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A B S T R A C T   

The upsurge in microgrid demand is an important aspect of imparting energy in future primarily because of the 
involvement of renewable energy sources, which alleviates the emission of toxic gases from fossil fuelled gen-
erators. The grid-connected mode of microgrid operation is the most economical and definitive mode of service 
wherein the grid is actively involved in the buying and selling of power prompting diminished generation cost of 
microgrid system. These cases, pertaining to two different low voltage microgrid systems, are applied consec-
utively for obtaining the generation cost of the systems and thus devise the cheapest strategy among them. The 
Grey Wolf Optimizer (GWO) is improvised by incorporating strategies from population-based Sine Cosine Al-
gorithm (SCA) along with position updating methods of crows from Crow Search Algorithm (CSA) to form a 
hybrid modified Grey Wolf Optimizer Sine Cosine Algorithm Crow Search Algorithm (GWOSCACSA) algorithm. 
The implementation of the proposed technique produces a comprehensive generator cost reduction of the 
microgrid system. It was evident from the results that generation cost was minimum when Time of Usage (TOU) 
based market pricing strategy was considered. Further, it was also established that dynamic grid participation 
was reduced 47% in the system generation cost for the same scenario compared to the case when the grid was 
operating passively. The statistical analysis endorses the improvements of GWOSCACSA over other algorithms 
presented in the state-of-art-literature.   

1. Introduction 

The relevance of economical electric power generation can be 
considered indispensable for efficient and reliable power system oper-
ation. Optimal scheduling of fossil fueled generators is the pressing 
priority where utility engineers encounter challenges in bringing a 
trade-off between fuel cost and carbon emissions to suffice the consumer 
demand. 

1.1. Economic load dispatch and relevance in the current power scenario 

ELD problem is a multi-constrained, non-linear optimization prob-
lem, which is pivotal to power system planning and operation engineers. 
It primarily aims to allocate power generation to meet load demand with 
minimum cost while satisfying the system constraints of different 

generation units. Considering the prevailing condition of surge rise in 
power demand, enormous capital investment and running expenses of 
generating units coupled with limitation of fossil fuel reserves are con-
fronted. This portrays ELD as an intimidating and complex issue for 
power engineers to be solved. Economic optimality can be ensured for a 
designated load demand by attaining minimum dispatching cost. 

ELD problem works on the principle that all the generating units 
involved in delivering power to suffice the load demand will not incur 
the same cost to cater the same amount of load. Instead, some generating 
units may be more expensive for producing same amount of active 
power than the others. Therefore, this precisely makes optimal alloca-
tion of a given share of total demand more crucial to eventually lower 
the fuel cost. Thus, generated power is in accordance with the demand 
on the load side [1]. 

With respect to load demand, the ELD has been broadly classified as 
SELD, where the load is fixed throughout the day, and DELD, where the 
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load demand changes from time to time. The former case is compara-
tively less complex and has limited constraints such as ramp rates, 
prohibited operating zones, etc. [2 3]. On the contrary, DELD has sub-
stantially more complex problems with additional constraints associated 
with the DERs and time periods [4]. EMS of microgrid systems are 
associated with the DELD bracket of cost reduction with startup, shut 
down times of DERs and charging/discharging state of energy storage 
systems as some of the crucial complex constraints that are to be faced 
while solving DELD. 

1.2. Review of related research work 

Numerous research work has been undertaken to obtain the most 
cost-efficient distribution of generation, which could have a great 
impact on the economy of the power generation process. The momen-
tous rise in fuel price has propelled ELD problem as a necessary and 
relevant complex optimization issue in power network. Conventional 
computational methods, as mentioned in [5], could be applied but only 
in cases wherein the cost function is smooth, continuous, non-convex, 
and differentiable. However, when actual physical constraints as 
encountered in a real time power network are attempted to be incor-
porated in the optimization equation, it becomes non-smooth and 
convex, thereby stalling conventional methods [6]. Classical methods 
for optimization are being used for a prolonged time to solve ELD. 
Smooth ELD problems are frequently solved using iterative lambda 
method, gradient method, and dynamic programming [7]. In order to 
practically model an ELD problem efficiently, numerous constraints are 
necessary to be undertaken with high level of accuracy thereby making 
the objective function highly complex [8]. The nature of the cost curve- 
imposed limitations on the application of these algorithms. Despite 
being independent of the nature of the cost curve, dynamic program-
ming is affected by dimensionality and consume huge time in large 
generating systems [9]. This led to an upsurge in the application of meta- 

heuristic algorithms, which could curb the non-linearity in ELD problem 
such as chaotic bat algorithm [10], Kinetic gas molecule optimization 
[11] Grey Wolf Optimization [12] and adaptive social acceleration 
constant-based particle swarm optimization [13]. Evolutionary algo-
rithms, which are based on various processes that have led to the evo-
lution of life, proved functional in such cases. Genetic Algorithm is an 
evolutionary technique based upon global search, deriving the idea from 
genetic and cell reproduction which is used as a powerful tool [14,15]. 
Daniel et al. [8] consider a time varying ELD problem by applying 
Levenberg Marquardt algorithm. Current electricity market scenario is 
marked by large, interconnected power systems and deregulated power 
markets. The authors in [16] have applied fuzzy based Ant Lion Opti-
mizer for solving dynamic optimal power flow problem. Authors in [17] 
implemented 150 variations for different load in training the neural 
networks and applied lambda iteration method and Back Propagation 
Neural Network in optimal power flow problem. The most sought-after 
evolutionary methods of Differential Evolution and PSO are integrated 
for solving ELD by considering valve-point loading effects by authors in 
[18]. Similarly, authors in [19] have utilized Dragonfly Algorithm and 
Advanced Modified PSO is applied by authors in [20] to solve ELD 
problem. With respect to the current situation that is emphasizing 
microgrid, ELD problem and, specifically the dynamic type, is an 
important power system optimization problem for reliable and secured 
operation. The microgrid can be visualized as a cluster of DERs as well as 
loads restricted to a given geographical area [21]. The DERs comprises 
of fossil-fueled generator sets and RES conducive to the microgrid 
location. The DERs further includes ESS, which may be battery, fuel cells 
and micro turbines. The specification and uniqueness of each microgrid 
calls for independent modelling with specific constraints, thereby, 
making economic dispatch an intricate optimization problem to be 
handled by power engineers. 

There are two pre-dominant modes of microgrid operation 
comprising of either islanded or utility connected. The utility mode of 

Nomenclature 

List of Abbreviations 
ELD Economic Load dispatch 
SELD Static Economic load Dispatch 
DELD Dynamic Economic Load Dispatch 
DERs Distributed Energy resources 
RES Renewable energy sources 
EMS Energy Management System 
GWO Grey Wolf Optimizer 
GW Grey Wolves 
GWOSCACSA Grey Wolf Optimizer Sine Cosine Algorithm Crow 

Search Algorithm 
RES Renewable Energy Sources 
ESS Energy Storage Systems 
EVBs Electric vehicle batteries 
ICA Imperialist Competitive Algorithm 
ISA Interior search algorithm 
PSO Particle Swarm Optimization 
AMPSO Adaptive Modified Particle Swarm Optimization 
MICA Modified Imperialist Competitive Algorithm 
EED Economic Emission Dispatch 
WOA Whale Optimization Algorithm 
MHSA Modified Harmony search algorithm 
PV Photo Voltaic 
MG Micro Grid 
DNO Distribution Network Operator 
EVB Electric Vehicle Batteries 
BESS Battery Energy Storage Systems 

GW Grey Wolf 
MG Micro grid 
LV Low Voltage 
MT Micro turbine 
FC Fuel Cell 
WT Wind Turbine 
VL Variable Load 
FL Fixed Load 
TOU Time of Usage 
CPP Critical Peak Pricing 
LMP Locational Marginal Pricing 

List of Symbols 
Fg Generator fuel cost 
Pg Active power output of generator 
Ig Binary symbol for ON/OFF generator status 
Cgrid Total grid cost 
MP Market Price 
u Binary variable for charging 
v Binary variable for discharging 
z Binary variable for ON/OFF status of variable load 
α, β, δ, ω Type of grey wolves in GWO 
t Iteration time 
ρ→and C→ Regulation vectors 
λ
→ Distance between grey wolves and prey 
i
→

1and i
→

2 incidental vectors 
dim Dimension of the solution 
rand Random number  
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functioning is deemed to be more effective and resilient due to the 
microgrid ability to sell/buy power based on surplus/deficit power 
production of individual DERs. The reliability factor is enhanced in 
utility connected mode as it can reckon on the grid in case of DER 
collapse, i.e., averting an undesirable network shutdown. Microgrid are 
considered as focal aspect to deliver energy in future, where in the last 
decade has witnessed intense research in this area. 

ICA and Matrix real coded Genetic algorithm were used by Chen 
et al. [22] and Kasei [23] for generator cost minimization in a grid 
connected microgrid. The efficacy of algorithms is verified by maneu-
vering variable loads, testing compact operating range and fluctuating 
pricing in electricity. Basu and Chowdhury [24] investigated both SELD 
and DELD problem with Cuckoo Search Algorithm, generating improved 
results compared to PSO and Differential Evolution. The microgrid 
specifically consisted to two wind turbines operational based on wind 
speed. Pareto-optimal front based economic-emission dispatch was 
performed by Moghaddam et al. using AMPSO in reference [25], and 
MICA on a utility connected microgrid system by Rabiee et al in [26]. 
Economic and emission dispatches and combined EED were evaluated 
using interior search algorithm (ISA) in [27], MHSA in [28] and WOA in 
[29] on a 3-unit islanded microgrid system supported with photo voltaic 
(PV) and wind system. Kumar et al. [30] have solved the problem of 
optimal energy generation scheduling with respect to the available RES 
by applying Artificial Fish Swarm Algorithm. The problem of load un-
certainty existing in a Micro grid (MG) while proper scheduling of re-
newables is handled by modified particle swarm optimization algorithm 
by Gholami and Dehnavi [31]. Askarzadeh [32] professes a memory 
based genetic algorithm for cost minimization while optimal power 
sharing among DERs considering a smart grid structure. Further, two 
more scenarios were studied by authors in [33] for the mentioned test 
system by increasing the load demand to 10% of its existing value, 
including an energy storage device and connecting the microgrid to 
utility for the unilateral flow of power. Bahmani-Firouzi and 
Azizipanah-Abarghooee [34] have applied Improved Bat Algorithm has 
restorative measures to be adopted for optimal use of Battery Energy 
Storage. Sharma et al. [35] propose Quasi-Oppositional Swine Influenza 
Model Based Optimization with Quarantine for operational planning 
and energy cost minimization. The overall operational cost of a micro-
grid system is optimized by the application of GWO [36]. Sharma et al. 
[37] used a probabilistic approach to attend the uncertainty in load 
demand and RES outputs to minimize the generation cost of a MG sys-
tem using WOA. Bishwajit and Bhattacharyya [38] employed a recently 
developed nature inspired algorithm for optimizing cost of generation of 
various renewable integrated small and large microgrid systems. The 
fitness functions of these microgrid systems were both unimodal and 
multimodal in nature. CSA outperformed both classical and ample 
number of metaheuristic algorithms in minimizing the generation cost of 
these microgrid systems. 

Considering the uncertainty in wind power furcating, a non- 
dominated sorting genetic algorithm II was used by Sarshar et al. [39] 
as an optimization tool to perform multi-objective energy management 
of a microgrid system. The impact of network reconfiguration was 
studied by Kavousi-Fard et al. [40] to conduct dynamic scheduling on a 
microgrid system. Network reconfiguration helped in altering the local 
power flow and reducing the active power loss. Optimum allocation for 
the cooperative operation of multi-coupled microgrids was proposed in 
reference [41], where the microgrid alliance contributes to the day 
ahead exchange of energy with the grid and by penalizing the micro-
grids, deviations from their commitments are limited. The authors in 
[42] carried out a coordinated energy dispatch approach where the 
upper level provides an optimum energy exchange schedule in between 
MGs and Distribution Network Operator (DNO), while the lower level 
ensures sufficient monitoring of supply and demand. Through the cur-
rent plan, the authors not only maintain an economic equilibrium of 
supply–demand but also increase the use of distributed Microgrid sys-
tems for renewable energy. Alharbi et al. [43] proposed a detailed and 

novel framework for the operation and planning of the BESS based on 
repurposed EVBs. A novel linearized BESS sizing model was developed 
to achieve optimum design and operation decisions for the BESS. Lai 
[44], developed a new distributed scheme for a master–slave-catego-
rized dc microgrid network with inadequate bandwidth connectivity to 
integrate the voltage of multiple DER to the optimum level. In addition, 
the authors also achieved optimum load distribution for economical 
operation. Reconfiguration of MG with PV and wind system is done with 
islanding constraints to achieve objectives of minimization of total 
operation cost of microgrid. The authors have considered fuel cost, 
reliability cost, cost of purchasing power from the mains, and switching 
cost as the system objectives [45]. Oskouei et al. [46] have investigated 
the effect of wind energy inception on a grid connected energy system by 
mixed integer non-linear programming method on a modified 6 bus and 
24 bus test system. Inception of renewables to grid structure is investi-
gated by accounting for PV panel, wind power and load demand as 
uncertainties and applying time-varying acceleration coefficients parti-
cle swarm optimization algorithm [47]. Hemmati et al. [48] analyzed 
the concept of smart distribution systems on IEEE 33-bus distribution 
test system by minimization of system costs. The authors have consid-
ered purchased power cost, switching costs, power loss cost for 
executing demand response. Oskouei et al. [49] analyzed the un-
certainties related to electricity markets by proposing a hybrid sto-
chastic approach. 

1.3. Identifying the research gap and choice of hybrid GWOSCACSA in 
the current work 

A detailed in-depth literature review performed above highlights the 
innovative research going on with respect to MG energy management 
problems considering various objectives. However, it was also noticed 
that most of the research was based on the time of usage (TOU) method 
of electricity market pricing, and a few were based on TOU with tax. As 
far as the literature survey performed by the authors, it was noticed that 
the articles lacked a fair comparative analysis on two or more methods 
of electricity market pricing, nor did they mention the reason of 
choosing TOU over the others. 

Coming to the choice of the optimization tool, recent literature also 
establishes the merits of algorithms such as GWO, SCA and CSA in 
tackling multi-modal and complex optimization problems. Hybrid and 
modified metaheuristic algorithms are improvised with logical alter-
ations or exhibit the nature the various algorithms involved to amal-
gamate and form the hybrid. This is the reason that hybrid and/or 
modified optimization techniques yield better quality solutions than the 
original one. The meticulous foraging ability of GWO in a large search 
space is its outstanding facet and it avoids premature convergence, it has 
lesser number of control parameters, and it gives the same accurate 
result consistently even after many trials. SCA has the prominent feature 
of extra ordinary exploration potential and its toggling between sine and 
cosine functions generates an adequate trade-off between diversification 
and intensification process. While CSA, on the other hand, has the 
prominent feature of exploitation potential, which ensures handling 
enormous population size with ease and results in rapid convergence. 
The authors in the current work thus proposed a hybrid of these three 
algorithms as GWOSCACSA which would ensure adaptation of the best 
attributes of all the three thereby delivering optimal solutions. 

1.4. Research contribution of the article 

The novel contribution of this article, which bridges the research gap 
among the various literature, consulted and cited above, can be listed as 
follows:  

i. Three different types of electricity market pricing are formulated. 
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ii. All these market pricing strategies are incorporated on two 
different LV MG systems in turns, and the generation cost is 
evaluated for every strategy.  

iii. A comparative analysis among the generation costs is performed 
to sort out the cheapest and most convenient strategy among the 
four. 

iv. A novel hybrid GWOSCACSA is proposed to evaluate the gener-
ation cost.  

v. The generation cost is also evaluated using GWO, GWOSCA and 
GWOCSA.  

vi. Statistical analysis among the various optimization techniques is 
done to test the robustness of the hybrid GWOSCACSA. 

1.5. Organization of research work 

The research article begins with the introduction to research problem 
and literature review followed by Section 2 specifying the problem 
formulation. Section 3 highlights the implementation of the proposed 
hybrid algorithm in the current problem. Section 4 gives a detail account 
of simulation results, with the work being concluded in section 5. 

2. Microgrid energy management formulation 

The mathematical equation comprising of the generation cost 
incurred by the DERs, and the electricity market price charged by the 
utility, are given by equation (1): 

Min
∑

t

∑

g
[Fg(Pt

g)I
t
g + SUt

g + SDt
g] + Cgrid (1) 

where the symbols F, P and I denotes the fuel cost, active power 
output and ON/OFF status of the generators g respectively. It is a binary 
symbol with value 1 or 0 where 1 means the generator is ON for that 
particular time period t and 0 means the generator is OFF. SU and SD 
stands for start-up and shut down costs of generator g. Cgrid is the total 
cost incurred by the grid throughout the day. 

The total cost incurred by the grid varies according to the various 
electricity market pricing strategies available in various regions of the 
world. These pricing strategies normally changes with the change in 
load demand throughout the day. Fixed pricing (FP) strategy is not 
affected by the change in load demand. The price of electricity in this 
strategy remains the same throughout the day. Time of Usage (TOU) is a 

type of electricity market pricing where the electricity market prices 
change on hourly basis with rise and fall in load demand. This is the most 
widely followed market pricing strategy in the world. TOU with tax, 
Critical Peak Pricing (CPP) and two settlement payment system are some 
of the other prevalent market pricing strategies. Unlike TOU, where the 
selling price and the cost price of electricity remains unchanged, in TOU 
with tax system, the utility buys the excess electricity from the MG with 
a tax affected price. The tax is levied on the selling price by the utility. 
This is expressed as Strategy 3 in Table 1 below. 

CPP is a medium of managing electricity demand even under 
compact demand–supply balance [50 51]. It primarily targets load 
reduction in a more dynamic way in the comparatively few expensive 
hours. CPP enhances electricity prices to austere levels at peak hours on 
the critical days proclaimed earlier. As a result of CPP strategies the 
people may respond in a sensible way with respect to electricity usage 
such as turning off air conditioners at home or diminishing electricity 
consumption. 

The day-ahead market provides the status about the plants scheduled 
to run on the following day but it does not provide information about the 
plant which will eventually run on the following day. This is judged on 
the basis of real-time data and frequently it is observed that if a plant is 
scheduled to run in the day-ahead market than it is positively discharged 
in real-time. The impetus of real-time market is to dispense regional 
transmission units to adapt to economic dispatch based on alterations in 
demand forecast between the 24 h ahead time frame and the 1 h ahead 
time frame. It is, therefore, feasible that a generating unit would clear a 
certain quantity in the day-ahead market and a different quantity in the 
real-time market. The existing Locational Marginal Pricing (LMP) will 
eventually regulate the complete generator payments for both day- 
ahead and real-time markets. This payment process is called the “two 
settlement system”[52]. 

This paper considers evaluating the generation price of two MG test 
systems considering the FP, TOU and TOU with tax-based strategy. 
These strategies are formulated and displayed in Table 1. 

The objective function, equation (2), is subjected to some necessary 
constraints related to various sections of the microgrid considered, given 
by equations (3–13). 
∑

t

∑

g
Pt

g + Pt
grid = FLt +

∑

d

∑

t
Lt

d (2) 

Constraints for the grid: 

− Pmax
grid⩽Pt

grid⩽Pmax
grid (3) 

Constraints for generators: 

Pmin
g ⩽Pt

g⩽Pmax
g (4)  

Ton,t
g ⩾ONTg(It

g − It− 1
g ) (5)  

Toff ,t
g ⩾OFFTg(It− 1

g − It
g) (6) 

Constraints for energy storage system [40]: 

Pt
g⩽Pt,dch,max

g ut
g − Pt,ch,min

g vt
g (7)  

Pt
g⩾Pt,dch,min

g ut
g − Pt,ch,max

g vt
g (8)  

ut
g + vt

g⩽1 (9)  

Tt,ch
g ⩾CTg(ut

g − ut− 1
g ) (10)  

Tt,dch
g ⩾DTg(vt

g − vt− 1
g ) (11) 

Constraints for the adjustable loads (for MG test system 2) [40]: 

ALminzt
d⩽AL⩽ALmaxzt

d (12) 

Table 1 
Various market pricing strategies.  

Strategy Mathematical equation Brief Explanation Ref. 

1 Cgrid =
∑T

t=1FP*Pt
grid  

FP is fixed price of 
electricity with 
which microgrid 
buys or sells 
power from utility 
depending on the 
value of Pgrid 

NA 

2 Cgrid =
∑T

t=1MPt*Pt
grid  

Unlike FP, MP 
changes 
depending on the 
TOU throughout 
scheduling period 
T 

[25 
26 
39] 

3 Pbuy =
∑

t
MPt*Pt

grid if Pt
grid > 0

Psell =
∑

t
(1 − tax)*MPt*Pt

grid if Pt
grid < 0

Cgrid = Pbuy + Psell  

Here selling price 
is measured as a 
taxable multiple 
of MP. The tax is 
fixed by the utility 
as on what 
percentage of MP, 
the utility wishes 
to buy back the 
power from 
microgrid 

[34 
35 
36 
37]  
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∑

t∈[STd, ETd]

ALt
d = ALEd (13)  

Ton
d ⩾OTd(zt

d − zt− 1
d ) (14) 

Equation (2) states the conservation of energy. At any given period of 
time, the sum of the active power delivered by the DERs and the utility 
should suffice the total loads (both fixed and variable) during that 
period. Equation (3) marks the operating range of the power to be 
purchased from or sold to the utility. Equations (4–6) states the oper-
ating time and range of the conventional fossil fuelled generators. The 
constraints for optimally scheduling the energy storage system are stated 
in equations (7–11). Symbols ‘u’ and ‘v’ are binary variables showing the 
charging/discharging status of the battery. Equations (12–14) states the 
operating constraints of the variable loads for the residential microgrid 
test system. Like u and v, symbol ‘z’ is a binary variable stating the ON/ 
OFF status of the adjustable or variable loads. 

The fitness function stated in equation (1) is minimized by a pro-
posed GWOSCACSA algorithm which is discussed in the succeeding 
section. 

3. Hybrid optimization algorithms 

This paper implements GWO and hybrid GWO-SCA-CSA, or GWO-
SCACSA, for optimal scheduling and energy control on microgrid sys-
tems. The hybrid algorithm is established through mathematical 
formulations as given in the following section. 

3.1. Grey wolf optimization & its amendments 

GWO is a population-based and naturally inspired metaheuristic al-
gorithm [53]. It comes under the swarm intelligence-based algorithm 
category and formulated based on the behavior of GW in catching the 
prey. In the pack of GW, based on the managing strength of the set of 
wolves, they behave as leaders, subordinates to the leaders in decision- 
making, and the followers to the above. These characteristics are well- 
defined in the GWO algorithm by assuming α-group as leaders, 
β-group as subordinate to the α-group, δ-group as followers to the α and 
β groups, and finally ω-group as the rest of the GW involving in passing 
the information from the boundaries to the other groups. 

This strategy is formulated as a mathematical model for finding the 
optimal solution and formed the GWO algorithm. It considers encircling, 
hunting, attacking, and searching the prey as main phases and expressed 
as follows: 

3.1.1. Encircling prey 
The mathematical model of encircling the prey by GW can be derived 

from Fig. 5. It shows that the proper adjustment of distances between the 
prey and wolf will result in the position update of the wolves within the 
search space. This can be derived from equations (15, 16). 

λ
→

=

⃒
⃒
⃒
⃒C
→
. χ→p(t) − χ→(t)

⃒
⃒
⃒
⃒ (15)  

χ→(t + 1) = χ→p(t) − ρ→. λ
→ (16) 

where: present iteration denoted by ‘t’; ρ→ and C→ are regulation 
vectors; λ

→ gives the distance between the GW and prey, and ; χ→p and χ→

are the position vectors of prey and GW respectively. 
The values of the regulation vectors depend on the distance between 

the GW and the prey. These can be expressed by equations (17,18). 

ρ→= 2 a→. i→1 − a→ (17)  

C→= 2. i→2 (18) 

where: i
→

1and i
→

2 are the incidental vectors in [0, 1], and; a→ de-
creases from 2 to 0 linearly. The incidental vector provides the flexibility 
in moving the GW randomly using equation (15), (16) within the search 
space. 

3.1.2. Searching (Exploration) and attacking (Exploitation) the prey: 
The value of ρ→ in equation (17) determines the searching or 

attacking nature of the GWs. As a→ decreases from 2 to 0 linearly, range 
of ρ→ in the range of [-2a, 2a]. Hence, ρ→ < 1 characterizes the GW 
converges towards the prey and diverges to explore for the prey if ρ→> 1. 
The exploration phase further considers a function C→ as given in 
equation (18) to emphasize/deemphasize the prey position due to the 
environmental effects. This factor improves the avoidance for the local 
optima, and exploration ability even in the final iterations of the GWO 
algorithm. 

In exploration phase, α, β, and δ GWs diverge from each other and 
they will converge towards the prey in exploitation phase. Hence, the 
hunting nature of different wolf groups can be found by equations 
(19–22), 

χ→1 = χ→α(t) − ρ→1. λ
→

α (19)  

χ→2 = χ→β(t) − ρ→2. λ
→

β (20)  

χ→3 = χ→δ(t) − ρ→3. λ
→

δ (21)  

χ→(t + 1) =
χ→1 + χ→2 + χ→3

3
(22) 

where: λ
→

α, λ
→

β, and λ
→

δare the distance between the α, β, and; δis the 
wolf group. These can be calculated by equation (23) 

λ
→

α =

⃒
⃒
⃒
⃒C
→

1. χ→α − χ→
⃒
⃒
⃒
⃒

λ
→

β =

⃒
⃒
⃒
⃒C
→

2. χ→β − χ→
⃒
⃒
⃒
⃒

λ
→

δ =

⃒
⃒
⃒
⃒C
→

3. χ→δ − χ→
⃒
⃒
⃒
⃒

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(23) 

Therefore, in GWO algorithm,α, β, and δgroups update their posi-
tions using equation (19–21) and update the position of the prey using 
equation (22). 

3.2. Modified Grey wolf Optimizer 

The lowest in the hierarchy of grey wolves are the ω group, which 
endorse the δ wolves in the hunting pattern [54]. Therefore, the algo-
rithm is modified as provided in the equation (24). 

λ
→

α =

⃒
⃒
⃒
⃒C
→

1. χ→α − χ→
⃒
⃒
⃒
⃒

λ
→

β =

⃒
⃒
⃒
⃒C
→

2. χ→β − χ→
⃒
⃒
⃒
⃒

λ
→

δ =

⃒
⃒
⃒
⃒C
→

3. χ→δ − χ→
⃒
⃒
⃒
⃒

λ
→

ω =

⃒
⃒
⃒
⃒C
→

4. χ→ω − χ→
⃒
⃒
⃒
⃒

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(24) 

The location of the wolves during hunting can be modelled as pro-
vided in equation below. It is modified to include the ω group of wolves 
by equation (25). 
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χ→1 = χ→α(t) − ρ→1. λ
→

α

χ→2 = χ→β(t) − ρ→2. λ
→

β

χ→3 = χ→δ(t) − ρ→3. λ
→

δ

χ→4 = χ→ω(t) − ρ→4. λ
→

ω

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(25) 

The iterative procedure is updated and presented in the next step as 
provided by equation (26). 

Fig. 1. Subject Microgrid overview [39].  

Table 2 
DER parameters [39].   

Min Max 

MT 6 30 
FC 3 30 
BAT − 30 30 
GRID − 30 30  

Fig. 2. Hourly pricing of DERs and utility [39].  

Fig. 3. Load demand for MG test system 1 [39].  
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χ→
′

3 =
χ→3 + χ→4

2

χ→(t + 1) =
χ→1 + χ→2 + χ→

′

3

3

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(26)  

3.3. Sine cosine algorithm 

SCA is a popular optimization method which implements trigono-

Fig. 4. Day ahead forecasted RES output [39].  

Table 3 
Least generation cost ($) obtained by algorithms after 30 trials.  

Algorithms Strategy 1 Strategy 2 Strategy 3 

Active Passive 

WOA [S]  214.0505  132.1927  194.6928  141.3660 
SCA [S]  214.1415  132.8717  192.4850  141.7147 
DE [S]  214.5699  133.0705  194.4115  143.6395 
GWO [S]  214.8640  132.4026  193.5009  140.1940 
MGWOSCA [S]  214.5753  130.7019  193.1836  138.4744 
MGWOCSA [S]  214.0133  130.4714  191.1856  138.4515 
GWOSCACSA [P]  213.9960  129.7663  190.2848  138.2857 

Note: Bold indicates best attained value; Bold italics indicates best strategy; S: 
Studied; P: Proposed. 

Fig. 5. Hourly output of DERs by MGWOSCA for Strategy 1.  

Fig. 6. Hourly outputs of DERs when least generation price was obtained 
with GWOSCACSA. 

Fig. 7. Grid hourly output (kW) vs. Electricity market price for strategy 2 
by GWOSCACSA. 

Fig. 8. Grid hourly output when least generation costs were obtained 
by GWOSCACSA. 
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metric functions to intensify and diversify the search space. This helps 
the optimization tool in yielding a better-quality solution and not getting 
stuck in local minima. Mathematical formulation of SCA is given by 
equation (27) according to reference [55], 

Xiter+1
dim =

{
Xiter

dim + rand1 ∗ sin(rand2) ∗
⃒
⃒rand3 ∗ Positer

dim − Xiter
dim

⃒
⃒, rand4 < 0.5

Xiter
dim + rand1 ∗ cos(rand2) ∗

⃒
⃒rand3 ∗ Positer

dim − Xiter
dim

⃒
⃒, rand4⩾0.5

(27) 

where: dim denotes the dimension of the solution set comprising of 
decision variables, and;Xiter+1

dim is the solution generated by implementa-
tion of SCA. During successive iteration, the position of solution from the 
destination point is varied and is given as Pos. The indication about the 
direction of the solution is guided by random number rand1, while rand2 
highlights the displacement inclined towards or away from the 

Table 4 
DER parameters for residential microgrid system [40]  

Dispatchable Generators Range 
(MW) 

Bids 
($/kW) 

Min Up time (h) 

G1 0.8/2 0.157 3 
G2 0.8/3 0.154 3 
G3 0.5/2.5 0.194 3 
G4 0.5/2.5 0.218 3 
Grid ±1 Table 5 24  

Table 5 
Fixed loads, Non dispatchable power and electricity market price for test system 
2 [40].  

Fixed Loads 
(kW) 

Non Dispatchable generator 
(kW) 

Electricity Market Price 
($/kW) 

2972 416.5  0.23 
2990.575 416.5  0.19 
3009.15 416.5  0.14 
3038.87 416.5  0.12 
3083.45 416.5  0.12 
3380.65 213.5  0.13 
3529.25 416.5  0.13 
3603.55 304.5  0.14 
3715 416.5  0.17 
3640.7 721  0.22 
3715 1347.5  0.22 
3603.55 1379  0.22 
3529.25 913.5  0.21 
3343.5 553  0.22 
3362.075 416.5  0.19 
3380.65 304.5  0.18 
3454.95 416.5  0.17 
3343.5 416.5  0.23 
3492.1 304.5  0.21 
3603.55 416.5  0.22 
3715 304.5  0.18 
3454.95 304.5  0.17 
3343.5 213.5  0.13 
3492.1 143.5  0.12  

Table 6 
Variable load parameters [40].  

Loads Range 
(kW) 

Total Energy 
(kWh) 

Consumption hours 
(h) 

Min Up time 
(h) 

L1 0/80 320 11–14 1 
L2 0/80 320 15–19 1 
L3 20/80 240 16–19 1 
L4 10/50 300 1–24 24 
L5 20/60 300 13–24 12  

Table 7 
Generation cost obtained using algorithms for test system 2 for various strategy (Notes: FL = Fixed Load; VL = Variable Loads).  

Algorithms Strategy1 ($) Strategy2 ($) Strategy3 ($) 

FL FL + VL FL FL + VL FL FL + VL 

MGWOSCA [S]  11557.01  11781.12  11208.68  11466.95  11496.54  11738.39 
MGWOCSA [S]  11502.32  11720.57  11206.90  11416.49  11486.62  11723.34 
GWOSCACSA [P]  11488.59  11719.98  11180.58  11403.75  11483.01  11721.98 

Note: Bold indicates best attained value; Bold italics indicates best strategy; S: Studied; P: Proposed. 

Fig. 9. Hourly outputs of DERs when only FL were considered during Strategy 
2 by GWOSCACSA. 

Fig. 10. Hourly outputs of DERs when (FL + VL) were considered during 
Strategy 2 by GWOSCACSA. 
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destination. Random number rand3 acts as a weight factor and rand4 
provides the transition between the sine and cosine function during each 
iteration. 

3.4. Crow search algorithm 

CSA follows two probabilistic strategies depending on the behavior 
of a crow from a flock as described by authors in [56]. As per the first 
strategy, crow ‘j’ without having the idea that it is being tracked by 
another crow ‘i’ from the flock, hides its food as per its memory, which is 
later stolen by crow ‘i’. The second possible case is crow ‘j’ possess the 
knowledge that its being tracked by crow ‘i’ and hence flies away to a 
random position to hide its food. Mathematically, these two cases are 
represented by equation (28),  

Xi,iter+1 =

{
Xi,iter + randi × fli × (memj,iter − Xi,iter) randj⩾AP

any random position otherwise

j

(28) 

In above equation (28), random numbers are generated with uniform 
distribution between 0 and 1 and is given as randi and randj. The flight 
length of ith crow in the search space is denoted asfli. During the iterative 
process in search space an occurrence of ‘Case 1′ will cause memory 
update of crow ‘i’ as given in the equation (29).  

memi,iter+1 =

{
Xi,iter+1 if f (Xi,iter+1) is better than f (memi,iter)

memi,iter otherwise
(29) 

being f(.) the value of the fitness function. 

3.5. Modified GWOSCACSA 

Hybrid MGWO-SCA-CSA, called here GWOSCACSA, is modelled by 
incorporating the advantageous properties of SCA [55] and CSA [56] in 
various stages of MGWO [54]. Mathematically, the distance of the 
wolves while hunting is altered using SCA equations and the strategy of 
CSA is used to modify the position updating procedure of MGWO by 
equation (30). 

Fig. 11. Generation cost for various tax percentage using hybrid algorithms.  

Fig. 12. Convergence curve characteristics for strategy 2 (FL + VL).  

Fig. 13. Difference in generation cost considering only FL and both FL and VL.  Fig. 14. VL distribution when least cost was obtained during Strategy 2.  

B. Dey et al.                                                                                                                                                                                                                                      



International Journal of Electrical Power and Energy Systems 134 (2022) 107419

10

λ
→

α =

⎧
⎪⎪⎨

⎪⎪⎩

rand*sin(rand)
⃒
⃒
⃒
⃒C
→

1. χ→α − χ→
⃒
⃒
⃒
⃒ if rand > 0.5

rand*cos(rand)
⃒
⃒
⃒
⃒C
→

1. χ→α − χ→
⃒
⃒
⃒
⃒ otherwise

λ
→

β =

⎧
⎪⎪⎨

⎪⎪⎩

rand*sin(rand)
⃒
⃒
⃒
⃒C
→

2. χ→β − χ→
⃒
⃒
⃒
⃒ if rand > 0.5

rand*cos(rand)
⃒
⃒
⃒
⃒C
→

2. χ→β − χ→
⃒
⃒
⃒
⃒ otherwise

λ
→

δ =

⎧
⎪⎪⎨

⎪⎪⎩

rand*sin(rand)
⃒
⃒
⃒
⃒C
→

3. χ→δ − χ→
⃒
⃒
⃒
⃒ if rand > 0.5

rand*cos(rand)
⃒
⃒
⃒
⃒C
→

3. χ→δ − χ→
⃒
⃒
⃒
⃒ otherwise

λ
→

ω =

⎧
⎪⎪⎨

⎪⎪⎩

rand*sin(rand)
⃒
⃒
⃒
⃒C
→

4. χ→ω − χ→
⃒
⃒
⃒
⃒ if rand > 0.5

rand*cos(rand)
⃒
⃒
⃒
⃒C
→

4. χ→ω − χ→
⃒
⃒
⃒
⃒ otherwise

〉

(30) 

Thereafter χ1, χ2, χ3 and χ4 are calculated by equation (25). The 
position updating step of GWOSCACSA follows that of CSA according to 
equation (31):   

The parameter AP acts as decisive variable to consider all theα, β, 
δand ω wolves for updating process or to rely on the alpha (leader) wolf 
only. AP is a probabilistic value changes in every iteration using equa-
tion (32). 

AP = 1 −
(

1.01*iter3

Max iter3

)

(32) 

Authors in [57] and [58] have utilized the proposed hybrid approach 
in solving single objective and bi-objective fitness functions related to 
microgrid systems and gained superior quality results than various 
others algorithms involved. This is also a motivational point for the 
authors to implement this hybrid algorithm as the optimization tool for 
solving the market pricing problem of microgrid systems. 

Table 8 
Statistical analysis of results obtained for Strategy 2 of electricity market price.  

Test System Algorithms Minimum ($) Maximum ($) Average ($) Hits SD Time 
(s/iter) 

1 MGWOSCA  130.7019  133.8542  131.8052 13/20  1.5426  0.89 
MGWOCSA  130.4714  132.8736  131.0720 15/20  1.0672  1.09 
GWOSCACSA  129.7663  130.5730  129.8470 17/20  0.2483  0.8 

2 MGWOSCA  11466.9471  11473.7830  11468.9979 14/20  3.2140  1.36 
MGWOCSA  11416.4927  11422.7302  11418.9877 12/20  3.1351  2.07 
GWOSCACSA  11403.7511  11408.9989  11404.8007 16/20  2.1537  1.13  

Fig. 15. Box plot for Strategy 2 (Active grid/Test System 1).  

χ→(t+1) = χ→+ fl*rand*
{(

χ→1 − χ→) + ( χ→2 − χ→) + ( χ→
′

3 − χ→)

}/

3 if AP > rand

χ→(t+1) = χ→+ fl*rand*( χ→1 − χ→) otherwise

⎫
⎪⎪⎬

⎪⎪⎭

(31)   

Fig. 16. Box plot for Strategy 2 (FL + VL/Test System 2).  
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3.6. Analogy relating hybrid GWOSCACSA with the energy management 
problem 

If T is the time period for optimal scheduling, D is the number of 
DERs involved in powering the microgrid system on which the energy 
management is to be performed, and N is the number of search agents of 
the population, then the matrix depicting the population is shown in 
equation (33), wherein every search agent of the population follows the 
system constraints mentioned in equations (2) to (14).   

The position of the wolves is depicted by particles in the population 
matrix which acts the control variables. The distance of wolves from the 
prey is taken as the fitness value for the objective function. Considering 
the proposed work as a constrained minimization approach, the position 
of search agent with least fitness function value is the best solution 
among all search agents in the search space and is termed as χα. 

4. Test system results 

Two study the effect of the aforementioned market pricing strategy, 
two microgrid test systems were considered, and the generation cost 
were minimized for both. The results and discussion are detailed in this 
section. 

4.1. Test system 1 

Test system 1 is a LV grid-connected microgrid powered by a MT, a 
FC, a battery as ESS and RES, e.g., PV system and WT, as shown in Fig. 1. 
Their specifications are detailed in Table 2. 

The hourly bidding of all the DERs, including electricity market 
price, are displayed in Fig. 2. The forecasted value of load demands is 
shown in Fig. 3, while that of PV and wind outputs are shown in Fig. 4. 
The generation cost was minimized using four different optimization 

algorithms. All of them were executed for 500 iterations and the number 
of search agents was fixed as 80 for all. Flight length (fl), a parameter 
that occurs in MGWOCSA and GWOSCACSA, was set at 2. These as-
sumptions were done according to reference [48]. 

Table 3 shows the best possible generation cost obtained using the 
various aforementioned optimization techniques for different strategies 
of electricity market pricing. The basic inferences that be concluded 
from the table are:  

• The maximum generation cost was obtained during strategy 1. This 
strategy marks the fixed price of electricity market price. Since the 
fixed price of electricity was not available in the literature, it was 
calculated by evaluating the overall mean of hourly electricity price. 
When Cgrid is fixed, the grid is allowed to operate only after the rest of 
the DERs deliver their maximum capacity. This hinders the grid from 
buying power from the microgrid, which increases the generation 
cost.  

• It can be seen that the least generation cost of the microgrid system 
was realized by the proposed algorithm when the second strategy of 
electricity market pricing was considered, and the grid was actively 
participating. It was also observed that for the same strategy of 
market pricing, when the grid was made to passively participate, i.e., 
grid cannot buy power from the microgrid system or mathematically 
lower limit of grid is fixed at 0 kW, in the transaction mechanism, the 
generation cost rose to 47% from $129 to $190. This steep rise was 
primarily due to the reason that the grid was not allowed to purchase 
electricity from the MG system when load demand was less.  

• Strategy 3 is the situation when the grid purchases power from the 
microgrid on a taxable charge. The tax is levied upon the electricity 
market price, as shown in equation (1c). The tax was considered to be 
10% according to references [19-22], and the generation cost was 
minimized. Proposed modified GWOSCACSA reduced the generation 
cost to $138 for this scenario. 

Table 9 
Wilcoxon’s analysis for the results obtained using proposed GWOSCACSA.  

Test system Strategy Minimum Maximum Average SD Variance Hits p-value 
(x 10-5) 

1 1  213.9960  216.8736  214.4276  1.0542  1.1113 17/20  2.2956 
2  129.7663  130.5730  129.9680  0.3584  0.1284 17/20  3.5593 
3  138.2857  139.0567  138.4399  0.3164  0.1001 16/20  2.9259 

2 1  11719.9799  11725.7320  11721.1303  2.3606  5.5725 16/20  2.9259 
2  11403.7511  11408.9989  11404.8007  2.1537  4.6382 16/20  2.9259 
3  11721.9805  11722.6073  11722.1372  0.2785  0.0775 15/20  3.5593  

S =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

S1
1,DER1, S2

1,DER1, ... ST
1,DER1, S1

1,DER2, S2
1,DER2, ... ST

1,DER2...S
1
1,DER D, S2

1,DER D, ... ST
1,DER D

S1
2,DER1, S2

2,DER1, ... ST
2,DER1, S1

2,DER2, S2
2,DER2, ... ST

2,DER2...S
1
2,DER D, S2

2,DER D, ... ST
2,DER D

S1
3,DER1, S2

3,DER1, ... ST
3,DER1, S1

3,DER2, S2
3,DER2, ... ST

3,DER2...S
1
3,DER D, S2

3,DER D, ... ST
3,DER D

.............

.............

S1
N,DER1, S2

N,DER1, ... ST
N,DER1, S1

N,DER2, S2
N,DER2, ... ST

N,DER2...S
1
N,DER D, S2

N,DER D, ... ST
N,DER D

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(33)   
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Fig. 5 shows the hourly output of MT, FC and grid while GWO-
SCACSA was utilized for cost reduction in generation for the 1st strategy 
of market pricing. It is to be noted that the generation cost was highest 
during this strategy. This is because when the electricity price is 
anchored, utility is allowed to operate only after the rest of the DERs 
deliver their maximum or minimum capacity according to their bid 
prices. It is clear from the figure that since the bid price of MT is less than 
that of FC (from Fig. 2), the output of MT was fixed at the maximum 
operating limit whereas for most of the hours the output of FC was fixed 
at its least permissible value. The left of the load demand, if any, was to 
be supplied by the grid. This finally led to the anomaly, which incurred a 
65% rise in the generation cost compared to strategy 2. 

Fig. 6 shows the hourly output of the DERs when the least generation 
cost ($130 approx.) was obtained by proposed GWOSCACSA during 
active participation of grid of strategy 2. The charging and discharging 
of battery, buying and selling power by the grid and economical sharing 
of loads by MT and FC all within their permissible limits can be realized 
from Fig. 6. 

Fig. 7 shows the complementary behavior of grid with the electricity 
market price in minimizing the active power production cost of the 
system for strategy 2 using the proposed approach. It can be seen clearly 
that when the electricity price is more, then the grid buys power from 
the MG system. On the contrary, during the hours when electricity 
market price is low, then the grid sells power to the microgrid. This buy 
and sell economical interaction between the utility and the microgrid is 
the sole cause of a least generation cost during this strategy 

Fig. 8 shows the participation of the grid for all the 3 strategies when 
generation cost was evaluated using proposed GWOSCACSA algorithm. 
The more power the grid buys from the system, the less the generation 
cost of the system will be. It is clear from this figure that the grid showed 
least participation in buying power from the microgrid during the first 
strategy compared to the other two. 

4.2. Test system 2 

An appraisal of test system 2 consisting of both dispatchable and non- 
dispatchable distributed generators, which supply power to the system. 
is accounted for in this work. It comprises of a LV utility connected 
residential microgrid system. Traditional generators driven by fossil 
fuels include the dispatchable generators, while generators fed by 
renewable sources comprises the non-dispatchable type. In the later one, 
power output cannot be scheduled. The distinctive aspects of the dis-
patching generators are provided in Table 4. 

Table 5 demonstrates the electricity market value, power return and 
the fixed load assigned to the non-dispatchable generators. The type of 
load which consumes power only for a distinct period of time during a 
day are categorized as variable load (VL). VL includes water pump, air 
conditioners, etc. 

Table 6 shows the attributes of the variable loads. The population 
size and maximum number of iterations implemented to minimize the 
generation is the same as in MG test system 1. 

Table 7 presents the generation costs for all the strategies obtained 
using the hybrid algorithms. The least generation cost for MG test system 
2 was obtained by proposed GWOSCACSA when strategy 2 of electricity 
market pricing was considered. Involvement of VL for strategy 2 yielded 
a 2% rise in the generation cost compared to the case when only FL were 
considered. Like the previous test system, the maximum cost was ob-
tained during strategy 1. 

Figs. 9 and 10 show the hourly output of DERs when GWOSCACSA 
minimized the generation cost of the residential MG system using 
strategy 2 of electricity market pricing. The ON/OFF time of the DERs 

can be seen to be maintained in these figures. Acquiring power from a 
MG set can play a pivotal part in diminishing the cost of generation. This 
is seen to have fulfilled from Figs. 9 and 10. 

As a depth of research, the generation cost was evaluated for various 
tax percentages to study its effect in the generation cost of the system. 
The pattern observed in the rise in generation cost, when the tax per-
centage was gradually increased from 10 to 90%, is shown in Fig. 11. 
There was steep rise in the generation cost from 10 to 30% and there-
after there was a steady rise. This primarily happened because as the tax 
percent increased the difference between buying and selling price 
increased which hindered the grid from actively and freely participating 
in the buying and selling of electricity. The study was done considering 
both FL and VL. 

The convergence curves of the hybrid algorithms for strategy 2 (FL +
VL) is shown in Fig. 12. 

Fig. 13 shows the difference between the generation costs by pro-
posed GWOSCACSA when only FL or FL + VL were considered. For all 
the strategies, it was obvious that since the load increased with the in-
clusion of VL, the generation cost of (FL + VL) will be more than only FL. 
Also, if it is considered the difference in generation cost among the 
strategies, the pattern was same as observed in test system 1. The max 
generation cost was obtained during strategy 1 while the least was ob-
tained during strategy 2. 

Fig. 14 shows the VL distribution within their specified operating 
hours, as mentioned in Table 6. The minimum operating time of all the 
loads, as mentioned in Table 6, can be seen to have maintained by the 
algorithms while delivering the least generation cost of the microgrid 
test system. 

4.3. Statistical analysis 

All the algorithms were run for 20 individual trials during all stra-
tegies of electricity market pricing strategy. To make the analysis easier 
and less complicated, only the best strategy was considered for statistical 
analysis. Table 8 shows an investigation of statistical results based on the 
best, worst, mean and standard deviation described after 20 executions 
of the algorithm. It can be clearly seen that GWOSCACSA consumes less 
time. the reason behind this can be explained as follows. Table 8 shows 
that the amalgamation of three conventional algorithms to make a 
hybrid algorithm consume minimum time in yielding a better quality 
results than other algorithms. It is to be noted that the three algorithms 
are incorporated altogether in various stages of the conventional grey 
wolf algorithm and not one by one. The movement directions and speed 
of the wolves are improved using position update equations of SCA. This 
maintains a proper balance between exploration and exploitation and 
prevents the algorithm from getting stuck in local minima. The 
involvement of the feature of CSA in the position updating strategy 
ensures population diversity, to further improve the search ability and 
performance of the algorithm. Especially, when solving complex opti-
mization problems, parallelizing the algorithm is an effective way to 
improve the efficiency and accuracy of the algorithm. However, some 
time is consumed once while coding the algorithm, but it is a one-time 
affair. Once the algorithm is coded, proposed GWOSCACSA yields bet-
ter quality solutions than other hybrids and conventional algorithms. 

From the data reported in Table 8, box plots were created and dis-
played in Figs. 15 and 16 for test system 1 and 2 respectively. 

The potency of the algorithm is further justified through the Wil-
coxon’s signed-rank test which is based on choice of two alternative 
hypothesis wherein H0 taken as hypothesis that states that the five al-
gorithms are no different and H1 hypothesis states that the ways are 
different, where α = 0.05, being α the significance level. Table 9 
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provides the mean average, worst and best solutions obtained by the of 
objective function. The standard deviation is studied by the GWO-
SCACSA method. In cases that ‘p-value’ < 0.05 in every test systems, 
then the Wilcoxon’s signed rank test is proved and the null hypothesis is 
rejected according to reference [59]. 

Table 5 shows that proposed hybrid algorithm consumes less than a 
second to complete one iteration during strategy 2 of test system 1. 
Whereas for Test system 2, when loading was increased along with 
constraints such as ON/OFF time of DERs and VL, the time taken per 
iteration rose to 1.13secs. This along with the fact that the algorithm 
yields the best result 75–85% of time as displayed in Table 9, corrobo-
rates the robustness of the algorithm. 

5. Conclusions 

This paper has been focussed on shrinking the generation cost gen-
eration of a LV grid-connected microgrid system reinforced by RES. In a 
nutshell, it can be concluded that the TOU based electricity market 
pricing economizes generation cost of an MG system when grid is 
participating actively in buying and selling power. The detailed signif-
icant findings of the study are listed below: 

a. The generation cost of the MG system was minimum when the sec-
ond strategy of electricity market pricing was considered with the 
active participation of the grid. The dynamic nature of the electricity 
market price complements the progressive change in the load de-
mand to buy and sell power from the MG, which cooperates in 
reducing the generation cost of the system. However, for the same 
strategy and passive participation of the grid, the generation cost 
rose to 47% than earlier because in passive involvement, the grid can 
only sell power to the MG and cannot buy from it.  

b. The generation cost of the MG system was maximum when the first 
strategy of electricity market pricing was implemented because the 
fixed price of the electricity emphasized the utilization of grid only 
after the rest of the DERs delivered their maximum/minimum ca-
pacity. Hence the selling of power by the MG was very less.  

c. In the third strategy of electricity market pricing states that selling 
price is a taxable percentage of ME. The tax is set by the grid itself. In 
that case, the amount with which the microgrid buys power from the 

grid is more than the amount with which the microgrid sells power to 
the grid. This leads to a rise in generation cost compared to the 
second strategy. It was seen that 10% tax incurs the minimum cost 
for this strategy but not as minimum as strategy 2.  

d. The hybrid approach of GWOSCACSA provided the improved results 
in the objective of generation cost reduction for the microgrid sys-
tem. This is also accomplished with minimal computational time due 
to improved convergence. The algorithm has also been verified to 
demonstrate best statistical results when it is compared with other 
algorithms, satisfying the constraints considered. These attributes of 
the proposed algorithm justify its robustness and makes it a suitable 
choice to tackle multifarious complex power system optimization. 

For future scope of research work, the generation cost on any 
microgrid system can be evaluated using all the three strategies 
depending upon the availability of data to test the robustness and de-
pendency on the grid compared to the DERs comprising the system. 
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Appendix 

Table A1 shows the statistical investigation of the proposed algorithm on benchmark functions. 
Figs. F1–F15 shows the convergence characteristics of the best obtained values. This table also consists of the mean value (Fmean), standard de-

viation (FSD) as given in (a1) and (a2). The proposed technique performance is validated by comparison with other algorithms with homogeneous 
parameters considering a population size of 100 and number of iterations as 1000. 

Fmean =

∑N
i=1fi

N
(a1)  

FSD =

∑N
i=1(fi − Fmean)

2

N
(a2) 

where ’N’ is the total number of individual runs, here it is considered as 30. 
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Table A1 
Statistical Analysis of benchmark functions.  

Benchmark Functions fmin / Range Algorithms Mean Value SD 

F1 
f1(x) =

∑n
i=1x2

i  

0 
[-100,100] 

GWO 9.5165x10-60 0.014251 
MGWO 2.5824x10 -80 0.004520 
MGWOSCA 9.1657x10-30 0.000521 
MGWOCSA 4.2860x10-33 0.000125 
GWOSCACSA 1.3738x10-82 0 

F2 
f2(x) =

∑n
i=1|xi| +

∏n
i=1 |xi|

0 
[-10,10] 

GWO 2.2464x10-35 0.042510 
MGWO 7.5184x10-32 0.017458 
MGWOSCA 1.5567x10-13 0.015214 
MGWOCSA 1.2511x10-17 0.007858 
GWOSCACSA 3.1709x10-43 0.000852 

F3 

f3(x) =
∑n

i=1

(∑i
j− 1xj

)2  
0 
[-100,100] 

GWO 1.1493x10-15 56.502145 
MGWO 5.4293x10-15 41.552512 
MGWOSCA 1.8839x10-19 8.152452 
MGWOCSA 5.288x10-8 11.754125 
GWOSCACSA 4.5113x10-29 0.088120 

F4 
f4(x) = maxi{|xi|,1⩽i⩽n}

0 
[-100,100] 

GWO 4.0643x10-8 1.020152 
MGWO 4.0237x10-7 0.584512 
MGWOSCA 0.0989 0.125458 
MGWOCSA 1.846 x10-5- 0.222521 
GWOSCACSA 1.0872x10-27 0.009459 

F5 
f5(x) =

∑n− 1
i=1 [100(xi+1 − x2

i )
2
+ (xi − 1)2 ]

0 
[-30, 30] 

GWO 25.2275 52.012511 
MGWO 27.0586 11.012532 
MGWOSCA 27.0568 9.020949 
MGWOCSA 24.8876 5.225121 
GWOSCACSA 22.4315 1.845254 

F6 
f6(x) =

∑n
i=1([xi + 0.5])2  

0 
[-100,100] 

GWO 0.5016 0.000001 
MGWO 3.1603 x10-6 0.000001 
MGWOSCA 3.9856 x10-6 0 
MGWOCSA 0.0134 0 
GWOSCACSA 3.4321 x10-4 0 

F7 
f7(x) =

∑n
i=1ix4

i + random (0,1)
0 
[-1.28, 1.28] 

GWO 0.0026 0.027849 
MGWO 5.6768 x10-4 0.029452 
MGWOSCA 0.0131 0.001202 
MGWOCSA 0.0014 0.004589 
GWOSCACSA 1.1729 x10-5 0.002321 

F8 
f6(x) =

∑n
i=1 − xisin(

̅̅̅̅̅̅̅
|xi|

√
)

− 418.982 × 5 
[-500, 500] 

GWO − 5.3780 x103 1252.021202 
MGWO − 7.6616 x103 784.051212 
MGWOSCA − 5.1823 x103 210.001200 
MGWOCSA − 8.6602 x103 241.994519 
GWOSCACSA ¡1.0610 x104 27.911001 

F9 
f9(x) =

∑n
i=1[x2

i − 10cos(2πxi)+ 10]
0 
[-5.12,5.12] 

GWO 0 21.021521 
MGWO 0 9.094502 
MGWOSCA 19.4655 10.457508 
MGWOCSA 0 2.825245 
GWOSCACSA 0 1.521452 

F10 

f10(x) = − 20exp

(

− 0.2
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
x2

i

√ )

− exp

(
1
n
∑n

i=1
cos(2πxi)

)

+20 + e  

0 
[–32,32] 

GWO 1.1546 x10-14 0.091921 
MGWO 1.1546 x10-14 0.045215 
MGWOSCA 3.5745 0.025002 
MGWOCSA 1.5099 x10-14 0.026023 
GWOSCACSA 7.9936 x10-15 0.004959 

F11 

f11(x) =
1

4000
∑n

i=1
x2

i −
∏n

i=1
cos
(

xi
̅̅
i

√

)

+ 1  

0 
[-600,600] 

GWO 0 0.008781 
MGWO 0 0.006121 
MGWOSCA 0 0.002151 
MGWOCSA 0 0.002951 
GWOSCACSA 0 0.000100 

F12 

f12(x) =
π
n
{10sin(πy1) +

∑n− 1
i=1

(yi − 1)2
[1 + 10sin2(πyi+1)]

+(yn − 1)}+
∑n

i=1
u(xi, 10, 100,4)

yi = 1 +
xi + 1

4

u(xi, a, k,m) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

k = (xi − a)m xi > a

0 − a < xi < a

k(− xi − a)m xi < a  

0 
[-50,50] 

GWO 0.0065 0.017850 
MGWO 0.0193 0.010019 
MGWOSCA 2.4148 0.002325 
MGWOCSA 3.9245 x10-4 0.001723 
GWOSCACSA 3.0041 x10-5 0.000052 

F13 
f13(x) = 0.1{sin2(3πx1) +

∑n
i=1

(xi − 1)2[1 + sin2(3πxi + 1)]

+(xn − 1)2[1 + sin2(2πxn)]}+
∑n

i=1
u(xi,5, 100,4)

0 
[-50,50] 

GWO 7.3609 x10-6 0.001312 
MGWO 0.2942 0.000214 
MGWOSCA 1.9717 0.000220 
MGWOCSA 0.0198 0.000091 
GWOSCACSA 3.6339 x10-4 0 

1 
[-65,65] 

GWO 0.9980 2.153159 
MGWO 2.9821 0.784992 
MGWOSCA 3.9683 0.452991 

(continued on next page) 
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Table A1 (continued ) 

Benchmark Functions fmin / Range Algorithms Mean Value SD 

F14 

f14(x) =

(
1

500
+
∑25

j=1
1

j +
∑2

i=1(xi − aij)
6

)− 1  
MGWOCSA 0.9980 0.149990 
GWOSCACSA 0.9980 0.005966 

F15 

f15(x) =
∑11

i=1

[

ai −
x1(b2

i + bix2)

b2
i + bix3 + x4

]2  
0.00030 
[-5,5] 

GWO 4.2463 x10-4 0.007812 
MGWO 3.0749 x10-4 0.004111 
MGWOSCA 3.0749 x10-4 0.000235 
MGWOCSA 3.0749 x10-4 0.000179 
GWOSCACSA 3.0749 x10-4 0  
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Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.ijepes.2021.107419. 
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