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ABSTRACT Load forecasting has always been an essential part of power system planning and operation.
In recent decades, the competition of the market and the requirements of renewable integration lead more
attention to probabilistic load forecasting methods, which can reflect forecasting uncertainties through
prediction intervals and hence benefit decision-making activities in system operation. Moreover, with the
development of smart grid and power metering techniques, power companies have collected enormous
load data about electricity customers and substations. The abundant load data allow us to utilize medium
voltage measurement data to achieve better accuracy in high voltage transmission substation load forecasting.
In this paper, a bottom-up probabilistic forecasting method is proposed for high voltage transmission
substation short-term load forecasting, in which the probability distributions of medium voltage day-ahead
load forecasting values are estimated and added up to form high voltage load predictions. Two bottom-up
frameworks based on load patterns collected from medium voltage outgoing lines and substations are
proposed respectively, in which mismatches between load data at different levels are estimated for correcting
high voltage predictions. The comparison of predictions obtained by traditional and bottom-up methods
demonstrates that the proposed method obtains high voltage load forecasting more accurately and give
narrower prediction intervals.

INDEX TERMS Short-term load forecasting, bottom-up, medium voltage, load pattern, probabilistic load

forecasting.

I. INTRODUCTION

Load forecasting is important for power system operation
and control, specifically in generation dispatch, distributed
generation integration, reactive power control [1]. Traditional
transmission substation short-term load forecasting (STLF)
methods obtain deterministic forecasting values based on
potential regularity in historical load patterns.

In last decades, forecasting uncertainties neglected in
deterministic load forecasting become more and more con-
cerned, since the rapid developments of distributed gen-
erations, energy storage devices and electric vehicles [2].
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Therefore, probabilistic load forecasting (PLF) [3], [4] has
gained growing attention for its ability to quantify forecasting
uncertainty by constructing prediction intervals (PIs) [5].
At the present, deterministic and probabilistic forecasting
methods are still being improved for different STLF scenar-
ios [6], but it is worth mentioning that present forecasting
methods for high voltage (HV) transmission substation STLF
are mainly based on HV load data [7], which limit the amount
of information that can be used for HV load forecasting,
because an HV transmission substation itself contains limited
load measurement equipments.

Fortunately, with the development of the metering system,
abundant medium voltage (MV) and low voltage load data
have been collected by power companies [8], [9]. Along with
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FIGURE 1. Hierarchical relationships between users and substations.

HYV load data, a hierarchical structure can be constructed
containing load patterns at diverse levels and hierarchical
load forecasting (HLF) methods are proposed to improve the
predictions of different levels [10], [11].

Combining the advantages of PLF with HLF, hierarchical
probabilistic load forecasting (HPLF) is proposed to provide
comprehensive probability distribution for load series at dif-
ferent levels of a hierarchy [1]. During qualifying match of
Global Energy Forecasting Competition 2017 [12], a rep-
resentative two-step method is proposed for HPLF [13],
in which loads at different levels of the hierarchy are first
predicted independently and then adjusted according to the
inherent correlation between load data collected from differ-
ent levels. In [14], the implementation of HPLF is based on
load data collected from smart meters, and great attention is
paid to the coherency between load predictions of bottom and
upper levels. In [15], a weighted correction method based on
constrained quantile regression is introduced to adjust pre-
dictive distributions at the bottom level and achieve coherent
HPLFs.

As MV outgoing lines and MV substations usually supply
groups of users with relatively similar load patterns [16],
MV load patterns usually have clear regularities which can
be extracted for HV transmission substation STLF and hence
improve forecasting accuracy. Moreover, existing HPLF
methods ignore mismatches between load data at different
levels caused by network loss and measurement error.

Hence, with the train of thought similar to HPLE,
a bottom-up load forecasting method, which includes two
bottom-up frameworks based on measurement data collected
from MV outgoing lines and MV substations respectively,
is proposed for HV transmission substation day-ahead load
forecasting. It is a bottom-up method, because MV load
predictions at bottom level are first obtained individually
by a PLF method based on Feed-forward Neural Network
(FNN), and then aggregated for HV load predictions at upper
level. As MV data are collected in many countries and
regions, the proposed method has wide application prospects.
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In general, focus on the utilizing of MV, HV load data and
the aggregation relationship between them, this paper has the
following contributions:

1) A bottom-up method is proposed to improve proba-
bilistic load predictions by utilizing load data collected
in both HV and MV levels, which can obtain HV
transmission substation forecasts with better accuracy,
narrower PIs and stable evaluations.

2) For different application scenarios, two effective
bottom-up frameworks are proposed for probabilistic
STLF based on load data collected from MV outgoing
lines and MV substations respectively.

3) After probability distributions of MV load predictions
being obtained, the normality of these distributions and
the relevance between them have been analyzed for
efficient and correct aggregation of prediction inter-
vals.

4) Mismatches between MV and HV load data, which
mainly reflect network loss and measurement error, are
predicted by PLF method according to historical load
data and then used in correcting HV predictions.

This paper is organized as follows: section II gives
two bottom-up frameworks in terms of their data source.
Section III reviews a probabilistic load forecasting method
based on FNN for MV load predicting. In section IV, MV pre-
diction results are aggregated to HV predictions. Section V
presents case studies, and section VI concludes the paper.

Il. BOTTOM-UP FRAMEWORKS FOR HV TRANSMISSION
SUBSTATION SHORT TERM LOAD FORECASTING

A. DATA SOURCES FOR BOTTOM-UP FRAMEWORKS
Power system is a hierarchical system and Fig. 1 shows a
conceptual topology connecting power customers to an HV
transmission substation in China. This figure is based on both
the information provided by the local power company and
the system operation standard of China state grid. It shows
that load measurement data are mainly collected in 220kV
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HV transmission substations, 110kV HV subtransmission
substations, 10kV MV substations and power customers.

For an HV transmission substation, the load data collected
in it can be divided into two categories. The first category
contains the load data collected from HV side of transformers.
These data are commonly used for traditional HV trans-
mission substation load forecasting. The second category
contains the load data collected from substation outgoing
lines. These data are equivalent to the load data collected
in the HV subtransmission substations supplied by the out-
going lines, because one outgoing line in HV transmission
substation usually supplies only one HV subtransmission
substation.

As shown in Fig. 1, one HV transmission substation con-
tains 1-18 outgoing lines and hence supplies 1-18 HV sub-
transmission substations. One HV subtransmission substation
usually contains 1-24 MV outgoing lines and one MV outgo-
ing line can supply 1-30 MV substations. As a result, one HV
transmission substation could contain up to hundreds of MV
outgoing lines and supply thousands of MV substations. But
in practice, an HV transmission substation usually supplies
no more than one hundred MV outgoing lines and supplies
about one thousand MV substations. Each MV outgoing line
or MV substation supplies a relatively small area, where users
are prone to share similar power consumption behaviors.
Therefore, MV load patterns usually have clear regularities
which can be extracted for HV transmission substation load
forecasting.

Though MV load data are collected from both MV outgo-
ing lines and MV substations, the former are more accessible
while the latter are a bit harder to be accessed, because of
enormous involved load data and also because of barriers
between different databases. Sometimes, there is even no
available MV substation load data in some regions.

Cases in this paper are based on load data (96 points
per day) collected from two HV transmission substations
and their subordinate MV substations or MV outgoing lines
located in East China. The first substation, named substation
A in the following, only realizes the full collection of load
data from 56 MV outgoing lines, excluding MV substations,
so only load data of MV outgoing lines are available for
STLEFE. The second substation, named substation B in the fol-
lowing, realizes the full collection of load data from 996 MV
substations, so load data of MV substations can be used for
STLFE.

Therefore, for different application scenarios, two
bottom-up frameworks based on MV outgoing lines and
MYV substations load patterns are introduced respectively in
the section II.LB and section II.C. Besides, for simplicity,
HYV transmission substation will be called HV substation later
in this paper.

B. BOTTOM-UP LOAD FORECASTING FRAMEWORK
BASED ON LOAD PATTERNS OF MV OUTGOING LINES

An HV substation usually contains no more than one hundred
MV outgoing lines, so the loads of all MV outgoing lines
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can be predicted based on historical load patterns separately
within acceptable computation time, and then aggregated to
HV load prediction.

Because of the network loss and measurement error, load
patterns collected independently in MV level may not add up
to HV substation load pattern exactly. These mismatches are
called add-up error in our research, which will be discussed
in section IV.A.

Given an HV substation with K MV outgoing lines, its
day-ahead load prediction at time ¢ can be written as

K
Viva =9 I +eap t=1,....9 (1
=1

where yj, , is the day-ahead load prediction of HV substation,
V1.¢ is the day-ahead load prediction of the /th MV outgoing
line and &4, is the add-up error.

C. BOTTOM-UP LOAD FORECASTING FRAMEWORK
BASED ON LOAD PATTERNS OF MV SUBSTATIONS

Because an HV substation can supply about one thousand
MYV substations, it is rather time-consuming to predict loads
of every MV substations. Therefore, MV load patterns are
first clustered to extract their common regularities. Here,
classical K-means algorithm [11], [17] is adopted, whose
inputs are the normalized 96-dimension load patterns of MV
substations. Before clustering, each load pattern Y, iginai =
originai,1 - - - Yoriginal,96] in the data set are normalized by
max-min method, i.e.,

Yoriginal,t — min(Yoriginal)

max(Yoriginal) - min(Yoriginal) '

Ynormalized,t = (2)
where yoriginal,r and Ynormalized,: are the tth elements of
the original load pattern and the normalized load pat-
tern respectively. The optimal number of clusters is cho-
sen according to popular Davies-Bouldin index (DBI) [18],
i.e., the optimal number of clusters corresponds the minimal
DBI.

Because the normalized MV load patterns in each clus-
ter share similar regularity, they can be predicted together
to reduce prediction time consumption. To simplify total
load handling, the unnormalized MV load patterns in each
cluster are added up and predicted. Then, the HV load
prediction at time ¢ can be obtained similarly to that
of (1), where K is now the number of clusters, y; ; is the
load prediction of the I/th cluster, and &, is the add-up
error.

D. CLUSTERING RESULT OF MV SUBSTATIONS

Clustering results of 996 MV substations supplied by HV
substation B is taken as an example here. According to DBI,
the optimal number of clusters is 7 and Fig. 2 shows the
centroids of 7 types of MV substations. The first four clus-
ters contain more than 80% of the MV substations supplied
by HV substation B. These MV substations mainly supply
residential, commercial and utility loads with day-peak and
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FIGURE 2. 7 types of MV substation load patterns in HV substation B.

evening-peak load patterns. Meanwhile, the last three clusters
contain MV substations mainly supply agricultural, street
lamp and industrial loads with double-peak and night-peak
load patterns. It can be seen from the figure that all 7 centroids
capture the overall MV substation load patterns of corre-
sponding clusters, and that 7 centroids are different from each
other. All these features above indicated that the clustering
results are proper.

The added up load patterns of each cluster, which is used
in MV load prediction, are shown in Fig. 3. It can be seen
from the figure that the sums of load patterns in cluster 1,
2, 4 and 6 show obvious changes with time, especially at
6:00, 12:00 and 18:00. These regularities imply that above
patterns are easier to be predicted. The sums of load pat-
terns in cluster 3, 5 and 7 slope gently, but contain more
small fluctuations, which will bring uncertainties in their load
predictions.
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FIGURE 3. Sums of the MV substation load patterns in 7 clusters.

E. MV PROBABILISTIC LOAD FORECASTING

NNs have been used for MV load forecasting with their
approximation capability of nonlinear mapping [19], [20].
To cope with uncertainties in load forecasting, researchers
propose NN-based PLF methods [21], where a basic load
forecasting model is applied to historical data set repeatedly
to obtain multiple load predictions. With the probability dis-
tribution of these predictions, model and data noise variances
of the predictions are estimated and integrated to form the
prediction interval (PI).

Focus on the bottom-up PLF frameworks themselves,
the wide accepted feed-forward neural network (FNN) is
adopted in this paper as the basic forecasting model [22]. The
FNN-based PLF method will be introduced in section IIL.A.
However, to aggregate MV predictions more effectively, not
PIs but mean values and variances of MV load predictions
are obtained at first. After that, they are aggregated and hence
form PI at HV level. Therefore, the rest of section III mainly
discusses the estimation of mean values and variances, and
later, the formation of PIs will be discussed in section IV.D.

Ill. FNN-BASED PROBABILISTIC MV LOAD FORECASTING
A. FEED-FORWARD NEURAL NETWORK

FNN is a typical multi-layer network with one input layer,
one output layer and multiple hidden layers. For simplicity,
the FNN adopted in this paper has only one hidden layer, and
its structure is shown in the Fig. 4. As usual, full connections
exist between these layers and no connection exists in the
same layer.

Given N arbitrary training set

D = {1, )Y, ()

where x; = [xj1, xi2, - .., Xiq] is the input and y; is the target
of the train set. An FNN with n, hidden nodes and activation
function g(-) can be mathematically modeled as

f(xi;w,b,ﬂ)zZﬂjg(Wj~xi+bj), i=1,....,N, 4
j=1

where w; = [wj1,wp2, ..., wjd]T is the weight vector con-
necting the jth hidden node and the input nodes, and B; is
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FIGURE 4. Conceptual structure of feed-forward neural network with
single hidden layer.

the weight vector connecting the jth hidden node and the
output node, and b; is the threshold of the jth hidden node, and
f(x;;w, b, B) is the output of FNN. Activation function g(-)
is the most popular sigmoid function and the FNN is trained
by classic back propagation method.

As it shown in Fig. 4, when a trained FNN is adopted
to predict day-ahead load value at time ¢, the historical
load values in the last d days at the time ¢ are usually
chosen as the input x; of FNN, and d is determined in
section V.B.

Given a Ny arbitrary test set {x, y,}ivji’, where x; =
[x¢1, X2, - - ., x4q] s the input, y, is the real load value, N,y is
the number of test sample, and for day-ahead load forecasting
in our case, N5 = 96. With specific input x;, the prediction
of real load value y; can be denoted by y; = f(x;; w, b, B).
Then prediction errors of FNN are analyzed and quantified
by variances in following subsections.

B. COMPONENTS OF THE PREDICTION ERROR
At time ¢, the real load value y; can be regarded as the sum of
the prediction valuey; and a prediction error &, that is

vi=fxiw, b, B)+e& =3+, (5)

because the prediction error &; is mainly caused by model
misspecification and data noise [5]. Therefore, &, can be seen
as containing two components and written as

& = €&my + €t (6)

where ¢, ; is the error caused by the model misspecification
and g4 ; is the error caused by data noise.

Assuming two error components in (6) are independent and
both subject to Gaussian distribution, the variance atz of the
prediction errors &; can be written as

2_ .2 2
Of = Ops T 04 @)
where 02, is the model misspecification variance corre-

sponding to &, ;, and 03, is the data noise variance corre-
sponding to &4 ;.

C. ESTIMATION OF MODEL MISSPECIFICATION VARIANCE
In (6), m ¢ is mainly caused by the randomly generated initial
parameters of FNN and the so caused local minima in the
training process. In addition, even if the global minimum
can be reached, the misspecification of model structure also
introduces non-negligible uncertainty in predictions [5].

VOLUME 9, 2021

Therefore, to estimate model misspecification variance
0,121’ ;» B FNNs with random weights w, 8 and threshold b are
trained with the same data set to predict day-ahead load at
time 7. If yj, ; is the prediction given by the Ath FNN, the mean

value of prediction given by all B FNNs can be expressed as

1 B
%zggﬁp 8)

Later, j; will be taken as the deterministic prediction of y;.
Based on 7y, the model misspecification variance 0”21’ , can
be estimated from the outputs of the trained B FNNs as

B
1
2 ~\2
Ot = B_1 };@h,t — ). )

D. ESTIMATION OF DATA NOISE VARIANCE

It is difficult to quantify the data noise variance, consider-
ing the heteroscedasticity characteristic in measurement data
noise. From [23], the historical data noise variance condi-
tioned on the training input set variables x; in (3) can be
estimated as

o3 = El; — 3 lil. (10)

Specifically, based on B trained FNNs in section IIL.C, if ¥y, ;
is the estimation of y; given by the hth FNN, historical data
noise variance O’ii can be calculated by

B
1
2 ~ 2
%di = 51 hE_l(yz' — Vhi)"- (11)

To obtain the day-ahead data noise variance at time ¢, a new
training set D, is formed via replacing the targets y; with 03 ;
in (3), and given as

Do, = {(xin o7 DIV ;. (12)

Then, with input x; and according to (4), data noise variance
(73’ ; 1s predicted by FNN trained with (12).

So far, MV probabilistic load prediction at any time f,
which includes deterministic prediction y; and prediction
variance o2, can be obtained. In the section IV, MV proba-

bilistic load predictions are aggregate to HV load prediction.

IV. HV SUBSTATION PROBABILISTIC LOAD
FORECASTING BASED ON BOTTOM-UP FRAMEWORKS
To accurately aggregate MV probabilistic load predictions to
the HV substation probabilistic load prediction, the following
three aspects should be addressed:

(1)Add-up errors mentioned in section II.B should be con-
sidered.

(2)The probability distributions of MV load predictions
should be modeled.

(3)The relevances between MV load prediction distribu-
tions should be determined.
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A. ADD-UP ERRORS

Add-up error ¢, mentioned in section II.B mainly originates
from distribution network losses and power measurement
errors. The former relate to MV load patterns, which change
with time regularly, and hence can be predicted. The later
usually introduce small irregular variations in the pattern of
&4, which are hard to predict and will bring uncertainties to
the predictions.

The predictable network losses are accounted as major
part of add-up error ¢4, and the power measurement errors
can be seen as data noise. Therefore, the FNN-based PLF
method introduced in section III is utilized here to obtain the
probabilistic prediction of &, based on its historical values.
Specifically, similar to (3), an add-up error training set D,
with N arbitrary is given as

D, = {€ais Veu.its (13)

where the ith input e, ; = [&4,i1, €a.12, - - - » €a,ia] 15 historical
add-up error and target y,_ ; is the corresponding day-ahead
add-up error. Then deterministic prediction y,, , and predic-
tion variance agza .+ of day-ahead add-up error at time 7 can be
obtained according to (4)-(12).

Taking the HV substation A with 56 MV outgoing lines
as an example, daily add-up errors between HV substation
load pattern and the sum of outgoing line load patterns
in 1095 days from April 2016 to April 2018 are shown
in Fig. 5. To measure the accuracy of add-up error prediction
based on FNN, mean absolute percentage error (MAPE) is
used as an index to evaluate the prediction errors, which is
defined by

Ntext P
100% -
MAPE = —2 2 (14)

test ) Yt

where y; and y; are real value and prediction value. The
minimum and average MAPE of add-up error predictions
are 6.08% and 11.61%. For comparison, the MAPEs of
day-ahead load predictions obtained by FNN is about 5%-
10% [24]. The MAPE:s of add-up error predictions are slightly
larger but still acceptable, which imply it is feasible to predict
add-up error according to its historical values.

B. PROBABILITY DISTRIBUTION OF MV LOAD
PREDICTIONS

The probability distributions of MV load predictions are hard
to be investigated theoretically, therefore they are studied
and modeled statistically here. More specifically, the MV
load pattern are predicted by FNN for many times, and then
the prediction distribution are formed empirically through
the obtained predictions. As examples, two outgoing lines
with typical and untypical load patterns are studied in the
following.

Load patterns of these two outgoing lines on August 27
2018 are predicted 1000 times by FNN to form the empirical
distributions of predictions, and Fig. 6(a) shows prediction
distributions of the first outgoing line. The mean value of
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FIGURE 7. Probability distributions of predictions in outgoing line with
untypical load pattern.

these predictions are also plotted with red line in this figure.
It can be seen that most of the predictions are concentrated
around their mean value, which accords with the characteris-
tic of Gaussian distribution.

Therefore, the corresponding Gaussian distributions are
calculated according to mean value and variance of above
1000 predictions to fit the empirical prediction distribution.
Fig. 6(b) shows part of the distributions in Fig. 6(a) at three
specific times. There are 3 pairs of curves in Fig. 6(b) cor-
responding to 3 specific times at 0:00, 12:00, and 22:30
respectively. The dotted curves show the fitted Gaussian dis-
tributions calculated according to corresponding mean value
and variance of predictions, while the other curves in the pairs
show the empirical distributions of predictions. In Fig. 6(b),
each pair of curves are broadly coincide with each other,
which imply the predictions at all three times are subject to
Gaussian distribution. Similarly, Fig. 7 shows that the predic-
tions of untypical load pattern are also subject to Gaussian
distribution.

In addition to these examples above, prediction distribu-
tions of all outgoing lines in HV substation A are tested,
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FIGURE 8. Empirical joint distribution and calculated joint distribution.
Figure(a) shows the empirical joint distribution formed through repeated
experiments, and figure (b) shows the joint distribution calculated
according to joint distribution function.

and the MAPE between all the empirical and fitted Gaussian
distributions is 1.34%. The minor MAPE further verifies
the predictions obtained by FNN are generally subject to
Gaussian distribution.

C. RELEVANCE TEST OF MV LOAD PREDICTIONS
Independence of MV load predictions is tested as the first
step of relevance test. Mutual independence of two Gaussian
variables can be tested according to the independence theo-
rem [25]: for two mutually independent Gaussian variables y;
and y», their joint distribution function is equal to the product
of their marginal distribution functions, and can be expressed
as
I
fOL2) = e i RCI (15)
(2moy07)

where 1,7, a]2 and 022 are expectations and variances of the
two Gaussian variables. According to above theorem, if two
Gaussian variables are mutually independent, the joint distri-
bution of them can be calculated through their mean values
and variances. Hence, if the calculated joint distribution is
same as the empirical joint distribution obtained according to
repeated experiments, above two Gaussian variables can be
verified to be mutually independent.

For example, mutually independence of load predictions of
two outgoing line A and line B, at 12:00 on August 27 2018,
are tested as follows. First, 100000 times load predictions
of two outgoing lines are used to form the empirical joint
distribution, and a sample matrix of this distribution is shown
in Fig. 8(a).

Then, based on load predictions in above outgoing lines,
the joint distribution function is calculated according to (15),
where the load predictions in line A and line B is taken
as y; and y», y; and y; are 0.2116 and 6.1983, o and o,
are 0.6338 and 0.5062. The sample matrix formed through
calculated joint distribution function is shown in Fig. 8(b).
The MAPE between two joint distribution sample matrices
is 3.03%, which implies the mutual independence of load
predictions of outgoing line A and B.

Furthermore, load predictions of all 56 outgoing lines are
paired and tested. The average MAPE between the empirical
and calculated joint distributions of these pairs is 3.16%.

VOLUME 9, 2021

Hence, predictions in each two outgoing lines can be regarded
as mutual independent.

D. AGGREGATION OF MV PROBABILISTIC LOAD
PREDICTIONS

Because the load predictions of MV outgoing lines and sub-
stations are independent and subject to Gaussian distribu-
tion, MV probabilistic load predictions can be aggregated by
simply adding up deterministic predictions y; and prediction
variances otz [26]. More specifically, if J;; is the day-ahead
deterministic prediction of the /th MV outgoing line or MV
substation cluster, day-ahead deterministic load prediction of
HV substation can be expressed as

K
Vhve =D St + Ve t=1...,9.  (16)
=1

Meanwhile, if alzt is the variance of the load predictions of the
Ith MV outgoing line or MV substation cluster, the variance
of HV substation day-ahead load predictions can be expressed
as

K
Oy =D 0f 02, t=1,...96. (17)
=1

With deterministic prediction yp,,, and prediction variance
o;%v’ ,» the PI of the target HV substation with 100(1 — a)%
nominal confidence (PINC) at each time ¢ is a stochastic
interval I expressed as

I8 = (L8, UPL, (18)

where the coverage rate P(y;€l;*) = 100(1 — a)%. The lower
bound L and the upper bound U/ can be obtained by

LY =Thvt — 2-a/2y/ 0 1 (19)
U = Vvt +Z1—a/2\/0;?v’t, (20)

where z1_q/2 is the critical value of the standard Gaussian
distribution [5], which depends on the desired confidence
level 100(1 — )%.

E. PROCEDURE OF PLF WITH BOTTOM-UP FRAMEWORKS
To obtain HV probabilistic load prediction at time ¢, the pro-
cedure of PLF with bottom-up frameworks can be summa-
rized as

1) Bottom-up framework should be chosen according to
available MV load data. If MV substation load data are
available, go to step (2). If there are only outgoing line
load data, go to step (3);

2) Based on section II.C, MV substation load patterns are
clustered with K-means algorithm, and the sum of load
patterns in each cluster is calculated;

3) Based on PLF method introduced in section III, deter-
ministic MV load predictions y;; and correspond-
ing prediction variances O'IZJ are obtained according
to (8)-(11);
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FIGURE 9. MAE of different parameters in FNN.

4) Based on the method proposed in section IV.A,
the deterministic prediction of add-up error y,, ; and
corresponding prediction variance o, 2 . are obtained;

5) The deterministic predictions and predlctlon variances
of MV loads and add-up error are aggregated to
calculate the deterministic load prediction yj,; and
prediction variance oh .+ of HV substation according
to (16) and (17), and then PIs are obtained according
to (18)-(20).

The flowchart of the proposed method is shown in Fig. 9.

V. CASE STUDIES

A. CASES INTRODUCTION

Two cases are organized based on load data collected in
HV transmission substations A and B from January 2016 to
December 2018, to test bottom-up frameworks based on
MYV outgoing line and MV substation load data respectively.
Predictions obtained by FNN-based PLF with and without
bottom-up frameworks are analyzed and compared to show
the effectiveness of bottom-up frameworks. The load pat-
terns of MV outgoing lines and MV substations are provided
by local power dispatch center and marketing department
respectively.

The first case is organized based on load patterns of MV
outgoing lines supplied by HV substation A, to test the
bottom-up framework based on load patterns of MV outgoing
lines. The average load of these outgoing lines is 1.216 MW.

The second case is organized based on load patterns of
MV substations supplied by HV substation B, to test the
bottom-up framework based on load patterns of MV substa-
tions. The average load of these MV substations is 0.354 MW.

B. EVALUATION INDEXES

Besides MAPE defined as (14), mean absolute error (MAE),
root mean square error (RMSE), and R2 score are also
adopted to evaluate deterministic load predictions obtained
by different methods, which are defined by

Nleﬂ

Z e =il 1)

test =1

MAE =
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Ntest
RMSE = Z(Yt ~J0%, (22)
R2 _ 1 ZNtest(y _yt) (23)
ZN’B” O — )’t)

where 3 = (N4 1) /Niest.

For probabilistic load predictions, PI coverage probability
(PICP), average coverage error (ACE), prediction interval
normalized average width (PINAW) and quantile score (QS)
are adopted to evaluate the quality of PIs. PICP is used to
measure the proportion of real values lying within the bounds
of PIs, which is defined by
NTES[

ct, (24)
=1
where c¢; is the indicator of PICP and is defined by

PICP =

test

1, I
(=1 e (25)
O, Vi ¢ It .
Meanwhile, the PICP should be close to its corresponding
PINC. So another evaluating index, ACE [1], is defined by

ACE = PICP — PINC. (26)

Smaller absolute value of ACE infer implies stable and effec-
tive Pls.

In practice, there may be PIs with high PICP but large
width. Therefore, PINAW [27] is adopted to measure the
width of PIs, which is defined by
NI@S!
oW -1y, (27)

test =1

PINAW =

where R is the difference between the maximum and the
minimum real load values in test case.

Moreover, quantile score is adopted to evaluate the
obtained PIs. At time ¢, the quantile score [28] of a quantile
forecast g, at the level o € (0, 1) can be defined by

QS?(C]n v =2({yr < q:} — o)(gqr — y1). (28)

In this paper, the upper bound U/ and lower bound L of
PI with 100(1 — )% PINC is equal to g, at level « and level
1 —a respectively. Therefore, the QS of the PI with 100(1 —«)
PINC can defined by

=2a(UY —y;) —2a(L¥ —y), y>UY
087 ={2(1—a) (U —y)—2a(LZ —y,)), yel® (29
2(1 — a)(UY + L —2y)), ye <Ly

Similar to [29], in order to evaluate the overall performance of
a method in providing reliable PIs with different PINC, OS}
of PIs with PINC from 1% to 99% is obtained. Then, for a test
case with N5, samples, the overall quantile score QS can be
obtained and written as

Nies: 99

> oS (30)

t=1 i=1

1
TN test
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FIGURE 10. MAE of different parameters in FNN.

C. DETERMINATION OF PARAMETERS IN FNN

The number of hidden nodes n;, and the size of input set d
are two important parameters in FNN. For normal weekdays
and special dates such as weekends, two methods are used
to determine the input of the FNN, and an exhaustive search
is carried out to optimize the corresponding nj, and d. The
validation set used to optimize the parameters is the last two
weeks before the target day.

For weekdays, historical load data in previous d days
are chosen as the input of the FNN. For special days like
weekends, load data in similar days are chosen as the input of
the FNN. Pearson coefficients [30] between the load patterns
of weekends in the validation set and their adjacent days are
calculated to measure the correlations among them and lead
the selection of similar days. Then the load data in the most
similar d days are selected to form the input set.

In the exhaustive search, the values of n;, and d are set to
1 to 30, and 30 x 30 combinations of these values are applied
to FNNs. For weekday or weekend load forecasting, MV load
predictions of weekdays or weekends in the validation set are
given by these FNNs and the average MAEs of predictions
obtained by FNN with specific n;, and d are assessed. The
optimal combination of nj, and d corresponds to the minimal
MAE. Take parameter optimization in a weekday in summer
as an example, as seen in Fig. 10, when n, = 16 and d =
12, MAE of the accessed predictions reaches its minimum
2.4225.

For the training of FNN, Fig. 11 shows the average train-
ing process of FNN in our case, where the MAE decreases
73.51% in first 5 iterations, and on average, MAE drops to
minimum and remains stable within 20 iterations.

D. HV LOAD FORECASTING BASED ON OUTGOING LINE
LOAD PATTERNS

Bottom-up framework based on load patterns of MV outgoing
lines is tested in this section. Load pattern of HV substation
A in August 27 2018 is predicted and analyzed here, because
substation load patterns fluctuate greatly due to the climate
variations in summer, which can better reflect performances
of the proposed method.

To verify the validity of FNN, deterministic load predic-
tionsy; of two MV outgoing lines with typical and untypical
load pattern are shown in Fig. 12. For load prediction of the
outgoing line with typical load pattern, the MAPE is 5.06%
and the MAE is 0.0268. For the outgoing line with untypical
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FIGURE 12. Day-ahead load patterns of two outgoing lines predicted by
FNN.

TABLE 1. Performance comparison of proposed bottom-up method
based on load patterns of MV outgoing lines and traditional method.

Method Deterministic predictions PIs with 90% PINC Qs
MAPE MAE R2 RMSE ACE PICP PINAW

Bottom-up | 2.43% 2.4495 0.8442 03144 | -042% 89.58% 15.1157 | 162.00

traditional | 3.96%  3.9235 0.5502 0.5533 | 7.90%  97.90%  23.1059 | 245.51

TABLE 2. Performances of the proposed method in one-week rolling
predicting test.

| Aug.27 Aug.28 Aug.29 Aug.30 Aug.31  Sept.1  Sept.2
MAPE | 2.47% 2.24% 2.25% 2.42% 2.76% 2.87% 3.51%
ACE 042%  -1.46% 2.70% -1.46% 5.83% -13.96%  -3.55%

load pattern, the MAPE is 5.41% and the MAE is 0.287. The
minor prediction errors show that the FNN is effective in MV
load forecasting.

TABLE 1 compares the performances of bottom-up
method and traditional PLF method, where the later is actu-
ally FNN-based PLF method only based on HV substation
load patterns. For deterministic predictions, the proposed
method obtained more accurate predictions with smaller
MAPE, MAE, RMSE and higher R2 score. For PIs with
90% PINC, the proposed method obtains more reliable Pls
with PICP closer to 90% and ACE closer to zero. According
to PINAW, it should also be noted that PIs obtained by
bottom-up method are significantly narrowed by 34.58%.
Moreover, the QS of the proposed method is higher than that
of the traditional method.

Fig. 13 shows the predictions of HV substation load pat-
tern obtained by bottom-up PLF method and traditional PLF
method. Compared with the traditional method, deterministic
load prediction Yy, given by bottom-up method conforms to
the real load pattern with only slight fluctuations. Moreover,
the bottom-up PLF method obtains obviously narrower PIs.
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TABLE 3. Performance comparison of the proposed method and other popular probabilistic STLF methods in probabilistic predictions for cases in

different seasons.

Season Method 99% PINC 90% PINC 50% PINC 10% PINC Qs
ACE PICP PINAW ACE PICP PINAW ACE PICP PINAW ACE PICP PINAW
Bottom-up | 1.00% 100% 0.4458 -042%  89.58%  0.2846 6.25% 56.25%  0.1415 1.62%  11.62%  0.0264 | 162.00
Summer persistence | 1.00% 100% 1.2235 2.71% 92.71%  0.7813 3229%  82.29%  0.3417 17.08%  27.08%  0.0504 | 254.51
ESM 1.00% 100% 1.6577 -1.71% 82.29%  0.3909 | -35.02%  14.98%  0.2659 -5.83% 4.27% 0.0186 | 448.41
BELM -1.08%  97.92%  0.6055 -042%  89.58%  0.3867 | -25.00% 25.00%  0.1594 -3.75% 6.25% 0.0277 | 207.63
RBM -6.29%  92.71%  0.4762 -1.46% 88.54%  0.4720 8.33% 58.33%  0.1952 -2.71% 7.29% 0.0363 182.14
LQREC 1.00% 100% 0.6967 3.75% 93.75%  0.4449 | -35.42%  14.58%  0.1824 -1.67% 8.33% 0.0340 | 181.34
Bottom-up | 1.00% 100% 0.5491 1.64% 91.64%  0.3507 2.92%  47.08%  0.1441 -3.75% 6.25% 0.0268 | 181.49
Autumn persistence | -1.08%  97.92%  1.4713 -2.71% 92.71% 09395 | -15.63%  34.37%  0.3160 12.92%  22.92%  0.0589 | 263.27
ESM 1.00% 100% 2.0890 -2.50% 87.50%  0.4853 -833%  41.67%  0.1525 5.62% 15.62%  0.0283 | 248.02
BELM -1.08%  97.92%  0.5822 -146%  88.54% 03718 | -17.71%  32.29%  0.1952 -4.79% 5.21% 0.0364 | 206.57
RBM -837% 91.63%  0.7098 | -2438%  65.61% 04532 | -20.83% 29.17%  0.1856 -6.88% 3.12% 0.0346 | 217.96
LQREC -3.17%  96.82%  1.0622 | -16.04%  73.96%  0.6783 1.04% 51.04% 02781 | -042%  9.58% 0.0518 | 219.82
Bottom-up | -1.08%  97.92%  0.4431 0.63% 90.63%  0.2830 -208% 47.92%  0.1207 | -042%  9.58% 0.0225 102.21
Winter persistence | -6.29%  92.71%  1.4680 4.58% 8542% 09374 | -15.63%  3537%  0.1807 -4.79% 5.21% 0.0337 | 206.57
ESM 1.00% 100% 2.1482 -042%  89.58%  0.4791 3.13% 53.13%  0.1410 9.79% 19.79%  0.0196 147.12
BELM -3.16%  95.83%  0.9571 -2.50% 87.50%  0.6112 | -12.50%  37.50%  0.1734 -0.63% 9.37% 0.0323 123.61
RBM -2.12%  96.88%  1.0867 -6.67% 83.33%  0.6335 | -15.63% 3437%  0.2791 -4.79% 5.21% 0.0456 | 126.62
LQREC 1.00% 100% 1.1360 4.79% 94.79%  0.7254 8.33% 58.33%  0.2975 4.58% 14.58%  0.0554 119.20

TABLE 4. Performance comparison of proposed method and other
methods in deterministic predictions and calculation times for cases in
different seasons.

load data on August 27 in training and input set will be
replaced by corresponding deterministic load predictions.

The performances of the proposed method in rolling test

are evaluated by MAPE and ACE in TABLE 2. For the deter-
ministic predictions, the MAPEs are stable and within 2.5%
in first four days, and then gradually increase with time. For
PIs, the ACEs are within 3% in the first four days, and begin
to lose its accuracy since the fifth day.

E. PERFORMANCE OF THE PROPOSED METHOD OVER
SEASONS
Outgoing line based bottom-up PLF method is adopted to
predict load patterns of HV substation A in different seasons,
to test the effectiveness of the proposed method in dealing
with different data sets. The load predictions of HV substation
A on October 22 2018 (autumn) and December 17 (winter)
are shown in Fig. 14(a) and Fig. 14(b) respectively.

Season Method MAPE  MAE R2 RMSE Time
Bottom-up | 2.47%  2.4887 0.8428 0.3194  200.18s
Summer persistence | 3.36%  3.3872  0.6688  0.4570 21.47s
ESM 3.11% 29670 0.7472  0.3565 40.65s
BELM 2.61% 25872 0.8194 0.3385 12.94s
RBM 2.77%  2.8532  0.8120 03866  234.25s
LQREC 2.56%  2.5604 0.8403 0.3270  248.43s
Bottom-up | 3.24%  3.1978 0.7029  0.3039  183.30s
Autumn persistence | 5.48%  3.4773  0.4929  0.4238 21.02s
ESM 3.25% 25229 0.7091 03110 40.89s
BELM 2.68% 2.1780 0.8182  0.2396 12.67s
RBM 795%  7.6034 0.3353 0.5682  232.140s
LQREC 2.72%  2.0905 0.8937 02791  244.50s
Bottom-up | 2.55% 2.0772 0.8292 0.2635  169.98s
Winter persistence | 2.57%  2.1490  0.7482  4.0257 21.17s
ESM 296%  2.6653 0.8142 0.3353 43.29s
BELM 2.85% 25496 08116 03106 8.61s
RBM 327%  2.8241 0.5912 0.5474  226.23s
LQREC 2.88%  2.5556 0.8058 0.2927  236.62s
130, 130,
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FIGURE 13. PIs with nominal confidence 90% obtained by bottom-up and
traditional methods in summer based on MV outgoing line load patterns.

The proposed method is also tested by predicting load not
one day but several days ahead. A one-week rolling load
predictions of HV substation A from August 27 to Septem-
ber 2 in 2018 is obtained by the proposed method, where
deterministic predictions in the previous days are included in
the input set to obtained load prediction in the next day. For
example, to obtain load predictions on August 28, historical
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In order to better show the performances of the pro-
posed method, a comprehensive table including perfor-
mance comparisons between cases in different seasons is
shown as TABLE 3 and TABLE 4. The proposed bottom-up
PLF method is compared with five popular PLF meth-
ods including persistence method [31], exponential smooth-
ing method (ESM) [32], bootstrap-based extreme learning
machine method (BELM) [5], reconciled boosted models
(RBM) [13] and linear quantile regression and empirical
copulas based day-ahead HPLF method (LQREC) [15].

As it is shown in TABLE 3, for Pls, all PINAWSs of the
proposed method are smaller than the other methods. For
example, compared with persistence, PIs are narrowed more
than 50% on average. At the same time, QSs of the proposed
method are smaller than the other methods in all three sea-
sons, which indicate the high reliability of the constructed
PIs. In terms of PICPs and ACE:s, all PICPs of the proposed
method are close to corresponding PINC, and all ACEs of
the proposed method are close to zero, especially in summer
and winter. For example, in summer, the proposed method
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TABLE 5. Performance comparison of traditional method and proposed bottom-up method based on load patterns of MV substations (Bottom-up? is
performed with the clustering step introduced in section I1.D while Bottom-up?® is not).

Deterministic predictions PIs with 90% PINC .
Method " ¥7apE— MAE ~ R2  RMSE | ACE pcP PpNAW | O ‘ Time
Bottom-up® | 1.80%  7.7131 0.9667 1.5112 6.88% 96.88 % 0.1504 1156.10 385.56s
Bottom-upP 2.84%  8.1529 0.9628 1.5947 | -16.04%  83.96% 0.1070 1819.59 | 23647.55s
traditional 3.23% 13.949  0.9611 1.6340 | -5.62% 84.38% 0.2102 1399.38 13.79s
11 90, 50 200
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FIGURE 14. PIs with nominal confidence 90% of HV substation A in
autumn and winter.

has absolute ACEs at all confidences around 1%, which are
smaller than or equal to those of the other five methods.
However, in autumn, PICPs and ACEs of BELM and LQREC
are better than those of the proposed method.

As it is shown in TABLE 4, for deterministic predictions,
the proposed method obtains predictions with small MAPEs,
MAEs, RMSEs and high R2 scores in all three seasons,
especially in summer and winter. For calculation time, both
the proposed method and LQREC are rather time consuming
when compared with persistence, ESM and BELM. It is
because that the proposed method and LQREC need to pre-
dict loads of every MV outgoing line and then form HV
substation load predictions, while the other methods directly
predict the loads of HV substation. However, it should be
noted that the proposed method and LQREC are focus on
day-ahead PLF problems, and hence calculation time will
not limit the application of them significantly. Moreover,
the proposed method is performed serially in this test. Since
load predictions of different MV outgoing lines and MV sub-
stations are obtained independently, MV load forecasting can
be performed in parallel to reduce the total time consumption.

In general, for probabilistic predictions, the proposed
method outperforms other approaches with the narrower PIs
and higher QS in all three seasons, and ACE closed to zero
in nearly 60% circumstances. For deterministic predictions,
the proposed method provides reliable deterministic predic-
tions in all three seasons and outperforms other approaches
in summer and winter.

F. HV LOAD FORECASTING BASED ON MV SUBSTATION
LOAD PATTERNS

Bottom-up framework based on MV substation load patterns
is tested in this section, where the load pattern of HV substa-
tion B in August 27 2018 is predicted and analyzed. The MV
substations supplied by HV substation B have been divided
into 7 clusters according to their load patterns in section IL.D.
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FIGURE 15. Day-ahead load patterns of two clusters of MV substations
predicted by FNN.
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FIGURE 16. PIs with nominal confidence 90% obtained by bottom-up and
traditional methods in summer based on MV substation load patterns.

The day-ahead load patterns of cluster 1 and 2 are predicted
by FNN and shown in Fig. 15 as an example. For the load
prediction of cluster 1, the MAPE is 4.90% and the MAE is
0.772. For the load prediction of cluster 2, the MAPE is 2.33%
and the MAE is 2.187. The minor prediction errors show that
the classic FNN is effective to predict day-ahead load patterns
of substation clusters.

To illustrate the motivation of applying clustering in this
bottom-up framework, experimental comparisons between
bottom-up? framework with clustering and bottom-up®
framework without clustering have been provided in
TABLE 5. As seen in TABLE 5, compared with the frame-
work without clustering, the framework with clustering
obtains better deterministic predictions and more reliable PlIs
with better ACE and QS. More importantly, the calculation
time of the framework without cluster are about 60 times
longer than that with clustering. In summary, better accuracy
and relatively shorter calculation time motivate the usage of
clustering rather than simply combining the load predictions
of every MV substations.

Compared with the traditional method, as seen in
TABLE 5, the proposed bottom-up? method with cluster-
ing obtained deterministic prediction with smaller MAPE,
MAE, RMSE and higher R2 score. At the same time, though
two methods obtain PIs with similar ACEs, PIs obtained by
the proposed method is significantly narrowed by 35.11%

76561



IEEE Access

Z. Jiang et al.: Bottom-up Method for Probabilistic STLF Based on MV Load Patterns

according to PINAW. Moreover, the QS of the proposed
method is higher than that of the traditional method.

The load predictions obtained by bottom-up? method with
clustering and traditional PLF method are shown in Fig. 16.
It can be seen that deterministic load prediction given by
bottom-up method conforms to the real load pattern, and the
PIs obtained by the proposed method are obviously narrower
than that obtained by traditional method.

Compared with bottom-up framework based on load pat-
terns of MV outgoing lines, the framework based on MV
substation load pattern obtains PIs with higher PICP, which
implies the PIs cover more real values than expected. It may
be caused by the smooth load patterns of HV substation B.

VI. CONCLUSION
A bottom-up probabilistic load forecasting method based on
MYV load data is proposed for HV substation STLF, which
contains two specific bottom-up frameworks utilizing load
data collected from MV outgoing line and MV substation
respectively. In the proposed frameworks, predictions of MV
loads and add-up error are obtained and aggregated to HV
load predictions. Before the aggregation, probability distribu-
tions of MV load predictions are verified to be independent
Gaussian distributions, which enable us to efficiently and
correctly aggregate HV load prediction from MV ones.

Comprehensive numerical cases in different seasons have
been studied based on MV load data in East China. Compared
with traditional PLF methods, bottom-up method endows
load predictions with better accuracy and narrower prediction
intervals. This implies the proposed method has great poten-
tial for providing better HV transmission substation load
predictions, which can help to establish generation schedules,
distribute generation, analyze load flow and monitor over-
loads of HV transformers or transmission lines.

In future studies, more state-of-the-art NN models rather
than FNN will be considered in the bottom-up PLF frame-
works to further improve the prediction accuracy.
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