
Electric Power Systems Research 202 (2022) 107577

Available online 27 September 2021
0378-7796/© 2021 Elsevier B.V. All rights reserved.

An FPGA based electromagnetic transient analysis of power
distribution network

Swati Shukla a,*, Abhishek Agrawal b, Balbir Singh b, Gaurav Trivedi b

a School of Energy Sciences and Engineering, Indian Institute of Technology Guwahati, India
b Department of Electronics and Electrical Engineering, Indian Institute of Technology Guwahati, India

A R T I C L E I N F O

Keywords:
Power distribution network (PDN)
Electromagnetic transient (EMT) analysis
Field programmable gate array (FPGA)

A B S T R A C T

The electrical power distribution network (PDN) is in the transition phase due to the integration of distributed
energy resources (DERs). Therefore, an accurate and efficient modeling and simulation platform is the need of
the hour to determine the dynamic behavior of the PDN. The recent computational hardware, such as GPU,
FPGA, etc. enables new simulation paradigm and develop a more realistic platform in the form of system em-
ulators. In this paper, an FPGA based electromagnetic transient (EMT) simulation framework for the PDN is
presented. Conjugate-gradient (CG) based electrical network solver is implemented in the proposed framework,
and a test case is analyzed for Jail substation of Guwahati city, India, to validate the simulation environment. It
has been compared with the MATLAB based implementation for verifying its accuracy. The proposed EMT
simulator is approximately 12.5 times faster as compared to its MATLAB implementation and exhibits good
accuracy as well.

1. Introduction

The electrical power distribution network (PDN) is evolving for the
effective integration of the distributed generation (DG). In this scenario,
an accurate and efficient modeling and simulation tool is desired to
determine the dynamic behavior of the PDN [1]. A typical PDN mainly
consists of a distribution transformer, distribution feeder, and connected
load [2]. The equivalent PDN can be represented by a combination of
network elements such as resistor, inductor, capacitor, etc. [2,3]. The
new generation high-performance hardware accelerators such as GPU,
FPGAs based simulation framework may be useful for the efficient
modeling and simulation of the PDN [4,5]. The efficiency of a PDN
simulation framework is evaluated by the accuracy of the PDN model
and the performance of solver incorporated in the simulation environ-
ment [6]. Considerable efforts are devoted to the development of ac-
curate PDN models and efficient solvers [7–9].

The Electromagnetic Transient (EMT)Figure 13 simulation is a useful
tool for the design, planning, operation, and control of the PDN [6]. The
EMT simulation framework with FPGA [10,11] and GPU [12] based
hardware accelerator to improve computational performance is intro-
duced. The EMT simulation framework with FPGA enables improved
computational performance over GPUs as inter-processor

communication imposes additional overhead time [13]. Therefore,
several work on the development of FPGA based simulation framework
is presented [14–17].

Another approach, in the progress of FPGA based simulator, i.e., a
system on chip (SoC) implementation, is presented in [18]. The simu-
lator performs a complete solution of the system for each simulation
time step. Prior to this work, the FPGA-based simulator was based on the
pre-storing the resulting inverse matrices for all possible combinations
of the states of the time-variant elements. Pre-storing the possible in-
verse matrices limits the scope of simulation upto a few no of
time-variant power system elements. Most recent FPGA based EMT
simulator design approach is presented in [19]. In this work a
co-simulation framework, integrating the MATLAB/Simulink based user
oriented section and hardware oriented (FPGA based) computational
framework is presented.

Exhaustive reflection of the literature review reveals the scope of
further improvement in network matrix formulation and the develop-
ment of an effective solver. The system conductance matrix generated
during the PDN network analysis is sparse, Symmetric Sositive Definite
(SPD), but ill-conditioned. The conjugate-gradient (CG) based solver is
an appropriate choice for the SPD matrix [20]. As the condition number
of conductance matrix is very high; the preconditioned CG based

* Corresponding author.
E-mail addresses: swati.shukla@iitg.ac.in (S. Shukla), abhishek.agrawal@iitg.ac.in (A. Agrawal), balbir.singh@iitg.ac.in (B. Singh), trivedi@iitg.ac.in (G. Trivedi).

Contents lists available at ScienceDirect

Electric Power Systems Research

journal homepage: www.elsevier.com/locate/epsr

https://doi.org/10.1016/j.epsr.2021.107577
Received 30 January 2020; Received in revised form 31 July 2021; Accepted 8 September 2021

mailto:swati.shukla@iitg.ac.in
mailto:abhishek.agrawal@iitg.ac.in
mailto:balbir.singh@iitg.ac.in
mailto:trivedi@iitg.ac.in
www.sciencedirect.com/science/journal/03787796
https://www.elsevier.com/locate/epsr
https://doi.org/10.1016/j.epsr.2021.107577
https://doi.org/10.1016/j.epsr.2021.107577
https://doi.org/10.1016/j.epsr.2021.107577
http://crossmark.crossref.org/dialog/?doi=10.1016/j.epsr.2021.107577&domain=pdf

Electric Power Systems Research 202 (2022) 107577

2

network solver is preferred to improve the convergence.
In this paper, the EMT simulation framework for PDN with SoC-

FPGA board is presented. A detailed discussion on the selection of CG
based solver is presented. A preconditioned CG (PCG), based network
matrix solver unit is developed. The proposed solver is developed with

• Memory efficient storage format for sparse matrix
• Optimized matrix vector multiplication
• Pipelined floating point adder and multiplier

For this implementation, Zedboard, Zynq-7000 ARM/FPGA SoC
development board, and Vivado programming environment have been
used. The SoC development board provides the integrated software
programmability of a processor with the hardware programmability of
an FPGA into a single device [21]. Therefore, they deliver improved
integration with reduced power, the smaller board size, and better
bandwidth communication between the processor and FPGA. Detailed
discussion on the architecture, pipelining, data representation, and
network matrix solution has been presented.

The rest of the paper is organized as follows: Section 2 presents an
overview of SoC FPGA. Section 3 describes the choice of iterative solver.
Section 4 describes the framework for EMTP type simulation on SoC
FPGA. Section 5 presents the implementation and operation of the SoC
FPGA. Result and discussion are presented in Section 6. Finally, the
paper concludes with Section 7.

2. Overview of SoC FPGA

Xilinx Zynq-7000 series chips are based on SoC FPGA architecture,
which consists of Programmable Logic (FPGA) and Programmable Sys-
tem (Processor) integrated on a single chip. Programmable System (PS)
consists of a dual-core ARM Cortex-A9 application processor, capable of
running embedded operating systems to support software application
modules and high-speed interfaces of the hardware system design. The
choice of OS depends on system design specifications; however,
embedded Linux OS is popularly used because it efficiently utilizes
memory management unit (MMU) of the processor and also provides
symmetric multiprocessing (SMP) capabilities to take advantage of
multiple processors. The OS kernel can support applications developed
in C, C++, Python, and many other programming languages. AXI
interconnect ports provide low latency and high throughput data
transfer between the PS and the Programmable Logic (PL). AXI ports
offer access from the PL to DDR3 RAM and on-chip memory (OCM) in
the PS. PL consists of Artix-7 or Kintex-7 based FPGA chip along with
optimized Digital Signal Processing (DSP) blocks.

FPGA is a programmable VLSI circuit. The underlying architecture of
FPGA consists of an array of the configurable logic block (CLB), I/O
block, and interconnect switch matrices, as shown in Fig. 1(a). Inter-
nally, the user-defined logic is implemented in FPGA by programming
the basic logic-building units of CLB, called a logic cell (Xilinx). A logic
cell usually contains function generators (4-input Look-up table), flip-
flops, and multiplexers, as shown in Fig. 1(b). A Lookup table (LUT)
stores the truth table of the function being implemented and provides
the combinational circuit functionality to the logic block. An n-input
LUT can generate any arbitrary function of at most n-input variables. D-
flip flops are used to synchronously register the data with respect to the
system clock. Multiplexers serve as the control units for data flow. A grid
of programmable switch matrices overlays the CLBs to provide a
general-purpose interconnect for branching and routing throughout the
device. The I/O blocks corresponding to each user-programmable I/O
pins are responsible for configuring the pin as an input, output, or
bidirectional.

A typical FPGA design flow begins with the description of user
application using hardware description languages like Verilog, System
Verilog, or VHDL, generally at register transfer level (RTL). The func-
tional verification and debugging of code are done through behavioural
simulation. EDA tools like Xilinx Vivado are used for synthesis, imple-
mentation, placement, and routing. After these processes are over, a
binary configuration file, called bitstream is generated by the tool.
Finally, the FPGA is programmed by downloading this generated bit-
stream file, which then, functions according to the user-defined logic.

A vital characteristic of the FPGA is its intrinsic parallel architecture.
Contrary to a general-purpose processor (GPP), the hardware logic
blocks of FPGA are not hard-wired, i.e., the user can program the
hardware, multiple times. The memory blocks of FPGA can be config-
ured as ROM, single port, or Dual-port RAM, with varying sizes of data
and address buses. This enables the hardware resources to be configured
into different blocks, all of which are capable of operating parallelly. On
the other hand, GPP executes the instructions sequentially and has
shared memory resources.

3. Choice of iterative solver

The EMTP-type solver performs numerical integration with a step
size of Δt to analyze dynamic network equation. A linearized system of
equations, i.e. GV = I, are formulated. Here, G ∈ RN×N is a N × N matrix
and N is the number of nodes of the PDN. V ∈ RN is the node voltage
vector, and I represents the history-current and the known current
sources. The selection of an appropriate solver can significantly im-
proves performance of the solver. Traditionally, solution of the linear

Fig. 1. (a) Basic architecture of FPGA. (b) Logic cell diagram.

S. Shukla et al.

Electric Power Systems Research 202 (2022) 107577

3

system of equations is performed with direct solvers, such as, the LU-
decomposition. However, in [22] the advantage of iterative solvers
over the LU-decomposition method is described.

There are numerous iterative methods available for the solution of a
linear system of equations. The Jacobi and Gauss-Seidel (GS) are well-
known iterative methods used to solve linear systems of equations.
However, these iterative methods cannot analyze all kinds of linear
system efficiently as the performance of iterative solver mainly depends
upon the characteristics of the coefficient matrix. Because of the
complexity of large circuits, sometimes the coefficient matrix can be ill-
conditioned after formulation. The Table 1, presents condition number,
sparsity, and SPD test for the system admittance matrix G. It may be
observed that the system admittance matrix of the network is consis-
tently sparse, SPD, and ill-conditioned. The CG based algorithm has

improved performance over conventional methods to solve the sparse,
positive-definite, linear systems of equation. It offers scope for the par-
allelization of the matrix solution over traditional matrix solvers.

The CG based iterative method is derived from the orthogonal pro-
jection to the Krylov-subspace. Several iterative techniques, such as CG,
PCG, CG square (CGS), and GMRES are known for the solution of the
linear system of equations.

A comparative analysis with arbitrary chosen electrical circuit of
Krylov subspace-based methods is performed. All the experiments are
performed on a computer with the Intel Xeon ES2609 processor with 16-
GB RAM. From Fig. 2(a) and (b), it can be observed that GMRES method
converges in less number of iteration; however, the time of convergence
(ToC) is more than CG, PCG and CGS method. At the same time, CG and
PCG methods converges with an equal number of iterations, whereas the
ToC for PCG is higher. Detailed test results are presented in Table 2. It is
observed that CG based iterative solver performs better than the PCG,
CGS, and GMRES method for the circuits chosen for the analysis.

4. Framework for EMTP type simulation on SoC FPGA

4.1. System architecture of proposed SoC FPGA based EMTP simulator

The hardware submodules of the EMTP are shown in Fig. 3. The
submodules can be grouped as follows: 1. Network Modelling Unit; 2.
Source Unit; 3. Switch Unit; 4. Matrix Formation Unit; 5. History Current
Unit; 6. Matrix Solution; 7. Network Solution; and 8. ALU Unit. Data and

Table 1
Condition number, sparsity and SPD test for the system admittance matrix (G).

No. of nodes Condition No. Sparsity SPD

50 290700 0.94 yes
150 290700 0.98 yes
200 290700 0.985 yes
250 290700 0.988 yes
300 290700 0.99 yes
400 290700 0.992 yes
500 297400 0.994 yes

1000 297400 0.997 yes

Fig. 2. (a) Number of iteration, and (b) Time of convergence; of the iterative solvers with respect to increasing number of nodes.

Table 2
Comparative study of different iterative solvers used in solution of EMT simulationa.

Nodes CGb PCGc CGSd GMRESe

A B C A B C A B C A B C
50 36 0.9 528 36 3.3 785 32 4.5 956 31 10.7 1545

100 34 1.9 1319 34 3.8 1533 38 6 1730 31 10.9 2260
150 56 2.9 1472 56 5.9 1813 62 9.7 2155 47 22 3415
200 57 3.28 1902 57 6.6 2273 58 9.8 2484 48 24.5 4050
250 58 3.8 2347 58 7.19 2885 65 11.9 3135 48 24.4 4430
300 57 4.9 2836 57 7.4 3367 59 11.8 3522 52 29.4 5369
400 71 6 4015 71 10 4719 92 21 5463 58 37.7 7276
500 78 8.15 5224 78 12 5892 87 24 6754 63 47 9287

aA= No. of iteration, B= Time of convergence (in milliseconds), C= Total time (in seconds) taken by the iterative solver for the simulation of PDN (for 1 s) bConjugate
gradient cPrecondition conjugate gradient dConjugate gradient square eGeneral minimal residual

S. Shukla et al.

Electric Power Systems Research 202 (2022) 107577

4

state machine flow are controlled by the ‘Main Control Unit’ module.
The arithmetic and BRAM memory operations are controlled by the
‘ALU Memory Control Unit’ module. The ALU block of the EMTP em-
ploys five 32-bit floating-point multipliers and adders, and one 32-bit
floating-point divider.

4.2. Data representation

In a binary number system domain, real numbers can be represented
in fixed-point or floating-point format. The choice of data format is an
important design decision as it affects the computational performance of
the system. In fixed-point notation, the number of bits assigned to the
integer and fractional part is ‘fixed.’ The precision of the fixed-point
number is directly proportional to the number of bits allocated to the
fractional part. Floating-point notation does not have fixed bit-width
assigned to the fractional part, i.e., the decimal point is ‘floating.’ Due
to higher accuracy and a greater dynamic range of floating-point format
over fixed-point format, the former is ideal for FPGA implementations
involving real number arithmetic.

In the proposed EMTP, a 32-bit floating-point format (single-preci-
sion, IEEE 754 standard) is used as it matches the precision and dynamic
range requirements of the design. The binary representation of a 32-bit
floating-point consists of 1 sign bit, eight exponent bits, and 23 mantissa
bits, with an exponent bias of 127, as shown in Fig. 4. Mathematically a
floating-point number N is given as,

N = (− 1)sign
× 2(exponent− bias) × (1.mantissa) (1)

32-bit floating-point format can represent data in the approximate
range of − 1038 to 1038. Floating-point addition, subtraction, multipli-
cation, and division units are used for arithmetic operations on floating-
point data.

4.3. Pipelining

Pipelining is another crucial technique for enhancing hardware
performance. Pipelining refers to the method of decomposing a
sequential process into sub-operations, each of which can be executed in
a dedicated stage of the pipeline, concurrently with all other steps. Each
stage of a pipeline starts with a clock edge-triggered register followed by
the combinational logic circuit for carrying out stage-specific opera-
tions. On each clock edge, the processed data of a stage is passed into the
registers of the next step.

As an example, consider a multiply and add operation as given in (2),
with its pipelined hardware implementation in Fig. 5. The pipeline
consists of three stages. Stage-1 registers the inputs ai, bi, ci and di. The
multiplication is carried out in stage-2. In stage-3, the products are
added together, and the final result (sumi) is stored in the output
register.

Fig. 3. System architecture of proposed SoC FPGA based EMTP simulator.

Fig. 4. A 32-bit single precision floating point.

Fig. 5. An example of arithmetic pipeline.

S. Shukla et al.

Electric Power Systems Research 202 (2022) 107577

5

sumi = aibi + cidi; i = 1,, n (2)

The latency (input to output delay) is three clock cycles, whereas
throughput is one per clock cycle. However, if the whole operation is
performed sequentially (as in the case of GPP or DSP), the latency will be
three clock cycles, and throughput will be one per three clock cycles. As
evident pipelining significantly increases the performance of the system.
Inherent hardware parallelism and pipelining make FPGA ideal for
computationally intensive programs. Therefore, we choose FPGA for
implementing EMTP.

4.4. Floating point arithmetic unit

32-bit single-precision floating-point multipliers with 5-stages of the
pipeline are used to carry out multiplication of floating-point numbers.
The pseudo-code of the algorithm is described in Algorithm 1. A and B
are the 32-bit floating-point inputs to the block, and prod is the 32-bit
output depicting A× B. In stage 1, sign of output (prod sign) is calcu-
lated. A one-bit register, ‘zero’, is used to determine whether the output
result is zero.

In stage 2, the intermediate exponent of the output is calculated by
adding input exponents. In stage 3, the product of the mantissa of input
numbers is stored in a 48-bit register. In stage 4, the higher 25 bits of this
product are assigned to the intermediate output mantissa. In stage 5, the
intermediate mantissa is normalized, and the output exponent is
adjusted accordingly. Overflow and underflow checks are performed. If
zero register bit is high, then the output result is 0; otherwise, the final
result is determined by concatenating the prod sign, prod exp, and
prod mantissa.

The pseudo-code of the 32-bit floating-point 5-stage pipelined adder
is described in Algorithm 2. A and B are the 32-bit floating-point inputs
to the block, and sum is the 32-bit output depicting A+ B. In stage 1, the
type of operation (operation = 0 implies addition and operation = 1 im-
plies subtraction) is determined by comparing the sign of inputs. If the
operation is high and the magnitude of the input number is equal, then
the output is zero, and consequently, zero register bit is high. In stage 2,
the magnitude of the input is compared, and the greater number is
determined. An eight-bit register (exp diff) stores the difference of the
input exponents. The sign bit of the greater number is assigned to the
output sign bit (sum sign). At the end of the second stage, the greater
number is stored in A. In stage 3, the exponent of a greater number (A) is
assigned to the output exponent sum exp and the mantissa of other input
is shifted right by exp diff bits to balance input exponents.

In stage 4, the addition or subtraction of input mantissa is carried out
based on the value of the operation register. In step 5, the intermediate
mantissa is normalized, and the output exponent has adjusted accord-
ingly. Overflow and underflow checks are performed. If zero register bit
is high, then the output result is zero; otherwise, the final result is
determined by concatenating the sum sign, sum exp, and sum mantissa.

4.5. User interface

The input network model is stored in BRAM of the FPGA, and the
start signal to the system is supplied through a push-button. The branch
number for which the voltage and current are to be observed is given as
input through slide switches. The input branch number is represented as
binary numbers with the bits being modeled the state of the slide
switches (ON or OFF). The output (branch voltage and branch current) is
stored in BRAM of FPGA, and the waveforms are observed on the Xilinx
Vivado ILA window. Using the UART serial interface, this output data
can also be transferred to the host computer for further analysis on
MATLAB.

4.6. Sources

The ideal voltage sources are modeled by sinusoidal functions of

In
pu

t:
A

,B
O

ut
pu

t:
pr

od
St

ag
e

1:
pr

od
_s

ig
n
=

si
gn

_A
xo

r
si

gn
_B

;
ze

ro
=

(A
=
=

0||B
=
=

0)
?1

:0
;

St
ag

e
2:

pr
od

_e
xp
=

ex
p_

A
+

ex
p_

B
;

St
ag

e
3:

te
m

p_
m

an
ti

ss
a
=

m
an

ti
ss

a_
A
∗m

an
ti

ss
a_

B
;

St
ag

e
4:

pr
od

_m
an

ti
ss

a
=

te
m

p_
m

an
ti

ss
a[

48
:2

3]
;

St
ag

e
5:

ch
ec

k
un

de
rfl

ow
or

ov
er

flo
w

;
no

rm
al

iz
e

m
an

tis
sa

an
d

ad
ju

st
ex

po
ne

nt
;

if
(z

er
o
=
=

1)
pr

od
=

0;
el

se
pr

od
=
{pr

od
_s

ig
n,

pr
od

_e
xp
,
pr

od
_m

an
ti

ss
a};

as
si

gn
re

su
lt

to
ou

tp
ut

A
lg

or
it

hm
 1

.
Pi

pe
lin

ed
 p

se
ud

o
co

de
 o

f fl
oa

tin
g

po
in

t
m

ul
tip

lie
r:

S. Shukla et al.

ElectricPowerSystemsResearch202(2022)107577

6

Input: A, B
Output: result
Stage 1:
operation = sign_A xor sign_B;
zero = (operation&&(|A| == |B|))1 : 0;
Stage 2:
i f
(
exp_A < exp_B

)
A_gt_B = 1;

else i f
(
exp_A > exp_B

)
A_gt_B = 0]

else
i f (mantissa_A > mantissa_B)A_gt_B = 1;
elseA_gt_B = 0;

i f (A_gt_B == 1)sum_sign = sign_A;
exp_di f f = exp_A − exp_B;

else swap mantissa_A and mantissa_B;
sum_sign = sign_B;
exp_di f f = exp_B − exp_A;

Stage 3:
sum_exp = exp_A;
mantissa_B = mantissa_B >> (exp_di f f);
Stage 4:
i f (operation == 1)sum_mantissa = mantissa_A − mantissa_B;
else sum_mantissa = mantissa_A + mantissa_B;
Stage 5:
check underflow or overflow;
normalize mantissa and adjust exponent;
i f (zero == 1)sum = 0;
else
sum =

{
sum_sign, sum_exp, sum_mantissa

}
;

assign result to output

Algorithm 2. Pipelined pseudo code of floating point adder

S. Shukla et al.

Electric Power Systems Research 202 (2022) 107577

7

fixed frequency (50 Hz). Before the simulation, the values of a unit
magnitude sine function has been calculated for each time-step, over one
clock cycle and stored in the BRAM of FPGA. After network modeling, at
each time step, the value of voltage sources is calculated by multiplying
its source magnitude with the corresponding stored value. This is
implemented by source unit. The output of the module provides the
values of known node-voltages (VK).

4.7. PDN modelling

The PDN can be represented by the linear equivalent network for the
EMT analysis [3,10]. The dynamic equations of the PDN model are
discretized with the trapezoidal integration method. The branch ele-
ments are represented by the relationship which they maintain between
branch current and nodal voltage.

4.7.1. Transformer modelling
A transformer is the key element of the PDN. Various modeling

methodologies for EMT analysis of transformer is presented [23]. In the
present work, a two-winding transformer is modeled with nodal anal-
ysis. As shown in the Fig. 6, the ideal two winding transformers can be
represented as dependent current and voltage sources [24].

The loss component of the transformer can be obtained with an open-
circuit and short-circuit test and the name plate rating. Considering the
loss component of the transformer, equivalent circuit can be given as the
Fig. 7.

4.7.2. Modelling of PV system for EMT analysis
The PV array can be represented with single diode model as dis-

cussed [25]. Fig. 8 represents the single diode model of PV array. From
Fig. 8 it can be represented as:

It = IPV − Id (3)

It = IPV − Isat

[

exp
(

Vt + IRs

nVT
− 1

)]

(4)

Where Isat is the diode saturation current (A), Vt is the terminal
voltage of a module, n is the ideal constant of diode

VT =
m(KT)

q
(5)

K is the Boltzmann’s constant, q = 1.6 × 10− 19,C = 1.38e− 23, m is
the number of module.

Several proposals for modelling and simulation of various power
electronic devices (PEDs) are presented [13,17]. FPGA based imple-
mentation of PEDs can be advantageous as simulation time step can be
as low as 100 ns. Therefore, modelling and realization of FPGA based
power electronic converter with ideal switch is considered as part of the
future extension of present work.

4.8. Discretization of passive nonlinear network elements

Each of the passive elements (R, L, and C) is stored in 54 bits format,
as shown in Fig. 9. The first 10 bits (from MSB) represent the ‘From’
field, and the next 10 bits represent the ‘To’ field. These fields denote the
value of the nodes between which the element is connected. The type of
component is decided from the ‘Type’ field (2 bits) and coded as: ‘00’ -
Resistor, ‘01’ - Inductor, and ‘10’-Capacitor. The rest 32-bits from LSB
represent the value of the element in a single-precision floating-point
format.

Network modeling unit calculates the equivalent resistance of the
discrete-time models of passive elements, for each branch, given as (1)
For resistor, Req= R; (2) For inductor, Req= (2*L)/DeltaT; (3) For
capacitor, Req= DeltaT/(2*C).

It can be seen that in many of the arithmetic operations involving Req,

the reciprocal of Req is required. Thus, in order to save division opera-
tion, R− 1

eq is directly calculated and stored in BRAM.

4.9. History current unit

This unit calculates the branch current vector (IU) using history
current vector (Ihist). Ihist depends on the value of branch history current
Ibrn hist, which in turn depends on the type of elements connected with
the branch and the relation is described as below,

1. If branch element is a resistor (R), then Ibrn hist = 0
2. Else if branch element is an inductor (L), then Ibrn hist = Ilast +

Vlast/Req

3. Else if branch element is an capacitor (C), then Ibrn hist = Ilast −

Vlast/fReq

If k denotes the current iteration number then, history current (Ihist)
for each branch is updated as,

1. Ihist,k = Ihist,k− 1 + Ibrn hist
2. Ihist,k = Ihist,k− 1 − Ibrn hist

Fig. 6. (a) Ideal transformer, and (b) Equivalent circuit.

Fig. 7. Complete equivalent circuit of transformer.

Fig. 8. Single diode representation of PV array.

Fig. 9. Input data format.

S. Shukla et al.

Electric Power Systems Research 202 (2022) 107577

8

For the branches with unknown node voltages, branch current vector
IU is formed using history current vector (Ihist)i.e., IU contains currents
for that node element of Ihist in which, any voltage sources are not
connected.

4.10. Switches

In the Switch unit, switches are modeled as a resistance in the same
format as the passive elements. The ‘Type’ field for switch is ‘11’. The
starting and ending time instant for which a switch is closed is stored in
BRAM, where the time is measured in the multiples of the simulation
time-step. In each iteration, a counter checks if the particular switch is in
open or closed state and updates the state of the switches. If the switch is
in the closed state, the resistance is low (∼0); otherwise, the resistance is
high (∼ ∞).

4.11. Network matrix formation and solution

The electrical network can be represented by the following nodal
equation:

G × v(t) = i(t) + ihist (6)

Where, G is the system admittance matrix, v is node voltage vector
and i is the current source vector and ihist is the history current of the
branch. Matrix formation unit calculates the system admittance matrix,
G, taking Req values as input.

For every branch connected between node i and node j, having Req as
equivalent resistance, the value of an element of G is given as:

• If the element is connected to GND, i.e. either (i = 0) or (j = 0), then

Gmm = Gmm −
(
Req

)− 1
; m = |i − j| (7)

• For other cases,

Gii = Gii +
(
Reff

)− 1

Gii = Gii +
(
Reff

)− 1

Gij = Gij −
(
Reff

)− 1

Gji = Gji −
(
Reff

)− 1

(8)

It is observed in Fig. 10(a) that G is a sparse, symmetric, and pen-
tadiagonal matrix. Using Elementary row operations, G matrix is further
rearranged as GUU and GUK matrices, where GUK is the admittance
matrix of the branches that have a voltage source connected to one of

their nodes. GUU is the admittance matrix of the branches with unknown
node voltages. This rearrangement is shown in Fig. 11, GUU matrix is
also symmetric and pentadiagonal. GUU is stored in a BRAM with the cell
bit-width of 96 bits, as shown in Fig. 10(b). Each cell stores the upper
three diagonal elements of GUU, having a size of 32-bits each.

‘Vk’ is the known node voltage connected directly to the voltage
sources. For other nodes, the nodal equation is represented as GUU*VU=

IU, CG algorithm is used to find an efficient solution of this linear system
of equations. Jacobi preconditioning is employed to improve the
convergence rate of the algorithm. The pre-conditioner matrix, J, is a
diagonal matrix computed as:

Jii =

⎧
⎪⎨

⎪⎩

1
(GUU)ii

; i = 1→dim(GUU)

0; elsewhere
(9)

The pseudo code of the CG algorithm used in matrix solution is given
in [26]. Here, A→GUU,B→IU, x→VU and J is pre-conditioner matrix

The format used to store GUU (Fig. 10(b)) helps to optimize the
operation of matrix-vector multiplication by reducing the number of
operations involved. An instance of this operation is shown in Fig. 12.
Consider the multiplication of the second row of A with x, the output
will be ‘…+ a ∗ x1 + b ∗ x2 + c ∗ x3 + …’. Similarly, the outputs of the
multiplication of x with third and fourth row of A are ‘…+ b ∗ x1 + …’
and ‘…+ c ∗ x1 + …’ respectively. Matrix A is stored in BRAM, thus,
there is latency in accessing the elements of A through read operation. If
conventional format is used to store GUU, then we require N read op-
erations per row, where N is the dimension of GUU matrix. However, if
we apply read operation on the first row of matrix format given in
Fig. 10(b), then from these 96 bits, we can get a, b and c elements of the
matrix. Thus, only in one read operations we can calculate a ∗ x1,b ∗ x2,

c ∗ x3, b ∗ x1 and c ∗ x1, where b ∗ x1 and c ∗ x1 are stored in register for
later operations. Consequently, the total number of read operation is
reduced from N2 to N for the entire operation.

Fig. 10. (a) Representation of matrix in conventional format (b) Memory
efficient storage format for sparse matrix.

Fig. 11. Rearrangement of system matrix.

Fig. 12. Optimization of matrix-vector multiplication operation.

S. Shukla et al.

Electric Power Systems Research 202 (2022) 107577

9

The elements of Vk matrix represent the voltages of the nodes
directly connected to the voltage sources. Node voltages, VU (with
respect to ground) are already known after network matrix solution. The
branch voltage (Vlast) is calculated by taking the difference of node
voltages. Once the branch voltages have been calculated, the branch
currents (Ilast) are calculated by merely dividing branch voltage (Vlast)
by the equivalent resistance (Req) of the branch. The complete data flow
and control diagram is presented in Fig. 13

5. Implementation and operation

The proposed EMT simulation framework is implemented on Dig-
ilent ZedBoard Zynq-7000 ARM/FPGA SoC Development Board. The
dual-core ARM processor of the PS runs open-source Embedded Linux
operating system, which is primarily responsible for communicating
with the host computer through the UART interface. The processor re-
ceives the input data (network model) in the form of an excel data sheet
(.xlsx). A python script (running on Linux) converts the network model (.
xlsx) into the Xilinx coefficient file (.coe) that is stored in the BRAM of
FPGA as input data. The values of network elements are converted into
32-bit floating number. A python script (running on Linux) reads the
network model (.xlsx), converts the network data into a suitable input
format (Fig. 9) and stores this data into the BRAM of FPGA.

The network is modeled as collections of interconnected voltage
sources, resistors, inductors, capacitors, and switches. The network data
is initially stored in an excel (.xlsx) or csv (.csv) file in the form of the
netlist. To reduce the network model size, the elements between insig-
nificant nodes are combined. MATLAB can be used for pre-
implementation analysis, simulation, and verification purposes. A

python script converts the network model (.xlsx or .csv) into the Xilinx
coefficient (.coe) file that is stored in the BRAM of FPGA as input
network data .

The values of network elements are converted into a 32-bit floating
number. The time-step for EMTP simulation is a user-configurable var-
iable. It is to be mentioned that the timestep used in the FPGA based
analysis of power distribution network is 2− 16 s, which can be expressed
equivalently as 15.25μs. As we know, certain computing systems can be
optimized significantly in terms of area and/or performance, if the nu-
merical values are in the form 2Z, where Z is an integer. The timestep
proposed in the literature is 50μs [27], and log2[50×10− 6] is approxi-
mately equal to − 14.29. Since, Z is an integer, we may choose an upper
bound for Z, i.e. Z <= − 15. This bound permits us to employ both 2− 15

s (= 30.5μs) as well as 2− 16 s (= 15.25μs) for analyzing the design on an
FPGA. Since the accuracy of the numerical analysis depends on the
timestep chosen, a lower timestep would yield better analytical
outcome. Therefore, 15.25μs, i.e. 2− 16 s is selected as the stepsize in the
proposed emulation framework.

This network modeling technique is highly scalable as the process of
converting input (.xlsx) to the final model (.coe) is automated using
python programming. The circuit equations have been formulated after
the discretization of differential equations with the trapezoidal numer-
ical integration method. The discretized nodal equation is given in (6).
This equation is solved by the CG method. One of the advantages of the
CG method is that the step parallelization is possible with this method;
also, a Pre-conditioner provides faster convergence. However, due to the
round-off error, residual is not ideally zero, i.e., the exact solution
cannot be achieved with the CG method. Since 32- bit precision has been
used to round-off error is very small, and it can be ignored.

Once the network model has been stored in BRAM as input data, the
code is compiled, followed by synthesis, implementation, and bitstream
generation in Xilinx Vivado. The bitstream is downloaded to the FPGA to
program the device. Thus the FPGA is now in a ready state to start EMT
emulation. Table 3 presents the details of the resource utilization of the
FPGA board by the EMTP emulator. It is observed that the ‘Matrix So-
lution Unit’ utilizes the highest number of logic cells, as it involves a
large number of matrix-vector computations and arithmetic operations
(for conjugate gradient algorithm). For each time step in the simulation
time, the ‘ILA’ block stores the output (branch voltage and branch
current) for each branch in the BRAM memory. Consequently, the BRAM
utilization of the ILA block is considerably high. In floating-point mul-
tipliers, mantissa multiplication is resource intensive operation. Thus,
internal multipliers of DSP blocks are used in mantissa multiplication as
they efficiently implement multiplication operation.

The start trigger is given by the push button. After the program has
finished computation, the resulting waveform of the output data (branch
voltages and branch currents) can be easily analyzed with the help of the

Fig. 13. Control and data flow diagram.

Table 3
FPGA resources utilized by EMTP unit.

Name Logic Cells Block RAM DSP Blocks

Main control unit 55 0 0
ALU memory control unit 934 0 0
Network modelling and switch 79 1.5 0
Source unit 185 2 0
Matrix formation unit 4142 3 0
History unit 547 2 0
Matrix solution unit 20263 1 0
Network solution unit 230 1 0
Floating point multipliers (5) 452 0 20
Floating point adders (5) 2768 0 0
Floating point divider 777 0 0
ILA 2478 31 0
Others 388 2 0
Total 32910 41.5 20
Available resource 55000 72 120
% Resource utilization 59.83 57.63 16.66

S. Shukla et al.

Electric Power Systems Research 202 (2022) 107577

10

Xilinx ILA. Slide switches are used to give the input branch number for
which the output is to be observed.

6. Result and discussion

A case study on the implementation of the EMT simulation frame-
work to study the instantaneous behavior of a PDN is presented in this
section. The test system considered in this paper is a part of a real power

distribution network of Jail substation at Guwahati, Assam, India. As
shown in Fig. 14, the substation has one 33 kV feeder with 10 MVA, 33/
11 kV transformers. There are four secondary feeders of 11 kV with a
transformer rating of 500 kVA, 11 kV/440 V. The total numbers of 440 V
nodes are four, starting from DT-1 to DT-4. Components of the distri-
bution network, such as transformer, feeders and loads, etc. have been
modeled to the equivalent lumped electrical network. Its load data on
hourly basis was obtained from Assam state electricity board (ASEB).
Initially, the substation is modeled using MATLAB and Simulink, and is
validated with realistic values provided by ASEB, Guwahati. Since the
transient simulation is performed for a very small time duration (i.e. 1-5
s), a constant load model is considered in our proposed analysis. It is to
mention that Jail substation is used to feed primarily commercial as well
as residential loads, and in this area the penetration of renewable energy
sources is almost negligible. Therefore, at the time of problem formu-
lation, integration of renewable energy sources was not considered.
However, present work can be extended in future to include integrated
renewable energy sources as well.

Fig. 15 presents the load current drawn by the main feeder of the jail
substation of Guwahati city. The simulation results of FPGA based
simulator is compared with MATLAB based EMTP-type solver and
PSCAD. The computational performance of MATLAB based EMTP-type
solver and FPGA-based solver can be performed considering the
maximum synthesizable frequency of the FPGA board. The SoC FPGA
considered for the present work has 45 MHz of maximum frequency (i.e.
time period per clock is 22.22 ns). The system frequency of PDN is 50 Hz
and the time step for FPGA based simulator is considered to be 15.25 μs.

Fig. 14. Single line diagram of PDN of Guwahati city, India [3].

Fig. 15. Load current of main feeder (a) Comparison of FPGA, MATLAB and PSCAD simulations. (b) Screen-shot of FPGA simulation.

S. Shukla et al.

Electric Power Systems Research 202 (2022) 107577

11

Therefore, the EMTP-type solver requires 1308 iterations to performs
the simulation of one cycle. For each iteration, the FPGA based solver
requires 26236 clocks. Therefore, FPGA based simulators requires
582.96 μs per iteration, whereas; MATLAB based EMTP-type solver on a
computer having 3.4 GHz Intel Corei7 processor with 16GB RAM, takes
7.36 ms per iteration. Therefore, the FPGA-based EMT simulator pro-
vides approx. 12.5 times speed-up over MATLAB based EMTP-type
simulator.

Currents drawn by the MS road, Fancy road, AT road and Lakhtokia
subfeeders are shown in Fig. 16. An open circuit fault has been intro-
duced in MS road subfeeder. The switch is opened at 300 × 15.25μs.
Fig. 17 shows the fault current at MS road and its impact on neighboring
subfeeder (Fancy road subfeeder). The results obtained by FPGA based
solver and MATLAB based solver are in close agreement.

It is to be noted that the aim of the proposed work is the efficient

implementation of EMTP-type simulation framework on an FPGA and its
application in the analysis of PDN. In order to utilize it in the analysis of
complex and larger power distribution networks in future, it is imper-
ative to validate the correctness of FPGA based EMTP-type emulation
engine. This was concluded by first developing a MATLAB and Simulink
based solution framework and later testing its correctness by comparing
it with the realistic data. After accomplishing the above mentioned task,
the proposed method was implemented on FPGA having memory ele-
ments, such as inductor and capacitor, modeled as accurately as possible
along with the optimal realization of compute intensive modules, such
as matrix solver and other matrix operations etc. Later, this FPGA based
implementation was tested with a testcase of Jail substation to validate
its efficiency on the hardware platform. In order to achieve this goal, the
output produced by this implementation was successfully verified with
the outcome of MATLAB and Simulink based implementation and

Fig. 16. Comparison of FPGA and MATLAB for Load current of (a) AT road. (b) Fancy road. (c) Lakhtokia. (d) MS road.

S. Shukla et al.

Electric Power Systems Research 202 (2022) 107577

12

realistic data provided by ASEB. This implementation was also tested
with various faults for correctness. This can also be observed in Fig-
ures 15, 16 and 17 in the revised manuscript. In future, our endeavour is
to extend this work for the efficient analysis of large and complex PDNs.

7. Conclusion

In this paper, FPGA basedEMT simulation framework for PDN is
presented. Detailed discussion on modeling, problem formulation, and
network solver are described. CG based solver is employed to solve the
network equation GV= I, where the conductance matrix (G) is highly
sparse. A detailed discussion of the architecture of this solver is also
illustrated. The efficient design implementation of the EMT analysis
engine on FPGA enables us to achieve approximately 12.5 times speed
up as compared to MATLAB based implementation while exhibiting
acceptable accuracy. It is also validated by analyzing the Jail substation
of Guwahati city, India.

CRediT authorship contribution statement

Swati Shukla: Conceptualization, Project administration, Funding
acquisition, Writing – original draft, Writing – review & editing, Visu-
alization. Abhishek Agrawal: Formal analysis. Balbir Singh: Formal
analysis. Gaurav Trivedi: Validation.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgements

All persons who have made substantial contributions to the work
reported in the manuscript (e.g., technical help, writing and editing
assistance, general support), but who do not meet the criteria for
authorship, are named in the Acknowledgements and have given us their
written permission to be named. If we have not included an Acknowl-
edgements, then that indicates that we have not received substantial
contributions from non-authors.

References

[1] R.C. Green, L. Wang, M. Alam, Applications and trends of high performance
computing for electric power systems: focusing on smart grid, IEEE Trans. Smart
Grid 4 (2) (2013) 922–931, https://doi.org/10.1109/TSG.2012.2225646.

[2] W.H. Kersting, Distribution System Modelling and Analysis, CRC Press, 2002.
[3] S. Shukla, A. Prince, G. Trivedi, Power distribution network model of Jail

substation of Guwahati city for EMT analysis. 2016 International Conference on
Next Generation Intelligent Systems (ICNGIS), 2016, pp. 1–6, https://doi.org/
10.1109/ICNGIS.2016.7854078.

Fig. 17. Current for MS road and Fancy road during fault condition (a) Comparison of FPGA and MATLAB simulation for MS road. (b) Comparison of FPGA and
MATLAB simulation for Fancy road. (c) Screen-shot of FPGA simulation for MS road.

S. Shukla et al.

https://doi.org/10.1109/TSG.2012.2225646
http://refhub.elsevier.com/S0378-7796(21)00558-7/sbref0002
https://doi.org/10.1109/ICNGIS.2016.7854078
https://doi.org/10.1109/ICNGIS.2016.7854078

Electric Power Systems Research 202 (2022) 107577

13

[4] J. Mahseredjian, V. Dinavahi, J.A. Martinez, An overview of simulation tools for
electromagnetic transients in power systems. 2007 IEEE Power Engineering Society
General Meeting, 2007, pp. 1–6, https://doi.org/10.1109/PES.2007.385779.

[5] J. Mahseredjian, Computation of power system transients: overview and
challenges. 2007 IEEE Power Engineering Society General Meeting, 2007, pp. 1–7,
https://doi.org/10.1109/PES.2007.386054.

[6] J. Mahseredjian, V. Dinavahi, J.A. Martinez, Simulation tools for electromagnetic
transients in power systems: overview and challenges, IEEE Trans. Power Deliv. 24
(3) (2009) 1657–1669, https://doi.org/10.1109/TPWRD.2008.2008480.

[7] S. Saha, M. Aldeen, Dynamic modeling of power systems experiencing faults in
transmission/distribution networks, IEEE Trans. Power Syst. 30 (5) (2015)
2349–2363, https://doi.org/10.1109/TPWRS.2014.2365809.

[8] J.R. Marti, Accurate modelling of frequency-dependent transmission lines in
electromagnetic transient simulations, IEEE Trans. Power Apparatus Syst. PAS-101
(1) (1982) 147–157, https://doi.org/10.1109/TPAS.1982.317332.

[9] A. Abur, O. Ozgun, F.H. Magnago, Accurate modeling and simulation of
transmission line transients using frequency dependent modal transformations.
2001 IEEE Power Engineering Society Winter Meeting. Conference Proceedings
(Cat. No.01CH37194) vol. 3, 2001, pp. 1443–1448, https://doi.org/10.1109/
PESW.2001.917314.

[10] Y. Chen, V. Dinavahi, FPGA-based real-time EMTP, IEEE Trans. Power Deliv. 24 (2)
(2009) 892–902, https://doi.org/10.1109/TPWRD.2008.923392.

[11] Q. Huang, X. Chen, B. Wang, R. Cai, K. Qin, The concept of computing on chip
(CoC) for electric power system application. International Symposium on Parallel
Computing in Electrical Engineering (PARELEC’06), 2006, pp. 433–437, https://
doi.org/10.1109/PARELEC.2006.79.

[12] Z. Zhou, V. Dinavahi, Parallel massive-thread electromagnetic transient simulation
on GPU. 2015 IEEE Power Energy Society General Meeting, 2015, https://doi.org/
10.1109/PESGM.2015.7285591.1–1

[13] M. Matar, R. Iravani, FPGA implementation of the power electronic converter
model for real-time simulation of electromagnetic transients, IEEE Trans. Power
Deliv. 25 (2) (2010) 852–860.

[14] Y. Chen, V. Dinavahi, An iterative real-time nonlinear electromagnetic transient
solver on FPGA, IEEE Trans. Ind. Electron. 58 (6) (2011) 2547–2555.

[15] Y. Chen, V. Dinavahi, Multi-FPGA digital hardware design for detailed large-scale
real-time electromagnetic transient simulation of power systems, IET Gener.
Transm. Distrib. 7 (5) (2012) 451–463.

[16] Y. Chen, V. Dinavahi, Hardware emulation building blocks for real-time simulation
of large-scale power grids, IEEE Trans. Ind. Inf. 10 (1) (2014) 373–381.

[17] W. Li, J. Bélanger, An equivalent circuit method for modelling and simulation of
modular multilevel converters in real-time HIL test bench, IEEE Trans. Power
Deliv. 31 (5) (2016) 2401–2409.

[18] I. Herrera-Leandro, P. Moreno-Villalobos, S. Ortega-Cisneros, J. Rivera,
F. Sandoval-Ibarra, Implementation of SoC based real-time electromagnetic
transient simulator, Math. Probl. Eng. 2017 (2017).

[19] E. Mylonas, N. Tzanis, M. Birbas, A. Birbas, An automatic design framework for
real-time power system simulators supporting smart grid applications, Electronics
9 (2) (2020) 299.

[20] N.C. Nguyen, P. Fernandez, R.M. Freund, J. Peraire, Accelerated residual methods
for the iterative solution of systems of equations, SIAM J. Sci. Comput. 40 (5)
(2018) A3157–A3179, https://doi.org/10.1137/17M1141369.

[21] C. Wu, K. Weng, The development and implementation of a real-time depth image
capturing system using SoC FPGA. 2016 30th International Conference on
Advanced Information Networking and Applications Workshops (WAINA), 2016,
pp. 934–938, https://doi.org/10.1109/WAINA.2016.167.

[22] A. Basermann, U. Jaekel, M. Nordhausen, K. Hachiya, Parallel iterative solvers for
sparse linear systems in circuit simulation, Future Gener. Comput. Syst. 21 (8)
(2005) 1275–1284.

[23] S.-D. Cho, Three-phase transformer model and parameter estimation for ATP,
J. Electr. Eng. Technol. 1 (3) (2006) 302–307.

[24] M.A. Cinar, A.B. Yildiz, Time-domain analysis of transformer by using modified
nodal equations. 2006 IEEE PES Power Systems Conference and Exposition, IEEE,
2006, pp. 1059–1062.

[25] S. Shukla, P. Tiwari, P. Jan, Z. Nĕmec, G. Trivedi, Object oriented EMT simulation
framework for on-grid centralized microgrid. 2019 29th International Conference
Radioelektronika (RADIOELEKTRONIKA), IEEE, 2019, pp. 1–6.

[26] P. Concus, G.H. Golub, D.P. O’Leary, A generalized conjugate gradient method for
the numerical solution of elliptic partial differential equations, in: J.R. BUNCH, D.
J. ROSE (Eds.), Sparse Matrix Computations, Academic Press, 1976, pp. 309–332,
https://doi.org/10.1016/B978-0-12-141050-6.50023-4.https://www.sciencedi
rect.com/science/article/pii/B9780121410506500234

[27] Transient Analysis of Power Systems: Solution Techniques, Tools and Applications,
in: J.A. Martinez-Velasco (Ed.), John Wiley & Sons, 2014.

S. Shukla et al.

https://doi.org/10.1109/PES.2007.385779
https://doi.org/10.1109/PES.2007.386054
https://doi.org/10.1109/TPWRD.2008.2008480
https://doi.org/10.1109/TPWRS.2014.2365809
https://doi.org/10.1109/TPAS.1982.317332
https://doi.org/10.1109/PESW.2001.917314
https://doi.org/10.1109/PESW.2001.917314
https://doi.org/10.1109/TPWRD.2008.923392
https://doi.org/10.1109/PARELEC.2006.79
https://doi.org/10.1109/PARELEC.2006.79
https://doi.org/10.1109/PESGM.2015.7285591
https://doi.org/10.1109/PESGM.2015.7285591
http://refhub.elsevier.com/S0378-7796(21)00558-7/sbref0013
http://refhub.elsevier.com/S0378-7796(21)00558-7/sbref0013
http://refhub.elsevier.com/S0378-7796(21)00558-7/sbref0013
http://refhub.elsevier.com/S0378-7796(21)00558-7/sbref0014
http://refhub.elsevier.com/S0378-7796(21)00558-7/sbref0014
http://refhub.elsevier.com/S0378-7796(21)00558-7/sbref0015
http://refhub.elsevier.com/S0378-7796(21)00558-7/sbref0015
http://refhub.elsevier.com/S0378-7796(21)00558-7/sbref0015
http://refhub.elsevier.com/S0378-7796(21)00558-7/sbref0016
http://refhub.elsevier.com/S0378-7796(21)00558-7/sbref0016
http://refhub.elsevier.com/S0378-7796(21)00558-7/sbref0017
http://refhub.elsevier.com/S0378-7796(21)00558-7/sbref0017
http://refhub.elsevier.com/S0378-7796(21)00558-7/sbref0017
http://refhub.elsevier.com/S0378-7796(21)00558-7/sbref0018
http://refhub.elsevier.com/S0378-7796(21)00558-7/sbref0018
http://refhub.elsevier.com/S0378-7796(21)00558-7/sbref0018
http://refhub.elsevier.com/S0378-7796(21)00558-7/sbref0019
http://refhub.elsevier.com/S0378-7796(21)00558-7/sbref0019
http://refhub.elsevier.com/S0378-7796(21)00558-7/sbref0019
https://doi.org/10.1137/17M1141369
https://doi.org/10.1109/WAINA.2016.167
http://refhub.elsevier.com/S0378-7796(21)00558-7/sbref0022
http://refhub.elsevier.com/S0378-7796(21)00558-7/sbref0022
http://refhub.elsevier.com/S0378-7796(21)00558-7/sbref0022
http://refhub.elsevier.com/S0378-7796(21)00558-7/sbref0023
http://refhub.elsevier.com/S0378-7796(21)00558-7/sbref0023
http://refhub.elsevier.com/S0378-7796(21)00558-7/sbref0024
http://refhub.elsevier.com/S0378-7796(21)00558-7/sbref0024
http://refhub.elsevier.com/S0378-7796(21)00558-7/sbref0024
http://refhub.elsevier.com/S0378-7796(21)00558-7/sbref0025
http://refhub.elsevier.com/S0378-7796(21)00558-7/sbref0025
http://refhub.elsevier.com/S0378-7796(21)00558-7/sbref0025
https://doi.org/10.1016/B978-0-12-141050-6.50023-4
https://www.sciencedirect.com/science/article/pii/B9780121410506500234
https://www.sciencedirect.com/science/article/pii/B9780121410506500234
http://refhub.elsevier.com/S0378-7796(21)00558-7/sbref0027
http://refhub.elsevier.com/S0378-7796(21)00558-7/sbref0027

	An FPGA based electromagnetic transient analysis of power distribution network
	1 Introduction
	2 Overview of SoC FPGA
	3 Choice of iterative solver
	4 Framework for EMTP type simulation on SoC FPGA
	4.1 System architecture of proposed SoC FPGA based EMTP simulator
	4.2 Data representation
	4.3 Pipelining
	4.4 Floating point arithmetic unit
	4.5 User interface
	4.6 Sources
	4.7 PDN modelling
	4.7.1 Transformer modelling
	4.7.2 Modelling of PV system for EMT analysis

	4.8 Discretization of passive nonlinear network elements
	4.9 History current unit
	4.10 Switches
	4.11 Network matrix formation and solution

	5 Implementation and operation
	6 Result and discussion
	7 Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgements
	References

