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A B S T R A C T   

Alternating current optimal power flow (AC-OPF) is a fundamental tool in electric utilities to determine optimal 
operation of the various resources. Typically, the AC-OPF problem uses power balance formulation containing 
voltages and power equations. Yet, there is no comprehensive comparison of the different AC-OPF formulations, 
especially for large-scale networks. This paper presents a detailed comparative evaluation of different formu
lations of the AC-OPF problem on networks ranging from 9-bus to 25,000 buses. Three different formulations: 1) 
power balance with polar voltages, 2) power balance with Cartesian voltages, and 3) current balance with 
Cartesian voltages are discussed in detail by comparing their characteristics, and numerical and computational 
performance. We compare the performance of the three methods in terms of computational speed, number of 
iterations, and number of non-zeros in Jacobian and Hessian matrix. The numerical results show that power 
balance polar formulation had the best performance on small number of bus system but on a large-scale test grid 
current balance cartesian outperformed the other two formulations.   

1. Introduction 

Optimal Power Flow (OPF) is a fundamental tool used in power in
dustry to ensure an optimal and secure operation of the grid. Its usage is 
pervasive in the industry with applications spanning across transmission 
and distribution, real-time and day-ahead operations, and short-term 
and long-term planning. With the expansion and proliferation of 
renewable energy resources, introduction of additional monitoring and 
control introduced by smart grid initiatives, and increased interaction 
between transmission and distribution, the grid operators are facing 
additional challenges to operate the grid securely at least cost. The OPF 
is a fundamental tool at the disposal of grid operators and engineers to 
ensure this secure and optimal operation [1–3]. However, with the 
increased complexities, the OPF tools will need to be more robust and 
faster. 

While the performance of power grid applications, such as the OPF 
need to be improved, one must also take into account the rapid growth 
and change in the computing industry. The computing industry has 
grown leaps and bounds after the OPF was first developed in the1960′s 
by Carpentier et al. [9,42]. It has gone through the era of mainframe 
computers, distributed memory clusters with single core nodes, clusters 

with multicore nodes, and now distributed memory clusters with het
erogeneous nodes with multiple processors and accelerators. The next 
revolution in the computing industry, which has already commenced, is 
on the heavy usage of hardware accelerators, such as Graphical Pro
cessing Units (GPUs) spurred by the gaming industry and 
machine-learning applications. This new technology has dramatically 
improved computational performance, but at the same time it has 
imposed new constraints on how mathematical models can be effec
tively implemented. Under such a changing computing environment, it 
is prudent to revisit the power grid applications and assess the building 
blocks of these applications and ways to adapt them to these newer 
architectures. 

This paper attempts at assessing these fundamental building blocks 
for the AC optimal power flow (AC-OPF) application. We provide an in- 
depth comparison of three different formulations for AC-OPF – power- 
balance with polar voltages, power-balance with Cartesian voltages, 
and current-balance with Cartesian voltages – and compare their 
structure and characteristics. In addition, we present the numerical and 
computational performance of these formulations to highlight their 
differences, point to the most efficient formulation, and provide 
benchmark comparison metrics on very-large networks. The significant 
distinguishing contributions can be summarized as follows 
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• An in-depth comparison of the AC-OPF model for three formulations: 
power balance polar, power balance Cartesian and current balance 
Cartesian presenting their characteristic differences.  

• Comparison of structural differences in terms of number of variables, 
constraints and non-zeros in Jacobian and hessian matrix.  

• Numerical and computational performance evaluations for the AC- 
OPF formulations on nine different test cases including large-scale 
synthetic U.S. networks [7]. 

The OPF application code developed in this work is written in C 
language, using the numerical computing library PETSc [4,5]. For 
validation, the results from the three model formulations are compared 
with MATPOWER [49]. Note that the MATPOWER utilizes the power 
balance polar formulation for the AC-OPF model. 

The remainder of the paper is structured as follows: In Section 2, a 
literature survey on the different formulations of AC optimal power 
flow, and the solution techniques is presented. Section 3 presents the 
compact AC-OPF form as a general NLP problem and then dives into the 
detailed modeling of the three different formulations. Section 4 de
scribes the test cases utilized for the study and Section 5 summarizes the 
modeling and performance results from the evaluations. We conclude 
with a brief discussion of the results in Section 6. The appendix provides 

a detailed information about the AC-OPF code run and the number of 
non-zeros in Jacobian and Hessian parameters are given in tables 4 and 5 
respectively. 

2. AC-OPF literature review 

The Optimal Power Flow (OPF) ensures a secure operation of electric 
power plants for a given transmission network , typically with the 
objective of minimizing generation cost subjected to operational and 
security constraints in the network [21]. It is one of the most important 
tools used by engineers for power system operation and planning. 
AC-OPF is an optimization model that considers the full AC power flow 
equations. It is the most accurate representation of power flow in a 
network assuming the model parameters are correct. Compared to a DC 
optimal power flow, the benefits of AC-OPF are increased accuracy, 
inclusion of reactive power, current, voltage and losses in the network 
(e.g. transmission losses, active and reactive power load loss) [12,17]. 
AC-OPF plays a critical role in the operation of Independent System 
Operator (ISO) power markets [8]. It is utilized in every important stage 
of a power system operation and planning such as expansion planning 
[45], grid management [40], day ahead markets [28], and also for 
real-time control [25]. AC-OPF is performed yearly for capacity 
expansion, daily for day-ahead markets, and, in some cases, even for 
every 5 minutes. An extensive review on the application of AC-OPF in 
distributed generation planning and operation is provided in [33]. 

However, AC-OPF remains a computationally complex problem, still 
lacking a fast and robust solution even after 50 years of its formulation. 
The problem is getting more complicated with the introduction of 
distributed and large scale renewable energy sources [20,31,32,48]. The 
current approach utilizes decomposition, approximations and assump
tions for a fast and acceptable solution [10]. Researchers have explored 
different methods such as linear approximation [1,11,37,38], conic 
formulation [6,19], semidefinite programming [26,44], quadratic 
convex relaxation [14], decomposition [27,39] for a faster solution. A 
detailed study on the effect of inexact convex relaxation in AC-OPF 
feasibility is given [43]. The approaches of approximations and as
sumptions cost the companies in millions of dollars in operational cost, 
damage to the environment from unnecessary emissions and energy 
waste. Even a small improvement in dispatch efficiency can result in cost 
savings in the order of billions of dollars [11]. Studies have shown that a 
5% improvement in AC-OPF solution can yield an estimated savings of 
over twenty billion dollar in the US market [8]. 

Nomenclature 

ng Number of generators in the network 
nb Number of buses in the network 
nbr Number of branches in the network 
nl Number of loads in the network 
αk,βk,γk Generator k cost-coefficients 
Gk Kth Generator G 
Vi Voltage magnitude at bus i 
θi Voltage angle at bus i 
θref Reference bus angle 
θref0 Reference bus angle constant 
Vi Complex voltage at a bus 
VRi Real part of the complex voltage, 
VIi Imaginary parts of the complex voltage 
V+

i Upper bound on voltage magnitude 
V−

i Lower bound on voltage magnitude 
Gff Self conductance for line ft 
Gft Mutual conductance for the line ft 

Bff Self susceptance of the line ft 
Bft Mutual susceptance of the line ft 
PGk Real power output for generator k 
QGk Reactive power output for generator k 
P+

Gk Upper bound on generator real power output 
P−

Gk Lower bound on generator real power output 
Q+

Gk Upper bound on generator reactive power output 
Q−

Gk Lower bound on generator reactive power output 
Pft Real power flow from bus f to bus t on line ft 
Qft Reactive power flow from bus f to bus t on line ft 
Ptf Real power flow from bus t to bus f on line ft 
Qtf Reactive power flow from bus t to bus f on line ft 
Sf Apparent power flow from bus f to bus t on line ft 
St Apparent power flow from bus t to bus f on line ft 
S+

ft Upper bound on apparent power 
Abr Branch incidence matrix 
AG Generator incidence matrix 
AL Load incidence matrix  

Table 1 
AC-OPF formulation comparison.   

Power balance 
Polar 

Power balance 
Cartesian 

Current balance 
Cartesian 

Variables |vi|, θi, PG, QG, P, Q  VR , VI, PG, QG, P, Q  VRi, VIi ,PG, QG, IR , 
II  

No. of 
variables 

2nb + 2nbr + 2ng  2nb + 2nbr + 2ng  2nb + 2nbr + 2ng  

Network 
constraints 

2nb Nonlinear  2nb Quadratic  2nb locally 
nonlinear  

Network 
Jacobian 

Nonlinear Linear locally nonlinear 

Voltage 
magnitude 
constraints 

Variable limit Non-convex 
quadratic 
inequalities 

Non-convex 
quadratic 
inequalities 

No. of 
equations 

2nb + 4nbr 
(Equality) 
2nb + 4nbr + 4ng 

(Inequality)  

2nb + 4nbr 
(Equality)  
2nb + 2nbr + 4ng 

(Inequality)  

2nb + 2nbr 
(Equality) 
2nb + nbr + 4ng 

(Inequality)   
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Most of the AC-OPF literature utilize the polar power - voltage 
formulation first introduced by Carpentier in the1960′s. The other two 
main formulations of OPF are rectangular power-voltage and rectan
gular current-voltage formulations. Researchers have also explored 
other formulations of OPF such as current injection and a mix of polar 
and rectangular coordinates [22,24]. The hybrid method in [24] used 
rectangular forms of voltage and current, current mismatch equations 
for power balance and numerical stability is ensured by PV buses. The 
equivalent current injection based method also utilized a decoupled 
optimization for faster processing. M. Jereminov et al. [22] proposed a 
solution methodology for AC-OPF using equivalent circuit formulation. 
The AC-OPF is represented as a non-linear equivalent circuit in which 
generator model is represented by conductance and susceptance state 
variables and network constraints handled by the generator admittance 
state variables. The proposed method solves the convergence problem in 
the current balance Cartesian formulation. 

In [1], authors present a linear approximation method to solve 
AC-OPF in power balance polar formulation using the Mixed Integer 
Linear Programming (MILP) approach. The method of binary expansion 
discretisation is used to convert the non-linear AC-OPF in to linear 
problem without losing accuracy. The method had the advantage of 
obtaining reactive power and voltage profile at the same time but faced 
exponential increase in execution time with CPLEX solver. An approxi
mation of AC-OPF in power balance polar formulation utilizing Lan
grangian dual is proposed in [20]. A Supervised Deep Learning model 
with rectified linear unit (ReLU) activation function is modeled to 
generate the generator set-points. The proposed approximation method 
had a better accuracy and a faster processing time than DC-OPF. 

Y. Tang et al. in [41] proposed a real-time AC-OPF based on 
quasi-Newton methods using the current balance Cartesian formulation. 
The approach utilised the second-order information to provide 
sub-optimal solutions for real-time applications. A small correction term 
is used to track the optimal solution assuming a single-phase power flow. 
The superiority of linear approximation of AC-OPF in current balance 
Cartesian over traditional quadratic power flow formulation is stated in 
[34]. It proposes the idea of using AC-OPF in current balance form and 
its approximations for practical applications for its improved computa
tional performance. A continuation method (homotopy) is used in [15] 
to covert the DC OPF solution in to AC-OPF by slowly increasing the 
non-linearities in equality and inequaltiy constraints. The proposed 
method achieved robust solution with a reasonable computational 
overhead. 

A comparative analysis of different power flow methodologies is 
performed in [16], but on Power Flow (PF) problem. The authors tested 
the performance of the formulations on well-conditioned and 
ill-conditioned networks. A 118, 300 and 730 were used to test these 
methods and for well-conditioned networks all the three methodologies 
showed almost similar performance. The slight performance improve
ment in power balance polar and current balance Cartesian methods are 
noted in the work. In the case of ill-conditioned networks rectangular 
based formulations had better convergence properties. A comparison of 
three different solvers over different power flow formulations are 
implemented in [36]. The performance of KNITRO, MATPOWER’s MIPS 
(MATPOWER Interior Point Solver) and FMINCON (Find minimum of 
constrained nonlinear multivariable function) methods over different 
bus systems and formulations are presented in this paper. In [35], au
thors performed a comparative analysis of three different AC-OPF 
formulation with different generator capability curves, solvers and 
initial conditions. The evaluations are done on 118 and 2736 bus sys
tems. In the studies, power balance polar and current balance Cartesian 
performed better in terms of computational time. In case of solvers 
IPOPTH and KNITRO performed the best and for initial conditions 
midpoint and flat start as the best choice for AC-OPF. 

3. Problem formulations 

General form for an ACOPF formulation is shown in eqs. (1) to (4). It 
is an optimization model with a minimization objective subjected to a 
set of equality and inequality constraints. The objective function in AC- 
OPF can be modelled for the minimization cost, minimization of losses, 
maintaining constant voltage profile, transmission planning or a com
bination of objectives. 

min
x

f (x) (1)  

subject to 

g(x) = 0 (2)  

h(x) ≤ 0 (3)  

xmin ≤ x ≤ xmax (4)  

Here, f(x) denotes the objective function for minimizing the generation 
cost and active and reactive power load losses. g(x) represents the nodal 
power flow balance equations, the inequality constraint h(x) models the 
branch flow limits and the bounds in Eq. (4) limits the voltage magni
tudes, generator power injections and reference bus angles [12,23]. 

The Table 1 lists the model parameters from the three formulations of 
AC-OPF [8]. All the three formulation have the same number of vari
ables in the optimization model. In case of power balance polar repre
sentation, it has a set of 2nb non-linear equality constraints with sine, 
cosine functions and quadratic terms that apply throughout the grid. The 
formulation has a non-linear network Jacobian and variable limit on the 
voltage magnitude. The power balance Cartesian formulation models 
the system with 2nb non-linear equality constraints with quadratic 
terms. The system has non-convex quadratic inequalities at bus and 
non-convex inequalities at each set of connected buses. The current 
balance Cartesian formulation employs locally linear equality and 
non-convex inequalities at each bus. In the following sections, the for
mulations are discussed in detail. 

3.1. Power balance polar formulation 

Here, AC-OPF does a minimization of the generation cost. The 
objective function used in the formulation is shown in Eq. (5), the 
generation cost of a thermal generation plant which is generally 
considered to be a second order polynomial is used for the analysis. 

C =
∑ng

k=1
αkP2

Gk
+ βkPGk + γk (5) 

This formulation employs the polar representation of voltage with 
voltage magnitude at bus i is Vi and angle θi. The equality constraints are 
shown in Eqs. (6) and (7) and the inequality constraints in Eqs. (8) to 
(10) [1,16]. 

∑

Abr(f ,t)=1

(Gff

(
V2

f

)
+ Vf Vt(Gftcos

(
θf − θt

)
+ Bftsin

(
θf − θt

)
)

−
∑

AG(f ,k)=1

PGk +
∑

AL(f ,j)∕=0

PDj = ΔPf = 0 (6)  

∑

Abr(f ,t)=1

( − Bff

(
V2

f

)
+ Vf Vt(Gftsin

(
θf − θt

)
− Bftcos

(
θf − θt

)
)

−
∑

AG(f ,k)∕=0

QGk +
∑

AL(f ,j)=1

QDj = ΔQf = 0 (7)  

V −
i ≤ Vi ≤ V+

i (8)  

P−
Gk ≤ PGk ≤ P+

Gk (9)  
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Q−
Gk ≤ QGk ≤ Q+

Gk (10)  

0 ≤ S2
f ≤

(
S+

ft

)2
(11)  

0 ≤ S2
t ≤

(
S+

ft

)2
(12) 

The Eqs. (8) to (10), represents the bounds on the voltage magnitude, 
active power and reactive power injection at each bus. The bounds on 
the apparent power flows in the network are shown in Eqs. (11) and 
(12). For the model, the reference angle is held constant (θref = θref0). 

Sf =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

P2
ft + Q2

ft

√

(13)  

St =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

P2
tf + Q2

tf

√

(14)  

Pft = Gff

(
V2

f

)
+ Vf (Gft Vtcos

(
θf − θt

)

+VtBftsin
(
θf − θt

)
)

(15)  

Qft = − Bff

(
V2

f

)
+ Vf (Gft Vtsin

(
θf − θt

)

− VtBftcos
(
θf − θt

)
)

(16)  

Ptf = Gtt
(
V2

t

)
+ Vt(Gtf Vf cos

(
θt − θf

)

+Vf Btf sin
(
θt − θf

)
)

(17)  

Qtf = − Btt
(
V2

t

)
+ Vt(Gtf Vf sin

(
θt − θf

)

− Vf Btf cos
(
θt − θf

)
)

(18) 

The Eqs. (13) to (18) model the apparent power flows in the network. 

3.2. Power balance cartesian 

In this formulation, the voltage at each bus takes the Cartesian form, 
the real and imaginary part of the voltage are represented by VRi,VIi 

respectively (Vi = VRi +
̅̅̅̅̅̅̅
− 1

√
VIi). The objective function to be mini

mized remains the same as in Eq. (5). The constraints are listed in Eqs. 
(19) to (25). 

∑

Abr(f ,t)=1

(Gff

(
V2

Rf + V2
If

)
+ VRf

(
GftVRt − BftVIt

)
+ VIf

(
BftVRt + GftVIt

)
)

−
∑

AG(f ,k)=1

PGk +
∑

AL(f ,j)∕=0

PDj = ΔPf = 0 (19)  

∑

Abr(f ,t)=1

(− Bff

(
V2

Rf + V2
If

)
+ VIf

(
GftVRt − BftVIt

)
− VRf

(
BftVRt + GftVIt

)
)

−
∑

AG(f ,k)∕=0

QGk +
∑

AL(f ,j)=1

QDj = ΔQf = 0 (20)  

(
V −

i

)2
≤ V2

i = V2
Ri + V2

Ii ≤
(
V+

i

)2 (21)  

P−
Gk ≤ PGk ≤ P+

Gk (22)  

Q−
Gk ≤ QGk ≤ Q+

Gk (23)  

0 ≤ S2
f ≤

(
S+

ft

)2
(24)  

0 ≤ S2
t ≤

(
S+

ft

)2
(25)  

where the maximum flow S+ is either the normal, short-term, or emer
gency rating of the line. The apparent power flows Sf and St at the from 
and to ends of the line are given by Eqs. (26) to (31). 

Sf =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

P2
ft + Q2

ft

√

(26)  

St =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

P2
tf + Q2

tf

√

(27)  

Pf = Gff

(
V2

Rf + V2
If

)
+VRf

(
GftVRt − BftVIt

)

+VIf
(
BftVRt + GftVIt

) (28)  

Qf = − Bff

(
V2

Rf + V2
If

)
+VIf

(
GftVRt − BftVIt

)

− VRf
(
BftVRt + GftVIt

) (29)  

Pt = Gtt
(
V2

Rt + V2
It

)
+VRt

(
Gtf VRf − Btf VIf

)

+VIt
(
Btf VRf + Gtf VIf

) (30)  

Qt = − Btt
(
V2

Rt + V2
It

)
+VIt

(
Gtf VRf − Btf VIf

)

− VRt
(
Btf VRf + Gtf VIf

) (31)  

3.3. Current balance cartesian 

This formulation employs a set of equations in current injection 
equations written in rectangular coordinates [2,16]. The objective 
function remains the same as in Eq. (5) and the constraints are listed in 
equations Eqs. (32) to (38). The equations for apparent power takes the 
form as shown previously in Eqs. (26) to (31). 

∑

Abr(f ,t)=1

(
GftVRt − BftVIt

)
− (

∑

AG(f ,k)=1

PGk −
∑

AL(f ,j)∕=0

PDj)VRf

/
(

V2
Rf + V2

If

)

−

(
∑

AG(f ,k)=0

QGk −
∑

AL(f ,j)∕=1

(
QDj
)
VIf

/(
V2

Rf + V2
If

)
= 0 (32)  

∑

Abr(f ,t)=1

(
GftVIt + BRtVIt

)
− (

∑

AG(f ,k)=1

PGk −
∑

AL(f ,j)∕=0

PDj)VIf

/
(

V2
Rf + V2

If

)

+

(
∑

AG(f ,k)=0

QGk −
∑

AL(f ,j)∕=1

QDj

)

VRf

/(
V2

Rf + V2
If

)
= 0 (33)  

(
V −

i

)2
≤ V2

i = V2
Ri + V2

Ii ≤
(
V+

i

)2 (34)  

P−
Gk ≤ PGk ≤ P+

Gk (35)  

Q−
Gk ≤ QGk ≤ Q+

Gk (36)  

0 ≤ S2
f ≤

(
S+

ft

)2
(37)  

0 ≤ S2
t ≤

(
S+

ft

)2
(38)  

Table 2 
The different bus systems utilized for the analysis.  

Test Case Buses Branches Generators 

1 9 9 3 
2 39 46 10 
3 118 186 54 
4 300 411 69 
5 500 597 90 
6 2000 3206 544 
7 3120 3693 505 
8 10,000 12,706 2485 
9 25,000 32,230 4834  
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4. Test cases 

The three formulations of AC-OPF are tested on 9 different bus sys
tems. The case 1 is a 9-bus, 3 generator model based on the data from 
[13]. The case 2, the 39- bus New England system with generator types 
of fossil, hydro, nuclear and network interconnections [3]. The IEEE 118 
and IEEE 300 bus system models are the 4th and 5th test case. The 500 
bus system network is a synthetic model to mimic the 138 and 300 kV 
transmission network in the northwestern part of South Carolina. The 
synthetic 2000 bus case is a representation of the 161, 230, 500 kV 
transmission network in the state of Texas [7]. The 3120 bus system is a 
representation of the Polish system during the morning peak in summer 
2008. A synthetic representation of a part of the Western Electricity 
Coordinating Council (WECC) system transmission network with 115, 
138, 161, 230, 345, 500, 765 kV lines is modelled in the 10,000 bus 
system case. The synthetic 25,000 bus system case is a representation of 
the North-East Mid-Atlantic region transmission network in US [7]. The 
Table 2 lists the features of the 9 different test cases used in this study. 

5. Numerical and computational performance 

The optimization problem is solved using the Ipopt library [46]. 
Ipopt is a widely-used open source software library for solving 
large-scale non-linear optimization problems. It utilizes primal-dual 
interior point and line search filter based methods to find the solution. 
All the performance tests were done in a Macintosh environment with 
2.6 GHz Intel Core i7 processor, 8 GB 1600 MHz DDR3 RAM, NVIDIA 
GeForce GT 650M 1024 MB and Intel HD Graphics 4000 1536 MB 
graphics card. 

The formulation of a problem plays a key role in determining the 
solution methodology and processing time. This section compares the 
system model characteristics of the three formulation of AC-OPF. The 
number of variables in the ACOPF formulation of the different bus sys
tems are shown in Fig. 1. An idea about the complexity associated with 
the ACOPF problem can be seen from this figure. A 9 bus system only has 
24 variables while a 25,000 bus system have 59,668 variables in the 
optimization model. For a test system, the number of variables remain 
the same for all the three AC-OPF formulations. 

Fig. 1. Number of variables in the formulation.  

Fig. 2. Number of constraints in the power balance Polar formulation.  

Fig. 3. Number of constraints in the power balance Cartesian formulation.  

Fig. 4. Iterations required to complete the code run.  
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The equality and inequality constraints in the Polar and Cartesian 
formulation are depicted in the Figs. 2 and 3 respectively. The graphs are 
plotted in logarithmic scale to show the variations from smaller bus 
systems. The line flow limits in the case of 118 and 300 bus systems are 
very high and limits will not be exceeded irrespective of the optimized 
value. Therefore the line flow constraints can be excluded in polar for
mulations as shown in Fig. 2. 

The number of iterations for the code run to get the solution are 
shown in fig. 4. The Power balance Cartesian formulation is out
performing the other two formulations in smaller bus systems (9 bus,118 
bus,500 bus) but in bigger bus systems (10K bus, 25K bus) its taking 
almost the same iterations as the current balance Cartesian formulation. 
The Fig. 6 depicts the iteration numbers for the three formulations with 
current balance Cartesian values normalized to 1. The optimization code 
run-time is shown in fig. 5, power balance polar form is performing 
better in smaller bus system while current balance Cartesian formulation 
is running with least time for the biggest bus system considered for this 
study (25K). The improved performance for the current balance Carte
sian form for bigger bus system can be clearly seen in figure Fig. 6. The 
performance seems to be increasing with increasing number of buses in 

the network or with increasing complexity. To understand the modeling 
framework in a bit more detail, the Jacobian and hessain values in the 
formulation are also noted. The number of non-zeros in the Jacobian and 
Hessian matrix is a measure of the problem complexity. The values are 
shown in Table 5 and the figure with current balance values normalized 
to 1 is plotted in Fig. 8. The acronym Equality (P) stands for the equality 

Fig. 5. Run time comparison.  

Fig. 6. No. of iterations with current balance iterations normalized to 1.  

Fig. 7. Run-time with current balance run-time normalized to 1.  

Fig. 8. Number of non-zeros in Jacobian with Current balance Cartesian values 
normalized to 1. 

Table 3 
Objective value comparison with MATPOWER output.  

Bus System MATPOWER Code 

9 5296.69 5297.406 
39 41864.18 41864.177 
118 129660.7 129660.684 
300 719725.11 719725.098 
500 72578.3 72578.295 
2000 1.2288 ∗ 106  1.2288 ∗ 106  

3120 2.1427 ∗ 106  2.1427 ∗ 106  

10,000 2.4858 ∗ 106  2.4858 ∗ 106  

25,000 6.0178 ∗ 106  6.0178 ∗ 106   
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constraint Jacobian in power balance Polar formulation, Equality (C) 
denote equality constraint Jacobian in power balance Cartesian form 
and similarly for the Inequality terms. In the case of inequality 
constraint Jacobian, the power balance Cartesian and current balance 
Cartesian has the same values but lesser for power balance polar 
formulation. When it comes to equality constraint Jacobian, the values 
seems to be almost same for the three formulation as the bus size in
creases. The Table 5 in appendix list all the values for the formulations. 

The results from the code are compared with MATPOWER simulation 
to check the validity of the results. MATPOWER is an open-source power 
flow simulations package that provides power flow, OPF, AC-OPF and 
other tools targeted towards researchers and students [30,49]. MAT
POWER is run in a GNU Octave environment for the power flow simu
lation with all the cases tested and compared with final objective value 
[18]. MATPOWER utilized the MIPS [47] and in polar balance polar 
formulation for the analysis. The results are shown in Table 3, the final 
objective value from both the code run and the MATPOWER simulation 
matches exactly, except for a few small variation in the decimal value. 

6. Observations and conclusion 

This paper presented a computational and numerical performance 
evaluation of three different AC-OPF formulations on bus systems 
ranging from 9-bus to 25k bus system. A steady increase in problem 
complexity (eg: number of variables and constraints in the model) with 
increasing bus number can be identified from this study. The three 
formulations converged to the same final solution even though with 
varying number of iterations and run-time. 

Power balance polar form showed the best computational time for 

Table 4 
AC-OPF results.  

Test case Parameters Power 
Balance Polar 

Power Balance 
Cartesian 

Current 
Balance 
Cartesian 

9- Bus 
system 

Objective 
value 

5297.406 5297.406 5297.406 

Iterations 18 15 22  
Time (secs) 0.016 0.033 0.019 

39-Bus 
system 

Objective 
value 

41864.177 41864.177 41864.177 

Iterations 25 29 90  
Time (secs) 0.042 0.114 0.162 

118-Bus 
system 

Objective 
value 

129660.68 129660.68 129660.68 

Iterations 26 20 119  
Time (Secs) 0.058 0.166 0.325 

300-Bus 
system 

Objective 
value 

719725.1 719725.1 719725.1 

Iterations 27 30 99  
Time (Secs) 0.128 0.519 0.494 

500 Bus 
system 

Objective 
value 

72578.295 72578.295 72578.295 

Iterations 566 507 636  
Time (Secs) 9.284 15.396 10.338 

2000 Bus 
system 

Objective 
value 

1.23 ∗ 106  1.23 ∗ 106  1.23 ∗ 106  

Iterations 1005 999 752  
Time (Secs) 95.121 150.327 108.77 

3120 Bus 
System 

Objective 
value 

2.1427 ∗ 106  2.1427 ∗ 106  2.1427 ∗ 106  

Iterations 1326 2500 1566  
Time (secs) 125.93 490.638 193.714 

10,000 
Bus 
System 

Objective 
value 

2.4858 ∗ 106  2.4858 ∗ 106  2.4858 ∗ 106  

Iterations 4063 4185 4210 
Time (secs) 4824.988 2118.738 1719.023 

25,000 
Bus 
System 

Objective 
value 

6.017 ∗ 106  6.017 ∗ 106  6.017 ∗ 106  

Iterations 7276 5105 5048 
Time (secs) 6672.571 8102.079 5565.438  

Table 5 
Number of non-zeros in Jacobian and Hessian.  

Test case No. of non-zeros Power 
balance 
polar 

Power 
balance 
Cartesian 

Current 
balance 
Cartesian 

9 Bus 
System 

Equality 
constraint 
Jacobian 

114 116 122 

Inequality 
constraint 
Jacobian 

72 90 90 

Lagrangian 
Hessian 

96 96 96 

39 Bus 
System 

Equality 
constraint 
Jacobian 

544 546 566 

Inequality 
constraint 
Jacobian 

368 446 446 

Lagrangian 
Hessian 

415 415 415 

118 Bus 
System 

Equality 
constraint 
Jacobian 

2012 2014 2122 

Inequality 
constraint 
Jacobian 

0 236 236 

Lagrangian 
Hessian 

2408 2408 2408 

300 Bus 
System 

Equality 
constraint 
Jacobian 

4610 4612 4750 

Inequality 
constraint 
Jacobian 

0 600 600 

Lagrangian 
Hessian 

3591 3591 3591 

500 Bus 
System 

Equality 
constraint 
Jacobian 

6852 6854 7034 

Inequality 
constraint 
Jacobian 

4776 5776 5776 

Lagrangian 
Hessian 

4826 4826 4826 

2000 Bus 
System 

Equality 
constraint 
Jacobian 

30,424 30,426 31,524 

Inequality 
constraint 
Jacobian 

25,648 29,648 29,648 

Lagrangian 
Hessian 

24,552 24,552 24,552 

3120 Bus 
System 

Equality 
constraint 
Jacobian 

42,962 42,964 43,974 

Inequality 
constraint 
Jacobian 

29,448 35,688 35,688 

Lagrangian 
Hessian 

35,923 35,923 35,923 

10000 Bus 
System 

Equality 
constraint 
Jacobian 

142,706 142,708 147,678 

Inequality 
constraint 
Jacobian 

81,952 101,952 101,952 

Lagrangian 
Hessian 

119,755 119,755 119,755 

25000 Bus 
System 

Equality 
constraint 
Jacobian 

350,548 350,550 360,218 

Inequality 
constraint 
Jacobian 

186,640 236,640 236,640 

Lagrangian 
Hessian 

269,342 269,342 269,342  
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smaller bus systems while the current balance Cartesian form showed 
promising improvement in computational time with increasing problem 
complexity, outperforming the other two formulation for the 25,000 bus 
system case. The results show a similar pattern for the number of iter
ations with power balance polar having the least iterations for smaller 
bus systems while current balance Cartesian had the least iteration 
number for the 25k bus system. 

The validity of the results are tested in matpower for all the cases, 
achieving the same result on both cases. The values of non-zeros in 
equality constraint Jacobian, inequality constraint Jacoboian and 
lagrangian Hessian in the problem formulation are noted to evaluate the 
three formulations. The current balance Cartesian formulation had the 
largest number of non-zeros in the equality and inequality constraint 
Jacobian matrix closely followed by the power balance Cartesian 
formulation. In the case of non-zeros in Hessian matrix, all the three 
formulations had the same number of non-zero values. 

7. Future Work 

For the 25,000 test bus system network, current balance cartesian 
formulation had the best performance. Future work could include 
testing with large scale bus systems for further validation. The current 
objective function only considers the fuel cost of a thermal generation 
plant as a cost function, but future work should accommodate other cost 
functions that may include other fuel and loss types within the network. 
One important aspect of AC OPF for utilities is the computation time. 
Other directions can focus on investigating trade-off between formula
tion type/run-time yielding sub-optimal/optimal solutions that may 
occur during parallelizing on high performance computing environ
ments for both the AC-OPF/DC-OPF calculations. 
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