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Abstract Named Entity Recognition (NER) from social media posts is a
challenging task. User generated content that forms the nature of social media,10

is noisy, and contains grammatical and linguistic errors. This noisy content
makes tasks such as NER much harder. We propose two novel deep learning
approaches utilizing multimodal deep learning and Transformers. Both of our
approaches use image features from short social media posts to provide better
results on the NER task. On the first approach, we extract image features15

using InceptionV3 and use fusion to combine textual and image features. This
approach presents more reliable name entity recognition when the images
related to the entities are provided by the user. On the second approach, we use
image features combined with text and feed it into a BERT-like Transformer.
The experimental results using precision, recall, and F1 score metrics show the20

superiority of our work compared to other state-of-the-art NER solutions.

Keywords Deep Learning · Named Entity Recognition · Multimodal
Learning · Transformer

1 Introduction

A common social media delivery system such as Twitter supports various media25

types like video, image, and text. This media allows users to share their short
posts called Tweets. Users can share their tweets with other users that are
usually following the source user. However, there are rules to protect the privacy
of users from unauthorized access to their timeline [1]. The very nature of user
interactions on Twitter micro-blogging social media is oriented towards their30
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daily life, first witness news-reporting and engaging in various events (sports,
political stands, etc.). According to studies, news on Twitter is propagated and
reported faster than conventional news media [2].

Analysis and valuation of extracted information from such important media
acts as a facilitator of many possibilities [3]. However, there are technical and35

scientific requirements to accomplish it. One of these requirements is NER.
NER is the task of extracting important entities from textual data [4]. These
important entities can vary from subject to subject but some entities are
commonly known: person names, locations, and organizations. On the other
hand, NER is also a widely investigated and researched subject in natural40

language processing [5, 6]. Most of the previous works only keep eye on the
formal text. The formal text is a noise-free text written with minimum textual
errors. Twitter is a social media that users are generating content most of the
time and contains noise even in the texts written by experts. In some cases,
the limitations of the Twitter platform also force users to write noisy text. But45

before investigating and finding a solution, it is mandatory to have a clear
definition and categorization of the social media textual noise to address the
problem properly.

Textual noise in social media is defined as grammar mistakes, mistypes,
new words that are invented by users (user invented words), and internet50

abbreviations (internet slang) [7]. A mistype is recognized as an unintentional
error in character sequences typed by a user. This type of noise can even have
different patterns where users use various devices to input their text; for
example, a mobile virtual keyboard has a different unintentional mistype
pattern compared to a PC keyboard. Grammar mistake or error is an instance55

of faulty, unconventional, or controversial usage, such as a misplaced modifier
or an inappropriate verb tense. Furthermore, there are also abbreviated and
informal sentences that are intentional or unintentional. Invented words that are
constantly growing is another major drawback for conventional NLP methods.
The word "Selfie" is one of the famous ones in this category and after its60

invention by users, it is so commonly used that is familiar and treated like a
real word from a dictionary. Internet abbreviations are another widely used
category in social media; the word "Srsly" is an informal form of writing the
word "Seriously". A major reason for such problems is the Twitter character
limit for message length and users are not allowed to pass that. This limit was65

set to 140 to obey the SMS limit but after years it is updated to 280 Unicode
characters 1. Users in social media like Twitter are intentionally writing words
in an abbreviated form to obey the character limit by dropping some characters.
In cases, it is not a linguistic form of an abbreviation like the word "USA"
(United States of America) [8, 9]. Some of such abbreviations are not present70

in formal corpus and accordingly, solutions based on formal corpus can not
address them.

According to the noise definition, a NER model must address the noise
problem to obtain acceptable results in Twitter-like social media. Dependency

1 https://developer.twitter.com/en/docs/counting-characters
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Fig. 1: A Tweet containing Image and Text: Geoffrey Hinton and Demis
Hassabis are referred in text and respective images are provided with Tweet.

of many other NLP-based solutions and tasks directly to the NER results gives75

this task extra credit in social media. For example, detection of events, hot
topics, or trending topics from social media can be done by many methods and
systems [10] while a good NER can extract the underlying entities [4]. Having
the entities and the events at hand, one can easily infer any related information
about a person or an entity occurring inside an event.80

Although Twitter has noisy content, tweets also carry extra information
about the context users are sharing. For example, Figure 1 shows a tweet
containing both the textual and visual content. This visual content is related
to the textual content and is another description of the tweet. The form of
data that is shared by this tweet is also referred to as multimodal data because85

it has more than one modality: text and image [11]. Utilization of image in
the extraction of named entities can be very useful [12]. In cases where tweets
are related to a person or an organization, the visual content is also relevant.
For example, in Figure 1 text carries information about Geoffrey Hinton and
Demis Hassabis and the image shows pictures of them. In cases where the NER90

model never saw these words or does not have any information about them
in the trainset, visual content can guide it by creating a bias on human name
rather than organization [12].

This intuition of utilizing multimodal data is used by researchers to provide
a better solution for NER rather than conventional methods [12, 13]. However,95

still, some research questions remain unanswered. For example, in case of noise,
only concatenated representations of word and characters with no feature
extraction layers is not efficient enough. In the case of expelling visual content
and just putting the text in mind, the model can not separate cases like shown
in Figure 1 that both names can be person names or organizations at the same100

time. Also keeping the focus on the word embeddings or character embeddings
disables the model from using shallow transfer learning provided by word
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embedding models such as GloVe [14] or fastText [15, 16]. On the other hand,
only a character representation is not enough because it is hard to accomplish
transfer learning on character-level. Only using token-based transfer learning105

also creates an out of vocabulary (OoV) problem for the model too. OoV
usually happens on models where there is no embedding for the new token
in the test phase. For example, if a model uses a transfer learning based on
Word2Vec [17], if it sees a new word that was not present at the training corpus
of Word2Vec, it will yield an error. This kind of error is prevented by using110

[UNK] (i.e., unknown token) which is a random vector.

In order to provide a better solution for NER task in social media and
address the problems such as noise and OoV tokens, we present two different
solutions based on multimodal learning. In our first solution, we use three deep
learning-based feature extractors based on three different aspects: Character,115

Word, and Visual level. The character feature extractor only uses the character
sequence of the tweet and provides a final feature vector accordingly. This
feature extractor is noise rigid where there are OoV tokens and mistypes. Word
feature extractor basically uses the shallow transfer learning provided from two
pretrained word embedding models: GloVe and fastText. GloVe and fastText120

together provide a higher performance compared to cases where one is used.
fastText on the other hand, can capture morphological changes in words and
provide vectors in cases where the word is not seen before but its different
morphological form has been seen. Visual content, is converted to top entity
features using InceptionV3 [18]. The concatenated form of these three features125

guides the model in a noise-robust form. The second proposed model utilizes a
BERT-like multimodal Transformer approach. This approach takes the both
text and the visual entity features and provides the entity tags for the sequence.
In this approach, we try to investigate the performance improvement made by
a totally different architecture based on an autoencoder Transformer model130

[19, 20].

The novelty of our work lies in efficient utilization of character, word and
image feature extractors to find a better solution for noise in social media. In
order to address these issues, we designed WCI and multimodal Transformer;
both of these models use subword based textual features. In case of WCI, it uses135

character features to address the any textual mistypes and the GloVe/fastText
combination provides efficient understanding of words. However, the image
features that are present in both of the models, creates a bias to make both
models perform better in terms of evaluation metrics. We also show that
separately using each one of these features helps to solve the problem but140

efficiently combining them with their best attributes works better.

The rest of the paper is organized as follows: Section 2 provides an insight
view of previous methods; Section 3 describes the method we propose; Section
4 shows experimental evaluation and test results; discussion and future works
are presented and discussed in Section 5; finally, Section 6 concludes the whole145

article.
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2 Related Work

Many algorithms and methods have been proposed to classify or extract
information from a single type of data such as audio, text, image, etc. However,
in the case of social media, data comes in a variety of types such as text, image,150

video or audio in a bounded style. Most of the time, it is very common to
caption a video or image with textual information. This information about
the video or image can refer to a person, location and etc. From a multimodal
learning perspective, jointly computing such data is considered to be more
valuable in terms of representation and evaluation.155

NER task, on the other hand, is the task of recognizing named entities
from a sentence or group of sentences in a document format. Named entity is
formally defined as a word or phrase that clearly identifies an item from set of
other similar items [21, 22]. Equation 1 expresses a sequence of tokens.

ls = 〈w1, w2, . . . , wn〉, (1)
o = 〈Is, Ie, t〉, (2)

o = 〈T1, T2, . . . , Tn〉. (3)

From this equation, the NER task is defined as the recognition of tokens that160

correspond to interesting items. These items from natural language processing
perspective are known as named entity categories; BIO2 proposes four major
categories, namely, organization, person, location and miscellaneous [23]. From
the biomedical domain, gene, protein, drug and disease names are known as
named entities [24, 25]. The output of NER task is formulated in 2. Is ∈ [1, N ]165

and Ie ∈ [1, N ] is the start and end indices of each named entity and t is named
entity type [26].

BIO2 tagging for NER is defined in equation 3. Table 1 shows BIO2 tags
and their respective meanings; B and I indicate beginning and inside of the
entity respectively, while O shows the outside of entity. Even though many170

tagging standards have been proposed for NER task, BIO is the foremost
accepted by many real world applications [27].

A named entity recognizer gets s as input and provides entity-tags for each
token. This sequential process requires information from the whole sentence
rather than only tokens and for that reason, it is also considered to be a175

sequence tagging problem. Another analogous problem to this issue is part of
speech tagging and some methods are capable of doing both [28]. However, in
cases where noise is present and the input sequence has linguistic typos, many
methods fail to overcome the problem. As an example, consider a sequence of
tokens where a new token invented by social media users gets trended. This180

trending new word is misspelled and is used in a sequence along with other
tokens in which the whole sequence does not follow known linguistic grammar.
For this special case, classical methods and those which use engineered features
do not perform well. Modern machine learning approaches such as deep learning
and character or subword level models perfom better in such problems [29].185



6 Meysam Asgari-Chenaghlu et al.

Table 1: BIO Tags and their respective meaning.

Begin End Description
B-PER I-PER Person
B-LOC I-LOC Location
B-ORG I-ORG Organization
B-MISC I-MISC Miscellaneous
O O Outside of entity

Using the sequence s itself or adding more information to it divides NER
into two approaches: unimodal and multimodal. Although many approaches
for NER have been proposed and reviewing them is not in the scope of this
article, we focus on foremost analogues classical and deep learning approaches
for NER in two subsections. In Section 2.1, unimodal approaches for NER are190

presented while in Section 2.2, emerging multimodal solutions are described.

2.1 Unimodal Named Entity Recognition

The recognition of named entities from only textual data (unimodal learning
approach) is a well studied and explored research field. For a prominent
example of this category, the Stanford NER is a widely used baseline for many195

applications [30]. The incorporation of non-local information in IE (information
extraction) is proposed by the authors using Gibbs sampling. The conditional
random field (CRF) approach used in this article, constructs a chain of cliques,
where each clique represents the probabilistic relationship between two adjacent
states. Also, the Viterbi algorithm has been used to infer the most likely state200

in the CRF output sequence. Equation 4 shows the proposed CRF method.

p(o|s) =

n∏
i=1

φi(oi−1, oi, s)∑
o′∈o

n∏
i=1

φi(o′i−1, o
′
i, s)

(4)

where φ is the potential function.
CRF finds the most probable likelihood by modeling the input sequence of

tokens s as a normalized product of feature functions. In a simpler explanation,
CRF outputs the most probable tags that follow each other. For example, it is205

more likely to have an I-PER, O or any other that that starts with B- after
B-PER rather than encountering tags that start with I-.

T-NER is another approach that is specifically aimed to conduct NER task
in Twitter [13]. A set of algorithms in their original work have been published to
perform tasks such as POS (part of speech tagging), named entity segmentation210

and NER. Labeled LDA has been used by the authors in order to outperform
baseline in [31] for NER task. Their approach strongly relies on the dictionary,
contextual and orthographic features.
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Deep learning techniques use distributed word or character representation
rather than raw one-hot vectors. Most of this research in NLP field use pre-215

trained word embeddings such as Word2Vec [17], GloVe [14] or fastText [16].
These low dimensional real valued dense vectors have proved to provide better
representation for words compared to one-hot vector or other space vector
models.

The combination of word embedding along with bidirectional long-short220

term memory (LSTM) neural networks are examined in [28]. The authors also
propose to add a CRF layer at the end of their neural network architecture in
order to preserve output tag relativity. Utilization of recurrent neural networks
(RNN) provides better sequential modeling over data. However, only using
sequential information does not result in major improvements because these225

networks tend to rely on the most recent tokens. Instead of using RNN, authors
used LSTM. The long and short term memory capability of these networks helps
them to keep in memory what is important and forget what is not necessary
to remember. Equation 5 formulates forget-gate of an LSTM neural network,
eq. 6 shows input-gate, eq. 7 notes output-gate and eq. 8 presents memory-cell.230

Finally, eq. 9 shows the hidden part of an LSTM unit [32, 33].

lft = σg(Wfxt + Ufht−1 + bf ), (5)
it = σg(Wixt + Uiht−1 + bi), (6)
ot = σg(Woxt + Uoht−1 + bo), (7)

ct = ft ◦ ct−1 + it ◦ σc(Wcxt + Ucht−1 + bc), (8)
ht = ot ◦ σh(ct). (9)

For all these equations, σ is activation function (sigmoid or tanh are
commonly used for LSTM) and ◦ is concatenation operation. W and U are
weights and b is the bias which should be learned over training process.

LSTM is useful for capturing the relation of tokens in a forward sequential235

form; However, in natural language processing tasks, it is required to know the
upcoming token. To overcome this problem, the authors have used a backward
and forward LSTM combining the output of both.

In a different approach, character embedding followed by a convolution layer
is proposed in [34] for sequence labeling. The utilized architecture is followed240

by a bidirectional LSTM layer that ends in a CRF layer. Character embedding
is a useful technique that the authors tried to use it in a combination with
word embedding. Character embedding with the use of convolution as feature
extractor from character level, captures relations between characters that form
a word and reduces spelling noise. It also helps the model to have an embedding245

when pretrained word embedding is empty or initialized as random for new
words. These words are encountered when they were not present in the training
set. Thus, in the test phase, the model fails to provide a useful embedding.

The NLP revolution of "Attention is all you need" was a game changer
that eliminated need for any LSTM like sequential methods and replaced it250

with the scaled dot-product attention and positional encoding in Transformer
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Fig. 2: Scaled dot-product attention mechanism.

stacks [19]. After this new research, many of researchers for various NLP tasks
have used the Transformer paradigm; BERT, XLNet, ALBERT and T5 are
examples of this new architecture [20, 35–37], however, there are many other
related works too [38].255

The foundation of these methods starts from tokenization and end at
training on very huge data with a huge processing power. The tokenization part
is done with Byte Pair Encoding (BPE) generally. The idea of utilizing BPE
is novel itself in generating tokens even if it was proposed years ago for text
compression [39]. The motivation behind using BPE is having better subword260

parts instead of words or characters [40]. Figure 2 shows the scaled dot-product
attention and the multihead attention mechanism [19].

The attention mechanism has many forms and related studies in fields
of machine translation reviewed its effects on the translation task [41]. The
Transformer architecture proposed in [19] makes use of scaled dot-product265

attention that is computed using three vectors of Query, Key and Value
(Q,K,V). Equation 10 shows this attention form.

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (10)

The denominator part of this equation,
√
dk is the scale part, proposed in

the original article based on the embedding size. The rest of the equation is
identical to the Figure 2. Attention head on the other hand, is where scaled270

dot-product attention units are used in a multi-way, but before using this
attention type, a feed-forward (FF as shown in the figure) is applied to each
input. A Transformer, is simply a combination of multi-head attention units
and feed-forward neural networks. Stacks of Transformer units in encoder and
decoder parts make a Transformer based architecture. However, for many tasks,275

this architecture is useful. In the case of our study, a typical named entity
recognizer architecture based on the Transformer is shown in Figure 3 [42]. The
output embeddings of the last decoder or encoder part is used for generating
final NER tags.
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E[SEP]

Fig. 3: Transformer based NER proposed in [42].

2.2 Multimodal Named Entity Recognition280

Multimodal learning has become an emerging research interest and with the
rise of deep learning techniques, it has become more visible in different research
areas ranging from medical imaging to image segmentation and natural language
processing [43–61]. On the other hand, very little research has been focused on
the extraction of named entities with joint image and textual data concerning285

short and noisy content [12, 52, 62, 63] while several studies have been explored
in textual NER using neural models [28, 34, 64–69].

State-of-the-art methods have shown acceptable evaluation on structured
and well formatted short texts. Techniques based on deep learning such as
utilization of convolutional neural networks [65, 69], recurrent neural networks290

[66] and long short term memory neural networks [28, 34] are aimed to solve
NER problem.

The multimodal named entity recognizers can be categorized in two cat-
egories based on the tasks at hand, one tries to improve NER task with the
utilization of visual data [12, 62, 63], and the other tries to give further infor-295

mation about the task at hand such as disambiguation of named entities [52].
We refer to both of these tasks as MNER2. To have a better understanding of
MNER, equation 11 formulates the available multimodal data while equations
2 and 3 are true for this task.

s′ = 〈i, w1, w2, . . . , wn〉 (11)

i refers to image and the rest goes same as equation 1 for word token300

sequence.
In [63], pioneering research was conducted using feature extraction from

both image and textual data. The extracted features were fed to decision trees
in order to output the named entity classes. Researchers have used multiple
datasets ranging from buildings to human face images to train their image305

feature extractor (object detector and k-means clustering) and a text classifier
has been trained on texts acquired from DBPedia.

Researchers in [62] proposed a MNER model with regards to triplet embed-
ding of words, characters and image. Modality attention applied to this triplet

2 Multimodal Named Entity Recognizer
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indicates the importance of each embedding and their impact on the output310

while reducing the impact of irrelevant modals. Modality attention layer is
applied to all embedding vectors for each modal, however the investigation of
fine-grained attention mechanism is still unclear [70]. The proposed method
with Inception feature extraction [18] and pretrained GloVe word vectors shows
acceptable results on the dataset that the authors aggregated from Snapchat3.315

This method shows around 0.5 for precision and F-measure for four entity
types (person, location, organization and misc) while for segmentation tasks
(distinguishing between a named entity and a non-named entity) it shows
around 0.7 for the metrics mentioned.

An adaptive co-attention neural network with four generations are proposed320

in [12]. The adaptive co-attention part is similar to the multimodal attention
proposed in [62] that enabled the authors to have better results over the
dataset they collected from Twitter. In their main proposal, convolutional
layers are used for word representation, BiLSTM is utilized to combine word
and character embeddings and an attention layer combines the best of the325

triplet (word, character and image features). VGG-Net16 [71] is used as a
feature extractor for the image while the impact of other deep image feature
extractors on the proposed solution is unclear, however the results show its
superiority over related unimodal methods.

3 The Proposed Approach330

In the present work, we propose two approaches for the NER problem. First we
propose the CWI in Section 3.1 and in Section 3.2 we demonstrate our second
approach, the multimodal Transformer. CWI is based on character-word-image
features extracted using a deep neural network and the multimodal Transformer
is utilizing a Transformer combined with image features. Both of these two use335

the same set of inputs, sentence, and related image from social media posts.
For the Transformer approach, we use a BERT-like Transformer that gets the
image features extracted using InceptionV3.

3.1 CWI: Character-Word-Image

CWI is able to handle noise by co-learning semantics from three modalities,340

character, word, and image. This model is composed of three parts, convo-
lutional character embedding, joint word embedding (fastText-GloVe) and
InceptionV3 image feature extraction [14, 16, 18]. Each part of this architecture
is designed to address specific problems of NER in Twitter. Character feature
extraction is designed to overcome the textual noise problem at the token level345

(mistypes and OoV). Word feature extraction using shallow transfer learning
obtained from GloVe and fastText helps to improve semantic understanding
of the text in presence of OoV tokens. On the other hand, the image feature

3 A multimedia messaging application
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Fig. 4: Proposed CWI Model: Character (left), Word (middle) and Image (right)
feature extractors combined by bidirectional long-short term memory and the
conditional random field at the end.

extraction guides model where visual content has bias over specific entities
such as buildings, humans, and related objects. The concatenated form of these350

features together form a more robust understanding of Tweet that is separable
into token embeddings. Figure 4 shows the CWI architecture in more detail.

Character Feature Extraction shown in the left part of Figure 4 is
a composition of six layers. Each sequence of words from a single tweet,
〈w1, w2, . . . , wn〉 is converted to a sequence of character representation defined355

by 〈[c(0,0), c(0,1), . . . , c(0,k)], . . . , [c(n,0), c(n,1), . . . , c(n,k)]〉 and in order to apply
one dimensional convolution, it is required to be in a fixed length. The pa-
rameter k shows the fixed length of the character sequence representing each
word. Rather than using the one-hot representation of characters, a randomly
initialized (uniform distribution) embedding layer is used. The first three con-360

volution layers are followed by a one dimensional pooling layer. In each layer,
kernel size is increased incrementally from 2 to 4 while the number of kernels
are doubled starting from 16. Just like the first part, the second segment of
this feature extractor uses three layers but with slight changes. Kernel size is
reduced starting from 4 to 2 and the number of kernels is halved starting from365

64. In this part, ⊗ sign shows concatenation operation. TD + GN + SineRelu
note targeted dropout, group normalization and SineRelu [72–74]. These layers
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prevent the character feature extractor from overfitting. Equation 12 defines
SineRelu activation function which is slightly different from Relu.

SineRelu(x) =

{
x x > 0

ε(sinx− cosx) x ≤ 0
(12)

Instead of using zero in the second part of this equation, ε(sinx − cosx)370

has been used for negative inputs, ε is a hyperparameter that controls the
amplitude of sinx− cosx wave. This slight change prevents the network from
having dead-neurons and unlike Relu, it is differentiable everywhere. On the
other hand, it has been proven that using GroupNormalization provides better
results than BatchNormalization on various tasks [73].375

However, the dropout has a major improvement on the neural network as an
overfitting prevention technique [75], in our setup the TargtedDropout shows
to provide better results. TargetedDropout randomly drops neurons whose
output is over a threshold. On the other hand, skip connections presented in
the model, provide better learning in the character feature extraction part and380

enables the model to learn in a better way in terms of evaluation metrics.
Word Feature Extraction is presented in the middle part of Figure 4.

Joint embeddings from pretrained word vectors of GloVe4 [14] and fastText5
[16] by concatenation operation results in 500 dimensional word embedding.
In order to have forward and backward information for each hidden layer, we385

used a bidirectional long-short term memory [32, 33]. For the words which
were not in the pretrained tokens, we used a random initialization (uniform
initialization) between -0.25 and 0.25 at each embedding. The result of this
phase is extracted features for each word. fastText provides better embeddings
when GloVe fails, and the reason behind it is the structure of fastText itself390

which is able to capture morphological semantics using subword embeddings.
Image Feature Extraction is shown in the right part of Figure 4. For

this part, we use InceptionV36 pretrained on ImageNet [76]. Many models were
available as the first part of image feature extraction, however the main reason
we used InceptionV3 as feature extractor backbone is its better performance395

on ImageNet and the results obtained by this particular model were slightly
better compared to others.

Instead of using the headless version of InceptionV3 for image feature
extraction, we have used the full model which outputs the 1000 classes of
ImageNet. Each of these classes resembles an item, the set of these items can400

present a person, location or anything that is identified as a whole. To have
better features extracted from the image, we use an embedding layer. In other
words, we looked at the top 5 extracted probabilities as words that is shown

4 6 billion tokens with 200 dimensional word vectors, available at: http://nlp.stanford.
edu/data/glove.6B.zip

5 16 billion tokens with 300 dimensional word vectors, available at: https://dl.
fbaipublicfiles.com/fastText/vectors-english/wiki-news-300d-1M.vec.zip

6 InceptionV3 pretrained model on ImageNet, available at: https://keras.io/
applications/#inceptionv3

http://nlp.stanford.edu/data/glove.6B.zip
http://nlp.stanford.edu/data/glove.6B.zip
https://dl.fbaipublicfiles.com/fastText/vectors-english/wiki-news-300d-1M.vec.zip
https://dl.fbaipublicfiles.com/fastText/vectors-english/wiki-news-300d-1M.vec.zip
https://keras.io/applications/#inceptionv3
https://keras.io/applications/#inceptionv3


Title Suppressed Due to Excessive Length 13

in eq. 13; based on our assumption, these five words present textual keywords
related to the image and combination of these words should provide useful405

information about the objects in visual data. An LSTM unit has been used to
output the final image features. These combined embeddings from the most
probable items in the image are essential to have extra information from a
social media post.

IW = arg sort
x
{x|x = Inception(i)}[1 : 5], x ∈ [0, 1] (13)

where IW is image-word vector, x is output of InceptionV3 and i is the410

image. x is in the range of [0,1] and
∑
∀k∈x

k = 1 holds true, while
∑

∀k∈IW
k ≤ 1.

Multimodal Fusion in our work is presented as the concatenation of
three feature sets extracted from words, characters and images. Unlike previous
methods, our original work does not include an the attention layer to remove
noisy features. Instead, we stacked LSTM units from word and image feature415

extractors to have better results. The last layer presented at the top right
side of Figure 4 shows this part. In our second proposed variation, we apply
attention layer to this triplet. Our proposed attention mechanism is able to
detect on which modality to increase or decrease focus. Equations 14, 15 and
16 show attention mechanism related to the second variation of first model.420

luit = tanh(Wwhit + bw) (14)

αit =
exp(h>t uit)∑
t
exp(h>t uit)

(15)

βi =
∑
t

αithit (16)

Conditional Random Field is the last layer in our setup which forms
the final output. The same implementation explained in eq. 4 is used for our
method.

3.2 Multimodal Transformer

Transformer mechanism described in section 2.1 is used here with some modi-425

fication on the hyper-parameters. Also, we changed the input format of the
original BERT model that we describe in the current subsection. We call
our modified BERT model as MSB (Multimodal Small BERT). The modified
version is smaller than the BERT original model and is the same size as small
BERT from original BERT released models. Encoder stack of the original430

Transformer model is also used here. BPE makes sure that the model does not
encounter OoV tokens in any form of noise. This tokenization method uses
byte pairs instead of white-space tokenization of the regular models.
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Table 2: Transformer configuration for NER task: Tiny and Small versions.

Model Hidden Size # of Attention Heads # of Transformer Layers
MSB-Tiny 128 2 2
MSB-Small 512 8 4

Byte Pair Encoding: For the tokenization part, we use BPE tokenizer
[40]. The pretrained subotkens are released in [20]7. Before tokenization, we435

used preprocessing operations such as URL removal. Removing URLs helps
the model to skip the unnecessary operations on the input. The rest of text is
given to the model with no changes. However, we further pretrained BERT to
fit our task at hand, on the related corpus such as crawled Twitter corpus; on
the tokenizer part, we used same as the released version in the original format.440

Transformer Configuration:We used Transformers as our building block
with getting motivation from BERT as our base and reduced the parameters
using the main BERT-Tiny and BERT-Small configurations. The configura-
tions we used are presented in Table 2. For both of these configurations, the
vocabulary size is 30522. Pretrained version are released by google 8,9. Figure 5445

shows our approach and the utilization of image extracted features into BERT
model. The [SEP] token has been used to separate the text and the outputs of
image feature extractor (the labels). These two modalities in uniform structure
are given to the Transformer to extract the final named entities. Another
variation of the model is also introduced that has an extra CRF layer. The450

conditional random field helps the model to correct the mistakes by equation 4.
Combination of BPE and the Transformer gains much improvement in

terms of evaluation metrics because it solves the OoV problem and uses a real
bidirectional form of NLU instead of left-to-right or right-to-left. This uniform
understanding of the splitted tokens with aid of more pretraining on the social455

media posts and other related details are provided in the next section.

4 Experimental Evaluation

The present section provides evaluation results of our model against base-
lines. Before diving into our results, a brief description of the dataset and its
statistics are provided in Section 4.1. Experimental setups including model460

hyperparameter details are detailed in Section 4.2. Various aspects of proposed
models are compared with regards to their hyperparameters in Section 4.3.
Textual noise is also another major part of the experimental evaluation that is
tested in different forms, Section 4.4 presents these analyses. These noise tests,
regardless of the Twitter dataset itself which is a noisy dataset, is performed by465

7 https://github.com/google-research/bert
8 BERT-Tiny: https://storage.googleapis.com/bert_models/2020_02_20/uncased_

L-2_H-128_A-2.zip
9 BERT-Small: https://storage.googleapis.com/bert_models/2020_02_20/uncased_

L-4_H-512_A-8.zip

https://github.com/google-research/bert
https://github.com/google-research/bert
https://storage.googleapis.com/bert_models/2020_02_20/uncased_L-2_H-128_A-2.zip
https://storage.googleapis.com/bert_models/2020_02_20/uncased_L-2_H-128_A-2.zip
https://storage.googleapis.com/bert_models/2020_02_20/uncased_L-2_H-128_A-2.zip
https://storage.googleapis.com/bert_models/2020_02_20/uncased_L-2_H-128_A-2.zip
https://storage.googleapis.com/bert_models/2020_02_20/uncased_L-4_H-512_A-8.zip
 https://storage.googleapis.com/bert_models/2020_02_20/uncased_L-4_H-512_A-8.zip
https://storage.googleapis.com/bert_models/2020_02_20/uncased_L-4_H-512_A-8.zip
 https://storage.googleapis.com/bert_models/2020_02_20/uncased_L-4_H-512_A-8.zip
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E[SEP]
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Fig. 5: Our proposed second approach: Multimodal Small BERT.

random noise additions, and a comparison between the original model and the
other state-of-the-art models is provided. We also provide a subsection (4.5)
for evaluating the effect of different feature extractors. The effect of GloVe
and fastText is also another major evaluation of the Section 4.6. This shallow
transfer learning evaluation is provided to show how these two embeddings470

affect the output.

4.1 Dataset

In [12], a refined collection of tweets gathered from Twitter is presented. Their
dataset, which is labeled for the NER task contains 8,257 tweets. There are
12,784 entities in total in this dataset. Table 3 shows statistics related to each475

named entity in the training, development, and test sets. Following CoNLL-
2033 and the BIO2 tagging, this dataset is also tagged manually by experts.
Short tweets that contain less than three words have been discarded by the
annotators. Non-English tweets are also discarded. The overall dataset from
26.5 million tweets has been reduced to total of 8,257 tweets from 12,784 users.480

The training, development, and testing set is also split into 4,000, 1,000, and
3,257 tweets, respectively. All tweets contain images related to them. These
images are posted by users and related samples from the dataset are presented
in Figure 6.

4.2 Experimental Setup485

In order to obtain the best results in Section 4.3, for our first model (CWI), we
use the following setup in tables 4, 5, 6 and 7. For the second proposed method,
the same parameter settings have been used with an additional attention layer.
This additional layer has been added after layer 31 in Table 7 and before the
final CRF layer, indexed as 32. Adam optimizer with 8× 10−5 learning rate490
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Table 3: Statistics of named entity types in train, development and test sets
[12].

Entity Type Train Dev. Test Total
Person 2217 552 1816 4583
Location 2091 522 1697 4308
Organization 928 247 839 2012
Miscellaneous 940 225 726 1881
Total Entities 6176 1546 5078 12784

Table 4: Implementation details of our model (CWI): Character Feature Ex-
tractor.
Con.: Connection; KS: Kernel Size; PS: Pooling Size; DR: Dropout Rate; TR: Target Rate; ↑: prior layer
? MaxPooling has been applied to second dimension rather than channels

ID Layer Name Con. Details
1 Input – 35× 40

2 Embedding ↑

Embedding vector size is
set to 40 and initialized in
range of [-0.25, 0.25] with
uniform distribution

3 1D conv. ↑ KS: 2, # of Kernels: 16
4 1D MaxPooling ↑ PS: 2
5 1D conv. ↑ KS: 3, # of Kernels: 32
6 1D MaxPooling ↑ PS: 2
7 1D conv. ↑ KS: 4, # of Kernels: 64
8 1D MaxPooling ↑ PS: 2
9 1D conv. ↑ KS: 4, # of Kernels: 64

10 Concatenation 8,9 –
11 1D conv. ↑ KS: 3, # of Kernels: 32
12 Concatenation 6,11 –
13 1D conv. ↑ KS: 2, # of Kernels: 16
14 Concatenation 4,13 –
15 Targeted Dropout ↑ DR: 0.25, TR: 0.4
16 Sine Relu ↑ ε: 0.0025
17 Group Normalization ↑ Applied to 16 groups

is used in training phase with 10 epochs. The MSB model is also pretrained
on Twitter data by using the Twitter API and gathered texts. This model has
another variation that utilizes the CRF at the last layer for better performance.

For the MSB-Tiny and Small version, we used pretrained weights from
BERT that google released. We also trained the model on two different datasets,495

Twitter-Multimodal-NER dataset (TMN) [12] and CoNLL-2003 [77]. The
language model that has been used is also trained on the Twitter text data
that gains more realistic texts to add to the modeling in the pretraining phase.
The fine-tuning part has been done in two phases, we first fine-tuned masked
language modeling on CoNLL-2003 NER dataset and in the second phase, we500

trained the whole model on NER task TMN dataset.
Figure 6 shows some visual samples of the dataset. Also, we present the

result of our different approaches on these samples in fig. 7. In this figure, the
Ground-Truth is highlighted with red color at the above line of each sentence
and the results of our approaches are shown by different colors at the below505
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Table 5: Implementation details of our model (CWI): Word Feature Extractor.

ID Layer Name Con. Details
18 Input – 35

19 GloVe 18 GloVe Embedding vector, vec-
tor size: 200

20 fastText 18 fastText Embedding vector,
vector size: 300

21 Concatenation 19,20 –
22 LSTM (Forward) 21 Size: 100
23 LSTM (Backward) 21 Size: 100
24 Concatenation 22,23 –

Table 6: Implementation details of our model (CWI): Image Feature Extractor.

ID Layer Name Con. Details

25 Input – 5 highest probability classes se-
lected from InceptionV3

26 Embedding ↑ 50
27 LSTM (Forward) ↑ Size: 50

Table 7: Implementation details of our model (CWI): Multimodal Fusion.

ID Layer Name Con. Details
28 Concatenation 17,24,27 –
29 LSTM (Forward) 28 Size: 100
30 LSTM (Backward) 28 Size: 100
31 Concatenation 29,30 –

32 CRF 30 # of output Classes: 9, accord-
ing to BIO2 1

lines of each sentence. Some samples such as the first one are not correctly
labeled in the dataset, but our approach appropriately predicts the true labels.

4.3 Evaluation Results

Table 8 presents the evaluation results of our proposed models. Different
variations of our proposed models are tested and reported in this table. CWI510

which is the original model with no attention mechanism shows 2% improvement
on the Person class while it is also 1% ahead on the miscellaneous class. Overall,
this model is 1% better than other state-of-the-art models on the F1 score.
However, the different variations of this model report near the same results
on the dataset, Transformer based variation of our proposed model shows 3%515

improvement compared to others. But the Transformer based model has more
trainable parameters and also it uses transfer learning gained from autoencoder
Transformer architecture.

The effect of TD+GN+SineRelu (Targeted dropout, Group Normalization,
and Sine Relu) on the CWI model is investigated in Table 9. The phrase "No"520

in this table indicates that none of these are used and instead for SineRelu
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Fig. 6: Samples from Twitter dataset with text and related image [12].

normal Relu activation function is replaced. The utilization of these three
(TD+GN+SineRelu) makes a huge impact on CWI and prevents it from
overfitting. The overall improvement on F1 score is 7%.

The training time for the first model in a CoreI7 processor with Nvidia525

GeForce GTX 1650 is around 10 minutes while for the second approach it is
2 days for pretraining on Twitter data and fine tuning on the datasets. The
training time for the InceptionV3 is not considered because we used the original
released version with no changes.
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Fig. 7: Results of our approaches on different samples from fig. 6, CRF variation
of models has been used here.

Table 8: Evaluation results of different approaches compared to ours.

Method Per. Loc. Org. Misc. Overall
Prec. Recall F1

Stanford NER [30] 73.85 69.35 41.81 21.80 60.98 62.00 61.48
BiLSTM+CRF [28] 76.77 72.56 41.33 26.80 68.14 61.09 64.42

LSTM+CNN+CRF [34] 80.86 75.39 47.77 32.61 66.24 68.09 67.15
T-NER [13] 83.64 76.18 50.26 34.56 69.54 68.65 69.09

BiLSTM+CNN+Co-Attention [12] 81.89 78.95 53.07 34.02 72.75 68.74 70.69
CWI (Ours) 85.81 76.68 50.18 35.65 73.64 69.68 71.61

CWI + Attention (Ours) 84.02 77.34 52.60 33.47 72.37 70.05 71.19
MSB-Tiny (Ours) 82.17 76.47 51.09 34.31 71.08 69.75 70.41
MSB-Small (Ours) 86.32 74.36 50.73 35.12 72.89 70.10 72.74

MSB-Tiny + CRF (Ours) 84.21 75.16 52.89 35.31 72.87 69.41 71.10
MSB-Small + CRF(Ours) 86.44 77.16 52.91 36.05 74.97 72.04 73.47

Table 9: Effect of TD+GN+SineRelu on our proposed model.

TD+GN+SineRelu Overall Per. Loc. Org. Misc.
No 64.18 76.21 72.30 40.98 28.81
Yes 71.61 85.81 76.68 50.18 35.65

4.4 Noise Effect530

The effect of noise on the dataset itself is undeniable because the whole
dataset is gathered from Twitter with all noisy text attributes. To have a more
sophisticated test on the model robustness on the textual noise we also prepared
a test case by altering the actual Twitter dataset. For this test, we analyzed
common mistakes and human typos by virtual and hardware keyboards in the535

category of unintentional errors. We also used internet slang to replace words
that have slang in the dataset. We separated this test into two phases, full
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noisy text, and entity noise version. The full noise version alters any token
while the entity noise just alters the tokens that are tagged as entities. The
noise rate in character level for this results is set to 0.05 for both of the tests540

which means with a random chance of 0.05 each character is altered in a noisy
and false form. For the slang replacement, we replaced all possible words with
their respective slang. Table 10 presents the results of the test.

Table 10: Evaluation results of Noise test, reported results are overall F1 scores.

Method Full Noise Entity Noise
Stanford NER [30] 39.27 46.71
BiLSTM+CRF [28] 45.18 48.91

LSTM+CNN+CRF [34] 50.07 49.88
T-NER [13] 59.41 60.01

BiLSTM+CNN+Co-Attention [12] 60.23 59.64
CWI (Ours) 63.14 65.10

CWI + Attention (Ours) 64.97 65.71
MSB-Tiny (Ours) 64.26 64.09
MSB-Small (Ours) 65.99 63.87

MSB-Tiny + CRF (Ours) 65.67 66.06
MSB-Small + CRF(Ours) 66.28 66.54

4.5 Feature Extractor Effect

Each feature extractor in CWI model has its impact on the final results. In545

order to have a clear understanding and result from analysis on the impact of
each feature extractor, we conducted a test with the base CWI model using
different feature extractor combinations. For this test, we used only character,
only word, character and word, character and image, and word and
image variations of the base model. These variations are trained with the550

same setup explained in Section 4.2. Table 11 shows the results obtained for
each of the variations with respect to the original dataset and the altered noisy
version. For the second model, the impact is shown by just dropping visual
content from the model.

From Table 11, it is seen that character and word features together form a555

more robust model in presence of noise. However, the image feature extractor
also provides an additional improvement in terms of the F1 score. It is also
clear from this table that MSB-Tiny and Small versions remain robust to noise
in absence of image features. Comparing the results from this table to the ones
in Table 10 shows that image feature extraction is extra information fore model560

to help improve its results in both CWI and MSB models.
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Table 11: Evaluation results of different feature extractor variations using
original dataset, full noise and entity noise versions; reported results are overall
F1 scores.

Method Orig. Dataset Full Noise Entity Noise
Only Character features 48.98 44.31 46.33

Only Word features 60.14 52.10 52.40
Character and Word features 66.71 63.91 64.02
Character and Image features 52.32 47.33 47.62

Word and Image features 64.45 51.12 50.10
MSB-Tiny + CRF (no Image) 64.41 60.01 59.16
MSB-Small + CRF (no Image) 65.21 60.87 61.70

4.6 Shallow Transfer Learning Effect

Another aspect of the proposed CWI model is its GloVe and fastText embedding
usage. These two different forms of embeddings provide different vectors for each
token in the word feature extractor part. Utilizing both of these embeddings565

provides a trainable and pretrained word embedding (GloVe) and a non-
trainable but transferred one (fastText). The model architecture shown in
Figure 4 presents a two-part embedding in the middle part (word feature
extraction), namely fastText and GloVe. The GloVe part is embedded inside
the model to be trainable parameters of the model but the fastText part is used570

to be a frozen part of the model (non-trainable parameters). The reason to use
both not just one is that the fastText can give an embedding vector for any
given word even if it is not seen before. GloVe vectors, on the other hand, are
embedded inside the model to be part of the model trainable parameters. In
order to show that this combination using both of them is useful, we conducted575

an experiment. In this experiment, we used different variations of the CWI
model with only focusing on the embedding part of the word feature extractor.
Two different models, one using only fastText, and the other only using GloVe
are trained and tested on the original and noisy dataset. Figure 8 shows the
result of different embedding sizes for only using GloVe or fastText. Table 12580

shows the best values from this figure which are 300 and 300 for both GloVe
and fastText.

Table 12: Evaluation results of word feature extractor variations on GloVe and
fastText; reported results are overall F1 scores and embedding size for GloVe
and fastText is 300 for both.

Method Orig. Dataset Full Noise Entity Noise
Only fastText 67.30 62.70 63.69
Only GloVe 66.98 60.10 61.02

Third variation uses both of these embeddings but with different embedding
sizes for each one. Table 13 shows these results. From this table it is clearly
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Fig. 8: Dimensionality effect on using only GloVe and fastText; Results are
reported for: (a) Original Dataset, (b) Full Noise, and (c) Entity Noise.

Table 13: Evaluation results of different embedding sizes for GloVe and fastText;
reported results are overall F1 scores.

Embedding fastText

GloVe

size 100 200 300 400
100 69.49 70.05 68.40 67.33
200 69.91 70.23 71.61 69.02
300 68.52 69.83 70.98 68.35
400 68.21 70.21 68.99 68.14

seen that best hyperparameter for embedding sizes is 300 for fastText and 200585

for GloVe.

5 Discussion and Future Works

NER from noisy social media content is a mandatory task to be accomplished
with acceptable results. The dependency of many other NLP and analytic
tasks on NER is an undeniable fact. Regular and conventional methods fail to590

accomplish this task because they are mainly trained and evaluated on clean
and noise-free textual data. However, there are methods that are trying to find
acceptable solutions for it but the role of noise in the final results still keeps
pushing towards better solutions. A combination of different aspects of social
media data such as images is helpful towards better solutions. We utilized595

different forms of deep feature extractors and combined them using multimodal
fusion to address the problem. From the analysis provided in section 4, it is
clearly seen that our proposed solution works better in terms of evaluation
metrics. The main reason that it works lies in the efficient utilization of different
feature extractors.600

The character feature extractor provides character level understanding and
helps the final model to have an understanding of the character sequence of
tokens while the image features are guiding the model to have a bias over
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entities extracted from visual content. Word feature extractor, on the other
hand, uses both trainable and non-trainable parameters from two pretrained605

word vectors. In cases where a single one of these features is used the results
are not acceptable and this fact shows the harmony behind the three of these
feature extractors is a promising solution for the noisy social media entity
extraction. However, investigation of newer architectures such as Transformers
is another good solution for the problem which we did in our second proposed610

model.
This new era of social media on the Internet which users are the main

contributors to the new and democratic internet requires modern NLP solutions.
If a good understanding of the user generated content is required, then the
models must be able to battle noise. Users on the internet are not professional615

linguists and their posts on social media are not edited by professionals. Recent
advancements on multimodal models that can see posts from all sides seem
a promising solution for harvesting information from unstructured content.
However, there are still different aspects of multimodal data that are required
to be analyzed; for example in the case of Twitter, users post video and audio620

with their text too. These modalities that are not explored in this article can
be investigated and analyzed to make better models.

6 Conclusion

In this article, we proposed two NER approaches based on multimodal deep
learning. In our first model, we used a new architecture in character feature625

extraction that has helped our model to handle the issue of noise. We used
different features from character, word and image representation of the tweet.
We also conducted different experiments to show the importance and effect of
each feature extractor. Rather than CWI model, we also used Transformers
as our building block to propose MSB. Instead of using direct image features630

from near last layers of image feature extractors such as Inception, we used the
direct output of the last layer. The last layer is 1000 classes of diverse objects
that are the result of InceptionV3 trained on ImageNet dataset. We used the
top 5 classes out of these and converted them to one-hot vectors. The resulting
image feature embedding out of these high probability one-hot vectors helped635

our model to overcome the issue of noise in images posted by social media users.
Evaluation results of our proposed models compared to other state-of-the-art
methods show their superiority to these methods overall while in two categories
(Person and Miscellaneous) our model outperformed others.
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