attention in recent years. On the other 
hand, performing analysis on this type of data structure helps us gain 
more information and insights. Graph analytic appears in a wide variety 
of applications such as node classification, link prediction, clustering, 
node recommendation, visualization, and etc (Cai, Zheng, & Chang, 
2018; Goyal & Ferrara, 2018). Although many methods have been 
proposed for the graph representation and analysis, they encounter 
several challenges such as memory cost and time complexity. Graph 
embedding is an effective solution that tries to overcome these issues. It 
changes the form of representing a graph and maps the nodes into a low- 
dimensional space. Also, it’s able to maintain consistent structural in
formation and properties of the graph. 

As mentioned before, applying a graph embedding method on the 
resulting graph of a social network creates a better understanding of the 
network entities and its structure (Keikha, Rahgozar, & Asadpour, 
2018). By taking a glimpse of the previous graph embedding techniques, 
it’s obvious that a group of proposed approaches denote a graph as a set 
of random walks which preserve the graph characteristics (Cai et al., 
2018). After that, the deep learning methods such as skip-gram are 
applied to the random walks to maximize the likelihood of observing 
neighborhoods of nodes. The crucial difference between these methods 
is the way of generating random walks. DeepWalk (Perozzi, Al-Rfou, & 
Skiena, 2014) and Node2vec (Grover & Leskovec, 2016) are two ex
amples of this category. Although DeepWalk uses a simple depth-first 
search process for making random walks, it suffers from the repeated 
nodes problem and does not consider the efficacy of breadth-first 
neighbor structure. On the other hand, Node2vec develops biased- 
random walks using the breadth-first and depth-first search strategies. 
Node2vec has two parameters P and Q that help control over the search 
space. One of the drawbacks of Node2vec is the necessity to always set 
the outperform values for these parameters for every network (Gu & 
Milenkovic, 2018). 

In this research, we propose a deep learning graph embedding with 
random walk that is called ExEm. We aim to transform a graph into a 
low-dimensional vector space using dominating nodes in creating 
random walks. We also investigate the effect of modified random walks 
on the quality of produced node embeddings. Dominating set theory has 
been a classic subject studied in graph theory that is considered as a 
virtual backbone in these areas (Du & Wan, 2012). A set is dominating if 
every node in the network is either in the set or a neighbor of a node in 
this set (Wu, Cardei, Dai, & Yang, 2006). ExEm generates a set of 
random walks that satisfy two conditions: starting random walk with a 
dominating node and containing at least another dominating node in the 
sampled path. The existence of dominating nodes in the sampled path 
enables ExEm to capture the local and global network structures. In 
short, the dominating set is an approximation of the network that 
manages the entire network (Sun, Yang, & Ma, 2019). Hence, these 
intelligent random walks are the main cause in learning rich feature 
representation for the graph. After producing the desired random walks, 
they are stored as the sentences of a corpus. Then, skip-gram neural 
network model is used to map the nodes into the embedding vectors. We 
train this neural network by Word2vec and fastText. Also, we consider 
another node representation which is the combination of the embed
dings extracted from Word2vec and fastText. Moreover, the effective
ness of graph embedding in different real-world applications motivates 
us to explore its potential usage in the expert recommendation system 
and proposes a strategy to compute experts’ scores and recommends 
experts. On the other hand, we present a collaborative network that is 
constructed based on the gathered information from Scopus. In this 
network, nodes with multi labels are represented as authors. The node 
labels demonstrate the author’ subject areas. Edges between authors 
denote their co-author relationship. 

Research Questions: we aim to answer the following research 

questions in this study:  

RQ.1 Does the data gathered from Scopus provide a suitable real 
dataset for the different tasks such as classification, link predic
tion, recommendation and so on?  

RQ.2 How does using dominating set theory affect the performance of 
node representation learning?  

RQ.3 How can we extend the obtained node representations into expert 
recommendation systems to recommend experts? 

The remainder of the paper is outlined as follows: Section 2 reviews 
the related works. Section 3 explains our proposed method in detail. 
Section 4 presents the descriptions of the gathered dataset from Scopus. 
In order to verify the proposed approach, extensive experiments are 
conducted on real-life datasets. The descriptions of these datasets and 
baseline approaches, parameter setting and the evaluation metrics used 
to test our proposed method are presented in Section 5. The experi
mental results and their analysis are given in Section 6. Section 7 dis
cusses the test results. Section 8 answers the research questions. Finally, 
Section 9 concludes the paper. 

2. Related work 

To analyze social network data, previous studies have proven that 
the representation of social network as a graph structure and using 
graph theories have achieved successful results. On the other hand, deep 
learning based approaches have been demonstrated to be a promising 
technique to analyze information from social networks with compli
cated structures. Hence, the incorporation of graph-structured data and 
the deep learning models results in an outstanding feature learning 
technique, called graph embedding. Graph embedding learns a map of 
the graph’s nodes to a low-dimensional space features. It provides 
insight into analyzing users’ activity patterns and their relationships in 
social networks. In this section, we investigate some of the proposed 
graph embedding methods by different researches. 

GraRep (Cao, Lu, & Xu, 2015) learns the node representations of 
weighted graphs. It uses the matrix factorization version of skip-gram to 
obtain high-order proximity (Cai et al., 2018). On the other hand, it 
catches the k-step (k = 1,2, 3,…) neighbour relations and integrates 
global structural information of the graph into the learning process. The 
final representation of nodes are provided by concatenating k-step node 
representations together (Cui, Wang, Pei, & Zhu, 2018; Zhang, Yin, Zhu, 
& Zhang, 2018). 

TriDNR (Pan, Wu, Zhu, Zhang, & Wang, 2016) utilizes the structure, 
content, and labels of nodes for constructing the graph embedding. It 
learns the network structure by the help of DeepWalk approach. More
over, TriDNR couples two neural networks to capture the node content 
and label information. Finally, the obtained representations from 
network structure, and the node label and attribute are linearly com
bined together (Liao, He, Zhang, & Chua, 2018; Zhang et al., 2018; Cai 
et al., 2018). 

Mahmood et al. (Mahmood, Small, Al-Maadeed, & Rajpoot, 2016) 
have proposed a geodesic density gradient (GDG) algorithm that is 
divided a network into a series of relatively small communities (Wang, 
Wu, Hu, & Wu, 2019; Ahuja & Singh, 2018). This study considers a 
vector for each node with dimensionality equals the number of all nodes. 
In this vector, every dimension represents the geodesic distance of that 
node from all other network nodes (Cai et al., 2018). Thus, the network 
structure can be captured from the geodesic distance vectors. In this 
way, the nodes with the same region of space belong to the same com
munities in the original network. 

DNGR (Cao, Lu, & Xu, 2016) is based on deep learning that aims to 
construct the low-dimensional vector representations from the PPMI 
matrix. To achieve this target, DNGR comprises of three steps. At the 
first step, it obtains information related to the graph structure by pro
posing a random surfing model which is inspired by the PageRank 
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model. Then, DNGR creates a probabilistic co-occurrence matrix. Sub
sequently, the PPMI matrix is built based on the probabilistic co- 
occurrence matrix. Finally, a stacked denoising auto-encoder is 
applied to the PPMI matrix to learn the embeddings (Cui et al., 2018). 

HOPE (Ou, Cui, Pei, Zhang, & Zhu, 2016) is a matrix factorization 
based method. It captures the asymmetric transitivity property of a 
directed network in embedding vectors (Cui et al., 2018). Asymmetric 
transitivity describes the correlation among directed edges. HOPE 
measures the high-order proximity from four measurements including 
Katz Index, Rooted Page Rank, Common Neighbors, and Adamic-Adar 
score. Then, a generalized Singular Value Decomposition (SVD) is 
applied to the high-order proximity to obtain the low-dimensional rep
resentations (Goyal & Ferrara, 2018; Zhang et al., 2018). 

Although many network embedding methods are proposed for static 
networks, recent attempts have investigated the embedding methods 
over the dynamic networks that evolve over time (Zhu, Cui, Zhang, Pei, 
& Zhu, 2018; Mahdavi, Khoshraftar, & An, 2018; Taheri, Gimpel, & 
Berger-Wolf, 2019). Goyal et al. (Goyal, Chhetri, & Canedo, 2019) rec
ommends a deep learning model to capture temporal patterns in dy
namic networks for the link prediction task. This study introduces three 
different architectures using an auto-encoder, LSTM, and combination 
of these both. These architectures take as input the adjacent matrix 
At− l[i],At− l+1[i],…,At− 1[i] and produce a vector vti corresponding to the 
embedding of vi at time t. They allow predicting interactions between 
vertices at each time step. Moreover, in another study (Sankar, Wu, Gou, 
Zhang, & Yang, 2018), the authors propose to compute a dynamic node 
representation by employing self-attention mechanisms over its neigh
bors and previous historical representations. The survey (Kazemi et al., 
2019) reviews the recent representation learning methods for dynamic 
graphs. 

Additionally, some studies have focused on the knowledge graph 
embedding. A knowledge graph is a directed graph that represents 
structured information of entities as nodes and their relations as edges 
(Huang, Zhang, Li, & Li, 2019; Zhang et al., 2018). The research (Guo, 
Wang, Wang, Wang, & Guo, 2017) embeds the knowledge graph in this 
manner that entities are closed to each other in the embedding space if 
they belong to the same semantic category. Authors in (Wang, Mao, 
Wang, & Guo, 2017) provides a review of existing approaches presented 
for knowledge graph embedding. 

In spite of the fact that graph embedding is a powerful tool for 
converting graph data into low dimensions, employing all features for 
this purpose may lead to noise (Chen, Tsang, Tan, & Cham, 2014). To 
handle this challenge, one solution is dimensionality reduction. In recent 
years, many studies have focused on the usage of dimensionality 
reduction for graph embedding. Dimensionality reduction methods are 
categorized into two groups: feature selection and feature extraction 
(Zhu, Dornaika, & Ruichek, 2019). Chen et al. (Chen et al., 2014) pro
poses a binary feature selector by exploiting the least squares formula
tion of graph embedding. The paper (Nishana & Surendran, 2013) 
conducts a discussion of the most popular linear dimensionality reduc
tion methods. 

Moreover, a number of surveys have been conducted to categorize 
the existing graph embedding methods based on their proposed tech
niques. Cai et al. (Cai et al., 2018) summarizes the researches into five 
categories: matrix factorization, deep learning, edge reconstruction, 
graph kernel, and generative model. In this study, deep learning based 
graph embedding is divided into two groups, deep learning graph 
embedding with and without a random walk. Based on the viewpoint of 
this review, an edge reconstructing based graph embedding technique 
minimizes the distance loss to preserve first- and second-order proxim
ities. On the other hand, a matrix factorization based method represents 
the connections between nodes as a matrix and factorizes this matrix to 
extract node embedding. Moreover, deep learning based graph embed
ding techniques with random walks represent a graph as a set of random 
walks and these random walks are fed into a deep learning method like 
skip-gram to optimize their neighborhood preserving likelihood 

objectives. In comparison, deep learning based graph embedding 
methods without random walks apply deep neural networks such as 
auto-encoders or convolutional neural network, on the whole graph. 
Zhang et al. (Zhang et al., 2018) reviews the state-of-art graph embed
ding techniques with a different outlook. They classify the studies into 
two classes: unsupervised and semi-supervised network representation 
learning. Also, this survey summarizes the existing approaches from 
methodology perspective into five types: matrix factorization, random 
walk, edge modeling, deep learning and hybrid. Goyal et al. (Goyal & 
Ferrara, 2018) and Cui (Cui et al., 2018) present the graph embedding 
techniques in three categories: factorization, random walk and deep 
learning based. 

Unlike previous studies, we employ a graph theory to learn nodes’ 
representations. By using the dominating set theory, our proposed 
method creates intelligent random walks that can preserve both local 
and global information. 

3. Proposed method 

The aim of our study is to incorporate the dominating set concept 
from graph theory to the graph embedding. We propose a new model, 
which is called ExEm, that is able to map a graph, our case study a co- 
authorship network, to a low-dimensional vector space. The overall 
structure of ExEm is shown in Fig. 1. ExEm initially extracts the 
adequate dataset from1Scopus which is the largest abstract and citation 
database. The gathered dataset includes the features of expert candi
dates such as their subject areas, affiliations, h-index, and their co- 
author interactions. In the next phase, ExEm converts the extracted in
formation into a labeled collaborative network where nodes and their 
labels represent authors and their subject areas, and edges show authors’ 
co-author collaborations. Then, ExEm gets the constructed graph as 
input and applies the dominating set theory on it. Since dominating set 
acts as a backbone and governs the graph, it enables ExEm to create 
comprehensive and meaningful representation of a graph. To capture 
nodes’ representations, ExEm constructs intelligent random walks that 
comprise of at least two dominating nodes. One dominating node should 
appear at the beginning of each path sampled to characterize the local 
neighborhoods. While, the other one reflects the global structure in
formation of a graph. Finally, ExEm adapts a skip-gram neural network 
to obtain the node embeddings. To train the skip-gram model, ExEm 
exploits three embedding methods including Word2vec, fastText and the 
concatenation of these two. The embedding results can be applied to 
many applications such as multi-label classification, link prediction, and 
node recommendation, which can achieve much better performance 
than existing graph embedding approaches. The following subsections 
describe the procedures of ExEm in detail. 

3.1. Step 1: preprocessing 

Data preprocessing plays an important role in the social network 
analysis. The goal of preprocessing is to convert the original dataset to 
an acceptable format for discovering beneficial information or recog
nizing patterns from the social network dataset (Gupta & Bhatnagar, 
2013). In this way, the first step of ExEm is preprocessing the dataset. So, 
the relations between the nodes of the dataset are considered and the 
graph of the dataset is constructed. Also, nodes may contain assigned 
elements such as attributes, labels, and tags. So, the output of this step is 
a graph G =< V, L,E > that V, L and E demonstrate the nodes of the 
graph, the corresponding element values of nodes, and edges between 
nodes, receptively. The first block of Fig. 1 (noted as input) shows the 
preprocessing task that is applied on Scopus dataset. As it is observable 
from this figure, ExEm transforms the extracted information from Sco
pus which includes experts id, their fields of interest, and their 

1 https://www.Scopus.com. 

N. Nikzad-Khasmakhi et al.                                                                                                                                                                                                                  

https://www.Scopus.com


Expert Systems With Applications 177 (2021) 114913

4

connections into a labeled collaborative graph format. Experts and their 
subject areas are defined as nodes and their labels, respectively. The 
graph edges originate from the authors’ co-author collaborations. 

3.2. Step 2: finding a dominating set 

This step aims to find a dominating set (DS) of the corresponding 
graph G which was created in the previous step. A subnet of nodes, D, is 
called a DS if every node is either in D or adjacent to a node in D (Du & 

Fig. 1. The overall structure of ExEm.  
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Wan, 2012). Research demonstrates that DS constructs a virtual back
bone on the graph and plays an important role in monitoring and con
trolling the connections of nodes (Sun et al., 2019). Dominating sets are 
able to perform various critical tasks in different networks such as the 
study of social influence propagation in social networks or finding high- 
impact optimized subsets in protein interaction networks (Molnár Jr 
et al., 2014). 

Since finding a DS is classical NP-complete decision problem, many 
greedy, approximation and heuristic approaches have been proposed to 
detect a dominating set in the given graph. Talking about the advantages 
and disadvantages of these techniques and investigating the best solu
tion for constructing the DS is out of the scope of this paper. In ExEm, 
dominating set D is produced by the algorithm 7 in (Esfahanian, 2013) 
that is a simple and distributed approach. The pseudo code of this al
gorithm is shown in Algorithm 1. Based on the algorithm, one of the 
nodes is randomly selected and added to the dominating set D. After 
that, this node and its neighbours are removed from the graph nodes. 
Then, another random node is chosen from remaining nodes and 
inserted into D. The mentioned steps are continued until there is no node 
in graph node set V. As an example, in Fig. 2, after applying the domi
nating set algorithm on the graph, one possible selection set of domi
nating nodes is A3 and A5. It is obvious that all nodes in the graph are 
accessible by A3 and A5.  

Algorithm 1. Finding a dominating set 

Require A connected non–trivial graph G = (V,E)
D = ∅  
loop 

if IsEmpty(V − [D ∪ Neighbors(D)])  
STOP 

end if 
Select randomly a vertex w ∈ V − [D ∪ Neighbors(D)]
D ← D ∪ {w}

end loop 
return D  

Furthermore, the first sub-block (from left to right) of second block in 
Fig. 1 indicates the result of applying the dominating set theory on 
Scopus graph. Green nodes represent dominating nodes. 

Ideally a graph embedding approach should fulfill two objectives 
including homophily and structural role. Homophily indicates the ten
dency of each pair of nodes in the graph to be similar. Based on 
homophily, all nodes in a community should have similar embeddings. 
On the other hand, the structural role objective ensures that the nodes 
with the similar functions in the graph, should be embedded closely 
together. In other words, homophily emphasizes connectivity, whereas 
the nodes in a particular structural role may inhabit in very different 
parts of a graph. We observe that using dominating nodes allows a 
flexible method that can convert graph nodes into vectors obeying the 
above equivalences. Dominating nodes are an approximation of the 
whole network and administer the rest of nodes. As another way of 
looking, the DS allows a clustering scheme on the graph that dominating 
nodes operate as cluster heads from which all nodes in the cluster can be 
reached in one-hop. As each dominating node supervises the nodes of 
the community which it belongs to, it can obtain a local view of the 
underlying subset. Consequently, this utility promotes ExEm to properly 
learn that dominating nodes and their dominated nodes should share 
similar embeddings because of pertaining to the same cluster or com

munity. For example, in Fig. 2, we can see that nodes A3 and A1 have 
similar neighbourhoods and are a part of a community. So, ExEm ach
ieves the homophily target by embedding these two nodes to similar 
vector representations. Additionally, dominating nodes provide a 
backbone between communities. The connections between these back
bones develop the awareness of the global graph structure. That is to say 
that the choice of DS for networks as the virtual backbones facilitates 
ExEm to accomplish the structural role objective. In Fig. 2, nodes A3 and 
A5 are not close in terms of graph distance, but they have similar local 
structural roles. ExEm coverts these nodes into similar vectors because 
both of them play the same roles as the heads of their communities. The 
other key advantage of DS is that no global information is required to 
construct it. The employed algorithm for finding dominating set uses 
only local information to get the DS and based on the studies (Yang & 
Wu, 2003; Esfahanian, 2013) it is shown to be the fastest one. 

3.3. Step 3: random walks 

With having the dominating nodes from the previous step, we 
introduce our intelligent random walk strategy in this subsection. Before 
giving full details of the proposed random walks, we are going to 
describe what random walk is and why it is important in graph 
embedding. A random walk on the graph is defined as a random 
sequence of nodes where consecutive nodes are neighbors (Liu, Ji, & 
Mittal, 2016). Random walks can obtain the information hidden in the 
graph structure. The importance of random walks in graph embedding 
domain is adopted from natural language processing (nlp) after great 
success of word embedding models. In graph embedding, the graph 
properties are preserved by a set of random walk paths sampled from it 
(Cai et al., 2018). In other words, each random walk in the graph 
embedding presents other concept which is the equivalent of a sentence 
definition in nlp domain. That means random walk and sentence have 
the same responsibilities in their scopes. Additionally, the nodes of the 
random walk take on the role of words or vocabularies in the sentence. 
There are some advantages of random walk based graph embedding 
approaches including the acceptable level of time and space complexity 
(Pimentel, Castro, Veloso, & Ziviani, 2019), no need for feature engi
neering, and investigation of diverse parts of the same graph at the same 
time by a number of sampled paths (Grover & Leskovec, 2016; Cai et al., 
2018; Liu et al., 2016). Hence, many graph embedding methods have 
been proposed based on random walks such as DeepWalk and Node2vec 
where their difference comes from their sampling strategies. However, 
these approaches suffer from finding optimal sampling procedure. 
DeepWalk uses a uniform random walks which can not control over the 
search space. Node2vec suggests a biased random walks in which some 
node neighbors have a higher or lower probability of being selected in 
each step by two parameters. The problem is finding the best values for 
these parameters which determine the likelihood of observing nodes in 
the each random walk for every network. 

ExEm is a random walk based technique that modifies the random 
walk strategy used in DeepWalk and Node2vec by hiring dominating 
nodes. Our proposed intelligent random walks offer the flexibility in 
sampling nodes from a network. The concept of this intelligence ema
nates from appearing two dominating nodes in the sampled paths. For 
each random walk, ExEm starts the path by randomly selecting one node 
from the dominating set found in the previous step. Then, one of the 
neighbors of this dominating node is chosen by chance and added to the 
walk. After that, walk moves to the neighbors of the last added node. The 
procedure of adding new nodes into the walk continues until the 
following two conditions are met. The main condition is the appearance 
of at least another dominating node in a sampled path. The other 
requirement for ending the process is achieving the fixed lengths LR. The 
second sub-block in the second block of Fig. 1 shows the examples of 
random paths created by ExEm from Scopus graph. In this instance, each 
node is presented by an expert id, red nodes indicate dominating nodes 
and the length of walk equals 5. Obviously, each walk starts with a Fig. 2. An example of a graph with 6 nodes and 5 edges and its dominating set.  
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dominating node and the second dominating node can be visited in 
different places of a walk except the second position. The explanation is 
that based on Algorithm 1, in the process of finding dominating nodes, 
we remove a node and its neighbours after adding this node into the 
dominating set. So, there are not any dominating nodes in one-hop of 
this node and other dominating nodes. Note that it is possible to see 
more than two dominating nodes in each path like the third random 
walk in the figure. 

With the presence of these two dominating nodes, we see a reduction 
in runtime of creating random walk process. There are two aspects of 
how using dominating nodes decreases runtime. Starting the random 
walk with a node from dominating set instead of the graph set nodes 
reduces the size of the search space from |V| to |D|where |V| and |D| show 
the sizes of graph nodes and DS, respectively. Also, after appending the 
first dominating node into the sample, we should add LR − 1 nodes to our 
walks to reach the maximum length LR . On the other hand, based on our 
strategy, we should have one dominating node in the rest length LR − 1 to 
fulfill the condition and finish adding nodes to the random walk. Note 
that all nodes have a uniform probability of being chosen in a walk and 
also the probability of selected node being a dominating is |D|

|V|. Therefore, 
the probability of the absence of a dominating node in the length LR − 1 
is equal to LR − 1 trials and all of them are non-dominating node. The 
probability of each node being dominating directly affects this paradigm 
and it is a large number according to straight forward computation of 
Algorithm 1. Based on the explanation, it is not necessary to investigate 
the existence of the second dominating node in each random walk. In 
this way, the execution time significantly reduces. 

Additionally, we observe that by the help of dominating nodes, ExEm 
can convert graph nodes into low-dimensional vectors obeying the 
homophily and structural role equivalences. The first dominating nodes 
ensures that ExEm selects a node within this dominating node commu
nity; so ExEm learns the node representations with respect to homophily 
and embeds nodes of a community into similar vectors. What it means 
that due to the first dominating node in the random walk, the local 
neighborhoods are depicted accurately. Moreover, this condition in
creases the probability of repeating nodes in the sampled neighborhoods 
plenty of times because each node has at least one neighbor from the 
dominating set. On the other hand, there are two reasons why ExEm 
selects the second dominating node in its random walks. The first phi
losophy behind it is that our sampled paths observe nodes which are far 
from starting node and belong to the other clusters. The algorithm of 
finding the dominating set proves this outlook. Since after inserting a 
node into DS, this node and its neighbors are removed from the node set 
in each step of this algorithm, there is no dominating node in one-hop of 
each dominating node. So, the second dominating node assists ExEm to 
preserve the global structural information of the graph. The next wis
dom for the existence of the second dominating node is that dominating 
nodes are the heads of their communities and have the same roles to 
play. This allows ExEm to perceive the nodes with the same roles in each 
sampled path and understand that these node should be embedded 
closer and this is what the structural role objective emphasizes on. So, 
the mentioned details confirm why using dominating set theory in 
creating random walks enables a flexible method that can well charac
terize the local and global network structure in generating node 
embeddings. 

Moreover, ExEm can adapt to the graph topology changes and pre
sent its dynamic characteristics. When a node is added or dropped from 
the graph, only its neighbors will be notified. For instance, for a new 
coming node, if a dominating node is within its neighborhood, ExEm 
constructs walks that start from its neighbor dominating node and adds 
them to the corpus; otherwise, it is itself considered as a dominating 
node and walks start from it. This demonstrates that it is just necessary 
to add new random walks from the changed part instead of the whole 
graph. 

3.4. Step 4: learning part 

The only required input of this step is a corpus which is created from 
the intelligent random walks of previous step. As mentioned before, in 
random walk models, node and random walk are regarded as a word and 
sentence, respectively. Hence, the neighborhood of a node can be 
observed as the co-occurrence of words in the sentence. Furthermore, 
there are many deep learning based approaches that can map the word 
co-occurrences into vector-space model. One of the most simplest and 
efficient techniques is skip-gram model (Mikolov, Sutskever, Chen, 
Corrado, & Dean, 2013). The aim of skip-gram is predicting the words 
surrounding a target word. The same effort can be performed in graph 
embedding. Accordingly, in graph embedding, the skip-gram counts the 
number of times node j appears within a certain window of w. For 
instance, in the random walks “n1 n2 n3 n4 n5”, the skip-gram gets node 
“n3” as input, and predicts the output “n1”, “n2”, “n4”, and “n5”, 
assuming w is 5. Ski-gram architecture is a feed-forward network that is 
the simplest deep learning model for node representations. As shown in 
Fig. 3 this model views a graph as a bag of nodes. For a node ni, it 
captures a E-dimensional vector yi using an embedding model such as 
Word2vec (Mikolov, Chen, Corrado, & Dean, 2013) or fastText (Joulin 
et al., 2016). Word2vec learns to convert the nodes that appear in 
similar random walks to similar vector representations. While, fastText 
takes the advantage of a bag of n-grams as extra features to obtain local 
node order information. 

Considering the above explanations, in this step of ExEm, random 
walks from the previous step are injected as corpus into the input of the 
skip-gram network. ExEm exploits three embedding methods including 
Word2vec, fastText and the concatenation of these two to extract em
beddings, as presented in the third sub-block in the second block of 
Fig. 1. There are two important points in this step that should be noted. 
The first one is that there are at least three common ways to combine 
embedding vectors and create a single vector including: summing, 
averaging and concatenating (Damoulas & Girolami, 2009). In this 
study, we consider the concatenation of two embeddings as the basic 
combination approach and for further investigation, we test the sum
ming and averaging of Word2vec and fastText embeddings in the eval
uation results. The second subject is that in skip-gram model the context 
window has an important effect on the resulting vector representations. 
The context window defines which neighbours are kept in mind when 
computing the vector representations (Lison & Kutuzov, 2017). There
fore, having at least two dominating nodes in the context window en
sures that ExEm properly understands the local and global graph 
information and respects for homophily and structural role objectives. 
Due to this procedure is in the manner of sampling each node nj with a 
probability that relies on the distance |j − i| to the focus node ni, as 
proved by (Lison & Kutuzov, 2017): 

p
(
ni|nj

)
=

∑W

w=1
p
(
ni|nj,w

)
p(w) =

1
w
(w − |j − i| + 1) (1)  

where w is the real window size from 1 to W. For example, with the 
window size 5, the second dominating node at the position 3 will be 
sampled with the probability of 35 in Word2vec (Lison & Kutuzov, 2017). 
In other words, skip-gram model maximizes the co-occurrence proba
bility among dominating nodes that exist within a window w (Cai et al., 
2018) 

3.5. Output and applications 

The result of learning step is the semantic embeddings of graph 
nodes. As the first sub-block of the third block in Fig. 1 shows, the output 
of ExEm on Scopus graph is an expert embedding vector. In this way, 
experts of the same subject area are embedded into the similar vectors. 
The learned ExEm representations perform some simple algebraic op
erations on expert embeddings. For example, if we denote the vectors for 
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two experts i and j with subject areas nlp and ml (machine learning), and 
ml as Ei(nlp,ml) and Ek(nlp), respectively, we observe that Ei(nlp,ml) − Ej(ml) =

Ek(nlp). As another instance, Ex(nlp) +Ey(bio) = Ez(nlp,bio) results in an expert 
embedding that focuses on nlp approaches in bioinformatics research. 

The last part is providing evaluations on ExEm with regard to its 
capability on real-world applications. The reason for these experiments 
is that a good graph embedding method should be able to effectively 
perform on the tasks including multi-label classification, link prediction 
and recommendation using the obtained representations. In the next 
paragraphs, we enumerate the characteristics of these tasks. 

Multi-label classification: One of the tasks increasingly used by 
modern applications is multi-label classification. In this task, it is 
assumed that each node in the graph is associated with one or more 
labels from a limited set L (Tsoumakas & Katakis, 2007). To conduct 
multi-label classification task, we have a model that is trained with a 
portion of nodes and all their labels. Then, the model gets the node 
representations to predict the labels for the rest of nodes. As presented in 
the first row of the second sub-block related to third block in Fig. 1, a 
classifier like Logistic Regression is applied on a certain fraction of the 
expert embeddings whose subject areas are known. Then, the model 
predicts the subject areas for the remaining experts. That means that 
with help of expert embeddings and multi-label classification task we 
can anticipate the subject areas of experts whom no specific information 
is available, and only their co-author connections with other experts are 
provided. 

Link prediction: Because the low-dimensional vectors of nodes 
encode rich information about the network structure, we can analyze the 
efficacy of predictive capacity of various embedding models through a 
link prediction task (Cai et al., 2018). To perform the link prediction, we 
arbitrarily conceal a fraction of the existing links between nodes and our 
desire is to predict these missing edges by using the node embeddings 
(Wang, Cui, & Zhu, 2016; Grover & Leskovec, 2016). As investigated in 
the study (Chen, Hua, Yuan, & Jin, 2018), the link prediction can be 
addressed as a binary classification problem. In this case, a pair of nodes 
is labeled as positive if a link exists between the nodes. On the other 
hand, if there is no link between the node pair, then the label of the 
paired node is negative. As shown in the second row of the second sub- 
block related to the third block in Fig. 1, two node embeddings are fed 
into the binary classifier. The output of the classifier is “yes” if there is a 
link connecting the nodes, otherwise, the result is “no”. Thus, better 
results can be retrieved in the link prediction task by using a graph 
embedding technique that learns a deep representation of the nodes on 
the network. 

Also, we can explore the link prediction potential usage in the expert 
recommendation system. For this purpose, the classifier accepts two 
expert embeddings as inputs and anticipates that these two experts can 
whether be co-authors or not. If they have similar expert embeddings, 
which show their expertise is closed, then the classification result is 
“yes”. 

Recommendation: Graph embedding approaches have demon
strated to be beneficial for the node recommendation that is the task of 
recommending top nodes of interest to a given query according to 
certain specifications (Cai et al., 2018). To extend the graph embedding 
algorithms specifically ExEm into the recommendation task, we need a 
strategy for computing nodes’ scores and ranking nodes by using the 
generated vector representations of the nodes. In the following para
graphs, we introduce how ExEm and other graph embeddings can 
leverage the embeddings for the expert recommendation task by pro
posing a novel scheme. It should be noted that the types of recom
mended nodes are miscellaneous and the proposed procedure can be 
applied to them with a few changes. In this paper, the recommendation 
items are experts whose research interests and expertise are most similar 
to a given topic. Clearly, an expert recommendation system takes a 
user’s query in the term of input and then provides a list of experts sorted 
by the degree of their relevant expertise with the given query (Nikzad- 
Khasmakhi et al., 2019). Fig. 4 indicates our proposed method to make 
recommendation experts based on expert embeddings. The user’s query, 
that is a topic, is injected into the input of the recommendation system. 
Then, experts whose subject areas include this topic are extracted to 
make a cluster. Note that we can predict the subject areas of experts with 
unknown labels through multi-label classification task by using experts’ 
low-dimensional vectors. After constructing the community, the center 
of this cluster is found by taking the average of all the expert embedding 
vectors in the group. Finally, the similarity measure functions such as 
Euclidean, Cosine, and Manhattan can be employed to calculate the 
distance between each expert and the centroid. This similarity is 
considered as an expert’s score. 

4. Data description 

As mentioned before, we also gathered a collaborative network in 
this paper. We figured out Scopus is an adequate source that consists of a 
wide number of authors and their articles from scientific areas. Authors 
with publications indexed in Scopus have their own profiles and a 
unique Scopus author identifier. Fig. 5 shows an example of an author’s 
profile in Scopus. Different types of information can be extracted from 

Fig. 3. Skip-gram architecture.  
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the authors’ profiles. This information includes the content and non- 
content features of authors such as their published articles, subject 
areas, affiliations, h-index, co-authors and number of citations of each 
paper. We use a part of this data and build a co-author network. In this 
network, we call authors as experts. Therefore, experts’ ids and their 
subject areas are presented as graph nodes and their labels. Also, the 
experts’ co-author collaborations form the graph edges. 

To create this labeled collaborative network, there are several mo
tivations that are enumerated in the following. Recently, there has been 
an increasing interest in graph embedding techniques. The obtained 
representations from graph embedding methods are evaluated on 
learning tasks such as multi-label classification. Karate, BlogCatalog, 
Wikipedia, and Protein–Protein Interactions(PPI) are the most used 
labeled datasets to estimate the efficiency of a proposed graph embed
ding approach on multi-label classification task. These labeled datasets 
are types of social networks and biology networks. Lack of a labeled 
collaborative network is felt in testing graph embedding approaches. 
Moreover, there is a demand on a labeled collaborative network dataset 
for the usage in supervised machine learning methods in expert finding 
system or detecting communities of experts in collaborative networks. In 
summary, the usage of our collected dataset can be listed as: multi-label 
classification, link prediction, recommendation, community detection, 
and expert finding tasks. 

To collect data, we initially selected 20 experts from the Arnetminer 
expert list related to “Information Extraction” topic and obtained these 
experts’ information from Scopus. Then, we extended the extraction of 
information related to the co-authors with a two-hop expansion. It means 
that we gathered the information of co-authors of these experts and the 
co-authors of these co-authors in the next steps. 

To provide a clear understanding of our constructed network, we 
have shown structural information of this graph as diagrams using Gephi 
which is an open-source network analysis and visualization software 
(Bastian, Heymann, & Jacomy, 2009). Fig. 6a presents the visualization 
of the created collaborative network from gathered data. Dominating 
experts of this network are highlighted in Fig. 6b. Moreover, Fig. 6c is 

the visualization of experts by this overview that the larger numbers in 
size of the expert’ identifier denotes the higher degree of the expert. 
Based on this representation, the expert with id 34769751400 is the one 
with the highest degree, 2147, in the graph. On the other hand, Fig. 6d 
displays the communities detected by applying the proposed method in 
the study (Blondel, Guillaume, Lambiotte, & Lefebvre, 2008) on Scopus 
graph; nodes are colored according to their communities. The value of 
modularity of our constructed graph is 0.912 that exposes Scopus graph 
has dense connections between the experts within communities and 
sparse connections between experts in different communities. Also, the 
average clustering coefficient is 0.889 that shows the tendency of ex
perts to cluster together. Finally, Table 1 shows how many experts 
belong to each label. It can be observed that Scopus graph covers experts 
from different scientific areas and also the most number of experts have 
label “COMP”. It should be noted that labels with a higher percentage of 
5% are listed in this table. Summary of Scopus dataset is demonstrated in 
Table 2. 

5. Experimental evaluation 

In the present section, we will provide an overview of the datasets on 
which the ExEm is applied. Next, we will introduce four baseline algo
rithms to compare ExEm against them. Then, we are going to describe 
the used parameter settings. Finally, we will specify the metrics hired to 
evaluate our proposed algorithm. 

5.1. Dataset 

In the succeeding paragraphs, we are going to characterize the 
datasets on which our experiments were conducted. 

BlogCatalog (Zafarani & Liu, 2009): This is a social blog directory 
where nodes demonstrate the bloggers and edges show the friendship 
connection among the bloggers. Each blogger is labelled by at least one 
category that represents the blogger’s interests. 

Protein–Protein interactions(PPI) (Chatr-Aryamontri et al., 2017): 

Fig. 4. The process of our proposed method for computing experts’ scores in an expert recommendation system.  

Fig. 5. An author profile in Scopus.  
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This is a biological network. In this graph, nodes are proteins and edges 
indicate the pairwise physical interactions between proteins in humans. 
The labels of nodes are obtained from the protein-coding gene sets. 

Wikipedia (Mahoney, 2011): This is a network of co-occurrence 
words related to Wikipedia’s articles. The node labels indicate the 
Part-of-Speech (POS) tags assigned to the node. 

arXiv(Astro-PH) (Leskovec & Krevl, 2014): This is a collaborative 
network that is constructed from the collaborations between authors’ 
papers submitted to the e-print arXiv and Astro Physics category. On the 

other hand, the nodes of this graph determine authors and edges express 
the co-authored relationships between authors. 

We also evaluated the performance of our algorithm on Scopus 
dataset. The descriptions of all datasets are summarized in Table 3. The 
column task shows the tasks hired to evaluate methods on that specific 
dataset. The details of tasks were represented in subsection 3.5. 

5.2. Model variations 

We have experimented with several variants of the ExEm model. 

Fig. 6. Various visualizations of Scopus graph.  

Table 1 
Percentage of authors related to each label.  

Label Percentage 

COMP 12.81%  
ENGI 10.28%  
MEDI 7.49%  
BIOC 7.08%  
SOCI 6.16%  
DECI 5.74%  
ARTS 5.71%  
NEUR 5.22%   

Table 2 
Summary of Scopus dataset.  

Number of nodes 27473 
Number of edges 285231 
Average degree 20.7645  
Maximum degree 2147 
Average clustering coefficient 0.889  
Number of triangles 4582111 
Modularity 0.912  
Modularity with resolution 0.912  
Number of Communities 49 
Number of labels 27  
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ExEmft: It is a version of ExEm that engages fastText method to learn 
the node representation. 

ExEmw2v: This one is another form of ExEm that allows to create 
node representations by using Word2vec approach. 

ExEmcom: It is defined as the concatenation of the node embeddings 
learned by ExEmft and ExEmw2v. 

ExEmsum: It is the other model of ExEm that creates node embeddings 
by computing the addition of ExEmft and ExEmw2v vectors. 

ExEmavg: It applies average function to ExEmft and ExEmw2v repre
sentations to obtain node embeddings. 

5.3. Baseline algorithms 

To approve the performance of ExEm, we will compare it against the 
following baselines. Among them, DeepWalk and Node2vec are deep 
learning graph embedding methods with random walks that capture the 
neighbourhood pattern of the graph through sampled paths on it (Cai 
et al., 2018). While, SDNE is a deep learning based graph embedding 
approach that applies auto-encoders on the whole graph. Finally, Line is 
an edge modeling based method that minimizes an objective function to 
preserve first- and second-order proximities. 

DeepWalk (Perozzi et al., 2014): represents a graph as a set of simple 
random walks starting on each node, Then these random walks are 
trained using the skip-gram algorithm to create node embeddings 
(Pimentel et al., 2019). 

Node2vec (Grover & Leskovec, 2016): is the extended version of 
DeepWalk with a more elaborate random walk. Node2vec introduces a 
biased-random walk using the breadth-first and depth-first search 
techniques. Node2vec governs the search space through two pre- 
assigned parameters p and q. 

SDNE (Wang et al., 2016) uses two auto-encoders on the whole 
graph to learn representation. For each node, auto-encoders are struc
tured to take the second-order proximity as inputs and are trained to 
reconstruct the neighborhood structure of that node. SDNE connects two 
auto-encoders through a loss function, L1st, that preserves the first-order 
proximity (Zhang et al., 2018). The auto-encoder loss function shown by 
L2nd and L1st are combined linearly to minimize the total loss of the 
network given by 

L = L2nd +αL1st + νLreg (2)  

here Lreg represents a regularization term. 
Line (Tang et al., 2015) is an edge modeling based method that 

optimizes an edge reconstruction. Three different models of Line are 
proposed: Line(1st), Line(2nd) and Line(1st + 2nd). The objective 
functions of Line(1st) and Line(2nd) are designed to preserve the first- 
order and second-order proximities, respectively. While, Line(1st +
2nd) minimizes the differences between the first- and second-order 
proximities. We use Line(1st + 2nd) for comparison, as the original 
study states that it outperforms all other methods of Line. Note that we 
refer to Line(1st + 2nd) as Line in the whole paper. 

5.4. Parameter settings 

We optimized the optimizer with Stochastic gradient descent (SGD) 
and performed SGD parameters similar to the method proposed by 

(Grover & Leskovec, 2016). Also, for all embedding methods, we used 
the same parameters that are reported in (Grover & Leskovec, 2016): 
number of walks per node K : 10; length of random walks LR : 80; node 
vector dimension Ed : 128 (ExEmcom : 256); context window size w : 10. 
Further, for Node2vec, we selected the best values of parameters p and q 
from [0.25,0.5,1, 2,4] as proposed in (Grover & Leskovec, 2016). For 
SDNE, we optimized the parameters as suggested in (Wang et al., 2016): 
the architecture with [10300,1000,128] nodes on each layer, α = 0.2,
β = 10 and γ ∈ [1e − 4,1e − 5]. For Line, we set the numbers of iterations 
and negative samples to 50 and 5, respectively. 

5.5. Evaluation metrics 

To assess the quality of ExEm on node classification, we use Micro-F1 
and Macro-F1 scores as our metrics. For link prediction, we use Area 
Under Curve (AUC) score. Finally, Normalized Discounted Cumulative 
Gain (nDCG) is used to evaluate the performance of ExEm over recom
mendation task. These metrics are defined as follows. 

F1 score can be explained as a weighted average of the precision and 
recall. The formula of the F1 score is presented in Eq. (3). 

F1 = 2 ×
Pr × Re
Pr + Re

(3)  

where Pr and Re denote precision and recall, accordingly. 
Micro-F1 calculates the F1 score of the accumulated contributions of 

all labels. In the other words, this score highlights the common labels in 
the dataset by considering the equal importance for each instance. Eq. 
(4) represents the definition of Micro-F1. 

Micro − F1 = 2 ×
microPr × microRe
microPr + microRe

(4)  

here microPr and microRe are defined by Eqs. (5) and (6), respectively. 

microPr =
∑

l∈LTPl∑
l∈L(TPl + FPl)

(5)  

microRe =
∑

l∈LTPl∑
l∈L(TPl + FNl)

(6)  

where TPl and FNl present the number of true positives and false neg
atives within samples which are assigned to the label l. 

Macro-F1 is interpreted as the mean of label-wise F1 scores. This 
score equally treats all labels. The low value of Macro-F1 for a model 
shows that the model performs well on the common labels while it has 
poor performance on the rare labels. Macro-F1 is calculated as 
following: 

Macro − F1 =

∑
l∈LF1(l)
L

(7)  

where F1(l) denotes the F1 score for label l. 
AUC score is the most common evaluation metric to evaluate the 

accuracy of the prediction in the link prediction task. AUC value reflects 
the probability that a randomly chosen existing link is positioned to the 
right of a randomly chosen non-existent link. The larger AUC score is the 
higher the probability that there is a connection between node u and 

Table 3 
Summary descriptions of datasets.  

Name |V| |E| Labels Task     

Multi-label classification Link prediction Recommendation 

BlogCatalog 10,312 333,983 39 ✓ ✓ – 
PPI 3,890 76,584 50 ✓ ✓ – 
Wikipedia 4,777 184,812 40 ✓ – – 
arXiv(Astro-PH) 18,772 396,160 – – ✓ – 
Scopus 27,473 285,231 27 ✓ ✓ ✓  
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node v for the pair of nodes (u, v) (Chen et al., 2018). AUC is defined as 

AUC =
n1 + 0.5n2

n
(8)  

here n, n1 and n2 illustrate samples, samples which have a higher score 
for existing links, and samples have resulted in the same scores, 
respectively (Ahmad, Akhtar, Noor, & Shahnaz, 2020). 

nDCG is a ranking measurement that evaluates the gold standard 
ranked list of experts against the ranked list outputs from recommen
dation task. The more the correlation between these two ranked lists 
yield the higher value of nDCG. The DCG for k recommendations 
(DCG@k) sums the true scores ranked in the order induced by the pre
dicted scores, meanwhile adding a logarithmic discount. DCG@k is given 
by 

DCG@k = ereli +
∑k

i=2

ereli
log2(i − 1 + 1)

= ereli +
∑k

i=2

ereli
log2(i)

(9)  

where ereli is the true relevance of the recommendation at position i for 
the current expert e. Then we can obtain nDCG@k as follow: 

nDCG@k =
DCG@k
IDCG@k

(10)  

here IDCG is the DCG of ideal order. 

6. Evaluation results 

In the following paragraphs, firstly, we will evaluate and compare 
ExEm with other embedding methods on the three tasks presented 
before. For each task, we are going to present results by varying the size 
of the training set and, then, we will examine the effect of number of 
embedding dimensions on the performance. Finally, in the last subsec
tion, we will study the parameter sensitivity of ExEm measured by the 
classification performance. 

6.1. Multi-label classification 

Multi-label classification is one of the tasks for evaluating the per
formance of a graph embedding approach. A good node embedding 

method can give the graph embeddings as an input and predicts the node 
labels. So, we valuated ExEm accomplishments under the multi-label 
classification task. Firstly, we captured the node embeddings of the 
input graph for each algorithm. The dimensions of node embedding are 
256 and 128 for ExEmcom and others, respectively. Then, we randomly 
selected a portion (10% to 90%) of nodes along with their labels as 
training data to analyze the achievements on the remaining nodes. We 
trained a one-vs-rest Logistic Regression classifier which was imple
mented by LibLinear (Fan, Chang, Hsieh, Wang, & Lin, 2008). For the 
purpose of ensuring a fair comparison, we repeated the above procedure 
10 times and reported the results in terms of average Micro-F1 and 
average Macro-F1. In the paragraphs that follow, firstly, we are going to 
present the obtained results for each dataset, then we will show the ef
fect of number of embedding dimensions on the performance of classi
fication task. 

6.1.1. Results 
Fig. 7 shows the results of the classification task based on Micro-F1 

and Macro-F1 scores for different approaches under PPI, BlogCatalog, 
Wikipedia and Scopus datasets. From the results, we have the following 
observations and analysis based on each dataset: 

–PPI dataset: It is evident that various versions of ExEm gain the 
highest Micro-F1 and Macro-F1 scores under PPI dataset. Given 10% of 
nodes as training data, as an example, ExEm outperforms DeepWalk, 
Node2vec, Line and SDNE on Micro-F1 by 8.94%, 14.84%, 28.07% and 
45.90%, respectively. Also, ExEm achieves 3.89%, 12.29%, 26.35% 
and 17.44% improvements in terms of Macro-F1 over DeepWalk, 
Node2vec, Line and SDNE, individually. Both DeepWalk and Node2vec 
that are based on random walks perform better than Line and SDNE 
which use first- and second-order proximities, and auto-encoders, 
accordingly. Additionally, the results demonstrate that the learned 
node embeddings of DeepWalk can better generalize to the classification 
task on PPI dataset than Node2vec, since appropriate values are not 
assigned to Node2vec’s parameters. Also, we find SDNE the winner of 
the competition against Line. 

–BlogCatalog dataset: We have observed that using dominating set 
theory allows ExEm to exhibit significant advantage over baselines for 
the task of node classification on BlogCatalog. ExEm strengthens the 
performance by 115.23%, 61.90%, 60.71% and 53.83% compared 

Fig. 7. Micro-F1 and Macro-F1 scores on node classification task for different datasets over the diverse train ratio (dimension of ExEmcom is 256).  
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with SDNE, Line, DeepWalk and Node2vec on Micro-F1 metric by 
considering 80% data as training. Moreover, ExEm shows 53.51%,

35.69%, 30.81% and 28.71% performance gains than SDNE, Line, 
DeepWalk and Node2vec based on Macro-F1 quality with the same 
amount of training data. These results indicate how effective ExEm 
variation models are on BlogCatalog which is a denser network than PPI. 
Node2vec and DeepWalk follow a similar trend and both of them 
outperform Line and SDNE, similar observations to PPI. In contrast to 
PPI, Node2vec works better than DeepWalk with a gain of 0.34% and 
3.73% with regards to Micro-F1 and Macro-F1. And Line operates more 
effectively than SDNE. 

–Wikipedia dataset: The result shows that there is an improvement 
between the results of ExEm and other methods on Wikipedia dataset 
specifically in terms of Macro-F1. ExEm acquires benefits of 18.99%,

16.75%, 15.34% and 13.32% comparing to SDNE, Line, DeepWalk and 
Node2vec on Micro-F1 by selecting 10% of nodes for training. Also, we 
have seen that ExEm boosts the efficiency by 59.75%, 48.86%, 48.48% 
and 36.93% percents above SDNE, Line, DeepWalk and Node2vec, 
respectively, for Macro-F1 score. These outcomes are as evidence to 
imply the potential of our random walk based method to represent 
Wikipedia’s network structure better, which is also a dense word co- 
occurrence network (Qiu et al., 2018), comparing to the baselines. 
Selecting the best values for Node2vec parameters evinces this method 
outperforms DeepWalk. Still the performance of SDNE is the worst 
among the graph embedding techniques in this case. 

–Scopus dataset: As can be seen from the results, ExEm obtains a 
great improvement in performance over the classification task on Scopus 
dataset. ExEm enhances the performance, given 80% amount of training 
data, about 5.82%, 2.80% and 2.52% over Line, DeepWalk and 
Node2vec in terms of Micro-F1 score. For Macro-F1 metric, the gains 
obtained by ExEm over these three baselines are 15.88%,8.30% and 
10.07%, individually. We have made three observations on obtained 
results from Scopus dataset. Firstly, it is obvious that no results are 
presented for SDNE. The reason is the SDNE’s prohibitive memory ne
cessities for the input adjacency matrix. In other words, SDNE could only 
be run for smaller graphs and it fails to finish successfully for large 
graphs such as Scopus. Secondly, since Scopus network has the highest 
density in comparison to three other datasets, it has the largest values of 

Micro-F1 and Macro-F1 scores. Thirdly, we used a trial-and-error pro
cedure in the selection of Node2vec parameters as its first running on 
Scopus. Despite DeepWalk and Node2vec generate rather similar out
comes based on Micor-F1 score, DeepWalk is superior to Node2vec in 
terms of Macro-F1. 

6.1.2. Effect of dimension 
Also, we studied the effect of embedding dimensions on node clas

sification task for different approaches. We conducted the investigations 
by following the same experimental procedure done for different train 
ratios, with a change that we fixed the train ratio with a value of 50%. It 
should be noted that the dimensions of ExEmcom in this experiment equal 
64, 128, 256 and 512 with regard to the embedding vector sizes 32, 64, 
128 and 256 for both ExEmft and ExEmw2v. Fig. 8 illustrates the impacts 
of different embedding dimension sizes on various graph embedding 
approaches. The observations from the results lead to the conclusion 
that although the performance of all these graph embedding techniques 
go up gradually over the train ratios in the most datasets, we saw the 
uptrend and downtrend or sideways trends in the performance of 
techniques by varying the number of dimensions. The reason is that 
despite high-dimensional embedding presents more features of nodes, in 
some cases using a large dimensionality results in overfitting. In PPI 
dataset, the performance of all methods with the exception of SDNE 
degrades as the number of dimensions increases. While SDNE’s perfor
mance enhances as embedding dimension increases above 128, ExEm 
achieves the best performance on PPI with 32 and 64 dimensions for 
ExEmft and ExEmw2v, and ExEmcom, respectively. With a couple of ex
ceptions, Micro-F1 and Macro-F1 scores increase as embedding dimen
sion increases in BlogCatalog, Wikipedia and Scopus datasets. Also, it 
appears that ExEm outperforms other methods. ExEmft and ExEmw2v, 
and ExEmcom are able to embed nodes to vectors with 128 and 256 di
mensions, correspondingly, with high scores over all datasets. Among 
different forms of ExEm, ExEmw2v’ results are closer to ExEmft except in 
a few cases. Due to the drawback of SDNE to operate over large net
works, no result is reported for it on Scopus. 

Fig. 8. Micro-F1 and Macro-F1 scores on node classification task for different datasets over the diverse number of dimensions (dimensions of ExEmcom are 64, 128, 
256 and 512 and the train ratio is 50%). 
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6.2. Link prediction 

By taking the learned node representations as inputs, we accomplish 
the link prediction experiment to compare the effectiveness of ExEm 
method with four other approaches. As mentioned before, link predic
tion can be treated as a binary classification task where the objective 
function is defined by the AUC score. After obtaining embeddings that 
are 128-dimensional vectors, we randomly hid 50% of the network 
edges for each dataset. Then, we predicted the existence or non- 
existence of links between pairs of nodes in the rest of network by 
training a Logistic Regression classifier. To guarantee a reasonable ex
amination, we repeated the prediction process for 10 times and reported 
the mean value of AUC score. Moreover, to provide an edge represen
tation for node pair (u,v), we extended algorithms with different binary 
operators. These operators are defined by the following equations 
(Keikha et al., 2018; Grover & Leskovec, 2016; Crichton, Guo, Pyysalo, 
& Korhonen, 2018): 

Average =
V(u)i + V(v)i

2
(11)  

Hadamard = V(u)i × V(v)i (12)  

Weighted − L1 = |V(u)i − V(v)i| (13)  

Weighted − L2 = |V(u)i − V(v)i|
2 (14)  

where V(u)i and V(v)j are the ith features of u and v, respectively. 

6.2.1. Results 
Table 4 shows the summarized results of the AUC score for different 

methods on the task of link prediction over four datasets. According to 
these results we have the following observations: (i) LINE and SDNE are 
blamed for their poor performance in link prediction, as they can not 

find the pattern of edge existence in graphs. (ii) DeepWalk and Node2
vec perform better than LINE and SDNE because of employing the 
random walk based model which can better obtain proximity informa
tion within nodes. (iii) By large margins the improvement of ExEm over 
the baselines is more obvious in link prediction task. ExEm promotes the 
efficiency of link prediction on Weighted-L2 operator about 55.53%,

45.49%, 28.63%, and 25.59% over SDNE, Line, DeepWalk and Node2
vec, accordingly. Based on the obtained results of average operator from 
Astro-PH graph, we see the 22.26%,26.35%, 19.99%, and 16.93% im
provements of ExEm than SDNE, Line, DeepWalk and Node2vec, 
respectively. ExEm improves AUC scores on BlogCatalog by 19.80%,

53.20%, 27.88%, and 41.40% over SDNE, Line, DeepWalk and Node2
vec for Weighted − L1 operator. For Scopus dataset, ExEm achieves gains 
of 23.91%, 29.85%, and 21.04% in comparison with Line, DeepWalk 
and Node2vec for average operator and also there is no result for SDNE 
due to its inability to operate on large network. Our explanation for the 
performance of ExEm on link prediction task is that each node in the 
network has at least one neighbor of dominating nodes which effectively 
dominate the connections of nodes in a network, so ExEm can predict the 
most likely edges which are not observed in the training data from the 
learned embedding. The comparison of different models of ExEm pre
sents that ExEmcom reveals a better performance than two other forms 
After ExEmcom, ExEmw2v gains the second place on all datasets. 

6.2.2. Effect of dimension 
Additionally, we investigated the effect of embedding dimensions on 

only different methods of ExEm in the link prediction task. We followed 
the same strategy as mentioned above, just using differed dimension 
sizes and the average operator to provide more insights on the perfor
mance of ExEm. Fig. 9 illustrates the effect of embedding dimensions on 
ExEm models. Overall, the AUC score increases over the dimension 
given. As with node classification, we observed that ExEmft and 
ExEmw2v, and ExEmcom achieve the best performance on all datasets with 
128 and 256 dimensions, respectively. Based on the results, ExEmcom 
outperforms ExEmft and ExEmw2v since the higher number of dimension 
makes it capable of storing more information. Also, we found that 
ExEmft and ExEmw2v show the same trends by increasing the size of node 
embeddings. In BlogCatalog and Scopus, ExEmw2v is the winner, while 
ExEmft overcomes ExEmw2v in PPI and Astro-PH. 

6.3. Recommendation 

The purpose of this experiment is to show how a graph embedding 
approach can be effectively used to order item recommendations with 
the help of the learned node embeddings. As previously described, this 
paper introduces a novel strategy for computing experts’ scores using 
the expert embedding vectors and recommending top experts whose 
scores are high. So, we conducted a case study to demonstrate the effi
cacy of ExEm in the recommendation task. We selected three topics: 
information extraction (IE), natural language processing (NLP), and 
machine learning (ML) from Arnetminer data. The lists of people in these 
topics are used as experts to construct the ground truth to evaluate the 
recommendation task on the Scopus dataset. Note that our task is not to 
predict the exact score value of each expert but to rank them in terms of 
their positions in the list. That means we take into account the position 
of the experts in these lists as their ranks for the ground truth. We used 
cosine similarity to measure the distance between the node embedding 
vectors and centroid. We recommended the nearest nodes to the 
centroid as experts. The dimension of expert vectors is fixed to 128. We 
announced the results in terms of nDCG@k. In using nDCG@k, we set k to 
5, 10 and 15. Because of the weakness of SDNE to run on large dataset, 
we compared ExEm with Line, DeepWalk, Node2vec approaches. 

6.3.1. Results 
Table 5 demonstrates nDCG score provided by the identified top k 

experts in three specific topics. As can be seen, except in a few cases, 

Table 4 
AUC score of link prediction for different datasets on various operators 
(dimension of ExEmcom is 256). (a) Average, (b) Hadamard, (c) Weighted-L1, 
and (d) Weighted-L2.  

Op Algorithm Dataset   

PPI Astro-PH BlogCatalog Scopus  

SDNE 0.6782 0.6262 0.6965 –  
LINE 0.6424 0.6059 0.7829 0.5398  

DeepWalk 0.627 0.638 0.7636 0.5151  
Node2vec 0.7543 0.6547 0.7493 0.5526 

(a) ExEmft 0.8041 0.7636 0.7829 0.6661  
ExEmw2v 0.8034 0.7612 0.7976 0.664  
ExEmcom 0.8098 0.7656 0.7999 0.6689   

SDNE 0.6981 0.7117 0.66 –  
LINE 0.7314 0.9352 0.7766 0.8364  

DeepWalk 0.7441 0.9335 0.7256 0.9607  
Node2vec 0.7719 0.9583 0.7632 0.9693 

(b) ExEmft 0.9278 0.9765 0.8041 0.9874  
ExEmw2v 0.9262 0.9766 0.8026 0.9875  
ExEmcom 0.9454 0.983 0.8335 0.9908   

SDNE 0.6436 0.6066 0.6001 –  
LINE 0.6796 0.8948 0.7674 0.8428  

DeepWalk 0.8753 0.8966 0.7189 0.9656  
Node2vec 0.6292 0.9132 0.6502 0.975 

(c) ExEmft 0.9657 0.9886 0.9078 0.9929  
ExEmw2v 0.971 0.988 0.9141 0.9934  
ExEmcom 0.9726 0.9876 0.9194 0.9935   

SDNE 0.636 0.5761 0.5978 –  
LINE 0.6799 0.8932 0.7507 0.8304  

DeepWalk 0.6118 0.8981 0.7234 0.9864  
Node2vec 0.6236 0.9146 0.6529 0.9757 

(d) ExEmft 0.9708 0.9892 0.9137 0.9928  
ExEmw2v 0.9749 0.985 0.9207 0.9929  
ExEmcom 0.9753 0.9892 0.9212 0.9938  
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ExEmft has gained the highest values among the competitors. Then, 
ExEmcom takes the second-ranking position and provides better perfor
mance in comparison to ExEmw2v, Node2vec, DeepWalk and Line. Also, 
it is clear that unlike node classification and link prediction tasks, Line 
shows comparable performance to Node2vec, and DeepWalk performs 
poorly. Over and above that we compared ExEm against of Experti
seRank (Zhang, Ackerman, & Adamic, 2007) in order to compare its 
performance with studies in the expert recommendation system domain. 
ExpertiseRank is a PageRank-like algorithm used to calculate experts’ 
score in the user-user graph based on ask-answer relations of the users. 
ExpertiseRank considers the number and quality of connections of a 
candidate expert to determine a rough estimate of how important the 
candidate is. It is clear that ExEm outperformed the ExpertiseRank in all 
three topics. The reason is that ExpertiseRank tries to find experts based 
on the degree of connections of experts with others in the collaborative 
network. While ExEm raises its awareness of experts’ expertise through 
their embeddings which present rich information about experts. The 
other explanation for the success of our proposed method is its way of 
calculating expert scores. 

In summary, we provided two important feedbacks form the results. 
Primarily, the high values of nDCG scores for graph embedding methods 
in comparison with ExpertiseRank show that our introduced strategy 
provides an efficient solution for computing experts’ scores based on 
expert embeddings. In addition, as ExEm generates more appropriate 
embeddings for experts of different topics than comparative baselines, 
using the expert embeddings obtained by ExEm models specially ExEmft 
makes significant gains in the expert recommendation system. 

6.3.2. Effect of dimension 
Also, we explored the effect of embedding dimensions on only 

different methods of ExEm for recommendation task. We used the same 
strategy as mentioned before, by merely limiting our test into ML topic 
and nDCG@15. Fig. 10 illustrates the effect of embedding dimensions on 
ExEm models in our case study. It is clear that although ExEmft out
performs, it reveals an identical trend to ExEmcom. The performances of 
both ExEmft and ExEmcom decline with a small slope at the beginning and 
then their performances saturate as the number of dimensions increase. 
However, we see that the performance of ExEmw2v initially increases 

slightly faster, but it finally shows a fixed-performance like two other 
methods with the increase in the size of expert embeddings. 

6.4. Parameter sensitivity 

As mentioned before, there exist three common ways to combine the 
features obtained from fastText and Word2ve and create a single rep
resentation for each node. So we examine how different choices of 
merging features affect the performance of ExEm. For this evaluation, 
we measured the Micro-F1 and Macro-F1 scores for the node classifi
cation task on the BlogCatalog dataset using 10% to 90% splits between 
labeled and unlabeled nodes with embedding size 128. Besides, ExEm 
involves a number of parameter that may effect its performance. 
Therefore, we conduct a sensitivity analysis of ExEm to context window 
size w and length of random walks LR parameters. For sensitivity 
investigation we followed the first test setting just using 50% as training 
data and the remaining as test data. 

6.4.1. Results 
As we can see in Fig. 11a, ExEmcom consistently and significantly 

Fig. 9. AUC score of link prediction for different datasets with varying dimensions on the average operator (dimensions of ExEmcom are 64, 128, 256 and 512).  

Table 5 
nDCG score of recommendation for Scopus dataset based on top k experts (dimension of ExEmcom is 256).  

Topics ML NLP IE 

nDCG@ 5 10 15 5 10 15 5 10 15 

Line 0.5005 0.6137 0.7218 0.6112 0.6295 0.6032 0.4052 0.5028 0.6089 
DeepWalk 0.3119 0.4183 0.6156 0.2720 0.4268 0.4329 0.4666 0.4898 0.6203 
Node2vec 0.5286 0.5897 0.7055 0.5124 0.5570 0.5971 0.4865 0.5382 0.6361 
ExpertiseRank 0.4924 0.5796 0.6646 0.5477 0.5539 0.6036 0.5200 0.5467 0.6799 
ExEmw2v 0.6455 0.6415 0.8374 0.6243 0.6486 0.6538 0.5734 0.5602 0.7089 
ExEmft 0.7029 0.6462 0.8428 0.6239 0.6482 0.6403 0.5882 0.5724 0.7202 
ExEmcom 0.7020 0.6459 0.8414 0.6240 0.6494 0.6411 0.5747 0.5719 0.7114  

Fig. 10. nDCG@15 score of recommendation for ML topic with varying di
mensions (dimensions of ExEmcom are 64, 128, 256 and 512). 
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outperforms ExEmsum and ExEmavg in terms of both metrics. This in
crease in performance can be based on concatenation function that 
conducts the dimension of node vector space becomes higher, and so 
ExEmcom can preserve most of the meaningful information about nodes 
without altering data. Although summing and averaging reduce node 
embedding size, they lose some information and hence they perform 
poorly. Moreover, according to Micro score, ExEmavg works better than 
ExEmsum, while Macro score shows different deduction. 

Moreover, Fig. 11b and c suggest that context window size and 
length of random walks are positive to the node classification perfor
mance. However, they have relatively little relevance to the perfor
mance and the differences are not that large in these cases. Briefly, 
according to the analysis, various models of ExEm are not strictly sen
sitive to these parameters and can achieve high performance under a 
affordable parameter choice. 

7. Discussion 

It can be inferred from the results that Line as an edge modeling 
based approach which uses first- and second-order proximities and 
SDNE as a deep learning based method that employs auto-encoders do 
not make any additional gains as compared to random walk based 
methods in all tasks. It can be seen that in all instances except for PPI 
network over node classification, SDNE performs poorly. This is because 
SDNE focuses on the homophily objective to map the connected node 
pairs closer to each other and ignores the structural roles of nodes. Also, 
the other drawback of SDNE is that it is not scalable to large graphs such 
as Scopus because of its memory consumption in order to feed the 
complete adjacency nodes as inputs. By the same token, Line embeds 
nodes closer which share common one-hop neighborhood, while it does 
not pay attention to their roles. On the other hand, random walk based 
graph embedding methods, ExEm, DeepWalk and Node2vec, show 
promising results over node classification, link prediction and recom
mendation tasks. Since random walks can tend to spread quickly over a 
local area, they can better capture local community structure and 
concurrently investigate different parts of the same graph (Perozzi et al., 
2014). Additionally, we observed that Node2vec and DeepWalk 
outperform Line and SDNE especially in link prediction and node clas
sification tasks, although there are a number of problems with them that 
are solved by ExEm through using dominating set. One of the issues that 

DeepWalk encounters is its randomness which provokes Deepwalk not 
to preserve the local neighborhood of the node well and makes a lot of 
noises mostly for nodes with high degrees (Wang et al., 2016). Another 
drawback of DeepWalks is that it does not embed nodes from this 
outlook that nodes with similar roles should be embedded closely 
together. However, Node2vec proposes a biased random walk that ad
dresses the problems related to DeepWalk by virtue of two arguments p 
and q. The common problem of Node2vec is that these arguments should 
be valid for a certain set of values for each network in order to properly 
produce node representations that take into consideration the homo
phily and structural equivalence assumptions. Therefore, because of the 
dependency of Node2vec’s performance on adjusting the values of these 
parameters, we see that in some cases DeepWalk performs well 
compared to Node2vec. For example, we set parameters as p = 0.25,
q = 2 and p = 0.5, q = 4 for PPI and BlogCatalog networks, respec
tively. For PPI dataset those values are the worst choices and the 
outcome has the poor performance of Node2vec than DeepWalk in node 
classification task, while in Blogcatalog the parameters put Node2vec in 
the second highest Macro-F1 and Micro-F1 scores after various versions 
of ExEm. Thus, the values of these parameters must be carefully chosen 
for each network to achieve a good performance. Based on the obser
vations we found out that ExEm is more robust and effective technique 
for capturing node representations on all test graphs. Taking advantage 
of dominating nodes in random walks helps ExEm to work efficiently on 
a variety of networks including large and dense graphs like Scopus or 
BlogCatalog. The reason is that the virtual backbone formed by domi
nating nodes can efficiently control the structure of graph and retrieve 
information from it (Spisiak, 2011). Moreover, having the second 
dominating node in the walk makes the connections between different 
parts of a graph. In other words, the attendance of the first and second 
dominating nodes encourages ExEm to obey homophily and structural 
role equivalences in encoding nodes and provides ExEm a higher 
learning flexibility than baselines. In brief, the main differences between 
ExEm and the other methods are: (i) ExEm uses an intelligent random 
walk sampling strategy which is based on dominating nodes. (ii) ExEm is 
more effective than Line, SDNE, DeepWalk and Node2vec, as is illus
trated by our experiments in three different tasks on various graphs. (iii) 
ExEm is efficient for dense graphs and scalable for very large applica
tions. (iv) ExEm has the lowest execution time among both DeepWalk 
and Node2vec since ExEm’s intelligent random walk starts from only 

Fig. 11. (a) Analysis of different combinations of the features obtained from fastText and Word2ve, (b) and (c) parameter sensitivity for node classification on the 
BlogCatalog network. 
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dominating nodes instead of all nodes. Also, the second reason is that the 
second dominating node exists in the rest of the walk with probability 
values 0.44,0.33,0.50 and 0.30 and 0.27 obtained from experiments 
over different datasets PPI, Wikipedia, BlogCatalog, arXiv(Astro-PH) 
and Scopus, respectively. Hence, it is not necessary to investigate the 
expression of second dominating node in each random walk. While the 
computation of transition probabilities for going from one node to 
another in Node2vec is taking more time to generate random walks. For 
instance, we calculated the execution time of ExEmw2v, DeepWalk and 
Node2vec on Blogcatalog for node classification task and the results 
show that DeepWalk learns node representations in 114.62 seconds 
which is faster than Node2vec with runtime 294.94 seconds. We found 
that in ExEm the time of finding a dominating set and generating 
random walks equal to 0.039 and 28.19 seconds, respectively. By adding 
the training time, the total execution time of ExEmw2v is 106.439 sec
onds which is shorter than Node2vec and DeepWalk. (v) ExEm can easily 
accommodate itself to dynamic networks only by adding new random 
walks from the changed part, while Node2vec, Line and SDNE can not 
cope with dynamic graphs. 

Besides, we also note that our proposed scheme for estimating ex
perts’ scores based on expert embeddings addresses the issue of expert 
finding in a social network. Using expert embeddings created by ExEm 
in the proposed method significantly outperforms all works to rank 
candidate experts and recommend top experts accurately. In addition, 
we highlighted the fact that almost all methods conducted on our 
collected dataset, Scopus, are better than the experiments conduced on 
other datasets. One of the reasons is higher density of Scopus compared 
to other datasets. 

8. Answers to research questions 

In what follows, we are going to answer the research questions from 
Section 1 based on the observations from extensive experimental 
comparison: 

RQ.1 The results proved the advantage of our collected dataset for 
different usages. The value of the modularity shows the efficiency of 
Scopus data for community detection task. Moreover, the values of 
various scores obtained from conducting graph embedding techniques 
on Scopus graph underline the usefulness of this dataset for multi-label 
classification, link prediction and recommendation tasks. 

RQ.2 Experimental results demonstrated that creating intelligent 
random walks by using dominating nodes not only declines runtime, but 
also provides key insight into the organization of network. ExEm hires 
two dominating nodes in each path sampled to simultaneously preserve 
the local and global network structures. The first dominating node 
characterizes the local neighborhoods accurately, while the second 
dominating node helps ExEm to learn the node embeddings based on 
their similar structural roles within the network topology. 

RQ.3 We proposed a novel strategy that computes experts’ scores 
based on the expert embedding vectors and accurately recommends 
experts. The proposed method extracts experts whose subject areas 
include the given topic and makes a cluster by them. Then, the center of 
this cluster is found by taking the average of all the expert embedding 
vectors in the group. Then, cosine similarity measures the distance be
tween the embedding vectors and centroid. Finally, the nearest nodes to 
the centroid are recommended as experts. We observed that using expert 
embeddings created by ExEm in the proposed method significantly 
outperforms all works to rank candidate experts. Note that this approach 
can be applied to any types of graph with a special example of the graph 
related to the relationship between questioner and answerer in QACs 
such as StackOverflow and Quara. 

9. Conclusion 

In this paper, we have proposed two approaches and presented a new 
dataset. Our first proposed approach is a random walk based graph 

embedding technique, called ExEm, that incorporates the dominating 
set from graph theory to graph embedding. Starting random walks with 
dominating nodes and existing another dominating node in the 
following of each sampled path help ExEm to fulfill homophily and 
structural role objectives. ExEm uses three embedding methods 
including Word2vec, fastText and the concatenation of these two to 
extract node embeddings from these random walks. Experimental re
sults demonstrated that ExEm is significantly more effective and appli
cable than SDNE, Line, DeepWalk and Node2vec over multi-label 
classification, link prediction and recommendation tasks. Also, this 
research represented another approach used to compute experts’ scores 
based on expert embedding vectors. This proposed framework achieved 
much better performance than ExpertiseRank approach in the recom
mendations of top experts. Finally, we presented a dataset related to a 
co-author network formed by crawling the vast author profiles from 
Scopus. 
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