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A B S T R A C T   

Electricity demand presents a repetitive pattern following daily, weekly and seasonal patterns. However, factors 
like temperature or social events tend to disrupt these patterns introducing outlying data that is difficult to 
forecast. This paper introduces a new methodology to classify special days without any prior knowledge of the 
database. Simple classification of special days into two or three categories is insufficient as the consumers’ 
behavior has many shades on these days. However, classifying special days in a wide range of categories required 
a deep understanding of the consumers’ behavior on different days and periods of the year. The methodology 
proposed describes an algorithm to automate this classification starting from a simple day-of-the-week classifi-
cation and branching into as many categories as needed to fit a real database. Categories with similar profiles are 
merged to avoid overfitting and actual outliers are detected to ensure that no false categories are created. The 
methodology is developed using data from 2010 to 2017 and tested in three different systems. The benchmark 
used is the classification used by the Transmission System Operator in Spain and the test show that the proposed 
methodology provides more accurate results without the need of an expert to develop the classification.   

1. Introduction 

Short-term load forecasting (STLF) is a key task of a Transport Sys-
tem Operator (TSO) in order to ensure the efficiency and technical sta-
bility of the system while keeping the costs as low as possible. STLF is an 
active topic of research and so has been for several decades. Technology 
advances and availability of large amounts of data along with changing 
consumer’s behavior and distributed generation make the forecasting 
problem more complex, making STLF research an ongoing task in an 
ever changing environment. 

One aspect of STLF that has been overlooked on most load fore-
casting research is the effect of special days. On some occasions, the 
treatment that the proposed forecasting systems apply to special days is 
not detailed, and their reported errors is not disaggregated to assess the 
accuracy of their forecast on these special days [1]. However, holidays 
and special days tend to be responsible for the largest errors in fore-
casting systems and, therefore, represent significant losses. 

STLF research focuses mainly on the design of forecasting engines. 
Several techniques have been used since its early beginning: linear 
regressive models [2–4], neural networks [2, 5, 6] and different types of 
artificial intelligence like evolutionary algorithms [7, 8] or fuzzy logic 
[5, 7, 9]. More advanced techniques are based on deep learning tech-
niques [10] like long short-term memory (LSTM) [11] or deep 

convolutional neural networks (DCNN) [12]. The proposed holiday 
classification method is compatible with the use of any of these 
techniques. 

However, the most relevant factor or innovation in a forecasting 
model may not be the forecasting engine but rather the input selection 
and data processing that feeds the engine. The literature review will now 
focus on input treatment after the superficial review of engines pre-
sented before. 

Input variables are normally either environmental (weather) or 
socio-economic. Temperature or humidity are usually considered but 
there are multiple ways to pre-treat data [2, 4, 13–17]. Socio-economic 
trends need to be taken into account and can be included in the model by 
using polynomial functions of time [6] or by using moving functions of 
previous loads [2]. If the training period is short enough and the model 
is retrained frequently it can even be ignored [13]. Nevertheless, the 
most relevant source of daily variations in electricity demand is the type 
of day. The main differences stem from the days of the week, but there 
are other factors like national holidays, days adjacent to a holiday, 
partial holidays, common vacation periods and other calendar factors 
that cause the load profile of a day to change drastically. 

The most common classification used in STLF is simply to use two or 
three large groups labeled as weekdays, weekends and holiday periods 
[18–21]. In some cases, in which special-day classification is done based 
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on the demand pattern, more groups (five [22], fifteen [23]) of special 
days may be used. Generally using a larger number of groups yields a 
more accurate forecast than using three days because the load profiles of 
special days may vary in a wide range [22, 24]: Fig 1 shows how both a 
holiday on a Thursday and the following Friday have a lower load than 
the same days on adjacent weeks. Nevertheless, this reduction is 
significantly different for the holiday than for the next day. 

The day of the week not only influences regular days (Monday’s 
profile is different than Friday’s) but also changes special days [25–27]: 
a given holiday may alter the load profile differently if it lays on a 
Monday than if it lays on a Sunday. In addition, adjacency to special 
days may also cause variations that interact with the day of the week: 
holidays on Tuesdays or Thursdays cause larger reductions in the pre-
vious or following days than if the same holiday lays on a Wednesday 
because the adjacent day (Monday or Friday) is in between non-working 
days [22, 25, 26, 28]. 

In [27], a study of Korean holidays points out that holidays that lay 
on a Monday or a Saturday incur on the largest forecasting errors. 
Therefore, it classifies special days into four groups (Tuesdays, 
Wednesdays, Thursdays and Fridays; Saturdays; Mondays; Sundays). 
This work only classifies according to the day of the week and, even 
though it reduces the forecasting error, it appears that using a wider 
range of factors would yield a more accurate forecast. In [24], the day of 
the week and the month are used to model the effect of seasonality on 
electricity consumption. Furthermore, a set of three variables are 
included to distinguish the effect of holidays, days after a holiday and 
Easter holidays. A classification based on the profile of the curves is used 
in [28]. It determines that three categories are needed (weekdays; Sat-
urdays; Sundays and holidays). This work proposes a set of rules that 
take into account the vicinity of the forecast day to a holiday but it does 
not distinguish among different types of holidays. Five different cate-
gories are used in [22]: weekdays, Saturdays, Sundays, Mondays, holi-
days. The proposed model uses a separate NN for each category and a 
fuzzy inference model forecasts the maximum and minimum of the load 
profile. One problem this configuration may encounter if more cate-
gories are defined is that, as the categories become more exclusive, 
fewer data fit each category and, therefore training data become scarce. 
Self-Organizing Maps (SOM) are used as a classifier of special days in 
[23]. A NN is used after classification for forecasting. The number of 
groups that the SOM assigns vary between 11 and 15. This method has 
not been considered as it uses prior knowledge regarding the type of 
special days and the output of the classification is not clear. The clas-
sification schemes shown in [25, 29] are somewhat similar in the sense 
that they both consider whether a special day lay on the same date or the 
same day of the week. However, the number of rules applied in [25] is 
four while the number of categories described in [29] and the number of 

days targeted as special is much larger. In [26], a similar rule-based 
approach is followed and applied to the French electric system, how-
ever it is also limited to seven categories. Seven categories are also used 
in [30]: four for common holidays and for special national holidays. This 
literature review includes several examples of unsupervised or rule 
based classification methods that would not require an extensive 
knowledge of the database in order to be applied to a new system. 
However, these classifications are limited to a low number of categories. 

In [1], several modeling techniques are applied to the German sys-
tem. The methods tested use a variety of binary variables representing 
different types of holidays and it presents the idea of using wider clas-
sifications. However, the actual classification of the holidays is taken as 
an input. An hourly classification is presented in [31], where two pa-
rameters are combined to code different degrees of load reduction by the 
hour. The classification presented in [32] for the holidays in China 
differentiates between 3-day and 7-day holidays. In addition, it also 
includes the ordinal of each day within the holiday. These other exam-
ples, use slightly more complex classifications and hint that more 
detailed classifications would outperform simple rule systems. Never-
theless, these expert systems require a thorough analysis of the database, 
making the design process much more complex. The main objective of 
this paper is to provide a methodology capable of determining an 
expert-level classification of special days on a database without any 
prior knowledge. This classification will be based solely on the date and, 
therefore, can be applied beforehand and introduced as input to the 
forecasting engine. 

The scope of this paper and its contribution can be summarized as 
follows:  

- To provide a classification of special days that results in a forecast at 
least as accurate as the one obtained using an expert classification.  

- To describe an algorithm that obtains such classification of special 
days from the hourly load time series data.  

- To test the performance of the classification of 3 different databases 
against expert classifications currently used by the national TSO, Red 
Eléctrica de España (REE) and prove that it outperforms them with 
much less design effort. 

Section 2 of this paper will describe the forecasting model, the da-
tabases and the algorithm. On section 3, the obtained classification is 
presented along with accuracy results on several databases. Finally, 
section 4 includes the final analysis and conclusions. 

2. Materials and methods 

This research work branches off the development of a new 

Fig. 1. a) Load profile of national holiday (October, 12th 2017) compared to the same weekday on the previous and following weeks (LEFT). b) Load profile of a 
Friday after a holiday (October, 13th 2017 compared to the same weekday on the previous and following weeks (RIGHT). 
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forecasting model for the Spanish TSO (REE) that focused on improving 
accuracy on special days. The classification developed for that occasion 
[29] is currently running at the TSO’s headquarters and required deep 
analysis of the load profiles during national and regional holidays, days 
adjacent to holidays, vacation periods or social events… 

That classification will be used as benchmark and the forecasting 
model will be common to both benchmark and proposed classification. 
This section starts describing the forecasting model used, the databases 
and other inputs to the model. Then, it will focus on the process to obtain 
the classification, the parameters involved and the design choices that 
arose in the process. 

2.1. Model structure 

The model comprises two forecasting engines that share the same 
input and provide hourly forecasts for the current day and the nine 
following days. In order to provide a more comparable result, this paper 
will deal with next-day forecasts made at 9am which is found on most 
works. This paper will focus on the auto-regressive component of the 
model, as it is easier to analyze its output and the effect of each variable. 
Nevertheless, the other forecasting engine based on an auto-regressive 
neural network (NARX) will also be used in the testing phase to un-
derstand the effect that the new classification has on the whole model. 
The following paragraphs show the basic concepts of the AR model and 
the modifications made for this specific study. For more details on the 
model the reader can refer to [2]. 

The forecast of a full 24-hour profile consists on 24 individual fore-
casts. Therefore, there are 24 sub-models that use the same input but 
different ouput. During training each model assigns different relevance 
to each variable as, for example, temperature may cause more signifi-
cant load variations in the early evening than at mid-night. This permits 
to obtain a set of 24 coefficients that conform a profile of the effect of 
any variable along the day. 

The auto-regressive model has an exogenous and an auto-regressive 
(AR) part. The AR component reduces the forecasting error because it 
captures factors not included in the model but whose effects lag for 
several samples. This is very useful in forecasting but it may mask the 
true effect of the predictors used. Therefore, the AR part is removed from 
the model for the design stage but it is later reinstated to obtain actual 
forecasts for benchmark: 

2.2. Data analysis 

2.2.1. Load data 
The data for the electricity demand of the Spanish inland system 

from 2010 to 2018 [33]. This database includes hourly values for the 
aggregate system and for the different regions that compose it. In this 
research the inland system will be used to design, train and test the 
system. Data from Madrid and Catalonia will also be used for testing as 
another out-of-sample case. It is important to use databases that span 
long periods because modeling special days requires to have multiple 
instances of each type of special days, laying on different weekdays. This 
requires a proper treatment of the long-term trend of the data because 
relatively old data (7-years old) will be included in the model. The input 
of the model based on load values has two components: a 52-weeks 
moving average of previous loads to capture long trends and the 
last-known value to include recent trends. This last value is not included 
in the modeling part of this research as it may mask the effect of the 
predictors. 

2.2.2. Temperature data 
Temperature data for the whole country is obtained from different 

weather stations. Maximum and minimum temperature forecasts for 
these stations for the next 10 days are received every day [34]. The 
information from all stations is redundant as the series are very highly 
correlated. The selection of the relevant stations, the linearization of the 

data and the number of lags to be included in the model is described in 
[2]. 

2.2.3. Calendar data 
The benchmark model used by REE employs a classification 

including 53 binary variables to specify the type of day. These variables 
are thoroughly described in [29] but a brief description is included here 
as it will serve as the main comparison to assess the performance of the 
proposed methodology:  

- National special days: These are days whose profile is very specific 
and is not comparable to any other holiday. It includes 11 types of 
days described by day and month (January, 1st; December, 25th…), 
and 13 days related to Easter (Good Friday, Easter Monday…).  

- National regular holidays: Three categories are used to assign the rest 
of the holidays found in the Spanish National Gazette. The variables 
distinguish if the holiday lays on weekend, Monday or Tuesday 
through Friday.  

- Days before and after a holiday: The previous categories affect the 
adjacent days. In order to address this phenomenon, 4 variables are 
used to classify days before a holiday (Monday), before a holiday 
(Tuesday-Friday), after a holiday (Friday) and after a holiday 
(Monday-Thursday).  

- Periods affected by Christmas: The weeks surrounding Christmas are 
also affected in different ways. Four variables are assigned to days 
Dec, 20th to Dec, 23rd, one variables for workdays Dec, 27th to Dec, 
29th, and another variable for workdays Jan, 2nd to Jan, 5th.  

- Summer period: Most Spanish people take some of their vacation 
during the summer time. To model this behavior, 3 more variables 
are used to distinguish between the four days of August.  

- Regional holidays: Partial holidays are published in the regional 
gazettes. They are included in the model by a single variable ranging 
from 0 to 1 representing the fraction of the nation’s GDP that the 
regions on holiday represent. 

This classification was created by an expert by analyzing the errors of 
the model on specific periods and establishing patterns over the years. 
Other classifications conveying similar information but condensed in 
less variables have been tested on the neural-network model as this 
model is expected to deal with more complex relations among variables. 
However, the most accurate classification for both auto-regressive and 
neural-network models was the one described here. A classification must 
consider the following aspects:  

- Each category must have sufficient instances.  
- All instances within a category must be similar among them.  
- All categories must be different among them. 

The first two aspects are needed to ensure that abnormalities do not 
become categories and that only repetitive patterns are treated as such. 
The third aspect is required to avoid an unnecessarily large number of 
categories. 

This analysis requires deep knowledge and many hours of work and, 
while it is significantly more accurate than simpler classification it is 
difficult to justify on smaller systems like regional or city-wide forecasts. 

The proposed methodology will provide a classification similar in 
structure, as it will also use binary variables, but whose application does 
not require of any prior knowledge of the database nor any external 
documentation describing holidays. 

2.3. Description of the algorithm 

The methodology proposed consists on an algorithm that iteratively 
improves an initial classification by identifying special days not included 
and configuring the classification to fit their profile. The algorithm is 
described in Fig. 2, and it can be summarized in three stages: selection of 
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new types of special days, merge of similar types of special days and 
validation of special days. The algorithm uses data from 2010 to 2017 to 
optimize the classification. Then data from 2018 is used to test the 
resulting classification in comparison with the benchmark. 

2.3.1. Available categories 
The definition of a special day requires that a certain pattern is fol-

lowed over the years. Special days caused by strikes or extraordinary 
events cannot be forecasted accurately because there are no previous 
examples from which to learn the behavior of the load. Therefore, spe-
cial days can be defined as either having a specific date (day and month) 
or as a number related to a fixed event (Good Friday or Monday after 
DST is implemented). Following these definition, the possible categories 
that can be considered special days are detailed in Table 1. Other days 
can be specified as references for the second type to generate new 
possible categories. 

A category may be split into several sub-categories according to the 
day of week. These sub-categories may or may not be considered as 
special days. These possibilities are discussed later. All 365 days are 
considered candidates to type 1 special days. The proposed methodology 
will determine which ones actually have a specific load profile. 

2.3.2. Initial classification 
The initial classification considers merely the day of the week. The 

day of the week is a known factor affecting the load profile and, there-
fore is included by default. The initialization of the algorithm also in-
cludes filtering missing or corrupt data, which is done following the 
rules described in [2]. 

2.3.3. Evaluation 
Whenever a new classification is proposed, a linear regressive fore-

casting model is trained by using the established input (long-term, 
temperature, month and classification variables) from years 2010 to 
2017 using (1). Then, the residuals are used to calculate a mean absolute 
percentage error (MAPE) for each day and each possible category (2 and 
3). At this point, categories of type 1 and 2 may have days in common 
(Good Friday may also be a March, 30th), but this does not cause any 
difficulty. 

ln(yh) = Xexo⋅βh + Xcl⋅γh + εh (1)  

MAPEday =

∑24
1 |εh/yh|

24
(2)  

MAPEcat =

∑n
1MAPEday

n
(3)  

where yh is the load at hour h, Xexo is the matrix of exogenous variables, 
βh is the vector of coefficients for hour h, Xcl is the matrix of the binary 
classification of days, γh is the vector of coefficients for each category at 
hour h and εh is a vector containing the residuals. 

2.3.4. Candidate selection 
Among all possible categories, the one with the highest MAPE is 

selected as a candidate to be a special day. Categories that have been 
optimized already or those marked as containing outliers or marked as 
normal are not eligible. 

2.3.5. Candidate configuration 
Configuration of the candidate refers to defining how the day of the 

week should be considered. To this end, two types of categories are 
defined:  

- Priority categories: In these cases, the category may split the days by 
the day of the week but all days within a group are assigned the same 
profile. 

Fig. 2. Flow chart of the proposed algorithm.  

Table 1 
Possible special days categories of types 1 and 2.  

Type Definition Example Total 

1 Month Day of month Jan, 6th; Dec, 25th 365 
2 Reference 

(Good Friday) 
# of days to / from 
reference (-6 to 7) 

Good Friday (0); 
Easter Monday (3) 

14  
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- Modifying categories: The category may also split by the day of the 
week. However, the day-of-the-week variable remains active, 
causing each day of the week within a group to have its own profile. 

The configuration of a category entails, on one part, determining 
whether it is a priority or a modifying category and, on the other part, 
establishing the grouping of different days of the week. 

In order to do this, the category is evaluated using common group-
ings by days of the week and both priority and modifying types. The 
result of this process for Christmas Day and Dec, 22nd is shown in Table 2 
and Fig. 3. 

These two categories exemplify how very specific days like Christmas 
have one profile (maybe two) regardless of the day of the week and, 
therefore, should be configured as priority categories. However, another 
type of days (Dec. 22nd) do not define the profile by themselves but they 
modify the profile of the day of the week and should be configured as 
modifiers. In the case of Christmas, all weekdays have the same profile 
and Sat. and Sun. also share their own profile. However, Dec. 22nd 

modifies the standard profile of the corresponding days of the week: all 
weekdays are modified in the same way and Sat. and Sun. are also 
modified in the same way. The reference for this coefficient is a regular 
Saturday, which would have a straight line equal to 1. 

2.3.6. Merging of categories 
Merging similar categories increases the amount of examples they 

contain which, if the merged categories are truly compatible, can in-
crease accuracy of the forecast. Therefore, in order to find groups of 
categories suitable to be merged together, the algorithm compares the 
profile of all sub-categories using a mean absolute percentage difference 
specified in (4): 

DIFi,j =

∑24
1

⃒
⃒γi,h − γj,h

⃒
⃒
/

γj,h

24
(4)  

where γi,h is the coefficient for the sub-category i at hour h. Profiles 
whose difference is lower than a similarity threshold (Sth) are paired 
together as compatible sub-categories. Considering this definition, sub- 
categories may belong to several pairs which may or may not be 
compatible among them. The selection of Sth is discussed in 2.3.8. 

2.3.6.1. Optimization of the groups. The pairs found in the previous 
section are used to form larger groups of compatible sub-categories. 
These larger groups must comply the following rules:  

- All sub-categories in a group must be compatible between them.  
- Any sub-category can be in only one group. 

The application of these rules results in multiple possible groups 
from which the algorithm selects the optimal combination. However, 
the number of possible groups grows exponentially and it is not possible 
to evaluate all combinations. To avoid this, an evolutionary heuristic is 
proposed. This heuristic’s flow chart is included in Fig. 4. 

The loop is run every time a new category is configured and 
compatible sub-categories have been detected. A population of N can-
didates is evaluated on every loop. A candidate is a list of groups, each 
group containing a number of sub-categories that are compatible among 
them and that will be merged together:  

- INITIALIZATION: The initial population includes the previous 
winner if the algorithm has been run before  

- EVALUATION: Candidates from initialization or previous loops are 
included in the current population. The population is filled with 
random candidates until the number of candidates equals n. Each 
candidate is evaluated by their corresponding MAPE. In order to 
stimulate the merging of the sub-categories, each merged category 
discounts a certain amount (Ctot) from the reported MAPE. The score 
of a candidate is described in (5). The selection of Ctot is discussed in 
2.3.8. 

SCOREi = MAPE − Ctot⋅nmerged (5)    

- NEXT GENERATION: The candidates in first quintile (Q5-1) are 
passed on to the next generation. The rest of candidates are obtained 
from the Q5-1 candidates by randomly adding a new sub-group, 
eliminating a present sub-group and modifying a present sub- 
group. This new generation is passed on to the evaluation stage.  

- EXIT: The algorithm finishes if the winning candidate repeats 5 
times. 

The result of the heuristic is a list of several groups of sub-categories 
to be merged together. 

2.3.7. Validation 
The final step is to determine whether the final result is actually a 

properly identified special day, an outlier or just a poorly forecasted 
regular day:  

- Normal day: Error is reduced less than 10% and starting error is 
lower than 1.5 times the average error for all categories. If consid-
ering it a special day does not cause a significant improvement and 
the forecasting error is not overly inaccurate, then it is considered a 
normal, poorly forecasted day.  

- Outlier: Error on half or more of the days within the category is lower 
than 1.5 times the average error for all categories and error on the 
worst day is three times the average error on the same day of the 
week and category. If most days within the category are not overly 
inaccurate and the largest error is disproportionately large, then it is 
considered as an outlier.  

- Special day: All other days. 

If a category is found to be an outlier or a normal day, it is removed 
from the possible categories to choose the next candidate from, it is not 
added to the list of special days and all its sub-categories are removed 
from the mergers list. 

The algorithm stops if three normal days are identified consecutively 
or if the candidate selected has already been optimized. 

2.3.8. Parameter selection 
The merging parameter Sth determines how similar two profiles must 

be to be considered compatible. Smaller values will form categories with 
a low number of instances that are very similar among them while larger 
number will have the opposite effect. The second merging parameter Ctot 
has a similar effect: smaller values encourage using more variables while 
larger values acknowledge the advantage of reducing the number of 
variables in the model. In order to avoid empty categories when the 

Table 2 
Modelling error for two special days with all possible configurations.  

DATE TYPE ALL MON-FRI & SAT-SUN MON-SAT MON-FRI & SAT MON & TUE-FRI MON-THU & FRI 

DEC, 25TH MODIFIER 7.44% 2.80% 6.73% 5.22% 6.99% 7.46% 
PRIORITY 2.26% 2.18% 5.29% 4.90% 7.01% 7.07% 

DEC, 22ND MODIFIER 2.08% 1.96% 2.00% 1.91% 1.79% 1.91% 
PRIORITY 6.67% 2.74% 4.80% 2.40% 1.89% 2.31%  
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training period slides forward both parameter should be selected so that 
no categories have less than 3 members. In addition, they have been 
optimized to achieve the lowest MAPE, obtaining values of 0.02 for Sth 
and 0.0005 Ctot. The same values were obtained for Madrid and Cata-
lonia data bases. Still, it is possible that some less populated sub- 
categories remain unmerged after the heuristic. To avoid this issue, 
each sub-category with less than three members is merged with the sub- 
category that matches its profile best. 

The parameters used in validation were chosen empirically. Non- 
periodical events like nation-wide strikes or black-outs may be picked- 
up as candidates to become a category but the conditions for outlier 
identified properly these cases and ruled them out. In addition, when all 
special days are identified, the algorithm will attempt to consider 
normal days as special, however, they will not become a new category if 
the conditions are not met. The obtained values were valid for all three 
databases, nevertheless, they could be modified as needed when applied 
to other databases in order to meet their described goals. 

3. Results 

The application of the algorithm to the Spanish load produced the 
classification described in Table 3. The table represents the types of days 

that belong to each of the 48 merged subcategories and that will be 
included in the model as binary variables. Some variables include up to 9 
sub-categories because their profile is similar (many days in August have 
similar profiles) while other variables only represent one sub-category 
because it has a very specific profile (Christmas day). The representa-
tion of the classification is cumbersome because of its empiric nature. 
Nevertheless, the following results show its adequacy for accurate 
forecasting. 

3.1. Training results 

The training (2010-2017) results for both benchmark and proposed 
classifications are shown in Table 4 and Table 5. The first one splits the 
results according to both classifications, showing how both classifica-
tions perform on the days considered as special and as regular by each of 
them. The second one divides the result by the nature of the holiday. 

Table 4 shows that the automatic classification outperforms the 
expert in both special categories and obtain very similar results in 
normal days. It comes to the attention that the expert classification 
considers special more than twice the amount of days that the automatic 
classification does. This is because the expert uses a variable to model 
provincial and regional variables. This variable takes the value of the 

Fig. 3. a) Coefficient profile for Christmas days on weekend and weekdays (LEFT). b) Coefficient profile for Dec. 22nd, on all days of the week. Relative profiles 
represent the effect of Dec. 22nd, on weekdays and weekends. 

Fig. 4. Flow chart for the grouping optimization heuristic.  
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percentage of the GNP that the region on holidays represents. Many of 
the days included in this variable are not picked up by the automatic 
classification because the impact on national load is negligible. How-
ever, this variable can be included in the automatic classification 
without violating its principle of not requiring an expert as it is readily 
available information. Therefore, the proposed classification adds this 
variable which obtains the best results of the three in all categories. 

The results are also categorized by the nature of the holiday to better 
understand its performance. The proposed methodology obtains the best 
results except in Easter and adjacent days. However, they amount for 
only 4% of the total of days. It is also worth noticing that the worst 

performing group drops from 2.79% in the case of the expert (National 
Holidays) to 2.31% in the case of the proposed method (adjacent days). 
This shows how maximum forecasting errors are reduced. 

3.2. Forecasting results 

The proposed methodology is tested with out-of-sample data from 
year 2018. The results are shown in Table 6. The performance of the 
benchmark system currently in use at REE is included. This system uses 
an AR and a NARX models which are combined to provide the definite 
forecast. The output of the AR, NARX and combined models are included 

Table 3 
Classification of special days by the proposed algorithm.  

# MEMBERS 

1 1-Nov 4-Jan 10-Aug 9-Aug 22-Aug 11-Aug 11-Sep 23-Aug 24-Aug     
Sun&Sat Mon-Thu Mon-Fri Mon-Fri Mon-Fri Sun&Sat Tue-Fri Mon-Fri Sun&Sat     

2 13-Aug 19-Mar 8-Aug 8-Aug 7-Aug 7-Aug 23-Aug 6-Aug      
Sun&Sat Mon-Thu Mon-Fri Sun&Sat Mon-Fri Sun&Sat Sun&Sat Sun&Sat      

3 8-Dec 6-Dec 19-Aug 5-Jan 24-Jun 6-Jan 19-Mar       
Sun&Sat Sun&Sat Mon-Fri Sun&Sat Mon-Fri Sun&Sat Fri       

4 12-Oct 3-Jan 18-Aug 18-Aug 10-Aug 5-Aug        
Sun&Sat Mon-Fri Mon-Fri Sun&Sat Sun&Sat Mon                      

5 11-Aug 6-Aug 24-Aug 21-Dec 5-Aug 8 17-Aug 13-Aug 20-Aug 21-Aug    
Mon-Fri Mon-Fri Mon-Fri Sun&Sat Tue-Fri Mon-Fri Mon-Fri Mon-Fri Sun&Sat    

6 15-Feb 25-Jul 24-Jun 15-Feb  9 16-Aug 9-Dec 2-Nov 4-Jan    
Mon-Fri Sun&Sat Sun&Sat Sun&Sat  Mon-Fri Fri Fri Fri    

7 01-may-P 01-may-P 14-ago-P 23-Dec  10 14-ago-P 31-oct-P 30-abr-P     
Mon-Fri Sun&Sat Sun&Sat Mon  Mon-Fri Mon Mon                   

11 28-Dec 7-Jan 3-Jan 13 2-Nov 9-Dec 13-Oct 15 7-Dec 23-Dec 15-Aug   
Sun&Sat Sun&Sat Sun&Sat Mon-Thu Mon-Thu Mon-Fri Tue-Fri Tue-Fri Sun&Sat   

12 30-Dec 29-Dec 28-Dec 14 01-ene-P 01-ene-P 25-dec-P 16 31-dec-P 24-dec-P    
Mon-Fri Mon-Fri Mon-Fri Mon-Fri Sun&Sat Sun&Sat Sun&Sat Sun&Sat                  

17 12-Oct 8-Dec 21 27-dec-P 12-ago-P 25 30-abr-P 4-Aug 29 02-may-P 7-Jan   
Mon-Fri Mon-Fri Mon-Fri Mon Tue-Fri Fri Sun&Sat Mon-Fri   

18 30-Dec 13-Oct 22 29-Dec 16-Aug 26 20-Aug 11-Sep 30 9-Aug 22-Dec   
Sun&Sat Sun&Sat Sun&Sat Sun&Sat Sun&Sat Mon Sun&Sat Sun&Sat   

19 22-Dec 25-Jul 23 17-Aug 22-Aug 27 19-Aug 21-Dec 31 31-jul-P 04-ago-P   
Mon-Fri Mon-Fri Sun&Sat Sun&Sat Sun&Sat Mon-Fri Mon-Thu Mon-Thu   

20 12-ago-P 21-ago-P 24 26-dec-P 27-dec-P 28 02-ene-P GF* +1 32 6-Dec 7-Dec   
Tue-Fri Mon-Fri Sun&Sat Sun&Sat Sun&Sat  Mon-Fri Mon                 

33 25-dec-P 36 GF* 39 6-Jan 42 15-Aug 44 26-dec-P 46 GF*-1 48 31-dec-P 
Mon-Fri  Mon-Fri Mon-Fri Mon-Fri  Mon-Fri 

34 1-Nov 37 24-dec-P 40 GF* +2 43 02-ene-P 45 02-may-P 47 5-Jan   
Mon-Fri Mon-Fri  Mon-Fri Mon-Fri Mon-Fri   

35 31-oct-P 38 GF* -2 41 GF* +3         
Tue-Fri            

* GF: Good Friday. 

Table 4 
Modeling error on special days for expert and automatic classification.   

SPECIAL 1* NORMAL 1* ALL SPECIAL 2** NORMAL 2** % SPECIAL DAYS 

EXPERT 2.06% 1.95% 1.99% 2.36% 1.92% 34% 
AUTOMATIC 2.03% 1.94% 1.97% 2.08% 1.95% 16% 
PROPOSED 1.96% 1.93% 1.94% 2.03% 1.93% 31%  

* Days considered as special or normal by the expert classification. 
** Days considered as special or nomarl by the automatic classification. 

Table 5 
Modeling error on each type of special days for expert and automatic classification.   

CHRISTMAS SUMMER EASTER NAT’L HOLIDAYS REG’L HOLIDAY ADJACENT NORMAL 

EXPERT 2.56% 2.20% 2.08% 2.79% 1.88% 2.17% 1.90% 
AUTOMATIC 2.27% 2.07% 2.15% 2.17% 1.95% 2.61% 1.90% 
PROPOSED 2.26% 2.05% 2.16% 2.26% 1.82% 2.31% 1.90% 
% OF DAYS 5% 17% 2% 2% 18% 2% 58%  
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using the expert and the proposed automatic classification. 
The results show that the proposed classification increases accuracy 

on special days forecasted by the AR model (1.68% vs. 1.49%) while the 
result of both NARX methods are equivalent (1.62% vs. 1.64%). In the 
combined result, which is the actual output, the proposed methodology 
outperforms the expert classification (1.49% vs. 1.42%). The accuracy 
improvement is not consistently focused on any time of day but rather 
evenly distributed. Nevertheless, even though an increased accuracy is 
very welcome, the most important feature of the proposed methodology 
is that the classification is obtained without human input, apart from the 
list of provincial holidays. 

3.3. Other databases 

The proposed methodology has been tested in regional databases 
from Madrid and Catalonia. The results coincide with those obtained 
from the national system: the automatic classification yield a slightly 
more accurate but statistically equivalent accuracy (2.58% vs 2.55% in 
Madrid and 3.46% vs. 3.41% in Catalonia) and the number of variable is 
increased by 10 and 12. Provincial holidays were not needed as a 
separate input because the algorithm was able to identify them on its 
own. This is because, at a regional scale, provincial holidays have a 
larger effect. Nevertheless, if holiday information at a lower level (larger 
cities or municipalities) was available it could be included in the model 
in the same way provincial holidays were used in the national model. 

4. Conclusions 

The problem of modeling special-days load profiles is tackled. The 
common approach to this problem is to classify each day into foreknown 
categories. The rules for this classification can be explicit or set by an 
expert. However, in any case, a deep knowledge of the consumer’s 
behavior is needed to establish the categories. 

The methodology proposed establishes a way to classify the days 
without prior knowledge of the number or nature of the categories. The 
algorithm is based on the detection of outlying patterns in the load from 
previous years. Therefore, it is necessary to provide at least 7 years of 
training data. The algorithm has been thoroughly described by its 
application to the Spanish inland electric system. The example has been 
used to describe how to tune the parameters to the database and to carry 
out each step. Nevertheless, the methodology has been applied to obtain 
not only a classification for the national system but also for different out- 
of-sample databases (Madrid and Catalonia). 

The classifications have been tested by using the forecasting models 
currently in use at the TSO’s headquarters. A classification made by an 
expert is currently in use and is considered the benchmark. The com-
parison of the benchmark classifications (expert) and the proposed 
(obtained by the new methodology) shows that, while the former one 
requires more design effort, the second one is more accurate in all three 
cases. Therefore, the proposed system can be used to effortlessly 
improve accuracy on special days. 
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