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A B S T R A C T   

Energy storage system (ESS) has great importance in saving energy in new power systems. Optimum selection of 
these elements poses a new challenge to improve the energy management and prevent cost increases in the 
system. Also, renewable energy resources have been increasingly used in microgrids. The uncertainty and 
variation of renewable distributed generation (DG) affect the performance of power systems. In this paper, ESS 
implementations and photovoltaic (PV) power prediction are used to improve voltage/power profile of the 
system and reduce the total cost of the microgrid. The purpose of this paper is the optimal installation of ESSs in a 
microgrid to minimize the total cost where quantile nearest neighbour forecasting is utilized for PV output power 
prediction as an efficient approach. Gathering data of the last samples in time duration can be used for an 
effective prediction of PV output in this method, which can overcome PV uncertainty due to changes in solar 
irradiation and other parameters. Artificial neural networks combined with multi-layer perceptron and genetic 
algorithm are used for optimizing the size and location of ESSs in the system. Simulation results show that the 
proposed method improves the power profile as 14%, 21% and 28%, relatively to the scenarios of optimal ESS 
installation without PV prediction, using PV prediction but with no optimal ESS implementation and not using 
PV- no ESS implementation, respectively. Moreover, the accuracy of the proposed prediction method is more 
than the gradient-descent and RNN methods by about 12% and 5%, respectively, as shown in the simulation 
results. Also, the cost reduction of proposed method is enhanced as 24% and 31% relatively to the cases of 
optimal ESS installation without PV prediction and PV prediction without optimal ESS implementation, 
respectively.   

1. Introduction 

Using the Energy Storage System (ESS) can be a crucial solution for 
reducing the required energy generation in the power system. ESS can 
save the energy in off-peak times and compensate for the shortage of 
energy for load supporting in on-peak times [1]. Using ESS can improve 
the reliability of the system in load supporting and DG planning. In 
addition, due to uncertainty of renewable DGs such as photovoltaic (PV) 
and wind turbine (WT), it is necessary to predict the output power to 
prevent underestimation of loads and DG generation/planning. Thus, to 
overcome these challenges, ESS installation and PV prediction model is 
used to improve the power/voltage profile and reduce the cost of the 
system. 

ESS reduces the fluctuations of voltage and power of the system and 

hence increases the reliability and stability of the system [1–3]. Various 
forms of energy storage systems such as capacitive energy storage, 
thermal energy storage and battery can be used in power systems [4–6]. 
Optimal multi-objective scheduling of combined heat-power 
(CHP)-based microgrid is proposed in [7] including compressed air en-
ergy storage (CAES), renewable energy sources and thermal energy 
storage. Cost reduction and exploiting the wasted heat energy to supply 
the loads in emergency condition are some advantages of this method. 

In this paper, the optimization method which is based on epsilon- 
constraint technique is presented using fuzzy decision making to ach-
ieve the optimal selection from all the Pareto solutions. In [8], the usage 
of EVs and EVCS as energy storage units and optimal strategy of char-
ging/discharging considering the distribution network constraints is 
presented to reduce the total cost and improvement performance where 
the scheduling is done in 24 hours. In [9], conditional value at risk 
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(CVaR)-based random method is proposed to compensate the uncer-
tainty of WT by using hydrogen storage system associated with wind 
power production. Handling the risk and compensating the uncertainty 
are the results of this method. 

Note that it is not possible to implement ESS in all buses and there-
fore, the location and capacity of the ESS are important in the system 
design [10]. It is worth mentioning that ESS implementation costs must 
be considered and compared to the cost reduction of energy generation 
due to ESS existing which concludes the justification of ESS imple-
mentation. Optimal ESS implementation in terms of location and size 
must be performed by the evolutionary algorithms based on minimizing 
of the cost function. Using this optimal installation of ESS (optimal sizes 
in optimal locations of the system) results in cost reduction, 

voltage/power profile improvement and more reliability in load sup-
porting and load balance. 

In another side, renewable energies are increasingly used in new 
power systems as efficient power resources [11]. PV or WT can support 
the main part of the system load and help the stability of the system. The 
main challenge of these renewable resources is the uncertainty of power 
generation [12, 13]. The generated power from PV is non-deterministic 
and thus, it can be assumed as a stochastic random process. Moreover, 
the PV power fluctuation due to the solar radiation and temperature 
fluctuations affects the microgrid system operation and costs. Therefore, 
this subject causes the researchers to focus on approaches for forecasting 
the PV output power. The forecasting methods are used to predict the 
output power of the PV systems, which is valuable in terms of the 

Nomenclature 

Index 
Act Actual 
b, b′ Index of buses 
C Capacity 
Ch Charge 
Dch Discharge 
E Energy 
ESS Energy storage system 
F Forecast 
K Number of Step times 
N Number of elements 
Nom Nominal value 
P Power 
PV Photo-Voltaic 
QNN Quantile nearest neighbour 
LWMA linear weighted moving average 
card cardinality operator 
+ Charging status 
- Discharging status 

Parameters 
bs+ Storage charging state 
bs− Storage discharging state 
bsMax Maximum storage charging state 
FF Fitness Function 
NESS Number of ESS 
NG Number of diesel generators 
NPV Number of PV generators 
β Charge-discharge efficiency 

Variables 
CCh Capacity of charge 
CDch Capacity of discharge 
CESS

n Capacity of storage 
CESS,Min

n Minimum of storage capacity 
CESS,Max

n Maximum of storage capacity 
EESS

n Storage energy 
EESS

n,Δt Storage energy in time step Δt 
EG Diesel Generator energy 
ELoad Load energy 
ELOSS Energy loss 
EPV PV energy 
I,I2 Current flow, Squared current flow 
IMax
b,b′ Maximum current between buses 

PCh Charge power 
PDCh Discharge power 

Pch, ESS
n,t,sc , PDch, ESS

n,t,sc Charging and discharging power of ESS 
PESS

n Power of ESS 
PESS,Min

n Minimum of storage power 
PESS,Max

n Maximum of storage power 
PG

b,t,sc Power generation of Diesel Generator unit 
PG,Nom Nominal Diesel Generator power 
PLoad

b,t,sc Electric active load at bus b 
PPV

b,t,sc Power generation of PV unit 
PPV

act Actual PV power 
PPV

f Forecasted PV power 

PWh
Sb,t,sc The injected power from upper grid 

P+ Active power flows in downstream directions 
P− Active power flows in upstream directions 
Qch, ESS

n,t,sc , QDch, ESS
n,t,sc Charging and discharging reactive power of ESS 

QG
b,t,sc Reactive power generation of Diesel Generator unit 

QLoad
b,t,sc Electric reactive load at bus b 

QPV
Sb,t,sc Reactive power generation of PV unit 

QWh
Sb,t,sc The injected reactive power from upper grid 

Q+ Reactive power flows in downstream directions 
Q− Reactive power flows in upstream directions 
Rb,ḃ, Xb,ḃ Distribution lines resistance and reactance 
V Voltage 
VMax, VMin, VNom Maximum, minimum, and nominal voltage 
w Weight vector 
x Input vector of neural network 
ε Error 
εPV PV power prediction error 
(σ2)

PV Variance of PV power prediction error 
Δt Time step 
ΔS Upper limit in the discretization of quadratic flow (kVA). 
λEss

n Cost of ESS ($/kWh) 
λG

n Cost of Diesel Generator($/kWh) 
λPV

n Cost of PV ($/kWh) 
P̂q forecasted quantile PV power 
Pq observed previous data 
Pq,opt optimum observed previous data 
μpv,err mean of normal distribution of prediction error 
Lv voltage coefficients of PV module 
Li current coefficients of PV module 
temppanel PV panel temperature 
Bm.t.irr function of irradiation 
βt.irr efficiency of irradiation transfer 
ρt outage probability function  
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technical and economical points of view [14]. PV output is affected by 
many factors such as solar radiation, temperature, humidity, dust, rain, 
and so on. Thus, prediction of PV generation depends on these param-
eters to obtain the accurate model of prediction and hence, the perfor-
mance of the system is noticeably improved. In [15], uncertainty of 
PV/WT and its effect on performance of microgrid is discussed where a 
new retail electricity pricing method based on CVaR optimization 
framework is suggested to reduce the effects of risk of unpredictable 
renewable energy sources. In this paper, the energy planning of the next 
day in microgrid is done. 

Optimal ESS implementation in [16] based on optimum size and 
location is discussed while no power forecasting is mentioned. In [17], a 
prediction method is applied for PV output power but forecasting error is 
not considered. Both stochastic WT power and load demand are assumed 
in [18] where Monte-Carlo sampling of the distributions (assumed as 
Normal distribution at each time-step) is used to determine the optimal 
storage capacity related to certain reliability index taking into account 
one-day historical data. 

Energy management and cost reduction based on demand response 
in the multiple microgrids is proposed in [19] to tackle the challenges 
associated with demand response programs to prevent rebound peaks. 
Two-stage hybrid stochastic–information gap-decision theory (IGDT) is 
proposed in [20] based on joint energy and flexible ramping reserve in 
CHP-based systems. The uncertainties of load demands and WT are 
considered based on Monte Carlo simulation method to be compensated 
in the system. Probabilistic multi-stage optimization framework with 
depth analysis using appliance model, consumer operation and AC grid 
considering weather and load demand uncertainty is suggested in [21, 
22]. Electricity access specially in developing countries is the main goal 
of these papers. 

Focusing on prediction part, artificial neural network (ANN) can be 
selected as an efficient tool for this purpose. ANN computation ability 
can be used for the prediction of many scientific events such as PV 
output power in [23]. Data were measured and recorded for one com-
plete year in this study. The use of neural network for the prediction of 
PV output power is also discussed in some papers as [24–27]. Many 
works have been concentrated on improving the prediction accuracy of 
ANN architectures [28-30]. Short-term forecasting and recurrent neural 
network are discussed in these papers. In [31], multi-layer perceptron 
(MLP) ANN is used to accurately predict the power of a PV system 
because of its ability in updating the weights of the network. In [32], 
SVM is used to predict the PV output power with interesting result. 

Due to above, many papers have been focused on the challenges of 
optimal ESS implementation and accurate PV output power prediction. 
In this paper, both challenges have been considered to minimize the cost 
of energy generation in power grid. To achieve this goal, the cost 
function is generated including the cost of diesel-generator, PV and ESS 
elements. To achieve more precise prediction that affects the cost profile 
of the system, the quantile nearest neighbour (QNN) forecasting is used 
to predict the next data based on the regression and prediction error 
minimization. A window of last Nq samples is used in this approach 
which offers Nq-order prediction strategy to obtain more precise pre-
diction. Then multi-layer perceptron artificial neural network (MLP- 
ANN) is used for training and testing of the forecasted data. 

ANN is assumed as the supervised network and some parts of data are 
used for training and other parts are used for test of the network. The 
effective input parameters in PV output power are completely assumed 
for more accurate prediction which are fed to ANN. These parameters 
are assumed as temperature, humidity, dust, irradiation of solar, angle 
of radiation, the surface of the panel, air pressure, and the panel effi-
ciency in energy conversion. Due to the various parameters and the 
complexity of weight updating, genetic algorithm (GA) is applied for 
obtaining the optimum weights of the ANN in the proposed method. To 
the best authors’ knowledge, the analysis of ESS implementation and PV 
output prediction using QNN, MLP-ANN and GA for cost minimization of 
a microgrid has not been addressed in the literature. A taxonomy table 

Table 1is provided to more highlight the novelties of this paper 
compared to other related papers. 

The novel contributions of the paper are summarized as follows:  

• Optimal operation of the microgrid using ESS implementation and 
PV output prediction. PV output power is assumed as a stochastic 
process where its variance is applied in the cost function problem to 
consider the uncertainty. ESS optimization in size and location using 
the proposed evolutionary algorithm can enhance the performance 
of the microgrid.  

• PV output power prediction using quantile nearest neighbour (QNN) 
forecasting and multilayer perceptron network. QNN forecasting is 
based on regression data and minimization of prediction error 
applied to MLP-ANN for training and testing approach. GA is used for 
updating weight coefficients in MLP-ANN and location/size optimi-
zation of ESS implementation.  

• Complete describing of effective parameters on the PV output power 
and applying to the input vector of MLP-ANN. These effective pa-
rameters are temperature, humidity, dust, irradiation of solar, angle 
of radiation, the surface of the panel, air pressure, and the panel 
efficiency in energy conversion.  

• Considering four scenarios based on using/not using of optimal ESS 
implementation and using/not using of proposed accurate PV power 
prediction and comparing of them in terms of voltage/power profile 
and total cost 

The rest of the paper is as follows. In Section 2, problem formulation 
and discussion are presented while in Section 3, the proposed method is 
stated. In Section 4, simulation results are discussed and finally, some 
conclusions are drawn in Section 5. 

2. Problem Formulation 

In this section, the cost function is firstly defined to be minimized. 
The 24-hour model consisting of 2-hour steps is applied and analysed in 
the optimization process. The profiles of load, ESS and PV are considered 
in each 2-hour step and thus, 12 time steps are used for obtaining the 
cost profile of the system. For the total cost, one-year period is consid-
ered where the summation of one-day costs is applied in this time 
period. The function includes the cost of generated power from diesel 
generators, PV generators and also storage elements. 

The cost function of 24-hour profile is described as below: 

FF(one − day) =
∑K

k=1

(
∑NG

n=1
λG

n PG
n +

∑NESS

n=1
λEss

n PEss
n +

∑NPV

n=1
λPV

n

((
σ2

n

)PV PPV
n

)
)

Δtk

(1)  

where k denotes the step-time index for calculation of cost during the 
time interval of power grid. Obviously, for the one-year profile, we have: 

FF(one − year) =
∑365

i=1
FF(one − day)i (2) 

The goal of this paper is to reduce the total cost of the system using 
the ESS implementation on some buses and accurate PV output power 
prediction. In this minimization, precise PV power prediction can be 
used to achieve the mentioned purpose and compensate the PV-based 
uncertainty of the system which directly affects the total cost of the 
microgrid. This optimization can be performed subjected to several 
constraints as below: 

PG ≤ PG,Nom (3)  

bs+ ≤ β bsMax (4)  

bs− ≤ (1 − β) bsMax (5) 
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CESS,Min
n < CESS

n < CESS,Max
n (6)  

CCh = CDCh (7)  

⃒
⃒EG +EPV − ELoad − ELoss

⃒
⃒ = EEss (8)  

PEss = αPCh + (1 − α)PDch (9)  

PESS,Min
n < PESS

n < PESS,Max
n (10) 

Fig. 1. Flowchart of the prediction process based on QNN approach  

Fig. 2. Flowchart of the genetic algorithm  

Fig. 3. The IEEE 15-bus model of the microgrid  
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EESS
Δt1 = EESS

ΔtK (11)   

QWh
Sb,t,sc +QG

b,t,sc +QPV
b,t,sc +

∑

ESS
QDch, ESS

n,t,sc −
∑

ESS
QCh, ESS

n,t,sc

+
∑

b′ ∈B

[(
Q+

t,b,b′ − Q−

t,b,b′

)]

−
∑

b′ ∈B

[(
Q+

t,b,b′ − Q−

t,b,b′

)]
+Xb,b′ I2t,b,b′

=QLoad
b,t,sc ∀t,∀b

(13)  

(
P+

t,b,b′ +P−

t,b,b′

)
≤ VNomImax

b,b′ ∀t,∀b. (14)  

(
Q+

t,b,b′ +Q−

t,b,b′

)
≤ VNom × Imax

b,b′ ∀t, ∀b. (15)  

V2t,b − 2Rb,b′
(

P+

t,b,b′ − P−

t,b,b′

)
− 2Xb,b′

(
Q+

t,b,b′ − Q−

t,b,b′

)

−
(

R2
b,b′ +X2

b,b′

)
I2t,b,b′ − V2t,b′

= 0 ∀t,∀b. (16)   

V2Nom
t,b I2t,b,b′ =

∑

τ
(2τ − 1)ΔSt,b,b′ ΔPt,b,b′

+
∑

τ
(2τ − 1)ΔSt,b,b′ ΔQt,b,b

′ ∀t,∀b. (17)  

P+

t,b,b′ + P−

t,b,b′ =
∑

τ
ΔPt,b,b′ (τ) ∀t, ∀b. (18)  

Q+

t,b,b′ + Q−

t,b,b′ =
∑

τ
ΔQt,b,b′ (τ) ∀t, ∀b. (19)  

ΔPt,b,b′ (τ) ≤ ΔSt,b,b′ , ΔQt,b,b′ (τ) ≤ ΔSt,b,b′ ∀t, ∀b. (20)  

I2t,b,b′ ≤
(

IMax
b,b′

)2
∀t, ∀b. (21)  

V2
Min ≤ V2 ≤ V2

Max ∀t,∀b. (22)  

V2Nom
t,b =

(
VNom)2

∀t, ∀b. (23)  

ΔSt,b,b′ =
VNomIMax

b,b′

τ ∀t, ∀b. (24)  

Pt,b
Utan

(
cos− 1(− θ)

)
≤ Qt,b

U ≤ Pt,b
Utan

(
cos− 1(θ)

)
∀t,∀b. (25)  

EESS,t+1 = EESS,t +

∫t+1

t

PESS,udu (26)  

where constraint (3) describes that the diesel generated power is up to 
the rated value. The charge state of ESS is bounded to the maximum of 
storage in (4) and also it is set for discharge state in (5). Combining of (4) 
and (5) shows the non-simultaneous charge and discharge of ESS in 

Fig. 4. Load level in one-day profile  

PWh
Sb,t,sc +PG

b,t,sc +PPV
b,t,sc +

∑

ESS
PDch, ESS

n,t,sc −
∑

ESS
PCh, ESS

n,t,sc +
∑

b′ ∈B

[(
P+

t,b,b′ − P−

t,b,b′

)]
−
∑

b′ ∈B

[(
P+

t,b,b′ − P−

t,b,b′

)
+Rb,b′ I2t,b,b′

]

=PLoad
b,t,sc ∀t,∀b.

(12)   
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which β represents the efficiency of charge-discharge operation. 
Constraint (6) states that capacity of storage is between minimum and 
maximum value of existing devices capacity. In this paper, maximum 
and minimum values are 0.9 and 0.1 of the storage capacity, respec-
tively. Also, the total storage capacity of charge must be equal to the 
total discharge capacity for all storage elements Eq. 7). Constraint (8) 
states that the generated energy from diesel and PV minus the consumed 
in load and loss is equal to the storage energy. Indeed, the total gener-
ated power subtracted by the loss and load demand can be stored in 
storage units. Moreover, if the inside of absolute sign in the left side of 
this equation is lower than zero, the system must use the discharge state 
of ESS to support the extra demand power. Obviously, in the extra power 
generation, the ESS can be charged. Eq. (9) also mentions the total 
storage equals the combination of charging and discharging with 
weighting coefficients of α and (1 − α) determined due to bs+ and bs− . 
Eq. (10) states that the power of ESS is limited to its maximum and 
minimum value. Finally, the Eq. (11) presents that the initial storage 
energy in the first time step is equal to the storage energy in the last time 
step for the cyclic analysis of the optimization problem. Equations (12)- 
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Table 2 
Comparison of prediction error variances on the monthly cost of the system (by 
ESS implementations)  

Prediction error variance (MSE) Monthly cost ($/month) 

0.0001 231.3 
0.0005 240.8 
0.001 261.1 
0.005 271.1  

Table 3 
Comparison of prediction error variances on the seasonal cost of the system (by 
ESS implementations)  

Prediction error variance (MSE) Seasonal cost ($/season) 

0.0001 640.1 
0.0005 678.8 
0.001 702.9 
0.005 724.7  

Table 4 
Comparison of prediction error variances on the annual cost of the system (by 
ESS implementations)  

Prediction error variance (MSE) Annual cost ($/year) 

0.0001 2843.8 
0.0005 3188.8 
0.001 3400 
0.005 3736  

Fig. 5. Track property of the proposed method related to the reference power  
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((13) describe the power balance for both active and reactive power 
considering all units in the microgrid. The bound on active and reactive 
power due to nominated voltage are presented in Equations (14) -(15) 
while equation (16) presents the voltage balance in the buses due to 
input or output power of buses. Linearization of branch power flow is 
done for radial networks in equations (17) – (24). Linearized active and 
reactive power is performed in (17). Piecewise linearization of con-
straints is denoted in (18) – (24) [33, 34]. The constraint related to the 
power factor is stated in (25) where in (26), the energy updating of ESS 
in each time-step is presented. In all constraints, it must be noted that 
charging and discharging cannot be occurred simultaneously and 
because of that, the variables bs− and bs+ are used for the charge and 
discharge states, respectively. 

3. Proposed method 

In Eq. (1), all parameters and variables are deterministic except the 
PV generated power. PV generated power is stochastic and depends on 
solar radiation, temperature, humidity, dust, rain, and so on. Thus, this 
parameter is weighted by (σ2

n)
PV that is the variance of PV power gen-

eration. Accurate prediction of PV generated power in time interval 
analysis of the system can significantly influence on the cost reduction. 
Moreover, using the optimal ESS implementation in this system can 
efficiently improve the cost and performance. In this paper, QNN is used 
for PV output power forecasting. The method is described as: 

P̂q = f
(
x,Pq

)
(27)  

where P̂q is reperesented for forecasted quantile PV power, x is the 
vector of input and Pq is the observed previous data. The role of the 
function of forecasting (f(.)) must be allocated to minimize the predic-
tion error. One of the best option is linear combination of previous ob-
servations and input parameters with different weights known as linear 
weighted moving average (LWMA). To select the related previous 
samples, nearest neighbour strategy based on quantile regression 
method is stated as: 

Pq,opt = argmax card{Hn}

s.t. Hn : max
{

d
(
pi, pj

)}
≤ min

{
min
{

d
(
pi, pj

)}
, εTh

}

card{Hn} ≤ Nq  

Hpref
n = Hn,opt (28)  

where card is the cardinality operator. Thus the vector of predicted data 
for training set is described as: 

Pq =
[
Pq,1,Pq,2,…,Pq,Nq

]
(29) 

Fig. 6. Predicted PV power in different climate conditions  

Table 5 
Comparison of the annual cost of the proposed MLP-ANN with gradient-descent 
and RNN (MSE=0.001)  

Method Annual cost ($/year) 

Proposed MLP-ANN 3356.67 
MLP-ANN gradient descent 3792.15 
Recurrent neural network (RNN) 3508.42  

Table 6 
Optimal ESS locations, sizes and costs  

ESS number Capacity Location Implementation cost ($/year) 

ESS1 200 kWh bus 4 820 
ESS2 100 kWh bus 7 668 
ESS3 200 kWh bus 12 820  
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The criteria on which the best samples chosen and the minimum 
regression data can be achieved can be stated as: 

Qp,q =
1

Nq

∑Nq

n=1

⎧
⎨

⎩

(q − 1).
(

P̂n − f
(
x,Pq

))
P̂n < f

(
x,Pq

)

(q).
(

P̂n − f
(
x,Pq

))
else  

Qp = mean
{

Qp,q1,Qp,q2,…,Qp,qN
}

(30)  

where N quantile is selected and the average values are applied. For 
example, in 100 selected samples, each quantile is selected in step of 

Fig. 7. The generated power with and without optimal ESS implementation (analysis in 2-hour step of 24-hour profile)  

Fig. 8. Total generated energy with two different variances of prediction error  

Table 7 
Comparison of annual cost of different scenarios  

System Model Annual cost ($/year) 

ESS and PV prediction (scenario 4) 3377.6 
ESS with no PV prediction (scenario 3) 4193.3 
PV prediction with no ESS (scenario 2) 4452.1 
No ESS and no PV prediction (scenario 1) 5752.2  
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0.01 to obtain the accurate model of forecasting. The proposed predic-
tive model can be used by an evolutionary algorithm such as artificial 
neural network to be trained and tested with actual data. To achieve this 
goal, multi-layer perceptron artificial neural network (MLP-ANN) has 
been applied to accurately predict the PV output power. The input 

vector to the proposed forecasting method includes temperature, hu-
midity, dust, irradiation of solar, angle of radiation, the surface of the 
panel, air pressure, and the panel efficiency in energy conversion. The 
values of these parameters are obtained from the dataset of [36] in the 
one-year time interval. The updating of the weights is based on the back 
propagation analysis where genetic algorithm (GA) is used to achieve 
the optimum weights with the constraints of prediction error minimi-
zation. Using cross over and mutation in many iterations, the optimum 
weights are finally obtained. In each generation of GA, the error is 
evaluated and checked by MLP-ANN. The forecasted PV output in each 
time step can be described as below: 

PPV(i+ 1) = PPV(i) + wεix (31)  

where w is the weight vector of time-step i, εi is the error of this time and 
x is the input vector In fact, in each iteration, the calculated error is 
feedback to be applied in GA. The chromosomes of the genetic algorithm 
are selected based on neural network layers and number of neurons. This 
issue can be noticed in MCS strategy and the populations of genetic al-
gorithm can be selected from the output of MCS. The characteristic of 
MCS in selecting different populations prevents falling the problem into 
the local minimum and taking the global minimum instead. Considering 
the QNN method, Nq samples instead of Markov model in (31) stated as 
below: 

PPV(i+ 1) = γ1PPV(i) + γ2PPV(i − 1) + γ3PPV(i − 2) + … + γl+1PPV ( i − Nq
)

(32) 

Indeed, the total prediction process can be stated in state-space 
model as: 

x(i+ 1) = Ax(i) + Bu(i), i = 1, 2,…Nq 

Fig. 9. Regression of the prediction process compared with real data as target  

Fig. 10. Probability function of the prediction error of the Proposed predic-
tion process 

Fig. 11. Voltage profile of buses in four scenarios  

Fig. 12. Current profile of lines in four scenarios  

Fig. 13. Power profile of lines in four scenarios  
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y(i) = Cx(i) + Du(i) (33)  

where u(i) is the input parameters to the prediction system and due to 
iterative scheme of state space, different samples of PV can be used for 
prediction. The global prediction process with details is depicted in 
Fig. 1. For error calculation, different criteria can be used as mean 
square error (MSE) described in below: 

MSE =
1
m
∑m

i=1
ε2

i (34)  

Where m denotes the iteration numbers of genetic algorithm. Through 
the optimization, Monte-Carlo simulation (MCS) is used to denote the 

uncertainties of the problem knowing that the error distribution tends to 
be normal distribution. Due to error probability (normal distribution) 
we have: 

μpv,err = 0  

E(err(i), err(i − 1)) = cov(i, i − 1) (35) 

Also in relation of correlation and variance of prediction error, we 
have: 

var(err(i)) = ρiiσ2
i (36)  

where the correlation coefficient is defined as (37). 

Fig. 14. Power profile of lines in optimal, non-optimal and no ESS implementation  

Fig. 15. SOC of ESS with and without PV power prediction  
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ρi,i− 1 =

∑T

k=1
perr(i)perr(i − 1) −

∑T

k=1
perr (i)

∑T

k=1
perr (i − 1)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑T

k=1
perr (i)2

−

(
∑T

k=1
perr(i)

)2
√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑T

k=1
perr (i − 1)2

−

(
∑T

k=1
perr(i − 1)

)2
√

(37) 

The probability of the error of prediction is presented as: 

Prob
(
errpv

)
=

1
̅̅̅̅̅̅̅̅̅̅̅
2πσ2

pv

√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

e
− 1
σ2

pv
(errPV − μPV ,err)

2
√

(38) 

It must be noted that the PV model and its power generation is 
presented as below: 

Ppv = NPV

(
VmaxImax

VOCIsc

)
(
VOC − Lv

(
temppanel

))
irr(Isc + Li

(
temppanel − 30

)

(39) 

Fig. 16. Effect of correlation factor on the prediction error  

Fig. 17. DG power generation in actual and predicted cases  
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where Lv and Li are the voltage and current coefficients of PV module, 
respectively. Considering the panel temperature, we have: 

temppanel = tempenv + irr
(

tempave − 25
0.75

)

(40) 

Considering different scenarios in panel conditions, probability of 
occurrence of outage and other efficient factors in PV modelling, the 
scenarios can be stated as summation of probabilities due to uncertainty 
of irradiation of solar energy and we have: 

Sent =
∑Nsc

m=1
Bm.t.irrβt.irr⋅ρt (41) 

Bm.t.irr is the function of irradiation and βt.irr is the efficiency of irra-
diation transfer. ρt is the outage probability function defined as: 

ρt = Bt.irr(1 − Pout) + (1 − Bm.t.irr)Pout. (42) 

Considering the input vector of MLP-ANN, the input layer of neural 
network includes 9 neurons, and the output layer consists of one neuron 
as a decision on the PV output power. For the number of neurons of 
hidden layer, no rigid rule exists and some papers state the law of thumb 
that indicates the number of neuron in hidden layer as the average of 
input and output layer neurons [36]. Thus, the number of neurons of 
hidden layer is selected as 5. Also, lasso regression is used for testing the 
convergence criteria and preventing over fitting of the network. The 
benchmark of the proposed method is also compared with recurrent 
neural network in the results of prediction. 

In ESS case, due to many options of buses to be selected, genetic 
algorithm is also used to select the suitable buses for ESS implementa-
tion. The goal is to select some buses for ESS implementation to achieve 
cost reduction and performance improvement. The process can be per-
formed by the genetic algorithm simultaneously with the weight 
updating of MLP-ANN. Thus, using the cost function optimization, best 
buses for ESS implementation can be determined via GA. Note that AC 
power flow is executed to determine the voltage and powers of all buses 
before the algorithm iteration for ESS-bus selections. Power System 
Analysis Toolbox in MATLAB is used for this power flow [37]. The ge-
netic algorithm flowchart is depicted in Fig. 2. 

4. Simulation results and discussion 

In the system model, the per-unit power is used based on 100 KVA 
and the allowed range of voltage is between 0.95 and 1.05 p.u. [38]. The 
24-hour profile is separated into twelve 2-hour sections and the analysis 
is performed for these time intervals. In this section, the model of Fig. 3 
is used as IEEE 15-bus microgrid for simulation tests. As shown in Fig. 3, 
one diesel generator with capacity of 100 KVA is applied in bus 6 to 
support the load demand of the system. One PV generator with 150 kW 
rated power is also used in bus 13. 9 constant-power type loads are 
implemented in the microgrid and the system total active and reactive 
loads are 1250 kW and 380 kVA, respectively. Other data are derived 
from [39, 40]. The load level considered for the system is shown in Fig. 4 
for the one day-night in each 2-hour time step. The diagram of load level 
is resulted from the experimental data. The usage of ESS can control and 
reduce the voltage and power losses of the system. Note that the load 
level directly affects the storage status as, in the last part of night, the 
load demand is decreased and thus the storage level can be increased. 

The problem of cost function in Eq. (1) is a mixed linear integer 
program and thus, GAMS optimization and CPLEX solver is used to solve 
the optimization problem. The results of applying the proposed method 
on the 15-bus IEEE model (test system) are obtained and discussed in 
this section. The result of prediction and its effect on the system cost is 
described in this section. Moreover, the optimal ESS implementation 
impact on the system performance and cost is discussed in the sequel. 
Note that the cost is calculated based on the data in [41] and the data-
base for information of parameters of PV power is obtained from the 
1-year dataset in [35]. 

Firstly, the effect of variance of prediction error is stated. As 
described in follow, the effect of error variance on the cost function in 
one-month, one-season and one-year time-period are described inT-
ables 2-4, respectively. As can be seen from this table, with increasing 
error variance, the cost of the system is increased consequently. Thus, 
the accuracy of prediction is an important factor in the system cost. As 
observable from these tables, the prediction error directly influences on 
the cost in different time periods. The variance of prediction exists in Eq. 
(1) and thus increasing the error variance causes the cost increasing 
consequently. Precise prediction prevents the energy wasting in the 
power system and provides more improvement in performance of all 

Fig. 18. SOC of ESS in actual and predicted cases  
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elements of the system. 
The track property of proposed prediction method using the updated 

weighting steps is depicted in Fig. 5. Forecasted output power is resulted 
from QNN and MLP-ANN using the updated weight by genetic algorithm 
as discussed in the previous section. As can be seen, the forecasted power 
desirably tracks the reference power after some iterations and error back 
propagation. Also, the steps of prediction process is shown to highlight 
the accuracy of the proposed strategy in achieving and tracking the 
reference power. The result is interesting which shows that the proposed 
method tracks the PV power precisely with minimum error. 

In the next test, the predicted PV power in different climate condi-
tions as sunny, cloudy, overcast and rainy is depicted. As shown in Fig. 6, 
in sunny day, the peak PV power is achievable where in cloudy day, the 
power variation is increased without peak power. Indeed, the uncer-
tainty of PV power is more in cloudy day than sunny day. In the overcast 
and rainy days, the power peak is lost in which the maximum power 
occurs in two or three points without meaningful peak power. 

The comparison of proposed QNN and MLP-ANN with gradient- 
descent ANN and recurrent neural network (RNN) is done in Table 5. 
In this comparison, gradient- descent and RNN are implemented as 
benchmarks for the verification of the proposed strategy and cost 
function is used for calculation of the annual cost. As described in this 
table, the annual cost of the proposed method with GA weight updating 
is less than other two similar algorithms which indicates the accuracy of 
the prediction process in the proposed strategy. 

In Table 6, the optimum ESS location and capacity using GA is 
described. As described in the previous section, all buses are candidates 
for ESS implementation in which location and capacity of ESS are the 
input variables for the GA. In each iteration, GA is applied on the pop-
ulation of all buses and more proper buses with lower cost function are 
selected for the next generation. It must be noted that for better 
convergence of algorithm, the ESS capacity bound is limited to the range 
of 100-200 kWh and the number of optimum buses is set to 3. Thus, the 
results of Table 6 are achieved. As can be understood, the buses in the 
canter and more cooperation with other buses are selected as the best 
options for the candidates of ESS implementation. Implementing the 
proposed ESS in the selected buses improves the performance of the 
power grid and voltage/power profile as will be described in the 
following of the paper. 

In Fig. 7, the generated power is shown in two states, with and 
without optimal ESS deployment in the system. Optimal ESS imple-
mentation can support the load in peak time and prevent the extra power 
generation in the power system. It is worth mentioning that although the 
investment of ESS implementation and its repair cost may be high, the 
overall cost of the power system is reduced using the optimal ESS 
installation. As can be seen in Fig. 7, the generated power with optimal 
ESS implementation in 3 selected buses (see Table 6) results in less 
power generation and consequently, the total cost of the power system is 
reduced noticeably. The analysis of Fig. 7 is done based on the power 
generation of the proposed system in the 2-hour step of the day profile 
(24-hour). 

In Fig. 8, the generated energy with optimal ESS implementation in 
two cases of high and low variance of prediction error of PV output 
power is presented. As discussed previously, increasing the variance of 
prediction error causes the extra energy generation because of inaccu-
rate prediction and thus, the cost of the system is increased. Inaccurate 
PV power prediction leads to more energy generation from diesel 
generator or more charge-discharge cycles of ESS. It is shown in Fig. 8 
that with low error variance, the required generated energy is less than 
high-error case and this shows the impact of efficient prediction on the 
cost of the system and energy generation. 

The main goal of this paper i.e. the cost of the proposed power system 
is analysed in different cases and the results are reported in Table 7. Four 
scenarios in 1-year time period including No ESS-no PV prediction 
(scenario 1), No ESS with proposed PV prediction process (scenario 2), 
optimal ESS implementation with no PV power prediction (scenario 3), 

and optimal ESS installation with PV power prediction (proposed 
method, scenario 4) are considered in this analysis. This table shows that 
in the scenario 4, although prediction and ESS implementation have 
imposed some costs on the system, the total cost is decreased due to the 
energy saving of optimal ESS implementation and accurate PV predic-
tion. It is also understood that although the effect of prediction on the 
total cost is less than ESS implementation, its influence on the total cost 
is obvious and highly noticeable in Table 7. The effect of simultaneous 
applying of optimal ESS and proposed PV power prediction in proposed 
method is obvious in this table in which the cost reduction in scenario 4 
is improved as 24% and 31% compared to scenario 3 and scenario 2, 
respectively. 

In Fig. 9, the regression diagram of proposed prediction process 
related to the real data of PV power is presented. As understood from 
this figure, the prediction accuracy is desirable and the proposed method 
tracks the real data which is desirable in the design of microgrid. The 
probability function of prediction error is normal distribution which 
occurs maximally in zero error with minimum variance as shown in 
Fig. 10. Thus, the prediction error is desirably low which overcomes the 
bad effect of PV power uncertainty on the microgrid design and cost. 

In Fig. 11, the voltage profile in four scenarios is depicted. The 
allowed voltage range of the proposed system is between .95 to 1.05 p.u. 
and as can be seen in the figure, without optimal ESS and PV power 
prediction (scenario 4), the voltage dip or overvoltage is under or over 
the permitted range. However, using the proposed method in scenario 4, 
the voltage changes are in the desired range which results in lower 
power loss and performance improvement of the power grid. It is 
observable from this figure that using optimal ESS in the selected buses 
(4, 7 and 12) improves the voltage profile in these buses and adjacent 
buses. Moreover, the effect of PV power prediction is observable 
comparing scenario 2 and scenario 4 in which the voltage profile is more 
stable in scenario 4 and the over and under-voltage is less than scenario 
2. 

In view of current flow in lines of test system model (IEEE 15-bus 
model) shown in Fig. 12, it can be seen that with the proposed 
method including optimal ESS installation and PV power prediction, the 
overcurrent and undercurrent are limited and more stability is observ-
able in current flow. In other scenarios, the current fluctuations are seen 
in the lines of the model which leads to more power losses. Moreover, 
the current flow in lines between buses consisting of ESS is more stable 
and have lower changes from the nominated value. In scenario 3 
(optimal ESS without PV power prediction), the current profile is more 
stable than the scenario 2 (PV power prediction without optimal ESS 
implementation) because the presence of optimal ESS in the microgrid 
has more important role related to PV power prediction. However, the 
importance of PV power prediction is observable comparing scenario 2 
and 4. The improvement of the current profile of the proposed method 
(scenario 4) related to scenario 1, 2 and 3 is 11%, 17% and 22%, 
respectively. 

Fig. 13 shows the power flow in the lines of test system model. As 
depicted in the figure, more fluctuations exist in scenarios 1, 2 and 3 
compared to scenario 4 (proposed method) which leads to more non- 
stable power flow, overflow, underflow and high power losses in the 
microgrid. Using the proposed strategy, the power fluctuation is 
decreased to obtain more stable power profile. The buses of optimally 
implemented ESS are enhanced in power flow which verifies the effect of 
the optimal size and location of ESS in the system. Also, PV power 
prediction gives more stability to the generated power which leads to 
more stable power profile. Comparing the proposed method (scenario 4) 
with other scenarios in view of power profile stability, it can be un-
derstood from Fig. 13 that the improvement is achieved as 14%, 21% 
and 28% related to scenario 3, 2 and 1, respectively. In addition, in 
Fig. 14, the effect of optimal ESS implementation compared to non- 
optimal ESS and No EES implementation is depicted to emphasize the 
proposed method efficiency in the power profile improvement. 

Considering the state of charge (SOC) of implemented ESS, Fig. 15 is 

S. Rajamand et al.                                                                                                                                                                                                                              



Electric Power Systems Research 202 (2022) 107596

14

presented to show this status in two cases of proposed PV power pre-
diction and without that. As can be seen, the fluctuations of charge and 
discharge states without prediction are more than the case of using 
proposed PV power prediction. Moreover, without PV power prediction, 
the charging and discharging rate and the difference between maximum 
charge and discharge is higher than the case of proposed PV power 
prediction (see Fig. 15). Discussing the correlation coefficient of pre-
diction error, Fig. 16 shows the prediction error versus the correlation 
factor. As observable in lower correlation factor, the prediction error is 
also reduced and this affects the performance of the system. Lower 
correlation causes lower prediction error which consequently improves 
the performance of the microgrid with more accurate prediction. 

In the detailed prediction in time duration of a day, DG power gen-
eration and SOC of ESS in each time point are presented in Figs. 17 and 
18, respectively. Smaller time steps are used to obtain more accurate 
prediction in detail. Fig. 17 shows the accuracy of power generation of 
each time point in the microgrid. As observable, the peak power is 
generated in time of 8-13 in a day. Low error between actual data and 
predicted one is interesting as observable from this figure. Also, Fig. 18 
accurately shows the status of charge and discharge of ESS in the 
microgrid in which, the charge state is shown in negative values and 
discharge is presented by positive powers. The tracking property of the 
proposed model is interesting observing this figure. Thus, the accuracy 
of proposed prediction method is verified where it causes significant 
improvement in the performance of the microgrid. 

5. Conclusion 

This paper proposed PV output power prediction with QNN selection 
algorithm and applying these data to MLP-ANN and GA in addition to 
the optimized ESS locations and capacities to minimize the cost function 
in the IEEE 15-bus microgrid. Using the predicted PV output power and 
optimal ESS installation based on the proposed strategy, the generated 
power is decreased and consequently, the cost of the system is also 
decreased noticeably. According to the results, the cost reduction of the 
proposed method is enhanced by 24% and 31% relatively to the cases of 
optimal ESS installation without PV prediction (scenario 3) and PV 
prediction without optimal ESS implementation (scenario 2), respec-
tively. The accuracy of the proposed method is more than the gradient- 
descent and RNN methods by about 12% and 5%, respectively. The 
uncertainty of PV is compensated using the proposed accurate PV power 
prediction, as shown in the results of this paper. The proposed method is 
defined as scenario 4, which improves the power profile as 14%, 21% 
and 28%, relatively to the scenarios 3, 2 and 1, respectively. For the 
future work, minimization of the cost function including green-house 
gases emission term can be performed using the proposed prediction 
strategy of PV power and optimal ESS implementation in the test 
microgrid. 
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