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A B S T R A C T   

This paper introduces a methodology to forecast voltage total harmonic distortion (THD) at low voltage busbars 
of residential distribution feeders based on the data provided by a limited number of smart meters. The meth
odology provides relevant power quality indices to system operators using only the existing monitoring infra
structure required for demand response operation. Different algorithms for voltage THD forecasting are 
implemented, including artificial neural networks, and their performance is tested and compared. The necessary 
coverage of smart meters for the acceptable accuracy of the estimated THD is also established. The estimation 
algorithms are validated considering probabilistic demand load model developed based on typical harmonic 
injections of household devices obtained from measurements and using a typical European low voltage test- 
feeder with 471 residential consumers.   

1. Introduction 

In recent years, technological advances, very often driven by energy 
saving policies, have encouraged a rapid increase in the use of single- 
phase household appliances based on power electronics. Motors inte
grated in domestic devices are being increasingly equipped with vari
able speed drives and traditional lighting equipment is being 
progressively replaced by Compact Fluorescent Lamp (CFL) and Light 
Emitting Diode (LED) technology. As an example, only in the last 
decade, CFL have replaced around 25% of conventional lamps [1,2]. 

The collective effect of these dispersed non-linear (NL) domestic 
loads has led to observe harmonic current distortion levels in residential 
feeders higher than those of the industrial and commercial feeders [3]. 
Hence, excessive voltage harmonic distortion in residential distribution 
systems is a growing matter of concern that utilities will increasingly 
have to cope with in a near future. Maintaining harmonic levels under 
established limits is a joint responsibility involving both, end-users and 
system owners or operators and, consequently, harmonic limits are 
recommended for load currents and also for system voltages [4–6]. 

In order to anticipate and mitigate problems that arise due to har
monic presence, utilities must be able to predict the expected harmonic 
impact and to evaluate the ability of existing distribution networks to 

accommodate new NL loads. One possible way to assess harmonic levels 
is through extensive monitoring programmes, however, this is a costly 
solution in terms of effort and financial resources required if applied at 
low voltage (LV) buses. Another approach is to perform harmonic sim
ulations by modelling the distribution network and representing the 
loads as stochastic individual harmonic sources [7–10] or aggregated 
harmonic loads [11–13]. The accuracy of simulation based approaches, 
however, depends on the accuracy of the mathematical models used and 
the validity of the considered scenarios. 

More recently, the approaches that extend conventional state esti
mation methodology to harmonic estimation at distribution systems 
have been proposed. They are based on the integration of Phasor Mea
surement Units (PMUs) at the distribution level in order to locate har
monic sources [14–16]. 

In this paper, a new way of utilising intelligent electronic devices 
installed in the smart distribution networks is explored in order to gather 
information about power quality (PQ). In particular, the proposed 
methodology enables the prediction of voltage Total Harmonic Distor
tion (THDV) at LV busbars of a residential feeder based on a reduced 
number of measurements provided by smart meters with sub-metering 
capabilities, i.e., smart meters that are capable of recording power 
demanded by the individual home appliances. These meters are usually 
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intended to perform decomposition of demand into load categories 
meaningful for advanced demand side management. Such demand side 
techniques are recognized as one of the key options to achieve a better 
operation of the electric systems in future distribution networks [17]. As 
an example, in the U.S., it was estimated that the participation of resi
dential customers in demand response (DR) might bring up to half of the 
total peak reduction [18,19]. The network operator in the U.K. is 
planning to obtain 30 to 50% of its balancing services through DR, 
which will only be possible if enough load monitoring devices are 
installed [18,20,21]. By means of the proposed approach, both, devel
opment of advanced DR strategy and PQ estimation and control can be 
achieved in a cost effective way by using a single measurement device, i. 
e., smart meters with sub-metering capabilities. This approach is 
inspired by the existence of numerous trial sites in residential sector with 
such smart meters [22–24].Since DR has been recognized as one of the 
most cost-effective options to operate the system, the deployment of 
smart meters with submetering capabilities is expected to increase to 
enable a better observability of the ends users’ behavior and their po
tential to participate in the network daily operation [18,25]. In addition, 
there are some metering designs which propose using the so-called 
global Home Management Systems, which not only measure power 
consumed by each load in the dwelling, but also allow controlling its 
demand [26,27]. An alternative approach to submetering is performing 
demand decomposition based on non-intrusive load monitoring 
methods. These methods for load decomposition have been extensively 
analyzed in the literature [23,28–31]. 

To obtain an adequate performance of a DR programme relaying on 
smart meters with submetering functionality a penetration level be
tween 5% to 20% of submetering enabled meters is needed [18] which is 
similar to the smart metering penetration level proposed here. One of 
the key objectives of this study is to provide the accurate information 
about PQ indices to DSO without installing any additional monitors and 
to rely only on the information provided by the existing smart meters 
with sub-metering functionality. The results show that a reasonably 
small number of end-users are required to have this type of smart meter 
in order to estimate sufficiently accurately the THDV at LV busbars 
avoiding the need to install specific PQ meters and taking advantage of 
the monitoring infrastructure already installed. 

Therefore, the proposed methodology enables the forecast of present 
or future harmonic scenarios at LV networks by integrating new func
tionalities into already existing monitoring devices. Artificial neural 
networks (ANNs) are used to fulfil this aim. The cases tested in this paper 
shows that harmonic distortion can be predicted at different buses, from 
the secondary of the main transformer to the farthest bus along the 
feeder, which provides a useful tool to monitor power quality behaviour 
of the network or even deciding the adequacy of connecting new loads. 
The main contributions of this study include: i) The artificial neural 
networks based methodology for forecasting time varying THDV at LV 
busbars by using measurement data provided by smart meters with sub- 
metering capability installed at residential properties without the need 
of installing dedicated PQ meters. ii) The assessment of the percentage of 
smart meters with sub-metering capability required to estimate THDV 
with a certain confidence level. iii) The comparison of different algo
rithms performance for forecasting THDV based on the data provided by 
smart meters. 

2. Methodology overview 

2.1. THD forecasting methodology 

Voltage harmonic distortion at residential networks is directly 
related to the currents injected by NL household devices [3]. These 
devices typically behave as a highly variable and unpredictable elec
trical demand due to their stochastic connection and disconnection to 
the network [32]. Consequently, harmonic currents injected by resi
dential loads present also a stochastic behavior and are hardly 

foreseeable for an individual consumer [33]. Nevertheless, the aggre
gated demand of several consumers has a more predictable pattern. The 
decomposition of this aggregated demand into different load categories 
has been explored mainly for demand side management purposes 
[18,20]. In this approach, household appliances are classified first as 
linear or NL loads. Next, four different categories of NL loads are 
established according to their characteristic harmonic current spectrum: 
(i) NL lighting (mainly CFLs and LEDs), (ii) Switch Mode Power Supply 
(SMPS) (i.e., domestic electronic devices), (iii) variable speed drives (e. 
g., washing machines or modern fridges and heat pumps) and (iv) 
directly connected induction motors, i.e., IMs, (e.g., water pumps or old 
fridges and washing machines) [34,35,11]. 

Taking into account this decomposition of aggregated residential 
demand, the general methodology proposed in this work is based on two 
steps:  

(i) Step 1: The decomposition of the total power demand into the 
power demand by individual NL load categories using ANNs.The 
data from a small amount of smart meters with submetering ca
pabilities are used to feed ANN, which are then trained with 
MATLAB ANN tools [36]. 

(ii) Step 2: Estimation of the THDV at LV busbars based on the rela
tionship between THDV and the predicted individual demand of 
different NL load categories (several methods are compared and 
discussed in Section 4 in order to select the most appropriate one 
for this estimation). 

This general approach is depicted in Fig. 1. Step 1 (demand 
decomposition into NL categories) is described in detail in Section 3 
while step 2 of the methodology (THDV prediction) is explained in 
Section 4. 

ANNs are applied in both steps of Fig. 1. Different alternative ma
chine learning tools and methodologies could be applied in these steps, 
including those known as Deep Neural Networks (DNN). However, this 
work primarily focuses on demonstrating the feasibility of application of 
artificial intelligence techniques for estimating PQ parameters with the 
information needed for DR. Performing an exhaustive comparative 
analysis of multiple artificial intelligence algorithms and structures to 
solve the stated problem is beyond the objectives of this paper. 

2.2. Underlying assumptions 

The formulation of the proposed methodology considers the 
following assumptions:  

(i) Step 1: Decomposition of total power demand into NL categories. 
The following assumptions have been made for the application of 
the step 1 of the method: 
• A certain number of smart meters with sub-metering capabil

ities are assumed to be installed in the network. The number of 
clients with a meter is discussed in Section 3. The accuracy of 
performance has been tested and the accurate performance has 
been reached with 10% of clients with such meters. 

• The location of meters is arbitrary, and it is not selected ac
cording to any specific strategy. 

Fig. 1. Overview of the proposed THDV forecast methodology.  
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• Power measured by these smart meters is known during 10 to 
20 weeks in order to train ANN networks.  

• The total aggregated demanded power at the secondary of 
transformer is also known. 

• Four NL categories of loads are used for demand decomposi
tion: NL lighting, Switch Mode Power Supply (SMPS), variable 
speed drives and directly connected induction motors [34].  

• Network parameters are not known.  
• Ten-minute intervals are used for power measurement and 

decomposition in accordance with the requirements of 
EN50160 [4]. 

The output of this step is the forecast of the power demanded 
by each NL category for each 10-min interval. 

(ii) Step 2: THDV forecast. In the second step, the following as
sumptions are considered:  
• Load decomposition estimated in step 1 of the method is used.  
• A PQ monitor capable of recording THDV had been previously 

trained during 10–20 weeks.  
• Network parameters are not known. 
• Ten-minute intervals are used for THDV training and predic

tion. 
The output of this step is the forecast of THDV in each 10-min 

interval. 

3. Demand decomposition into NL load categories 

Only devices that inject distorted current are of interest for the 
purpose of forecasting THDV at LV busbars. Therefore, prior to perform 
classification into NL load categories, residential loads have to be clas
sified first into linear and NL, i.e., the ones characterized by distorted 
current. 

3.1. Linear and NL loads 

In order to classify linear and NL loads, the typical value of total 
current harmonic distortion (THDI) [5] of the most common household 
appliances has been probabilistically characterized. THDI is calculated 
by means of (1): 

THDI =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑H

i=2

(
Ii

I1

)
2

√
√
√
√ × 100 (1)  

where i stands for each harmonic order considered up to the highest 
order H, Ii is the injected harmonic current and I1 is the fundamental 
current. 

Loads characterized by current harmonic injections with very low 
THDI can be considered as non-distorting loads (i.e., linear loads) while 
higher levels of THDI are typical of NL loads . However, the threshold up 
to which THD I is high and thus the load is considered NL is not clear. 

In order to set a threshold value of THDI that can discriminate linear 
and NL loads, the following process has been followed:  

(i) Demand curves of several houses have been simulated with the 
probabilistic tool from Crest model [37] during 20 weeks. CREST 

tool is a model to synthetically generate demand profiles of a 
single household, based on probabilistic values (such as active 
occupancy of the house, temperature, sun irradiance and time of 
use of appliances). This model follows a bottom-up procedure, i. 
e., residence demand is computed by adding each device’s de
mand, minute by minute. 

(ii) A current injection spectrum has been allocated to each house
hold device. Current injections are generated following a bottom- 
up approach, based on the demand model developed by Crest 
[37] and real, measured harmonic spectrum reported in PANDA 

database [38]. Harmonic injections depend on the ON-OFF 

operation state of residential loads, which is highly stochastic. 
The load operation is hence, simulated based on probabilistic 
demand models reported in [37]. Once the operation state of the 
load is estimated, harmonic currents injected in the ON state are 
synthetically generated (with both, magnitude and phase angle) 
according to characteristic multivariate gaussian distributions of 
the harmonic current injections of each device. These charac
teristic gaussian distributions have been identified for each resi
dential appliance by performing cluster analysis techniques [39] 
on the set of corresponding, measured harmonic currents for 
different devices available in PANDA database [38]. In this way, 
the variability in the harmonic injection by different devices of a 
certain appliance type is included in the model. For devices with 
very little data available in PANDA, additional measurements have 
been performed. 

The simulation of the random operating state of loads, together 
with the probabilistic characterization of harmonics currents 
injected by devices, allows a stochastic modeling of harmonic 
injection of residential loads. This procedure follows a similar 
approach reported in [7,9]. 

With this, the harmonic currents injected by the devices and, 
therefore, by the residence can be determined.  

(iii) These generated current harmonic profiles have been applied to a 
small network [40], where the harmonic injection problem has 
been solved for every minute of the week. This calculation has 
been done using the OPENDSS [41] simulation tool, by modelling 
residential loads as Norton equivalents [7]. Through harmonic 
injection analysis, harmonic voltages are obtained, allowing to 
compute THDV.  

(iv) A regression has been calculated between the THDV obtained at 
the secondary side of the main transformer at each minute of a 
week and the percentage of power demanded by NL loads in that 
minute, when considering different THDI thresholds to discrimi
nate linear from NL loads. Fig. 2 shows that these two magnitudes 
(THDV at secondary of transformer and proportion of NL power 
with respect to the total demanded power) have higher correla
tion index and regression slope when THDI threshold is over 15%. 
This study has been done for 20 different weeks, each represented 
by a dot in Fig. 2. 

The results indicate that loads with less distorted current show lower 
influence i.e., lower correlation index on voltage distortion at LV bus
bars. Therefore, in this work, the loads whose harmonic spectrum leads 
to a THDI>15% are designated as NL loads. Similar results have been 
found when applying exactly the same process described here to a 
different, larger, test feeder. 

Taking into account the variability among a particular type of de
vices and the probabilistic approach followed to model their harmonic 
spectrum, some devices can be classified as NL at some houses and linear 
at others. Table 1 shows some of the most typical household appliances 

Fig. 2. Correlation between THDV at secondary of transformer and NL load 
proportion at 55 load network [40], with different THDI thresholds. 
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obtained for 500 houses. For this study, it has been assumed that out of 
all lighting devices 41% are linear (halogen or incandescent lights) and 
59% NL, with LEDs and CFLs representing 24% and 35% of the total, 
respectively [1]. The second column of Table 1 shows the percentage of 
the energy consumed by a certain type of appliance during a summer 
week obtained using Crest tool [37]. The third column indicates the 
percentage of devices of a given type classified as NL (i.e., THDI > 15%) 
based on probabilistic characterization of their harmonic spectrum. For 
example, based on Table 1, TVs consumed 15.8% of the energy and 
60.8% of the TV devices were classified as NL. Therefore, during the 
week, assuming all the TV devices have the same or very close charac
teristics, 15.6%× 60.8% = 9.6%, i.e., approximately 9.6% of the energy 
consumed by residences has non-linear characteristics corresponding to 
the spectrum associated with TVs. 

To obtain values of Table 1 PANDA current harmonic measurements 
[38] were allocated to Crest demand model [37] as previously described 
in step ii). 

The assumed harmonic current injections have been considered in
dependent from voltage supply distortion [7]. Possible variations in 
current injections caused by voltage supply distortion can be considered 
as part of the uncertainties included in the assumed probabilistic model. 

3.2. Characteristics of decomposed NL demand 

Fig. 3 shows the aggregated power demand of 500 individual resi
dences in a summer and winter week. This demand has been syntheti
cally obtained using Crest tool [37]. With the aim of observing its 
characteristic behaviour, the aggregated demand has been decomposed 
into linear and NL demand, according to the THDI of the appliances that 
contributed to it and according to the defined THDI threshold and by 
means of the method previously described. In addition, NL demand has 
been decomposed into four categories depending on the type of house
hold appliance that causes such demand. These categories (described in 
Section 2) are: (i) lighting NL lamps, (ii) SMPS, (iii) VSDs and (iv) IMs. 

As it can be seen from Fig. 3, both, the total aggregated power demand, 
and the aggregated power demand of NL loads follow a typical daily 
trend. It is this repetitive behavior of decomposed demand shown in 
Fig. 3 which can facilitate its prediction. 

In this approach, ANNs are used to forecast decomposition of resi
dential loads into the specified NL load categories, based on information 
of the total aggregated active and reactive power demand. 

3.3. NL demand forecast 

The general process to forecast demand decomposition is depicted in 
top of Fig. 4. Neural networks are trained with the past information of 
load disaggregation provided by smart meters installed in a certain 
percentage of houses as a realistic scenario in the future smart distri
bution grid [18,19]. These submetering-enabled smart meters are 
assumed to be installed for DR management in distribution networks, 
therefore their location has been randomly selected and has not been 
discussed in this paper as it is very unlikely that the placement of these 
meters in real networks will be guided by any optimization procedure 
related to harmonic monitoring, or even the demand response pro
grammes, in the future. 

In order to train the neural networks, it is assumed that smart meters 
record real power of individual appliances in the houses where they are 
installed. According to this assumption, smart meter recorded demand 
from individual appliances can be aggregated at the concentration point 
following the proposed load decomposition into NL loads categories. 
The ANN is trained during several weeks with the total demand and the 
demand recorded for each load category (top-left of Fig. 4). Once ANN is 
trained, forecasts of demand decomposition of future weeks can be made 
just by providing the forecast of total power consumption (real and 
reactive) by all residential consumers (top-right of Fig. 4) at the same 
substation. In this study, demand is calculated with a 10 min interval 
resolution, in accordance with the time step required by power quality 
standard EN50160 [4] and based on [42] where it is reported that de
mand can be measured over periods from 1 to 60 min. 

Simulations carried out in these studies show a very small influence 
of the background harmonic voltage distortion at the MV level on the 
predicted levels of distortion at LV buses, so this effect has been 
neglected in the cases studied. In any case, considering that MV voltage 
background distortion tends to follow a cyclic behaviour [43], its sum
mation effect could be easily incorporated in ANNs training if required. 

3.4. ANN architecture for load decomposition 

In this study, two different neural networks are tested for the process 

Table 1 
NL devices for a sample of appliances in 500 aggregated dwellings for a summer 
week.   

Participation in energy 
consumption (%) 

% 
NL 

Category 

Resistive devices (oven, 
kettle, e-heating) 

18.8 0 Linear 

Washing machine 18.7 75.4 VSDs and 
IMs 

TV 15.8 60.8 SMPS 
Fridge and freezer 14.6 40.4 VSDs and 

IMs 
PC 7.5 100 SMPS 

Lighting 6.0 58.8 NL lighting 
Vacuum 2.1 33.1 VSDs 

Rest (microwave,dish- 
washer, etc.) 

16.5 10.0 SMPS  

Fig. 3. Aggregated NL demand decomposition of 500 residential consumers in 
a summer (top) and winter (bottom) week. Fig. 4. THDV estimation methodology.  
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described in top of Fig. 4 considering different percentage of smart 
meters coverage in the grid. First neural network is a two-layer feed- 
forward neural network and trained with Bayesian Regularization 
Backpropagation algorithm [44,45]. The input layer has two neurons 
(active and reactive power) and the output has four (one for each non- 
linear load category). Transfer functions of hidden and output layer 
are log-sigmoid and tan-sigmoid, respectively, following the approach 
used in similar applications [21,46]. The hidden layer has 32 neurons, as 
suggested in [21,46] and finally decided on through a trial-and-error 
procedure as a compromise between the accuracy of assessment and 
the computational time [39]. 

The other neural network used takes into account the time-series 
characteristic of data to be forecasted (in this case, the demand per NL 
category). It is a nonlinear autoregressive with external input neural 
network [47], with similar architectures for the input, hidden and 
output layers. Both networks have been adopted from [36], applied in 
MATLAB. Neural network architecture and parameters tested in this study 
are adopted from [18–21] and found to be a good compromise between 
the training requirements and accuracy. Other ANN architectures or 
parameters could be used, and the same methodology followed. 

Training and accuracy of ANN disaggregation algorithms are 
exhaustively studied in [18,21]. Non-drastic changes in loads can be 
handled with sufficient robustness and accuracy by the trained network. 

4. Estimation of THDV at LV busbars 

The decomposition of demand described in previous section estab
lished four categories of NL loads that are characterized by their har
monic current spectrum and that determines voltage harmonic 
distortion at LV busbars. Therefore, the second step of the proposed 
method is the prediction of voltage THDV at LV busbars by using the 
estimation of demand of the defined NL load categories. This process is 
illustrated at the bottom of Fig. 4. 

In this work, four different algorithms are proposed and tested in 
order to perform the THDV prediction:  

(i) Feed-forward neural network [21,48]. The input layer of this 
ANN has 6 neurons (P, Q and the demand estimated for the four 
NL categories previously defined) and the output layer has one 
(THDV). Therefore, once trained during a certain number of 
weeks the ANN can provide a forecast of THDV. 

Feed-forward neural network applied here is trained with 
Bayesian Regularization Backpropagation algorithm [44]. 
Transfer functions of hidden and output layer are, again, log- 
sigmoid, and tan-sigmoid respectively. Number of neurons in 
the hidden layer was calculated according to [21,46] and then 
corrected in a trial-and-error procedure to 57, which has been 
found the most efficient.  

(ii) Autoregressive neural network [47,48]. Similarly to the ANN 
used before, its input layer has 6 neurons (P, Q and the demand 
estimated in the four NL categories) hidden layer has 27 and 
output one (THDV) neuron. Transfer functions for hidden and 
output layers are, too, log-sigmoid and tan-sigmoid. As in previ
ous ANN introduced, other architecture and parameters could be 
applied following the same methodology.  

(iii) Simple regression [39,49]. A simple regression between the total 
aggregated NL power (that is the sum of the four proposed cat
egories of NL demand) and THDV is calculated. Therefore, in this 
method, the input is only the total percentage of NL demand and 
disaggregated values of NL categories are not used. Tuning of the 
regression parameters (correlation slope and intercept) is made 
during training weeks, when both NL demand and THDV are 
supposed to be available. Regression is computed with least 
squares fitting algorithm.  

(iv) Multivariate regression [39,49]: This is an evolution of the 
former, NL demand for each of the four load categories are used 

as predictors for a multivariate regression. Regression is 
computed again with least squares fit algorithm. NL demand of 
each category are the inputs to this algorithm. Regression model 
is tuned with past data of NL disaggregated demand and THDV at 
the considered bus. 

The complete methodology flowchart is included in Fig. 4, where all 
the inputs and outputs of the methodology steps are included. Note that 
regression algorithms are only proposed for the independent estimation 
of THDV while the ANNs (with different architectures) will be used for 
both, the estimation of THDV and for demand composition. 

5. Performance of the proposed methodology 

Two different ANNs have been tested to accomplish the first step of 
the methodology (NL demand decomposition estimation) and four al
gorithms have been proposed for the estimation of THDV. Based on in
dependent evaluations of their accuracy the most favorable combination 
of the different algorithms have been tested and used for the illustration 
of the overall process of the estimation of THDV. 

Fig. 5 shows the procedure followed to illustrate and analyse the 
performance of the algorithms proposed in this paper. The validation of 
step 1 of the method (decomposition of demand) is explained in Section 
5.1. The validation of step 2 (estimation of THDV) is described in Section 
5.2. Finally, the overall procedure is analyzed and validated in Section 
5.3. 

5.1. Demand decomposition using different ANNs 

As explained in Section 3.4, prediction of demand decomposition can 
be performed by means of feed-forward ANN or by autoregressive ANN. 
Both methods have been implemented for the decomposition of the 
aggregated consumption of 471 residences. The demand model given in 
[37] has been applied to generate residence load profiles over 20 weeks 
for training and testing the ANNs. In order to generate the residence 
demand profiles, occupancy statistics from Spain have been adopted 
(25% residences with one resident, 30% with two and 20% with three 
residents, and 25% with four or more) [50]. These profiles provide the 
decomposed demand that can be assumed as “real” to be compared with 
the estimation. The total active and reactive demanded power is also 
obtained and it will be used as an input to the estimation algorithm (see 
bottom left of Fig. 5). 

In order to assess the required coverage of consumers with smart 
meters, the performance of the estimation algorithms has been tested for 
eight levels of smart metering penetration: 1% coverage (that is 5 
dwellings out of 471 have submetering capabilities), 5% coverage (24 
dwellings), 10% (47 dwellings), 20% (94 dwellings), 40% (188 dwell
ings), 60% (282 dwellings), 80% (376 dwellings) and 100% (all the 471 
dwellings). 

In order to quantify the performance of both algorithms the actual 
real power demand by each NL load category is compared with the 
power estimated by the algorithm for each load category at the aggre
gation point. Therefore, the absolute factor error (AFE) is calculated at 
each time interval (10 min) using the Eq. (2), [18]: 

AFE = |PANN − Preal| (2)  

where PANN is the estimated active power demanded by a certain NL load 
category at a considered time interval and it is determined by the ANN 
estimation, and Preal is the actual power consumed by the NL load 
category at the same time interval. Both values are expressed in p.u. 
based on the average aggregate active power at the secondary of 
transformer during the week, i.e., 190 kW in this study. 

The accuracy of estimation of the share of all NL loads (indepen
dently of their category) is shown in Fig. 6 for different smart metering 
coverage and for both ANN. It can be seen that above 10% of smart- 
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metering coverage the error is smaller than 0.12 p.u. with both ANNs (i. 
e. 12% of the weekly average load) in 90% of the time intervals of the 
week (90th percentile of AFE). It can be also seen that increasing the 
smart metering coverage above 60% has a very reduced effect on 
accuracy. 

In the left part of Fig. 7 the 90th percentile AFE of the four different 
load categories is presented in the form of a bar chart for a range of 
different smart meters coverage when feed-forward ANN is applied for 
the estimation of demand decomposition. The right part of Fig. 7 shows a 
similar result when the autoregression is used. In general, both ANN 
have similar performance with slightly better accuracy of autoregressive 
ANN for higher smart-metering coverage. However, if monitoring 
penetration is very small (under 3%) autoregressive ANN shows bigger 
error. 

Fig. 8 shows the 90th percentile AFE obtained with both proposed 
ANNs for different number of training weeks. In all the cases, 10% 
monitor coverage is assumed. The performance of the demand decom
position algorithm does not improve substantially above 12 training 

weeks irrespectively which ANN is used. The time required for training 
the networks with an Intel Core i7-7700 CPU @ 3.6 GHz-32 GB RAM 
computer is also shown in the graph. It can be seen that it increases 
linearly with the number of weeks with higher slope in the autore
gressive ANN. 

The performance of the ANNs shown in Figs. 6 and 8 corresponds to 
the 90th percentile of the AFE in the prediction of all the 10-min time 
intervals of a single week. In order to illustrate the performance for 
different weeks, Fig. 9 shows the complete Cumulative Distribution 
Function (CDF) of 24 weeks with feed-forward and autoregressive ANN. 
In all the cases the prediction algorithm has considered 20 training 
weeks and 10% smart metering coverage. It can be seen that there is a 
certain variability in the errors among different weeks which is narrower 
in case of the autoregressive network. It can be seen that during 90% of 
the time the AFE is below 0.157 for feed-forward ANN and below 0.141 
for autoregressive ANN. 

Demand decomposition to NL load categories is shown for an 
example day in Fig. 10. The actual decomposed demand of 471 resi
dential consumers is compared with the decomposed demand estimated 
by the feed-forward and autoregressive ANNs (10% smart metering 
coverage and 20 training weeks have been considered). 

5.2. THDV estimation using ANNs and regression algorithms 

The second step of the algorithm, shown in Figs. 1 and 4 is based on 
the estimation of THDV at LV busbars based on previously estimated 
decomposition of demand. 

To validate this step of the methodology, a test feeder and conven
tional harmonic power flow calculations are used. Note that the test 
feeder and harmonic power flow are only used for validation, as the 
proposed methodology does not make use of any network parameter, 
since their influence is already integrated in the ANN training. The 
selected network for this illustration is Representative European 
Network #7 [51]. It consists of 471 dwellings distributed over seven 

Fig. 5. Validation strategy for steps 1 and 2 and overall method.  

Fig. 6. AFE with 90th percentile confidence level of NL power demand (all load 
categories) obtained with feed-forward and autoregressive ANNs with different 
smart meter penetration in the grid. 
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Fig. 7. AFE with 90th percentile confidence level for different categories of NL 
loads, obtained with feed-forward ANN (left) and autoregressive ANN (right) 
and different smart meter penetration in the grid. 

Fig. 8. AFE with 90th percentile confidence level of NL power demand (all load 
categories) for different number of training weeks ANN training time. 
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400/230 V radial feeders [51]. Most of them are single-phase and 
distributed along three phases of the network. All network parameters 
used in OPENDSS simulations, such as transformer or line parameters or 
network topology, can be found at [51].They are not included in the 
paper due to space limitations. In order to better replicate low voltage 
distribution systems in Europe and to adapt the relation between the 
rated transformer power and the peak load to realistic values, original 
[51] transformer rated power has been reduced. With the modified rated 
power value, the simulated peak load is approximately 70% of the 
transformer rated power [52]. This adjustment was done as in the 
original test feeder the transformer rating was 800 kVA while the peak 

demand on the feeder was around 350 kVA, resulting in unrealistically 
oversized transformer. 

The THDV can be forecasted at any bus of the network by applying 
the proposed methodology. In order to show the performance of the 
methodology, two representative buses are selected to illustrate the re
sults: the secondary of the main transformer of the network and the load 
bus 471 (marked TR and LB respectively in the single line diagram of 
Fig. 11). 

The validation procedure has been designed so that the performance 
of all the proposed algorithms for THDV estimation can be compared 
without being influenced by the inaccuracy in the previous step of NL 

Fig. 9. Cumulative distribution function of AFE of NL power demand (all load categories) with feed-forward ANN (top) and autoregressive ANN (bottom).  

Fig. 10. Demand decomposition: actual values (top) and estimated with feed-forward ANN (middle) and with autoregressive ANN (bottom).  

Fig. 11. Single line diagram for Representative European Network #7 [51] with its 7 feeders in different colors.  
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demand decomposition (see Fig. 5). Taking this into account, the esti
mation of THDV is validated according to the following process:  

• The demand of the individual residence included in the network of 
Fig. 11 is generated using CREST tool [37]. Inputs into the model of 
each of the residence profiles (number of inhabitants, appliances in 
the dwelling, powers or time of use) are set to be random [37]. All 
considered scenarios are generated considering the summer season.  

• The harmonic spectrum of each household appliance contributing to 
the demand is generated considering probabilistic distributions of 
measured real harmonic injections provided in PANDA [38] as 
explained in Section 3.1. 

• Power of the NL loads is aggregated into the defined NL load cate
gories at the substation aggregation point. This aggregation is 
assumed to be known in the week of prediction instead of being 
calculated as described in Section 3.3. In this way, the calculated 
error is caused only by the estimation of THDV itself, and the 
different proposed algorithms can be tested without being influenced 
by the errors in the demand prediction.  

• The THDV estimated at a LV busbars based on the actual demand 
decomposition (THDest− realNL) is compared with the actual THDV 
calculated at this LV busbar by the harmonic injection of all indi
vidual loads connected to the network (THDreal), simulated as Norton 
equivalents [53] in OPENDSS simulation software. OPENDSS, in its 
default mode, considers all injecting loads as decoupled Norton 
equivalents, consisting on a current source and a shunt admittance 
which demands rated power at fundamental rated voltage. As pre
viously mentioned, network parameters are only required to obtain 
the value THDreal that will be used to validate the method and assess 
its accuracy. 

In order to quantify the error of the estimation, the distortion 
factor error DFEest− THD is defined as: 

DFEest− THD = THDreal − THDest− realNL (3)  

where THDreal and THDest− realNL were previously defined. 

All these steps have been summarized in Fig. 5.. 
Fig. 12 shows the CDF of the absolute value of DFEest− THD with the 

four algorithms proposed for THDV estimation over one week period at 
bus TR, as representative busbar. In order to make the results compa
rable, all the algorithms consider the same information, i.e. the same 20 
weeks for training the feed-forward and autoregressive ANNs and for 
obtaining the regression parameters (correlation slope and zero inter
cept). All the algorithms are also applied to predict the THDV in the same 
week. It can be seen that feed-forward ANN and autoregressive ANN 
perform better than simple and multiple regression algorithms. 

Fig. 13 shows the CDF of the error predicted over the period of 24 
weeks in order to compare the performance of the prediction algorithm 
for different weeks at busbar TR. Similar results and variability for both 
ANNs can be observed as in the previous case. It can be seen that during 
90% of the time the error DFEest− THD is below 0.146 for feed-forward 
ANN and below 0.134 for autoregressive ANN. 

5.3. Integrated estimation of the THDV 

In previous sections, the performance of the proposed algorithms was 
compared independently for the two steps of the process: NL demand 
decomposition estimation (step 1) and THDV prediction (step 2). In this 
section, the whole estimation process is tested using the algorithms 
which have shown better performance at individual stages, i.e., autor
egressive ANN for demand decomposition estimation and both, feed- 
forward and autoregressive ANN, for THDV estimation. 

Figs. 14 and 15 show a comparison of the real and estimated THDV 
obtained using these algorithms, for secondary of transformer (busbar 
TR) and selected load bus (busbar LB), respectively. In all the cases, 20 
training weeks and 10% smart-metering coverage are used as parame
ters that provide a reasonable accuracy with a good compromise be
tween error and required resources. 

As it can be seen in Figs. 14 and 15, estimation shows similar per
formance for both representative buses. Simulations have shown that 
similar accuracy is obtained for any other bus in the LV network. 

Fig. 16 shows the boxplot of the THDV values obtained for all 10-min 
time intervals of a week. It can be seen that both ANNs have a reasonable 
accuracy in the estimation of the median, the 25th and the 75th 

percentile. Autoregressive ANN is more accurate in estimating the 
minimum. 

The error of the overall estimation of THDV, DFEtotal, is calculated as: 

DFEtotal(%) = THDreal(%) − THDest(%) (4)  

where THDest (expressed in %) is the THDV estimated at the LV busbar 
following the estimation process and THDreal (expressed in %) is the real 
THDV obtained from the actual harmonic injections following the pro
cess described in Section 5.2. 

The error defined in (4) can be split into two components: i) the 
component of the error made in the estimation of THDV assuming per
fect knowledge of NL decomposition (DFEest− THD) given by (3), ii) the 
component of the error in THDV prediction caused by the inaccuracy on 
the estimation of the decomposed NL load categories (DFEest− NL) given 
by: 

DFEest− NL = THDest− realNL(%) − THDest(%) (5)  

where THDest− realNL was already defined in (3). 
It can be easily observed that the total distortion error DFEtotal 

defined in (4) is the sum of errors defined by (3) and (5). 
Fig. 17 shows the mean and the CDF of the absolute value of the 

defined factor errors for the THDV estimation in all the time intervals of a 
certain week. It can be observed that the total error is mainly influenced 
by the error of the estimation of the THDV and that the error of the 
estimation of NL load categories has lower impact on the overall THDV 
error. It can be also seen that during 90% of the time the total error is 
lower than 0.156 for feed-forward network and lower than 0.143 for 
autoregressive ANN. 

Standard EN50160 [4] requires weekly 95th percentile of THDV to 
comply with established limits. Fig. 18 shows the comparison between 
the 95th percentile value of real THDV and THDV predicted by the pro
posed method in ten simulated weeks, with a mean error of 9.8% and 

Fig. 12. Cumulative distribution of absolute errors in THD estimation (DFEest− THD) with different algorithms at busbar TR.  
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standard deviation of 5.6 in estimations. As it can be seen, a close pre
diction is achieved with a slight underestimation which is caused by the 
existence of short THDV peaks that are smoothed in the estimation, as 
shown in Fig. 14. 

5.4. Application to scenario with higher levels of THDV 

THDV can reach different levels depending on the penetration of non- 
linear loads, short circuit capacity and operating condition of the 
network. In future scenarios with increased penetration of electric 

vehicles and other power electronic interfaced loads, storage and gen
eration technologies as well as other nonlinear loads (e.g., efficient 
lighting), THDV levels are expected to increase. 

Results presented in previous sections referred to a scenario with low 
harmonic distortion. In this section, a new case study is presented for a 
scenario where higher voltage distortion levels are reached in order to 
verify the validity of the methodology in such situation. In this case 
study, the proposed estimation method is applied at bus 400 of the 
network, where THDV reaches values over 4% in the estimated week. 

The estimation results are presented in Fig. 19, where the 

Fig. 13. Cumulative distribution of absolute errors in THDV estimation (DFEest− THD) in 24 weeks estimated by means of feed-forward ANN (top) and autoregressive 
ANN (bottom) at busbar TR. 

Fig. 14. Real and estimated THDV by means of feed-forward ANN (top) and autoregressive (bottom) at secondary of transformer (bus TR).  

Fig. 15. Real and estimated THDV by means of feed-forward ANN (top) and autoregressive (bottom) at busload 471 (bus LB).  
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performance of both feed-forward and autoregressive ANNs is shown. As 
it can be seen in this figure, the method shows a similar accuracy to 
results previously presented. 

Fig. 20 presents the boxplot of the THDV values obtained for all 10- 
min time intervals of a week. It can be seen from Figs. 19 and 20 that 
both ANNs estimate the median, the 25th and the 75th percentile of 
THDV values with a good accuracy. The minimum value is also well 
estimated by both ANNs. The estimation of the highest THDV values, 
occurring infrequently, is slightly less accurate though, as it was also 
observed in Fig. 16. 

6. Conclusion 

This paper presented a methodology to forecast THDV at LV busbars 
in residential distribution networks. The proposed methodology uses 
limited number of smart meters with sub-metering functionality to 
predict demand disaggregation into linear and NL loads first, and then to 
estimate THDV at different buses in the network. This methodology 
enables the integration of new functionalities into already installed 
monitoring devices in order to forecast present or future harmonic 
distortion. 

Several algorithms have been tested and compared for both, 
decomposing demand and estimating THDV. Autoregressive and feed- 
forward neural networks are shown to be the best and comparable 
methods to forecast THDV considering both stages of estimation. It has 
been demonstrated that relatively small numbers of advanced smart 
meters in the network is enough for accurate harmonic estimations. 
Good performance is achieved with a 10% penetration of smart meters 
with sub metering functionality. 

Other machine learning techniques, such as DNN or other ANN ar
chitectures, can be applied to solve the problem of harmonic forecasting. 
Trying different machine learning algorithms and comparing their per
formance with the approach used in this work has been identified as a 
potential future development. Another future area of work might be to 
explore possibility of development of a set generic trained ANNs for 
groups of typical networks and buses. 

The methodology is illustrated here on a residential distribution 
network, but a similar process can be followed to predict THDV in 
commercial, industrial or hybrid grids. It is important to note though 
that in order to predict load decomposition and THDV in a particular 
network the ANNs should be trained in that network, but the parameters 
or model of the network are not required to be known. 

Fig. 16. Real and estimated THDV boxplots at secondary of transformer (busbar TR).  

Fig. 17. CDF and mean of absolute factor errors errors during one week for THD estimated with feed-forward ANN (top) and autoregressive ANN (bottom) at 
secondary of transformer (busbar TR). 

Fig. 18. THD 95th percentile values estimated with autoregressive ANN at 
secondary of transformer. 
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Finally, the approach is illustrated on a week-ahead prediction, but it 
can also be followed for real-time estimation. With this, PQ can be 
monitored on a continuous basis which allows the analysis of trends and 
the assessment of the compliance with the recommended limits. 
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[12] Au MT, Milanović JV. Development of stochastic aggregate harmonic load model 
based on field measurements. IEEE Trans Power Delivery 2007;22:323–30. 

[13] Silva MM, Gonzalez MLY, Uturbey W, Carrano EG, Silva SR. Evaluating harmonic 
voltage distortion in load-variating unbalanced networks using monte carlo 
simulations. Transmiss Distrib IET Generat 2015;9:855–65. 

[14] Zhou W, Ardakanian O, Zhang H, Yuan Y. Bayesian learning-based harmonic state 
estimation in distribution systems with smart meter and dpmu data. IEEE Trans 
Smart Grid 2020;11:832–45. 

[15] Melo ID, Pereira JL, Variz AM, Garcia PA. Harmonic state estimation for 
distribution networks using phasor measurement units. Electr Power Syst Res 
2017;147:133–44. 

[16] Melo ID, Pereira JL, Ribeiro PF, Variz AM, Oliveira BC. Harmonic state estimation 
for distribution systems based on optimization models considering daily load 
profiles. Electr Power Syst Res 2019;170:303–16. 

[17] Albadi M, El-Saadany E. A summary of demand response in electricity markets. 
Electr Power Syst Res 2008;78:1989–96. 
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