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H I G H L I G H T S  

• This article presents a fault location scheme based on support vector machines that works equally well for a DC Microgrid cluster. 
• The proposed method is also without any communication link in methodology or implementation in the system. 
• The scheme proved to work during different fault resistances from low to high resistance values within an appropriate accuracy. 
• This eliminates require of communication link, and moreover, it also distinguishes the high impedance faults and noises. 
• The fault location scheme is tested by experimentation setups, and the effectiveness of the proposed method is validated during different scenarios.  
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A B S T R A C T   

With the increasing number of DC microgrids, DC microgrid clusters are emerging as a cost-effective solution. 
Therefore, due to the possible long distances between DC microgrids, once a fault occurs and is cleared, it should 
be located. Especially, locating high impedance faults (HIFs) is challenging. With communication-free fault 
locating methods, implementation costs can be reduced, and noise and delay of communication can be elimi-
nated. In this paper, a novel localized fault location method using support vector machines (SVMs) is proposed 
for DC microgrid clusters. The purpose of this study is to facilitate the post fault conditions by locating the 
accurate place of the faults, even the challenging HIFs, by using the local measurements at one end of each line. 
The proposed scheme applies the faults, and fault features generated experimentally to the SVM, which is trained 
in Python for determining the fault location. The experimental test results prove that the proposed scheme is 
immune against disturbances, such as noise and bad calibration, and can efficiently and reliably estimate the 
location and resistance of faults with high accuracy.   

1. Introduction 

DC microgrid is a new concept in electric power systems and pro-
vides many advantages over traditional AC networks. Many low-carbon 
power sources such as PVs, FCs, and batteries are all DC. Thus, operating 
them in a DC system requires fewer conversion stages [1]. Moreover, DC 
cables can deliver more power through a cable than AC systems [2]. 
Also, the DC power cable does not suffer from the skin effect [3,4]; 
therefore, the power losses of the DC transmission are lower than the AC 

system with the same cables. However, a single DC microgrid has limited 
capacity and weak anti-disturbance ability. As a solution, DC microgrids 
can be connected to make a DC microgrid cluster and provide better 
performance than independent DC microgrid [5]. Clustering DC 
microgrids gains economic benefits during the grid-connected mode and 
mitigate power outage in blackout situations by maintaining the supply 
of critical loads. 

Despite the benefits of the DC microgrid clusters, the protection of 
these systems is still a challenging task. These challenges are due to the 
lack of mature DC system protection standards, lack of zero-crossing 
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points, and less research on DC CBs [6]. Moreover, during the fault, each 
power source unit injects a fault current into the faulty point, which 
results in a large and high-rise fault current, and it causes severe dam-
ages to the DC microgrid cluster components. Consequently, locating the 
accurate faulty place in DC microgrid clusters with high penetration of 
underground cables is an important challenge. 

1.1. Related works 

HIFs generally occur in low-voltage systems. During the HIFs, the 
changes in current are small. Therefore, the detection of this type of fault 
is challenging. Also, the accuracy of the majority of fault location 
methods [2] is highly dependent on the value of fault resistance. Thus, 
they cannot estimate the fault location by a high accuracy during HIFs. 
This causes difficulties in the maintenance and restoration of DC 
microgrid clusters after clearing the fault. 

The DC fault location strategies can be divided into offline and online 
methods [7]. The online fault location schemes use the current and 
voltage measured values within the fault time and tripping of CBs to 
calculate the fault location. In [8], an analytical online fault locating 
approach has been proposed, based on the ratio of the DC line voltage to 
a reference value. An iterative operation has also been used to improve 
the fault location estimation accuracy, but it resulted in extending the 
tripping time of CBs. In [9], the authors have suggested a method based 
on the boundary-inductance-based and least-square methods to estimate 
the fault location in DC microgrids. However, this method has low ac-
curacy for HIFs, and is only applicable to radial DC systems. Other online 
fault location strategies, such as distributed current sensing technology 
[10] and traveling wave-based methods [11], have been developed 
recently. Although these methods can locate the fault quickly, the low 
accuracy can lead to the false isolation of the faulty segment and 
possibly instability of the whole DC microgrid. Also, these methods 
require fault location devices at both line ends and communication links 
between the protection devices, which increases the cost and error rate. 
An online fault location scheme has been presented in [12], by utiliza-
tion of the traveling-wave approach for locating the fault. However, due 
to the low surge arrival time, this scheme is inaccurate for DC microgrids 
with small line lengths. A differential fault location scheme for DC 
microgrids has been suggested in [13], which requires reliable and fast 
communication links to send the data to the protection devices. How-
ever, the data loss, communication failure, and the high cost of differ-
ential protection limit the application of these schemes. 

On the other hand, the offline fault location strategies calculate the 
fault location after CB’s tripping by using an additional auxiliary device 
[14]. ML and deep-learning-based fault location methods have been 
proposed in [15–17]. However, since most of these methods are devel-
oped for AC systems, they still face many challenges in DC microgrids. In 
[18,19], the injection current-based fault location schemes have been 
presented. In these methods, the fault location is calculated by injecting 

a specific signal into the DC line segment. However, these methods 
require a signal injection source and additional equipment. The method 
proposed in [20] uses a probe and a second-order RLC discharging cir-
cuit to calculate the fault location by extracting the oscillation frequency 
and damping envelope of the RLC circuit. Nevertheless, this method 
requires communication links, and it is costly and increases the noise of 
measured signals. The attenuation coefficient has been considered in 
[21] to improve the method presented in [20] and reduce the fault 
location error. However, the error value in the studies mentioned above 
is significant, more than 10% in some works, and these methods require 
additional equipment, which increases the cost of the protection system. 
On the other hand, the fault location methods in the recent studies 
implemented an additional fault location module [19], such as the 
Pearson correlation coefficient [22]. In [23], a power probe unit has 
been suggested for injection of the DC signals by a converter into the 
cable. This method operates well, however, using additional equipment 
increases the cost as well as human workload. 

SVM is a learning-based data classification technique, which pro-
vides the maximum marginal boundary between different classes of a 
given data set and determines the global optimal solution. This property 
is recognized as the main advantage over artificial neural network-based 
classification approaches. SVM is a supervised learning machine where 
first introduced in [24] as a powerful and efficient tool for analyzing 
data. SVMs are not prone to be trapped in local minima like conven-
tional neural networks. SVM builds an optimal geometric hyperplane to 
separate data where the data are mapped into a high dimensional 
feature via a non-linear mapping. Polynomial, sigmoidal and radial basis 
functions are widely used kernels to create separation surfaces between 
various functions. Only the data patterns closest to the separation sur-
face are used for the regression process instead of all data patterns. The 
use of intelligent methods in fault location schemes can increase the 
effectiveness of the protection systems. Recently used classifiers consist 
of expert systems, artificial neural networks, and SVMs [25,26]. Among 
them, the SVM provides accurate decisions under limited samples and 
has better generalization ability. Thus, it has been widely used in 
different applications such as turboshaft engines [27], vehicle suspen-
sion systems [28], sensor fault detection [29], and health monitoring of 
ships [30]. 

1.2. Contribution of research 

To the best of the author’s knowledge, the proposed scheme has the 
highest accuracy and lowest cost among the existing local fault location 
systems for DC microgrids. The differences between DC and AC, meshed 
and radial microgrids, and with or without communication links in 
protection systems lead to the following challenges which are addressed 
in this work: 

1)AC-related features such as frequency and phase characteristics are 
no longer available, and thus, the authors focus on new features that 

Nomenclature 

AC Alternating current, 
PV Photovoltaic, 
FC Fuel cell, 
CB Circuit breaker, 
HIF High impedance fault, 
SVM Support vector machine, 
ML Machine learning, 
WT Wind turbine, 
I0 Initial current, 
V0 Initial voltage, 
R Sum of fault resistance and cable resistance from terminal 

to the fault point, 
L Cable’s inductance from the terminal to the faulty point, 
C Capacitor of the converter, 
s Laplace operator, 
Rm Resistance of cable for each meter, 
Lm Inductance of cable for each meter, 
d Distance between terminal and faulty point, 
Rf Fault resistance, 
w Weight factor, 
x Samples, 
b Bias, 
z Distance to support vector,  
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may be used for fault location in DC microgrids. 
2)The communication-based schemes used in DC microgrids would 

require a network infrastructure, high sampling rate, and filtering 
equipment, which might not be feasible in a low-cost DC microgrid 
deployment. Detailed fault analysis is represented in Section 3. 

The existing fault location methods require both ends’ data, and 
therefore, they suffer from noise and delay. Therefore, the research 
works presented in [12,13] cannot locate faults by using only the 
measured values of one end of the line segment. Furthermore, the 
absence of a comprehensive and accurate fault location method for HIF 
cases leads to an inaccurate performance of the existing methods during 
these types of faults. Consequently, in this research, the available 

features in one end of the faulty line in DC microgrids are extracted, and 
the application of SVM on fault location is investigated. Through 
extensive simulations and experimental tests, the new features and their 
relationship with fault location are discovered. A novel fault location 
scheme is designed for DC microgrid clusters based on information from 
the only current sensor of one end of the faulty line. 

The approach is validated with experimental and simulation studies. 
The obtained results manifest the significance of the proposed novel 
scheme as there are few studies performed on the local fault location of 
DC microgrid clusters. The general comparison of the proposed method 
and existing methods are represented in Table 1. As it can be seen, most 
existing techniques suffer from several limitations such as high cost, 
requiring communication links, low accuracy, and lack of HIF location 
capability. The proposed scheme tried to solve the mentioned issues to 
provide an accurate and low-cost fault location technique. 

This paper presents a new scheme for determining the accurate fault 
location by using the SVM technique. To the best of the authors’ 
knowledge, this work is the pioneer for proposing SVM as a functional 
classifier for locating the fault location in DC microgrid clusters 
considering HIFs. The main contributions of paper are summarized as 
follows:  

1) SVM (which has been previously used for many applications in 
electrical power engineering [27]– [30]) is used not only for deter-
mining the fault distance but also for calculating the fault resistance. 
In fact, the SVM performs as a dual-functional classifier to determine 
both fault characteristics by using fault current magnitude and slope 
as the features.  

2) The proposed fault location scheme is developed using SVM training 
with superior performance compared to available ML choices such as 
quadratic discriminant ML, KNN, and linear discriminant in case of 
the accuracy of fault distance determination.  

3) The proposed technique is applied to a DC microgrid cluster as a new 
fault location method; to the best of the authors’ knowledge, no 
effective protection scheme has been previously proposed for such 
systems. 

Table 1 
Limitations of the existing fault location methods.  

Method Advantages Limitations 

[9] Local and low-cost method Low accuracy, and fault 
resistance, only can be 
implemented in radial systems. 

[12] Applicable in mesh systems, and 
high accuracy 

Requiring communication link, 
and high sampling rate 

[13] Fast, and accurate Requiring communication link, 
and high sampling rate, only can 
be implemented in radial 
systems, and without considering 
fault resistances 

[14] Local, and accurate By increasing the fault resistance 
and decreasing the number of 
fault current peaks, the fault 
cannot be located 

[22] Fast, accurate, and applicable in 
both mesh and radial systems 

Requiring a high sampling rate, 
and analyzing data in different 
windows. 

[23] Without requiring 
communication links and 
external units, therefore, it is a 
low-cost method 

Low accuracy, and fault 
resistance, and only can be 
implemented in radial systems 

Proposed 
scheme 

Local, accurate, considering 
fault resistances, low sampling 
rate, and locate HIFs 

Only applicable on DC systems, 
requiring training before 
practical implementation.  
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Fig. 1. Configuration of an islanded DC microgrid cluster.  
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4) This paper proposes the fault location scheme for low and high 
impedance faults up to 20 Ω. HIFs, which cause very low fault cur-
rents, have been considered limitedly in previous one-ended fault 
location methods for DC microgrids.  

5) The proposed fault location scheme only uses the current measured 
at one end of the line. Therefore, it is more immune to noise 
compared to communication-based methods. 

In this paper, a localized and offline scheme is proposed for the fault 
location in a DC microgrid cluster. An investigation on the possibility of 
using ML-based methods to develop a model to predict the location of 
earth fault is studied. The proposed fault location method uses the SVM 
to locate the accurate location of the fault in the lines of the DC 
microgrid cluster. In the first stage, SVM is trained in the Python pro-
gramming environment by the current waveforms obtained experi-
mentally. Then, the trained function is tested and validated in the 
experimental test setup. This method only requires extraction of the 
local current features to estimate the fault location distance to the pro-
tection device. Consequently, it reduces the cost and noise of the pro-
tection system compared to the communication-based methods. 
Furthermore, the proposed scheme can locate HIFs accurately, leading 
to improved maintenance and restoration process of the DC system. It 
has been tested in a hardware setup to verify its accuracy. 

The remaining of this paper is organized as follows. In Section 2, the 
DC microgrid clusters are introduced. Section 3 elaborates on the pro-
posed fault location method. The experimental results and discussion on 
the fault location function are presented in Section 4. Finally, the 
comparison discussions and conclusions are stated in Section 5 and 6, 
respectively. 

2. DC microgrid cluster 

Fig. 1 shows the configuration of a typical DC microgrid cluster to be 
studied in this paper. It includes three DC microgrids, which are inter-
connected to each other by DC cables. A typical DC microgrid is a 
combination of power converters, local loads, batteries, and RESs. In this 
paper, DC microgrid 1 includes FC, PV, and WT, DC microgrid 2 includes 
FC and WT, and DC microgrid 3 includes PV and WT. Moreover, each 
line is equipped with two DC CBs to isolate the lines in fault conditions to 

prevent fault current damage to other DC microgrids. 
A high-value fault current in the DC microgrid cluster is a severe 

condition for power converters [31]. During faults, the fault current has 
two different stages: the capacitor-discharge stage and the freewheeling 
diode operation stage. The first stage is the discharge of the DC link 
capacitors immediately after the fault. The second stage starts after the 
capacitor’s voltage reaches the minimum value of input voltage and 
causes the participation of RESs to the fault current through the free-
wheeling diodes [32]. The equivalent circuit and fault current charac-
teristics are depicted in Figs. 2 and 3, respectively. As shown in Fig. 2 (a), 
during the capacitor discharge stage, the equivalent circuit is an RLC 
circuit, and the discharge of the capacitor injects the fault current into 
the faulty point. Then, as shown in Fig. 2 (b), the freewheeling diode 
stage starts when the voltage of the DC link capacitor reaches zero. 
Therefore, the voltage at the converter terminal reverses, and diodes 
conduct, as depicted in Fig. 2 (c). After this stage, the current is injected 
from the RES side to a faulty point. As illustrated in Fig. 3, during the 
capacitor discharge stage, the fault current is increased with a high slope 
to a maximum value. 

2.1. Proposed protection scheme 

In this section, a fault location scheme for the DC microgrid cluster is 
proposed. Due to the local operation of the proposed fault location 
function, each transmission line only requires one fault location method, 
which is equipped in one end of lines between DC microgrids. The main 
core of the fault location scheme is the SVM function, which is trained in 
Python and implemented into the fault location function to locate the 
fault location in an experimental setup. Also, since fault resistances up to 
20 Ω are considered, this method can locate the HIFs with an extremely 
low fault current. 

2.2. DC fault analysis 

During the capacitor discharge stage, the line and converter can be 
equivalent to an RLC circuit, as shown in Fig. 2, and the magnitude of 
fault current during this stage can reach more than 10 times the normal 
current. The RLC circuit response in the frequency domain can be 
written as [32] 

I(s) =
V0
L + I0s

s2 + R
L s + 1

LC
(1) 

Thus, the time domain response of fault current based on (1) will be 

i(t) = e− αt(−
I0ω0

ω sin(ωt + β) +
V0

ωL
sin(ωt)) (2) 

where, 
⎧
⎪⎨

⎪⎩

α = R/2L

ω =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1/LC − (R/2L)2
√

ω0 =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
α2 + ω2

√
(3) 

Then, the value of the derivative of fault current can be written as 

di(t)
dt

= e− αt(
I0ω0α

ω sin(ωt − β) −
V0α
ωL

sin(ωt) − I0ω0cos(ωt − β) +
V0

L
cos(ωt))

(4) 

Therefore, by substituting the (2) into (4), the derivative of fault 
current can be obtained by 

di(t)
dt

= − αi(t)+ωe
π

2ω αi(t +
π

2ω) (5) 

Also, the values of resistance, R, and inductance, L, can be defined by 
{

R = Rmd + Rf
L = Lmd (6) 

D C

Rmd

Rmd

RmdLmd

Lmd

Lmd

C

C

Rf

Rf

RfVd

IVSC

Rd

(a) (b)

(c)

Fig. 2. The equivalent circuits of the system during (a) capacitor discharge (b) 
conducting freewheeling diode (c) RES current. 

Fig. 3. Current characteristics during a fault in DC system.  
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The above equations indicate that the derivative of fault during the 
capacitor discharge can be determined as a function of fault current 
values of two different samples, fault resistance and fault location. 
Consequently, the proposed method, as an offline fault location method, 
by building a mathematical model based on sample data, can solve the 
unknown values. 

2.3. Development of SVM-based fault location technique 

In this section, the methodology of the SVM-based fault location 
technique will be presented. To do so, the most important features of 
fault current are extracted and used in the SVM method. The block di-
agram showing the performed studies is presented in Fig. 4. It should be 
noted that, in qualitative comparison, due to the advantages of SVM, 
such as being more effective in high dimensional spaces, cases with a 
greater number of dimensions than the number of samples, and cases 
with clear margin separation between classes, this method is selected for 
fault locating of DC microgrid clusters. 

The available features used for developing predictor models are the 
maximum amplitude of fault current (I), and the derivative of the cur-
rent waveform over time di/dt. To train the ML models, the training data 
are randomly used as a training data set (80%) and testing parts (20%). 

SVM is an ML algorithm that looks to the extreme points of data sets 
and draws a decision boundary w ∈ Rn among different data set classes 
[25]. To obtain this decision boundary, the support vectors are defined 
and trained based on the available features since finding the optimal 
boundary line, among examples. Note that the optimal boundary line is 
achieved using optimization tools such as quadratic, linear functions. 
Quadratic optimization involves minimizing or maximizing randomly 
defined support vector’s distance from each other to bound linear 
equality and inequality constraints among data points. The boundary 

line that segregates classes from each other is also referred to as hy-
perplane because SVMs can be used in multi-dimensional data sets. A 
simple toy example of SVM is illustrated in Fig. 5. In Fig. 5, the formula 
of the boundary line can be defined as: 

y = 〈w.x〉 − b (7) 

In this work, the value of × is defined as the vector of [Rf, di/dt, Max(i 
(t))]. Moreover, w and b are as the vectors [2, 500, 4.5] and [2.3, 300, 
4.2], respectively. Also, the margin between support vectors, shown in 
Fig. 5 is 2/||w||. Thus, the optimal hyperplane can be obtained by 
optimization function defined as: 

minφ(w, b, z) =
1

2‖w‖2 +Q
∑m

i=1
zi (8) 

Such that 
{

yi(w.xi − b) + zi⩾1
zi⩾0 ∀i = 1, 2,3, ...,m 

where positive constant Q is tuned to reach the optimal hyperplane, 
which is selected as Q = 23 in this work. In this work, the SVM is used to 
define the hyperplanes that can address faults according to extracted 
features. Suppose that we want to find out the location of faults ac-
cording to the features of fault currents, the magnitude and derivative of 
fault current. Fig. 5 shows the linear hyperplane in a two-dimensional 
space. 

To solve the fault location problem in DC microgrid clusters, the SVM 
technique is utilized. The main problem in using SVM is the generation 
and selection of features to solve the problem in the best unique way. 
The block diagram of the proposed methodology is presented in Fig. 6 to 
illustrate the inputs and output of the SVM fault location unit. Therefore, 
in the proposed solution, the fault location scheme relies on two 
features:  

• The magnitude of fault current at one terminal of the line segment,  
• The slope of current, di/dt, during fault at the same terminal of the 

line segment, 

It will be presented in Section 4 that the faulty current characteristics 
are not unique and greatly depend on fault resistance as well as the fault 
distance from the fault locator terminal. It means that estimating the 
fault distance by only relying on fault current magnitude will not pro-
vide accurate results. To improve the accuracy of the fault location 
technique, the use of the slope of fault current, di/dt, is proposed in this 
paper. The analysis described in Section 3.1, and practical investigations 
in Section 4 have confirmed that the slope of fault current directly de-
pends on the fault resistance and location. This information is used to 

Fig. 4. The diagram of the proposed study for the prediction of fault locations.  

Fig. 5. Classification of data by SVM.  
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correctly locate the distance of fault. The flowchart of the proposed 
method is shown in Fig. 7. 

3. Performance evaluation 

The efficiency of the proposed fault location scheme for DC micro-
grid clusters has been evaluated in terms of the accuracy of the fault 
location against various test cases and considering HIFs. The different 
fault cases considered for performance analysis involve variation in fault 
resistance up to 20 Ω, and fault location 0–3600 m, and the connected 
sensors to fault location method use the sampling rate of 25 kHz. The 
experimental test setup is depicted in Fig. 8. The nominal voltage of the 
lab-scaled test setup is 24 V, and the line between DC microgrids of Fig. 1 
is modelled by three resistances and inductances with values of 0.16 Ω 
and 10 mH, respectively, which each one is equivalent to 1200 m cable. 
Therefore, the Rm and Lm are 133 µΩ/meter, and 8.3 µH/meter, 
respectively. The detailed parameters of the experimental setup are 
presented in Table 2. 

For training the fault location technique, 400 cases have been tested 

in different fault resistances and locations. The feature space model of 
the whole data based on di/dt concerning I and R is illustrated in Fig. 9 
(a) and (b). As shown in Fig. 10, different ML methods, namely, 
quadratic discriminant ML, KNN, linear discriminant, ensemble 
learning, and SVM, are analyzed to find the optimum method. It is 
observed that the quadratic support vector machine (QSVM) [33] and 
fine k-nearest neighbor algorithm (KNN) [34] resulted in the highest 
accuracy to predict resulted in the highest accuracy for the prediction of 
faults location. Also, it has been found that ensemble learning presents 
the lowest accuracy. 

Fig. 11 (a) and (b) illustrate the performance of quadratic discrimi-
nant and SVM algorithms in detail. The 1 to 4 numbers in legend rep-
resenting the fault locations, and the correct (●) and incorrect (×) signs 
presenting the correct and wrong prediction of the model, respectively. 
It can be observed that the SVM method can successfully classify features 
from the test data set with no mistakes. However, with no proper model, 
such as quadratic discriminant, some of the features have not been 
assigned to the right class, which is illustrated with a cross sign in Fig. 11 
(a). 

The proposed method only requires the current measurement of one 
side of the line. The magnitude and derivative of the fault current are 
extracted for each case to design the fault location technique. Therefore, 
during the fault, these features are measured to locate the fault location 
by fault location technique. For example, for a fault at d = 1200 m, with 
Rf = 3.2 Ω, at t = 8.2 s, the fault current characteristic is shown in 
Fig. 12. In this case, because the α2 < ω0

2, as discussed in Section 3.1, 
the fault current is underdamped, and the value of peak is 6.27 A, and 
the slope value is 734 A/s. This high value of slope shows the low-rise 
time in this type of fault. Thus, a higher sampling rate provides more 
accurate results of the fault location method. On the other hand, the 
inequality α2 < ω0

2 can be rewritten as 

4L2C2 < 4 − R2C2 (9) 

Therefore, by increasing the value of Rf, the value of 4-R2C2 will be 
reduce, then the fault current will change to an overdamped current, 
since α2 > ω0

2. 
The values of fault current features for different fault locations are 

presented in Table 3. As shown in Table 3, by increasing the value of 
fault resistance, the fault current magnitude and slope reduce. More-
over, by increasing the distance of the faulty point from the measure-
ment unit, the measured value of the fault current magnitude and slope 
also decrease. The trends of fault current magnitude and di/dt reductions 
while increasing the fault resistance are shown in Figs. 13 and 14, 
respectively. These figures prove the small change of fault current dur-
ing HIFs, which reduces the accuracy of traditional fault location 
methods. 

Table 4 represents the results of the HIF location using the data of 
different fault situations. Since the interconnected line is configured by 
using three separate inductances, as shown in Fig. 8, the possible sce-
narios for fault locations are limited to four different scenarios, and the 
proposed method is used SVM to estimates the faulty locations in a wide 
range of HIF fault resistances. Since the minimum fault location and 

Fig. 6. Block diagram of the proposed methodology.  

Fig. 7. Flowchart of the proposed method.  
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resistance estimation accuracy is approximately 96%, based on Table 4, 
the performance of the proposed scheme to locate faults in DC systems is 
excellent. For the maximum value of fault resistance considered in this 
work, 20 Ω, the proposed method is not notably influenced by changing 
the fault resistance. 

The DC sensors measure the currents during the fault with a certain 
value of error, and load and temperature fluctuations significantly affect 
the sensor accuracy [35]. Thus, the measured data are typically different 
from the actual data, and the fault location schemes should consider the 
noise impact. In this paper, the noise of measurement is considered by 
multiplying the measured current values by a normal, randomly 
generated distribution with zero mean and a standard deviation. 
Furthermore, to evaluate the performance of the proposed scheme 
during noisy input data, each measured value is multiplied by a nor-
mally distributed random number with zero mean and 1% and 2% 
standard deviations. The results with noisy input data are represented in 

Fig. 8. Experimental setup (a) dSPACE, converter, power supplies (b) fault location technique (c) fault resistance, DC bus, DC load, and line equivalent model.  

Table 2 
Parameters of the hardware test setup.  

Component Parameter 

Line Resistance = 133 µΩ/m, Inductance = 8.3 µH/m 
Power supply EA-PS 390 9360, APM-SP800VDC 
Sampling rate of sensors 25 kHz 
Motor DC Motor 10 W 
Electronic control unit dSPACE 
Nominal voltage 24 V 
Maximum Rf 20 Ω  

Fig. 9. Feature space model of faults according to (a) I-di/dt. (b) R-I.  
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Table 5 and Table 6. Moreover, the performance of the proposed method 
with measurement calibration error is assessed. For this aim, all mea-
surements are considered to have 1% noise, and for considering bad 
calibration, the measured magnitudes are multiplied by 1.05. The results 
are shown in Table 7 [15]. 

Tables 5 and 6 show that the errors of fault location and resistance 

estimation for noisy cases and noise-free situations in Table 4 are 
approximately the same. The average error for fault without considering 
noise for all fault resistance cases is 1.821 %, and it remains 

Fig. 10. Comparison errors of different ML methods.  

Fig. 11. Performance of (a) quadratic discriminant and (b) SVM algorithms.  

Fig. 12. Fault current performance for fault at d = 1200 m, with Rf = 3.2 Ω.  

Table 3 
Fault current features for different fault conditions.  

Fault location Fault resistance Current Magnitude Slope of fault current 

0 m  3.683 Ω 6.68 A 1327.8 A/s 
0 m  4.215 Ω 5.665 A 1135.2 A/s 
1200 m  4.852 Ω 3.385 A 527.39 A/s 
1200 m  5.225 Ω 3.18 A 515.20 A/s 
2400 m  5.954 Ω 2.748 A 255.00 A/s 
2400 m  7.214 Ω 2.001 A 217.02 A/s 
2400 m  16.466 Ω 0.591 A 93.15 A/s  

Fig. 13. Fault current magnitude trend in terms of fault resistance variation.  

Fig. 14. Fault current slope in terms of fault resistance and fault locations.  
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approximately constant during a 1% noise situation by 1.805% error and 
increases slightly to 1.93% for 2% noise conditions. The results of 
Table 7 with bad calibration show a small increase in the error of fault 
location estimation to 1.94%; however, it remains acceptable. 

4. Discussion and comparison 

In [36], a differential-based fault location strategy for calculating the 
distance of fault location in a PV-based DC microgrid is suggested. By 
estimating the unknown DC line resistance accurately by the non- 
iterative Moore–Penrose pseudo inverse technique, the fault distance 
is calculated using the measured values of two ends of each line segment, 
which requires communication link, current, and voltage sensors. Thus, 
the communication links increase the cost and noise, and also, in this 
strategy, the considered fault resistance is limited to 2 Ω with a 
maximum error of 6%. Therefore, the HIFs are not considered in this 
method. 

The suggested schemes in [21] and [37] use additional equipment 
for locating faults in DC microgrids. In [21] and [38], an inductance and 
RLC based fault locator is installed at each end of the line, respectively. 
After a fault, the stored energy of the fault locator is released in the 
circuit to locate the fault by using the measured values of current. 
However, the maximum fault resistance and error of [37] are 10 Ω and 
13%, respectively. Also, in [21], these maximum values are 2 Ω and 8%, 
respectively. Both schemes require a communication link, which in-
creases the cost of the protection system. 

In [38], the fault location of DC microgrids is calculated by solving 
transient equations of fault current and neural networks, respectively. In 
both methods, the transient measured values of current and voltage for 
both sides of the faulty segment are sent through a communication link 
to a fault location calculator function. However, the fault location dur-
ing HIFs is considered in [36]. The suggested methods in [9] and [39] 
are designed without utilizing communication links. However, these 
methods cannot locate the HIFs, and the error for low-impedance faults 
is also high. The localized fault detection in [40] uses the di/dt trend of 
fault current to locate the fault in a radial branch of the DC Microgrid 
equipped with CPLs. 

In this paper, a cost-effective fault location scheme for DC microgrid 
clusters during HIFs is proposed, which can be implemented using only 
local measurement units. In the proposed method, the fault location 
technique is installed at one end of the line segment. Therefore, this 
method does not require communication links, and it eliminates the 
noise and reduces the cost of the protection system. Moreover, because 
this method only needs the current sensor thus, it decreases the cost of 
implementation of the proposed fault location technique even more. The 
maximum fault resistance and error in this paper are 20 Ω, and 5 %, 
respectively, which shows a very good performance. The summary of the 
comparison between the proposed method and existing methods is 
indicated in Table 8. 

Table 4 
Results for fault location using proposed scheme.  

Fault location (m) Fault resistance (Ω) di/dt (A/s) Error (%) 

0  6.215  809.6  1.51 
1200  3.678  682.29  4.13 
1200  16.847  180.10  2.36 
2400  7.214  217.02  2.10 
2400  18.105  86.71  1.40 
3600  9.495  19.02  0.33 
3600  13.807  7.87  0.92  

Table 5 
Fault location using proposed scheme with noise generated (0,1%).  

Fault location (m) Fault resistance (Ω) di/dt (A/s) Error (%) 

0  6.215  801.77  0.73 
1200  3.678  675.69  3.37 
1200  16.847  178.35  4.35 
2400  7.214  214.92  1.95 
2400  18.105  85.87  1.24 
3600  9.495  18.83  0.26 
3600  13.807  7.79  0.74  

Table 6 
Fault location using proposed scheme with noise generated (0,2%).  

Fault location (m) Fault resistance (Ω) di/dt (A/s) Error (%) 

0  6.215  806.0257  0.17 
1200  3.678  679.2778  4.27 
1200  16.847  179.3049  5.13 
2400  7.214  216.0619  2.51 
2400  18.105  86.3272  0.63 
3600  9.495  18.9360  0.25 
3600  13.807  7.8353  0.61  

Table 7 
Results for fault location using proposed scheme with noise generated (0,1%) 
and bad calibration in sensor.  

Fault location (m) Fault resistance (Ω) di/dt (A/s) Error (%) 

0  6.215  842.0360  0.18 
1200  3.678  709.6254  4.27 
1200  16.847  187.3156  5.13 
2400  7.214  225.7147  2.51 
2400  18.105  90.1840  0.64 
3600  9.495  19.7820  0.255 
3600  13.807  8.1853  0.60  

Table 8 
Comparison of the proposed scheme with other existing DC fault location methods.  

Method Cost Maximum 
Error 

Maximum fault 
resistance 

HIF 
function 

Communication 
links 

Topology Noise Current 
sensor 

Voltage 
sensor 

[9] Moderate 17% 2 mΩ No No Radial Not 
Considered 

Yes Yes 

[21] Extremely 
high 

8% 2 Ω No Yes Ring Considered Yes No 

[36] Moderate 6% 2 Ω No Yes Radial Considered Yes Yes 
[37] Extremely 

high 
13% 10 Ω Yes Yes Ring Considered Yes No 

[38] Extremely 
High 

2% 2.4 Ω No Yes Ring Considered Yes Yes 

[39] Moderate 4.7% 1 Ω No No Ring Considered Yes Yes 
[40] Low 4% 20 Ω Yes No Radial Considered Yes No 
Proposed 

Method 
Low 5% 20 Ω Yes No Ring Considered Yes No  
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5. Conclusion 

An SVM-based fault location method for DC microgrid clusters is 
proposed in this paper to overcome the limitations of the existing 
schemes, such as a high error for HIFs, high cost, and vulnerability to 
communication noises. A fault location technique is designed and con-
nected at one end of each line of a DC line segment to eliminate the need 
for the communication link. The proposed scheme only requires local 
current samples to calculate the accurate location of the faulty point. 
The fault location strategy is implemented using fault current magnitude 
and slope as extracted features of the measured current at the fault 
location device side. The results prove that significant features can be 
extracted by the proposed method to allow fault location from a single 
current signal measurement. The feasibility of the proposed scheme is 
verified by a lab-scaled DC microgrid cluster and compared with some 
existing methods. The comparisons show that the proposed fault loca-
tion scheme is more accurate than other methods, especially for HIFs. 
The proposed communication-free fault location scheme has improved 
different protection aspects such as cost, error, accuracy, especially for 
challenging cases of locating HIFs. In the future, the performance of the 
proposed can be enhanced by extensive analysis of the other available 
features of the current and voltage waveforms to investigate the feasi-
bility of this approach for different practical applications. Moreover, the 
combination between different signal processing and deep-learning 
tools will be the basis for developing fault location units based on the 
proposed approach, considering all real-world limitations and 
challenges. 
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