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As public transport operators try to resume their services, they have to operate under reduced capacities due to
COVID‐19. Because demand can exceed capacity at different areas and across different times of the day, drivers
have to refuse passenger boardings at specific stops to avoid overcrowding. Given the urgent need to develop
decision support tools that can prevent the overcrowding of vehicles, this study introduces a dynamic integer
nonlinear program to derive the optimal service patterns of individual vehicles that are ready to be dispatched.
In addition to the objective of satisfying the imposed vehicle capacity due to COVID‐19, the proposed service
pattern model accounts for the waiting time of passengers. Our model is tested in a bus line connecting the
University of Twente with its surrounding cities demonstrating the trade‐off between the reduced in‐vehicle
crowding levels and the excessive waiting times of unserved passengers.
1. Introduction

After the start of the pandemic, one country after the other imple-
mented so‐called social distancing measures affecting public transport,
schools, shops, working places, and various other sectors (Anderson
et al., 2020; Lewnard and Lo, 2020). To adjust their operations, some
public transport service providers permitted the use of public transport
for essential travel only (e.g., California and several other states in the
US, Asia, and Europe) (Rodríguez‐Morales et al., 2020). Crowded pub-
lic transport services are considered one of the virus transmission fac-
tors. Thus, several office workers are asked to work from home as
much as possible to reduce the burden on public transport services
and ensure service availability for essential workers and vulnerable
user groups.

Typical pandemic‐related measures taken by public transport ser-
vice providers include the limitation of the service span (e.g., not offer-
ing night services), the cancellation of certain lines, and the closure of
selected stations by generating new service patterns (see the survey
papers of Gkiotsalitis and Cats (2020) and Tirachini and Cats
(2020)). Namely, Transport for London (TfL) suspended the night tube
service and closed 40 metro stations that do not interchange with
other lines (TfL, 2020). Similarly, the Washington Metropolitan Area
Transit Authority (WMATA) closed more than 20% of its metro sta-
tions, reduced its service frequencies by more than half, and limited
the operations of the daily metro services until 9 pm (WMATA,
2020). Valencia in Spain has also seen a reduction in service provision
of up to 35% (UITP, 2020b). In the Netherlands, service frequencies
have been reduced significantly and the capacity of vehicles is reduced
by allowing a limited number of standees.

Implementing specific measures to ensure social distancing is the
main concern of public transport operators in post‐lockdown societies.
Several operators receive specific instructions from government
authorities to operate under a pandemic‐imposed capacity that does
not allow them to use all available space inside a vehicle. This
pandemic‐imposed capacity aims to maintain sufficient levels of phys-
ical distancing among travelers but, at the same time, this might lead
to significant numbers of unserved passengers and route/frequency
changes. A recent study by Krishnakumari and Cats (2020) in the
Washington DC metro system showed that if passengers are evenly
spaced across platforms, each operating train can carry only 18% of
its nominal capacity when implementing a 1.5‐meter distancing and
10% when implementing a 2‐meter distancing. Gkiotsalitis and Cats
(2021) showed that the average seated train occupancy in the Wash-
ington metro can be reduced to 50%, 30%, and 20% when implement-
ing 1‐meter, 1.5‐meter, and 2‐meter social distancing policies,
respectively. UITP (2020a) also reported that to ensure necessary
social distancing between 1 and 1.5‐meters the transport capacity
has to be reduced to 25%‐35%, which would hardly allow accommo-
dating travel demand.

As part of their exit strategies, public transport authorities and
operators have to devise strategies to meet the pandemic‐imposed
capacity limits. As of now, service providers have made adjustments
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Nomenclature

Sets
S set of ordered stops of the service line related to the trip of

vehicle n; S ¼ h1; . . . ; s; . . . ; jSji;

Indices
n vehicle that is about to be dispatched;

Parameters
us array declaring how many consecutive times has stop s∈ S

been skipped when trip n arrives at that stop (note: if s was
served by the preceding trip n� 1, then us ¼ 0. If not, then
us ⩾ 1);

g the pandemic‐imposed capacity limit of the vehicle that
performs trip n;

psy number of passengers waiting at stop s∈ S and are willing
to travel to stop y at the time instance trip n arrives at stop
s;

λsy the average passenger arrival rate at stop s whose destina-
tion is stop y at the time vehicle n arrives at stop s (note:
λsy ¼ 0;81 ⩽ y ⩽ s);

M a relatively large positive number that penalizes the con-
secutive skipping of the same stop;

h the planned time headway between two consecutive trips
of the service line;

Decision variables
xs xs ¼ 1 if vehicle n will serve stop s and xs ¼ 0 otherwise.

Variables
γs the passenger load of vehicle n when traveling from stop s

to stop sþ 1.
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to meet the pandemic capacity, but so far these adjustments are
devised and implemented in an ad hoc manner (UITP, 2020b). Typical
measures include changes in service patterns by closing specific stops
of the network that lead to overcrowding and adjustments of service
frequencies. To rectify this, in this study we propose a dynamic service
pattern model that decides about the skipped stops of every vehicle
that is about to be dispatched to operate a particular trip. Our dynamic
model can suggest a different service pattern for each trip of a service
line using up‐to‐date passenger demand information to determine
which stops should be skipped. The dynamic decision of skipped stops
has some favorable properties compared to offline strategies that close
stops for the entire day of operations:

• first, we can serve all stops during off‐peak periods where the pas-
senger demand does not exceed the pandemic‐imposed capacity
limitations; thus, resulting in fewer stop closures;

• second, we can utilize real‐time data to decide about the skipped
stops based on the current level of operations and the expected pas-
senger demand in the short future;

• third, instead of permanently closing specific stops, we can alter-
nate the skipped stops from trip to trip reducing the inconvenience
of passengers.

By doing this, we exploit our vehicle resources as much as possible
since we devise trip‐specific service patterns instead of resorting to
permanent stop closures. An additional problem during peak hours is
that a vehicle reaches its pandemic‐imposed capacity limit after serv-
ing just a few stops. If this vehicle and subsequent vehicles of the ser-
vice line serve the initial stops of the line and skip the remaining stops,
then passengers at the skipped stops will not be served until the
demand returns to its pre‐peak levels. To balance this, we propose a
dynamic service pattern model that determines different service pat-
terns for subsequent vehicles to ensure that stops that were skipped
by the preceding trip have a higher chance to be served by the follow-
ing trip. Our dynamic model determines the service pattern of every
vehicle that is about to be dispatched whilst taking into consideration
the skipped stops by past trips. In terms of computational complexity,
solving our model can return an optimal service pattern in near real‐
time for realistic public transport lines that serve up to 60 stops.

The remainder of this study is structured as follows: Section 2 pro-
vides a literature review of service patterns and stop‐skipping models.
Section 3 introduces our integer nonlinear service pattern model and
examines its computational complexity. Section 4 provides the imple-
2

mentation of our model in a bus line that connects the University of
Twente with its two surrounding cities using multiple passenger
demand scenarios. Finally, Section 5 concludes our work and offers
future research directions, including the possibility of combining our
dynamic service pattern model with dynamic frequency setting models
to deploy more vehicles at peak periods of the day.

2. Literature review

Devising the service pattern of a vehicle at the operational level
(e.g., when it is about to be dispatched) requires to determine which
stops of the line should be served and which should be skipped by that
vehicle (see (Li et al., 1991; Lin et al., 1995; Eberlein, 1997; Fu et al.,
2003; Gkiotsalitis, 2020)). Determining the service pattern for each
vehicle in isolation reduces the problem complexity and, similarly to
our study, several works resort to exhaustive search methods (brute‐
force) to solve the dynamic problem taking advantage of the relatively
small scale of the problem since typical public transport lines operate
less than 40 stops (Fu et al., 2003; Sun and Hickman, 2005; Gkiotsalitis
and Cats, 2021a).

The dynamic service pattern problem, which can be seen as a
dynamic stop‐skipping problem where all skipped stops are deter-
mined by the time the vehicle is dispatched, is typically modeled as
a nonlinear integer program including assumptions of random distri-
butions of boardings and alightings (Sun and Hickman, 2005). Similar
to our work, Fu et al. (2003) used an exhaustive search to determine
the skipped stops of one trip at a time. Fu et al. (2003) considered
the total waiting times of passengers, the in‐vehicle time, and the total
trip travel time as problem objectives. The potential benefit was tested
with a simulation of route 7D in Waterloo, Canada.

Different model formulations, such as Liu et al. (2013), imposed
stricter stop‐skipping constraints so that if a trip skips one stop, its pre-
ceding and following trip should not skip any stops. Liu et al. (2013)
resorted to the use of a genetic algorithm incorporating Monte Carlo
simulations because of the complexity of the formulated mixed‐
integer nonlinear problem. Eberlein (1995) simplified the problem
by modeling it as an integer nonlinear program with quadratic objec-
tive function and constraints enabling its analytic solution.

The dynamic service patterns problems can be solved deterministi-
cally with high accuracy because the decisions are made every time a
vehicle is about to be dispatched and the up‐to‐date information
regarding the expected passenger demand and the inter‐station travel
times results in low estimation errors of the realized demand and tra-
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vel times. Several works, however, do not solve this problem dynami-
cally and consider stochastic travel times and passenger demand in the
problem formulation because they make decisions about future daily
trips. Chen et al. (2015) used an artificial bee colony heuristic to solve
the offline service pattern problem considering stochasticity since this
work determined the service patterns of several vehicles ahead.
Gkiotsalitis (2019) used also a robust optimization model for devising
the service patterns of all daily trips considering the stochastic travel‐
times in the objective function and integrating them into a genetic
algorithm that tried to find service patterns that perform reasonably
at worst‐case scenarios. Service patterns have also been derived for
clusters of trips at the offline level (Verbas and Mahmassani, 2015;
Verbas et al., 2015; Gkiotsalitis et al., 2019). The aforementioned
works do not exploit the real‐time information from telematics systems
and automated passenger counts and are not in‐line with the objectives
of our work that needs to make well‐informed decisions using up‐to‐
date information to avoid vehicle overcrowding. Therefore, offline
approaches that determine service patterns or combine service pat-
terns with offline timetabling and offline vehicle scheduling (e.g., Li
et al. (1991), Cao et al. (2016), Gao et al. (2016), Altazin et al.
(2017), Cao and Ceder (2019)) will not be the main focus of this study.

In past works, stop‐skipping has been combined with vehicle hold-
ing (see Eberlein (1995), Lin et al. (1995), Cortés et al. (2010), Sáez
et al. (2012), Nesheli et al. (2015) or the recent work of Zhang et al.
(2020)). However, such works have different objectives compared to
the objectives of our model, such as improving the service regularity
by implementing vehicle holding or reducing the in‐vehicle travel
times, which might be counterproductive when trying to maintain a
pandemic‐imposed capacity. For instance, when a vehicle is held at a
stop more passengers will arrive at the stop and will be willing to
board the vehicle leading to higher crowding levels).

From the current literature, we identify a specific research gap.
Whereas there is an extensive body of works on service pattern mod-
els, these works focus on improving the in‐vehicle travel times, the
waiting times of passengers at stops, or the service regularity. To the
best of the author’s knowledge, there are no works, particularly at
the dynamic level, that consider the capacity limitations of vehicles
when devising service patterns. Hence, they do not account for the
(potential) negative effect of overcrowding that increases the risk of
COVID‐19 transmission. This motivates our work which proposes a
novel model formulation that explicitly considers the pandemic‐
imposed capacity limit as the main problem objective with the use
of extensive penalties for vehicles that do not meet this limit when
departing from a stop.

With the introduction of our model, our work addresses the follow-
ing research questions:

(a) how can we improve the crowding levels inside vehicles to meet
the pandemic‐imposed capacity when changing the service pat-
terns of vehicles?
(b) what are the side effects in terms of unserved passenger
demand and increased passenger waiting times when applying such
service patterns?

3. Service pattern model

3.1. Model formulation

Our service pattern model can be applied to a service line and it
determines the service pattern of every vehicle n that is about to be
dispatched. The service pattern decision is made before the vehicle
is dispatched so as to inform the passengers waiting at stops about
the skipped stops by that vehicle. Offline service pattern models result
in stop closures that skip the same stops repeatedly. This, however,
might reduce the accessibility of passengers that would like to use
the permanently skipped stops as part of their origin–destination trip.
3

In our dynamic service pattern formulation, we take into
consideration:

• the number of waiting passengers at each stop to evaluate the
impact of serving a stop to the crowding levels of the vehicle;

• the skipped stops from previous trips of the line to prioritize stops
that have not been served by previous trips.

It is important to note that when vehicle n is about to be dis-
patched, its preceding trips are already operating their services and
their service patterns are known. That is, every time we determine
the service pattern of a trip n, the service pattern of the previously dis-
patched vehicles is taken into consideration.

The modeling part of this work relies on the following assumptions:

(1) The passenger arrivals at stops are random because the passen-
gers cannot coordinate their arrivals with the arrival times of buses
at high‐frequency services (Welding, 1957; Randall et al., 2007);
(2) A passenger will wait for the next trip of the same line if a vehi-
cle skips his/her stop.
(3) Even if a stop is skipped, passengers can disembark at that stop
because the vehicle will stop at every stop of the line for alighting
passengers. That is, a skipped stop is a stop where passengers can-
not board the vehicle.
(4) Overcrowding at the location of a public transport stop is not an
issue because the stops are outdoors and the virus transmission risk
is much lower compared to the transmission risk in indoor spaces
(e.g., inside the vehicle).

The third assumption implies that each vehicle will allow passen-
gers to disembark at any stop of the line, even at the “skipped stops”
where new passengers are not allowed to board the vehicle. The last
assumption implies that our service pattern model cannot be applied
to public transport services with stops in indoor spaces (i.e., metro sys-
tems or long‐distance rail services).

Before proceeding to the model formulation, we introduce the fol-
lowing nomenclature:

The service pattern model that determines which stops will be
skipped by vehicle n is presented in Eqs. (1)–(6):

min f ðxÞ :¼ ∑s∈ S ∑
y ∈Sjy>s

1
2

ðus þ ð1� xsÞÞ � h � psy þ h2 � λsy
h i

þM∑
s∈ S

us þ ð1� xsÞ½ �2 ð1Þ
s:t: : γs ⩽ g ð8s∈ SÞ ð2Þ
γ1 ¼ x1 ∑

y∈ S
p1y ð3Þ

γs ¼ γs�1 þ xs ∑
y ∈ Sjy>s

psy � ∑
y ∈ Sjy<s

pysxy ð8s∈ S n f1; jSjgÞ ð4Þ

∑
s∈ SnfjSjg

xs ⩾ 1 ð5Þ

xs ∈ f0; 1g ð8s∈ SÞ ð6Þ
The objective function (1) consists of two components. The first

component,

∑
s∈ S

∑
y∈ Sjy>s

1
2

ðus þ ð1� xsÞÞ � h � psy þ h2 � λsy
h i

computes the expected waiting time of all passengers that wait at every
stop s∈ S by the time the following trip nþ 1 of our current trip n
arrives at stop s. Our mathematical program strives to minimize this
waiting time. In more detail,

1
2
ðus þ ð1� xsÞÞ � h � psy

is the waiting time of all passengers that were waiting at stop s when
vehicle n arrived at that stop. This waiting time is equal to the number
of passengers at stop s that are not served by previous trips, psy , multi-
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plied by 1
2 ðus þ ð1� xsÞÞ � h. In the latter term, (i) h is the time headway

between two successive trips of the line, (ii) us indicates the number of
successive trips that skipped stop s since the last time it was served by a
vehicle, and (iii) 1� xs indicates whether stop s will be served by the
current trip n (if yes, 1� xs ¼ 0, if not, 1� xs ¼ 1).

The term ðus þ ð1� xsÞÞ � h is equal to us � h if the current trip n
serves stop s. In this case, it indicates the time headway between the
last time stop s was served by a trip of the line, and the time instance
stop s is served by trip n. In the case that xs ¼ 0, we have
ðus þ ð1� xsÞÞ � h ¼ ðus þ 1Þ � h because the waiting passengers at stop
s will still have to wait for an additional time h until the next trip nþ 1
arrives and we need to make a stop‐skipping decision for it. Finally, we
note that we divide the value ðus þ ð1� xsÞÞ � h � psy by 2 because we
assume that in high‐frequency services passenger arrivals at stops
are random and the average passenger from the waiting passengers
h1;2; . . . ; psyi will have to wait half of the total waiting time
ðus þ ð1� xsÞÞ � h. Note that if ðus þ ð1� xsÞÞ � h was not divided by
2, we would have assumed that all psy passengers arrived at stop s
immediately after the departure of the last trip that served stop s,
and this is unrealistic. In summary:

• if trip n serves stop s, the psy passengers thatwaited at stop swhen trip
n arrivedwould have beenwaiting for 1

2 us � h until theyfinally board;
• if trip n does not serve stop s, our decision will force the psy passen-
gers to wait at stop s for one more headway
h : 1

2 ðus þ ð1� xsÞÞ � h ¼ 1
2 ðus þ 1Þ � h.

In addition,

1
2
h2 � λsy

indicates the waiting times of additional passengers h � λsy that arrive at
stop s between the time that trip n passed by stop s and trip nþ 1
arrives at that stop. It is split into two sub‐terms: h � λsy that indicates
the number of additional passengers and 1

2 h that indicates the average
waiting time of an arriving passenger assuming uniformly distributed
passenger arrivals. Note that this waiting time does not depend on
our decision variable, xs, which indicates whether trip n skips stop s
or not. For this reason, even if we included it in the objective function
for the sake of completeness, one can exclude it because it is a non‐
varying term.

The second component of the objective function,

M∑
s∈ S

us þ ð1� xsÞ½ �2

penalizes progressively stops that are repeatedly skipped by successive
trips. The progressive penalization is achieved by considering the
square value of us þ ð1� xsÞ in the objective function. For instance, if
stop s was served by the previous trip, n� 1, then us ¼ 0 and
½us þ ð1� xsÞ�2 will be equal to 1 if trip n skips stop s. If, however, stop
s was served by trip n� 2, but not by trip n� 1, then us ¼ 1 and the
penalty to the objective function when trip n skips stop s will grow dis-
proportionately from 1 to ½us þ ð1� xsÞ�2 ¼ 4. This penalty term strives
to alternate between skipped stops to not allow the same stop of the line
to be skipped repeatedly by consecutive trips. For instance, if
½us þ ð1� xsÞ� was not squared, there would have been no difference
between skipping a single stop 4 consecutive times or skipping 2 stops
by 2 times each. To summarize, to improve the service coverage, we
would like successive trips to skip different stops as much as possible.

Finally, we note that the penalization of the skipped stops

∑
s∈ S

us þ ð1� xsÞ½ �2

is multiplied by a large positive number M which is a hyper‐parameter
of our mathematical model. This large number is used to provide higher
4

priority to the alteration among different skipped stops from trip to trip.
Without this, the second component of the objective function would
have had a minimal impact because the first component related to
the passenger waiting times would have been the dominant one. In
practice, to ensure that the second component of the objective function
has higher priority, different values of M should be tested when solving
the model.

In addition to our model’s objective, we have a number of con-
straints. Constraint (2) ensures that the passenger load of trip n at
any stop s is lower than the pandemic‐imposed capacity limit, g. Con-
straint (3) returns the number of passengers that board vehicle n at the
first stop of the trip, s ¼ 1. Note that if trip n skips stop 1, then
γ1 ¼ x1∑y ∈ Sp1y ¼ 0. Constraint (4) returns the passenger load of trip
n when it departs from stop s∈ Sj1 < s < jSj. This is equal to
γs ¼ γs�1 þ xs ∑

y ∈ Sjy>s
psy � ∑

y ∈ Sjy<s
pys � xy

where:

• γs�1 is the passenger load at the previous stop s� 1,
• xs∑y ∈ Sjy>spsy are the passengers boarding trip n at stop s,
• and ∑y ∈ Sjy<spysxy are the alighted passengers at stop s.

The alighted passengers are the sum of passengers who boarded at
a previous stop y ∈ Sj1 ⩽ y < s and alight at stop s; pys � xy , where xy

indicates whether vehicle n skipped stop y or not. Reckon that all
on‐board passengers with stop s as their final destination will be
allowed to alight at stop s even if stop s is skipped.

Constraint (5) ensures that trip n will board passengers at, at least,
one stop of the line h1;2; . . . ; jSj � 1i. This constraint makes sure that
trip n will not be canceled.

3.2. Model properties and computational complexity

Our service pattern model expressed in Eqs. (1)–(6) considers the
pandemic‐imposed capacity limit in its constraints and it is an integer
nonlinear programming problem (INLP) with a quadratic objective
function and linear constraints. This model needs to be solved every
time a new vehicle is about to be dispatched. Due to its combinatorial
nature, the problem can be solved to global optimality with an exhaus-
tive search of the solution space. When using exhaustive search, its
computational complexity is O(2jSj) according to the big O notation.
Therefore, exploring the entire solution space with brute force results
in exponential computational complexity. This is formally proved in
Lemma 3.1.

Lemma 3.1. The dynamic service pattern problem subject to a
pandemic‐imposed capacity has an exponential computational com-
plexity that requires exploring 2jSj potential solutions.
Proof. The decision variables that determine the service pattern, xs,
can receive binary values. Formally, to find the globally optimal ser-
vice pattern of a vehicle n, we need to explore a set of 2jSj potential
solutions because at each stop s∈ f1;2; . . . ; jSjg we have two options:
serve or skip (xs ∈ f0;1g). Ergo, the potential solutions that need to
be evaluated are 2jSj.

As also demonstrated in Fu et al. (2003), solving this problem to
global optimality with brute‐force is possible in public transport lines
with realistic sizes. If, however, the number of stops is unrealistically
high then we cannot evaluate every potential service pattern with the
use of brute‐force and we need to resort to sub‐optimal solution
approximations with the use of heuristics. Fig. 1 provides an indication
of the increase of the solution space with the number of stops indicat-
ing also the possible computations that can be executed in 1 min by the
world’s fastest supercomputer that can execute up to 33,860 trillion
calculations per second. We note that we select the computation limit



Fig. 1. Required solution evaluations when the size of the line, jSj, varies.

Table 1
psy : number of passengers waiting at stop s that are willing to travel to stop y at
the time trip n arrives at stop s, where s is the origin and y the destination.

Destination

Origin 1 2 3

1 0 7 8
2 0 0 19
3 0 0 0

Fig. 3. Passenger load from stop 1 to stop 2 and from stop 2 to stop 3 in case I.
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of one minute because the decision about the service patter of each
vehicle should be made within a limited time during which the vehicle
awaits to be dispatched. Under this condition, a solution can be com-
puted for lines with up to 60 stops (see Fig. 1).

3.3. Demonstration

To demonstrate the application of our model, we consider a toy net-
work with S ¼ h1;2;3i stops. Stops 1 and 3 are not skipped by the pre-
vious trip, whereas stop 2 is skipped by the two latest trips of the
service line. That is,

ðu1; u2; u3Þ ¼ ð0;2; 0Þ

as it can be also seen in Fig. 2.
Our model will decide which stops should be skipped by the cur-

rent trip n. In this scenario, the number of passengers waiting at each
stop when trip n arrives is presented in Table 1.

Let also the average passenger arrival rate at stop s for passengers
with destination y be equal to λsy ¼ 1 passengers per 2 min for all
s∈ h1;2i and for all y ∈ Sjy > s. The planned time headway between
successive trips of the line is considered to be h ¼ 5 minutes. In addi-
tion, the value ofM that penalizes the consecutive skipping of the same
stop is set equal to 1.

We also consider the following cases to examine the solutions of
our model:

• case I: the pandemic‐imposed vehicle capacity is g ¼ 30 passengers
• case II: the pandemic‐imposed vehicle capacity is g ¼ 20
passengers

In the first case, the pandemic‐imposed vehicle capacity is enough
to accommodate all passenger demand. As expected, in that case our
model finds the following optimal solution:
Stop 1

2Stop 2

Stop 3

served by the 
previous trip

served by the 
previous trip

skipped by the two 
previous trips

Fig. 2. Presentation of the stops of the line indicating which stops are served
and which are skipped by the previous trips of trip n.

5

ðx1; x2; x3Þ ¼ ð1; 1;1Þ
which indicates that all stops will be served. The resulting in‐vehicle
passenger load after the departure from each stop is presented in
Fig. 3. One can note that this load is below the pandemic‐imposed
capacity limit of 30 passengers.

In addition, the aggregate passenger waiting times until the follow-
ing vehicle nþ 1 arrives at stop s are

∑
s∈ S

∑
y∈ Sjy>s

1
2

ðus þ ð1� xsÞÞ � h � psy þ h2 � λsy
h i

¼ 113:75passenger�minutes

In case II, where the pandemic‐imposed capacity limit is not
enough to serve all passenger demand, the model returns the following
optimal solution:

ðx1; x2; x3Þ ¼ ð0; 1;1Þ
indicating that the first stop of the line will be skipped. This is also an
expected outcome since stop 2 was skipped by the two previous trips
and receives higher priority when making a decision about which stops
to serve in case we cannot serve all of them. The resulting in‐vehicle
passenger load after the departure from each stop is presented in
Fig. 4 and one can note that this passenger load is below the
pandemic‐imposed capacity limit of 20 passengers.

In addition, we have 7 + 8= 15 unserved passengers that were
skipped at stop 1. The aggregate passenger waiting times until the fol-
lowing vehicle nþ 1 arrives at stop s are:

∑
s∈ S

∑
y∈ Sjy>s

1
2

ðus þ ð1� xsÞÞ � h � psy þ h2 � λsy
h i

¼ 151:25passenger�minutes
4. Numerical experiments

4.1. Case study description

Our case study is bus line 9 in the Twente region operated by Keolis
Nederland. The bus line connects two cities: Hengelo with 80 thousand



Fig. 4. Passenger load from stop 1 to stop 2 and from stop 2 to stop 3 in case
II.
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inhabitants and Enschede with 160 thousand inhabitants. This line is
selected because it also serves the University of Twente (UT) which
is approximately in the middle of the two cities. The line consists of
13 stops per direction and the stops that accommodate the university
(Enschede Kennispark/ UT and Enschede Westerbegraafplaats/ UT).
The topology of the line is presented in Fig. 5.

The average trip travel time per direction is 16 min. In addition, the
operational hours of the line service are presented in Table 2 and the
value of M that penalizes the consecutive skipping of the same stop is
set equal to 10000 because this ensures the prioritization of the second
term of the objective function.

4.2. Model application

In our case study we focus on the peak time period of weekdays,
which is from 8 am to 9 am. The mean passenger demand in this per-
iod is presented in the origin–destination demand matrix of Table 3. As
in Welding (1957), Randall et al. (2007), it is hypothesized that the
passenger arrivals at stops are random, following a uniform distribu-
tion because of the high service frequency (see Assumption 1 of our
mathematical model). During this time period, the planned headway
among successive trips is h ¼ 5 minutes. The pandemic‐imposed
Hengelo Centraal Station
Hengelo Grundellaan

Hengelo Haverweg

Hengelo Oude Grensweg

Hengelo Kettingbrug

Enschede De Broeierd

Enschede Kennispark/UT
Enschede Westerbegraafplaats/UT

Enschede Uranusstraat
Enschede Ledeboerpark
Enschede G.J. Van Heekpark

Enschede Schuttersveld

Enschede Centraal Station

line 
direction

Fig. 5. Topology of bus line 9 in Twente, Netherlands.

Table 2
Operational hours of bus line 9
(line direction: Hengelo centraal
! Enschede centraal).

Day Operational hours

Weekday 06:29–23:29
Saturday 07:29–23:29
Sunday 10:29–23:29
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capacity is g ¼ 59 passengers (38 seated, 21 standees), and the nomi-
nal (pre‐pandemic) vehicle capacity was 81 passengers (38 seated, 43
standees).

In addition, we select a particular trip n which is about to be dis-
patched and for which we should determine a service pattern. Before
trip n, we had the following consecutive bus stop skips presented in
Fig. 6:

In our experiments, we compare the performance of the following
models:

(a) the as‐is case where trip n serves all stops without applying a
service pattern;
(b) the SPS ‐ nominal capacity service pattern model that considers
the nominal (pre‐pandemic) capacity instead of the pandemic‐
imposed capacity when solving the model in Eqs. (1)–(6);
(c) the proposed SPS ‐ pandemic capacity service pattern model that
considers the pandemic‐imposed vehicle capacity expressed in Eqs.
(1)–(6).

Our SPS ‐ pandemic capacity is programmed in Python 3.7 using a
general‐purpose computer with Intel Core i7‐7700HQ CPU @
2.80 GHz and 16 GB RAM. The software code of our model is publicly
released at TU.ResearchData (2020) and the mathematical model is
solved with Gurobi 9.0.3. The SPS ‐ nominal capacity is also pro-
grammed in Python 3.7 and its main difference is that it replaces the
pandemic capacity constraint:

γs ⩽ g; 8s∈ S

by constraint:

γs ⩽ ~g; 8s∈ S

where ~g is the nominal capacity of 81 passengers. The optimal service
pattern solutions of the SPS ‐ pandemic capacity and the SPS ‐ nominal
capacitymodels are computed with our publicly released software code.
The optimal service pattern solutions are presented in Fig. 7. Note that
SPS ‐ pandemic capacity results in an increased number of skipped stops.
Note also that these skipped stops are close to the first stop because
they were served by the previous trip n� 1 and had a higher probabil-
ity to be skipped by trip n.

4.3. Evaluation

The optimal service patterns presented in Fig. 7 are computed
deterministically assuming that the realized passenger demand will
be equal to the expected demand values presented in Table 3. In real-
ity, however, the realized passenger demand might vary from our
expectations even if our decisions refer to the short future. For this,
we generate 1000 origin–destination demand scenarios by sampling
demand values from a restricted normal distribution that restricts the
sampling of negative demand values. This normal distribution uses
as mean the presented hourly demand values in Table 3, and as stan-
dard deviation the respective mean value multiplied by 30% since our
short‐term demand predictions cannot deviate significantly from the
realized demand.

To evaluate the performance of the aforementioned methods, we
use the following key performance indicators:

(i) O1: the total passenger load of vehicle n that exceeds the
pandemic‐imposed capacity at all stops;
(ii) O2: the number of unserved passengers by vehicle n that have to
wait for the next vehicle, nþ 1;
(iii) O3: the total waiting time of unserved passengers by trip n that
will have to board the next vehicle, nþ 1.

The aforementioned key performance indicators will assess the
benefits of our proposed SPS ‐ pandemic capacity model, while evaluat-



Table 3
Mean values of the hourly origin-destination demand matrix from 8:00 until 9:00.

Destination stop

Origin stop 1 2 3 4 5 6 7 8 9 10 11 12 13

1 8 16 16 24 24 16 16 24 16 8 32 44
2 × × 4 8 8 16 16 8 16 24 40 24 52
3 × × × 4 4 4 32 24 16 16 32 40 32
4 × × × × 8 8 16 24 32 40 8 24 56
5 × × × × × 4 8 8 20 20 8 28 28
6 × × × × × × 8 4 8 24 12 20 32
7 × × × × × × × 4 4 4 12 24 48
8 × × × × × × × × 8 8 4 8 36
9 × × × × × × × × × 4 8 16 44
10 × × × × × × × × × × 4 12 48
11 × × × × × × × × × × × 8 12
12 0 × × × × × × × × × × × 4
13 × × × × × × × × × × × × ×

2
1

1

1

1

Hengelo Centraal Station line 
direction

served stops by 
the previous trip

Skipped by the 
two previous trips

Skipped by the 
previous trip

Fig. 6. Presentation of the stops served by the previous trip, n� 1 (green
color), the stops skipped by trip n� 1 (red color), and the stop skipped by two
consecutive trips (red color).
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Fig. 8. Tukey boxplot of the performances of the as-is, SPS - nominal capacity,
and SPS - pandemic capacity designs in 1000 scenarios.
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ing also its potential externalities, such as the increase in unserved pas-
sengers and the increase in passenger waiting times at stops for passen-
gers that are skipped by vehicle n.

First, the results of our implementation with respect to the total in‐
vehicle passenger load that exceeds the pandemic‐imposed capacity,
O1, are presented in Fig. 8. Note that this key performance metric sums
the number of passengers that exceed the pandemic‐imposed capacity
when vehicle n departs from every stop. In Fig. 8 we use the Tukey
boxplot convention (see McGill et al. (1978)) to present the results
from the 1000 scenarios. In the Tukey boxplot, the upper and lower
boundaries of the boxes indicate the upper and lower quartiles (i.e.
75th and 25th percentiles denoted as Q3 and Q1, respectively). The
lines vertical to the boxes (whiskers) show the maximum and mini-
mum values that are not outliers. The whiskers are determined by plot-
As-is SPS – nominal capa

served stop

skipped stop

Fig. 7. Optimal service patterns of
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ting the lowest datum still within 1.5 of the interquartile range (IQR)
Q3‐Q1 of the lower quartile, and the highest datum still within 1.5 IQR
of the upper quartile.

From Fig. 8 one can note that the SPS ‐ pandemic capacity service
pattern results in passenger loads that do not exceed the pandemic‐
imposed capacity (the median value is almost equal to 0). This is an
expected outcome since our service pattern model incorporates the
pandemic‐imposed capacity as a hard constraint and this capacity
can be only exceeded if the realized demand differs significantly from
the expected one. The worst performance is observed at the as‐is
design which does not skip any stops resulting in a median passenger
load of 251 passengers beyond the pandemic‐imposed capacity. One
interesting observation is that the SPS ‐ nominal capacity service pat-
tern, which only skips stops 2 and 4, improves this key performance
city SPS – pandemic capacity

trip n based on each method.



median = 69
Q1

Q3

maximum

minimum

outliers

median = 36

Fig. 10. Tukey boxplot of the unserved demand by vehicle n for each service
pattern implemented in 1000 scenarios with random passenger demand.

Fig. 11. Average number of unserved passengers by vehicle n at each stop
when implementing the service pattern with nominal capacity and with
pandemic capacity.

median = 198
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indicator by almost 65% compared to the as‐is service pattern. It still
results though in considerable crowding beyond the pandemic‐
imposed capacity limit.

Besides this aggregate analysis, it is also important to investigate
which stops are the problematic ones that lead to excessive passenger
loads. For this, in Fig. 9 we also report the average values of the pas-
senger loads from the 1000 scenarios after the departure of vehicle n
from each stop s∈ h1;2; . . .13i.

The results of Fig. 9 justify the SPS ‐ pandemic capacity solution that
skips stops 1, 2, 3, 4 and 9. By skipping stop 9, the passenger load
remains below the pandemic‐imposed capacity limit of 59 passengers
at stops 9–13. In addition, skipping stops 1–4 results in a reduced pas-
senger load between stops 5–9. The SPS ‐ nominal capacity violates the
pandemic‐imposed capacity constraint already in stop 6 and this con-
tinues until stop 12. Even worse, if vehicle n allows passengers to
board at any stop by adopting the as‐is design, we would exceed the
pandemic‐imposed capacity from the 4th stop.

It is important to note that the as‐is case results in passenger loads
of more than 59 passengers between stops 4–12, thus increasing con-
siderably the risk of virus transmission. In addition, this design
exceeds the pandemic‐imposed capacity limit by more than 50 passen-
gers when traveling from stop 8 to 9. The SPS ‐ nominal capacity service
pattern has improved performance compared to the as‐is design and
exceeds the pandemic‐imposed capacity limit when traveling from
stop 6 until stop 12. It also results in 20 more passengers than the
pandemic‐imposed capacity limit at stop 8. However, as expected, its
passenger load remains below the nominal capacity limit of 81
passengers.

In terms of exceeding the pandemic‐imposed capacity, it is clear
that our proposed SPS ‐ pandemic capacity solution performs signifi-
cantly better than the alternative designs. This, however, comes at a
cost because the SPS ‐ pandemic capacity service pattern skips five stops
resulting in increased passenger waiting times and unserved demand.
The number of unserved passengers should be examined because we
refuse service to passengers who want to board at the skipped stops
1–4 and 9. To compare the numbers of unserved passengers by vehicle
n, we implement the three service patterns in the same 1000 scenarios
with different origin–destination demand and we report the aggre-
gated results in the boxplots of Fig. 10.

One can note that the SPS ‐ pandemic capacity service pattern results
in a median of 69 unserved passengers by vehicle n. This is a very use-
ful result for public transport operators because it will help them quan-
tify the cost of unserved demand when trying to maintain the
pandemic‐imposed vehicle capacity. It is also of interest to understand
which are the most problematic stops where passengers are refused
boarding. For this, we also report the average number of unserved pas-
sengers at each stop in Fig. 11.
Fig. 9. Average passenger load when departing from each stop when
implementing the service pattern with nominal capacity, with pandemic
capacity, and the as-is design.

Fig. 12. Tukey boxplot of the extra passenger waiting times of unserved
passengers by vehicle n.
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From Fig. 11 one can note that the unserved passengers of the ser-
vice pattern solution that considers the nominal capacity and the solu-
tion that considers the pandemic‐imposed capacity is the same for
stops 2 and 4. The reason for this is that both solutions skip stops 2
and 4. When implementing the SPS ‐ pandemic capacity solution, we
have additional unserved passengers at stops 1, 2, and 9 because these
stops are skipped to maintain a passenger load below the pandemic‐
imposed capacity limit. We finally note that Fig. 11 does not include
the results from the as‐is design, because this design does not skip
any stops.
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The increased passenger waiting times expressed in the key perfor-
mance indicator O3 are mostly analogous to the results of the unserved
demand because the more unserved passengers, the higher their total
waiting time. The results with respect to the key performance indicator
O3 are presented in Fig. 12 and, as expected, are mostly in‐line with
the results of Fig. 10. The median of the total waiting time of unserved
passengers is 198 min when implementing the service pattern
SPS ‐ pandemic capacity.
5. Concluding remarks

5.1. Discussion

In this work, we developed a service pattern model for determining
dynamically the skipped stops of a public transport vehicle that is
about to start its service in order to satisfy the pandemic‐imposed
capacity. Several public transport authorities in major cities have
already used service patterns to avoid overcrowding but those deci-
sions are made offline and are not vehicle‐specific (e.g., they result
in daily stop closures). Our service pattern model filled this research
gap and can be applied in dynamic environments by using up‐to‐
date estimations of passenger demand. One of its benefits is that it
can be applied in near real‐time for public transport lines with realistic
sizes to return an optimal solution.

Although service patterns are used by many public transport oper-
ators, one should consider that by skipping particular stops the number
of unserved passengers and their waiting times might increase. To
evaluate these negative effects, we implemented our model in a bus
line connecting two cities with the University of Twente. We also
implemented the as‐is service that does not skip any stops and a ser-
vice pattern model that does not try to meet the pandemic‐imposed
capacity limit. The results of our evaluation demonstrated that our
model’s solution can reduce the total passenger load that exceeds the
pandemic capacity by 251 passengers per vehicle (or 20 passengers
per vehicle per stop). Importantly, this service pattern is able to main-
tain a passenger load below the pandemic capacity limit in almost all
cases. This, however, results in skipping a considerable number of
stops (5 out of 13 stops) and a significant number of unserved passen-
gers that can be up to 69 passengers per trip.

The aforementioned values are based on the setting of our case
study. Our service pattern model that considers the pandemic‐
imposed capacity might perform significantly better in public transport
lines with relatively low passenger demand because potential skipped
stops will not result in many unserved passengers. Additionally, lines
with small headways are more suitable for the implementation of ser-
vice patterns since travelers will not have to wait for an extended per-
iod of time if they are skipped by a vehicle. To summarize, our decision
support model can propose service patterns for different line services
and can help public transport operators to assess the benefits and draw-
backs of implementing pandemic‐driven service patterns given their
operational headways and their passenger demand levels.
5.2. Future directions

In future research, our service pattern model can be expanded to
consider more preferences from the operational side of a service line,
such as the reduced vehicle travel times due to the skipped stops. One
important research topic is also the combination of our model with
dynamic frequency models that can increase the number of vehicles
at particular time periods of the day to offer an increased vehicle sup-
ply to high‐demand stops skipped by our service patterns. In case of
limited vehicle availability from the public transport operator, on‐
demand services and shared mobility options can complement this
supply gap by combining our model with models for on‐demand
scheduling or vehicle sharing.
9

5.3. Limitations

One of the limitations of our work is that stop service patterns
result in passengers’ inconvenience because of the skipped stops.
Given that our model tries to avoid skipping the same stop repeatedly,
in high‐frequency services this might not be a major problem. How-
ever, our approach might be not practical for low‐frequency services,
such as long‐distance trains. In addition, skipping stops results in
higher concentrations of waiting passengers at the skipped stops. If
the stops are outdoors, this is not a major problem in terms of virus
transmission. If, however, we refer to stops in indoor spaces (e.g.,
metro stations), our approach might not result in a virus transmission
improvement.
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