
Utility of Genetic Algorithms for Solving Large-Scale
Construction Time-Cost Trade-Off Problems

Duzgun Agdas, Ph.D.1; David J. Warne2; Jorge Osio-Norgaard3; and Forrest J. Masters, Ph.D.4

Abstract: The time-cost trade-off (TCT) problem has long been a popular optimization question for construction engineering and man-
agement researchers. The problem manifests itself as the optimization of total costs of construction projects that consist of indirect project
costs and individual activity costs. The trade-off occurs as project duration and, as a result, indirect project costs decrease with reduced
individual activity duration. This reduction in individual activity duration is achieved by increasing resource allocation to individual activities,
which increases their costs to completion. Historically, metaheuristic solutions have been applied to small-scale problems due to computa-
tional complexities and requirements of larger networks. Findings in this article demonstrate that the metaheuristic approach is highly ef-
fective for solving large-scale construction TCT problems. A custom genetic algorithm (GA) is developed and used to solve large benchmark
networks of up to 630 variables with high levels of accuracy (<3% deviation) consistently using computational power of a personal computer
in less than 10 min. The same method can also be used to solve larger networks of up to 6,300 variables with reasonable accuracy (∼7%
deviation) at the expense of longer processing times. A number of simple, yet effective, techniques that improve GA performance for TCT
problems are demonstrated, the most effective of which is a novel problem encoding, based on weighted graphs, that enables the critical path
problem to be partially solved for all candidate solutions a priori, thus significantly increasing fitness evaluation. Other improvements include
parallel fitness evaluations, optimal algorithm parameters, and the addition of a stagnation criteria. This article also presents some guidelines
of optimal algorithm parameter selection through a comprehensive parameter sweep and a computational demand profile analysis. Moreover,
the methods proposed in this article are based on open source development projects that enable scalable solutions without significant develop-
ment efforts. This information will be beneficial for other researchers in improving computational efficiency of their solution in addressing
TCT problems. DOI: 10.1061/(ASCE)CP.1943-5487.0000718. © 2017 American Society of Civil Engineers.

Introduction

The construction industry is characterized by nonrepetitive, com-
plex projects, with generally unpredictable productivity figures.
The level of complexity increases exponentially as the scope and
size of projects increase. For various reasons, such as meeting dead-
lines to avoid liquidated damages and earn bonuses, crashing con-
struction project schedules is a common practice in the construction
industry. This is generally achieved through increased resource
allocation to individual activities to reduce their duration. In most
cases, both the increase in resources and reduction in duration are
coupled in discrete pairs to simplify the problem (Sonmez and
Bettemir 2012). The so-called time-cost trade-off (TCT) problem
manifests itself in finding the optimum balance of total project
costs. That is the balance of increased activity costs and reduced
indirect costs because of reduced project duration as a result of

reduced activity duration (Chassiakos and Sakellaropoulos 2005).
In its most basic form, this problem can be represented as

CT ¼ CA þ CI þD − I ð1Þ
where CT = total project cost; CA = total activity cost; CI = indirect
project costs; D = disincentives; and I = incentives. In reality, dis-
incentives are more likely to be in a liquidated damage format that
is applied when the project duration exceeds a predetermined
threshold and incentives are bonuses rewarded for days saved from
a specified threshold. The complication in minimizing the total
project cost, CT , arises due to the large number of time-cost pairs
for individual activities, and the resulting network computations
because of differing activity duration values. It is typical for large
construction projects to consist of hundreds of activities. Consid-
ering the potential number of discrete time-cost pairs for these
activities, combined with the logical sequencing of activities, the
computational demands can be extreme.

Time-Cost Trade-Off Problem

Heuristic and metaheuristic methods have been the main tools in
addressing this problem due to the previously mentioned computa-
tional requirements, although exact methods have also found some
limited interest (Kandil et al. 2010; Sonmez and Bettemir 2012;
Chassiakos and Sakellaropoulos 2005; Boussad et al. 2013). Of
the metaheuristics methods used in construction and in general, ge-
netic algorithms (GAs) have been undoubtedly the most prominent
method used for a multitude of problems, including the TCT prob-
lem (Boussad et al. 2013). Inspired by the Darwinian theories on
biology and evolution, GAs use genetic operations of crossover,
mutation, and selection to find near-optimal solutions to otherwise
complicated problems using an initial set of candidate solutions

1Senior Lecturer, School of Civil Engineering and Built Environment,
Queensland Univ. of Technology, 2 George St., Brisbane, QLD 4001,
Australia (corresponding author). E-mail: duzgun.agdas@qut.edu.au

2eResearch Analyst, High Performance Computing and Advanced Re-
search Computing support, Queensland Univ. of Technology, 2 George St.,
Brisbane, QLD 4001, Australia.

3Graduate Student, Dept. of Civil, Environmental and Architectural
Engineering, Univ. of Colorado Boulder, Boulder, CO 80309.

4Associate Dean, Herbert Wertheim College of Engineering, Univ. of
Florida, Gainesville, FL 32611.

Note. This manuscript was submitted on August 14, 2016; approved on
May 31, 2017; published online on October 31, 2017. Discussion
period open until March 31, 2018; separate discussions must be submitted
for individual papers. This paper is part of the Journal of Computing in
Civil Engineering, © ASCE, ISSN 0887-3801.

© ASCE 04017072-1 J. Comput. Civ. Eng.

 J. Comput. Civ. Eng., 2018, 32(1): 04017072 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
ni

ve
rs

ity
 o

f 
C

al
ga

ry
 L

ib
ra

ry
 o

n 
11

/0
5/

17
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

https://doi.org/10.1061/(ASCE)CP.1943-5487.0000718
mailto:duzgun.agdas@qut.edu.au


(Michalewicz 1999). Possible solutions are represented as a genome
upon which genetic operations such as mutation and crossover can
be performed, thus simulating the natural selection process.

Table 1 represents the state of the practice in regards to the TCT
problem in the construction industry. It shows the typical size of
the problems solved, the methods by which they are solved, per-
formance of the methods used, and whether parallel computing was
used to reduce the processing time. It is clear that the majority of
the articles addressed smaller networks, and detailed performance
benchmarks on solution accuracy and runtime performance also
appear to be lacking.

In a broader context, the TCT problem can be considered a
subset of the more general resource-constrained scheduling (RCS)
problem, a heavily studied problem in operations research (Hartmann
and Briskorn 2010; Vanhoucke and Debels 2007). In construction
engineering and management literature, TCT and RCS problems ap-
peared to have been treated as different topics (Kim and Ellis 2008;
Zhang 2011); however, it is safe to say both belong under the same
class of scheduling benchmark problems. The algorithms for RCS
in areas of computer science, operation research, and operations
management can be sophisticated (Debels and Vanhoucke 2007;
Gaglioppa et al. 2008; He et al. 2017). Even in these disciplines,
algorithm performance is often only reported for relatively small
networks of less than 300 nodes. Therefore, demonstration of per-
formance of large-scale, realistic, TCT problems is one important
contribution of this work for construction engineering and manage-
ment research and beyond.

Issues in Solving the TCT Problem Using GA

Computational complexity becomes relevant and problematic with
the increased network size because cost computations are simple
formulas. This can explain why the majority of the earlier studies—
and this trend appears to continue in the more recent studies—on this
subject has revolved around smaller networks (Feng et al. 1997;
Hegazy 1999; Chassiakos and Sakellaropoulos 2005; Long and
Ohsato 2009; Ghoddousi et al. 2013; Monghasemi et al. 2015; Tran
et al. 2016). Feng et al. (1997) and Chassiakos and Sakellaropolos
(2005) addressed networks of 18 and 29 variables, respectively.
These two articles represent some of the more popular networks
that have later been used in the literature as key benchmark prob-
lems. With the advancements in computational efficiency and better
understanding of these problems, larger networks have also been
analyzed (Kandil and El-Rayes 2006; Kandil et al. 2010; Sonmez
and Bettemir 2012). Perhaps the most interesting article on the
scale of problems addressed in the literature has been the publica-
tion by Menesi et al. (2013), in which the authors criticize the ear-
lier literature because of the size of the networks analyzed and
urge other researchers to focus on methods that can provide fast,
accurate solutions to large-scale TCT problems. Following this

criticism of Menesi et al. (2013), this article is an attempt to
improve the state of GA optimization practice by taking a more
holistic approach to performance analysis that considers accuracy,
convergence time, computational efficiency, and ease of develop-
ment. Thus, findings presented are highly relevant for real-life-
scale applications; in particular, the approach to the parameter
selection step should serve as a useful guide for practical use of
GA for construction TCT problems.

Research Motivation and Contribution

It is clear from the existing literature that there is a lack of GA
exemplars that could demonstrate the capacity to solve realistic
large-scale construction TCT problems efficiently to make them
accessible for real-life applications. The term efficiency is used here
to indicate solutions with reasonable computational requirements
that can be met by a personal computer and processing time
(∼minutes). The main motivation behind this research is to address
this gap, and following are the main research questions:
• How feasible, in terms of computational demand and accuracy,

is the application of metaheuristics to realistic TCT problems?
• What features of the TCT problem can be exploited to improve

the efficiency of metaheuristics?
• What is the software development effort required to achieve

such solutions?
Motivated by these research questions, this article provides the

following contributions to the construction industry and research
community:
• The presentation of a holistic analysis on the utility of GA

to solve real-world TCT problems. This analysis considers the
trade-off of solution optimality in terms of time to solution, the
complexity of implementation, and computer hardware and
software requirements.

• The presentation of a number of well-studied, but highly effec-
tive, methods for improving GA performance of TCT problems.
These include optimization of fitness evaluations using weighted
graphs, a population stagnation criterion, and implementing
parallel computing.

• The provision of guidelines for GA parameter selection for TCT
problems based on parameter performance assessment using
approximate Bayesian techniques.

• The demonstration of the efficacy of freely available, standard
off-the-shelf GA implementations in solving realistic TCT
problems typical of real construction projects.

Organization of the Article

The following section of the article describes the research method-
ology; the benchmark models used, solution method, and imple-
mentation approach are discussed in detail. An improved GA

Table 1. Sample of Earlier Research Findings on TCT Problem Solution Benchmarks

Research Network Cost-time pairs Method Runtime (h) Accuracy (%) Parallelism

Feng et al. (1997) 18 5 GA N/A N/A No
Hegazy (1999) 18 5 GA 0.11 N/A No
Chassiakos and Sakellaropolos (2005) 29 3 LP/IP <0.01 0.30 No
Kandil and El-Reyes (2006) 720 N/A GA 6.70 N/A Yes
Long and Ohsato (2009) 18 5 GA N/A N/A No
Menesi et al. (2013) 2,000 5 Constrained programming 2.00 6.39 No
Sonmez and Bettemir (2012) 630 5 Hybrid GA 1.22 2.41 No
Ghoddousi et al. (2013) 37 2 GA N/A N/A No
Monghasemi et al. (2015) 18 5 GA N/A N/A No
Tran et al. (2016) 15 3 Hybrid GA N/A N/A No

Note: LP/IP = linear programming/integer programming.

© ASCE 04017072-2 J. Comput. Civ. Eng.

 J. Comput. Civ. Eng., 2018, 32(1): 04017072 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
ni

ve
rs

ity
 o

f 
C

al
ga

ry
 L

ib
ra

ry
 o

n 
11

/0
5/

17
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



design to solve TCT problems is then introduced. This section in-
cludes discussions on how to encode the problem, evaluate fitness,
and use a stopping criteria to maximize the computational efforts.
Also described in this section is a novel approach to the fitness
assessment step of GA development. The results section includes
discussions on how to solve the benchmark problems where the
model performance is assessed in terms of accuracy, processing
time, and processing demand. The article concludes with the sum-
mary and long-term implications of the findings.

Research Methodology

Defining the Problem: Benchmark Studies

The majority of the literature reviewed use the fundamental prob-
lems defined by Feng et al. (1997) and Chassiakos and Sakellar-
opoulos (2005). This article is structured around the 18- and
63-variable problems defined by Feng et al. (1997) and Sonmez
and Bettemir (2012) in devising larger networks. This was achieved
by repeating these networks in series to achieve larger networks,
and because the solution to smaller networks are known, so are the
solutions to the larger networks. This property provides the bench-
mark for accuracy comparisons. Although the networks created in
this fashion may not capture the actual complexity of networks of
comparable size, this method has been used and accepted consis-
tently in earlier literature (Aminbakhsh and Sonmez 2016).

Algorithm development efforts in this article were structured
around the 63-variable networks defined by Sonmez and Bettemir
(2012). These two topologically identical networks (63a and 63b)
have a minor difference in their respective indirect cost figures. Ad-
ditionally, results for analyses of larger networks of 630, 1,800,
3,150, and 6,500 variables are also provided. Sonmez and Bettemir
(2012) provide an interesting perspective on the increased compu-
tational complexity as the number of time-cost pairs associated
with these networks—the computational complexity of these net-
works are likely to increase exponentially with increased activity
numbers. For the 18-variable problem there are 5.9 × 109 discrete
time-cost alternatives, while the same for the 63-variable problem
are 1.4 × 1042. For 180- and 630-variable networks, these values
are 5.2 × 1097 and 2.9 × 10421, respectively. These values only in-
dicate the mode selection for activities; the topology sorting for
larger networks (i.e., critical path computations) will also be more
complicated.

Solution Method: Genetic Algorithms

Genetic algorithms have long been the most common and widely
used metaheuristics in construction engineering and management
research. However, examples of more sophisticated metaheuristics
solutions such as particle swarm optimization (Zhang et al. 2005),
shuffled frog leaping (Fang and Wang 2012), ant colony optimiza-
tion (Merkle et al. 2002), and memetic algorithms (Senouci and
Eldin 2004) also exist (Zhang and Ng 2012). Despite this popular-
ity, no clear benchmarks exist on their design and capacity as
potential practical solutions to large-scale TCT problems outside a
few studies (Aminbakhsh and Sonmez 2016; Menesi et al. 2013;
Kandil et al. 2010). Thus, this article provides analysis of GAs per-
formance across different benchmark problems as a starting point to
test their performance.

Solution Platform

An important goal of this article was to assess the GA performance
without devising purpose-specific algorithms in an attempt to

minimize the development efforts and ensure extensibility of the
proposed solutions to different problems. The application platform
chosen for this study was to use a generic GA solution through the
Distributed Evolutionary Algorithms in Python (DEAP) framework
(Fortin et al. 2012). This open source framework is built on the
Python programming language—an open source, high-level pro-
gramming language (Python). DEAP was chosen due to the ease
of development and integration of parallel computing. The method
chosen for parallelization was Scalable COncurrent Operations in
Python (SCOOP) within the DEAP framework due to its seamless
integration with DEAP and relatively low cost of development in
implementation (Hold-Geoffroy et al. 2014).

Preliminary Implementation and Observations

To assess the baseline performance of DEAP as a general imple-
mentation method and SCOOP as the parallel computing medium,
preliminary optimization instances were run. No modifications
were made to the DEAP code to implement the problem to assess
its viability for scalability and reduce development efforts. A rea-
sonable assumption was made about the upper limits of the pop-
ulation size (2,000) and the number of generations (2,000) (Kandil
and El-Rayes 2006). The default GA parameters were mutation rate
of 0.1 and polynomial bounded method (Gaussian, shuffle indexes,
flip bit, and uniform methods were also available), crossover rate of
0.5, and uniform partially matched method (one- and two-point,
uniform, partially matched, ordered, and blend methods were also
available), and Nondominated Sorting Genetic Algorithm II
(NSGA-II) selection method [tournament, roulette, Strength Pareto
Evolutionary Algorithm II (SPEA-II), random, best, worst, and
tournament Dominance and Crowding Distance (DCD) methods
were also available] (Fortin et al. 2012). A snapshot of the overall
performance of the results of these runs is given in Table 2.
The reported baseline performance values are for the 630-variable
problem because this was the most recent benchmark problem,
and more detailed analyses for different networks are provided
subsequently.

Remarkably, the results were extremely accurate, exceeding
those reported by Sonmez and Bettemir (2012); however, the com-
putational time, on average, was approximately 18 h for the five
routines run for each of these test instances. Due to the expected
nonlinear growth in processing time of the larger network prob-
lems, they were not attempted using this method. Having arrived
at an accurate DEAP implementation of the benchmark problem by
Sonmez and Bettemir (2012), this research was extended to exploit
parallel computing using SCOOP. This resulted in more than 4×
speedup over the serial code using eight CPU cores; however,
the overall runtime (4 h) indicated that solving realistic TCT prob-
lems would still be infeasible.

Improved Genetic Algorithm Design

The preliminary analysis indicated that the DEAP package can pro-
vide accurate solutions, although the processing times were still
significant. Parallel computing with the SCOOP package also

Table 2. Preliminary GA Benchmarks with DEAP and SCOOP

Size
DEAP

runtime (h)
DEAP

accuracy (%)
DEAP + SCOOP

runtime (h)
DEAP + SCOOP
accuracy (%)

630a 17.45 0.43 4.05 0.80
630b 18.98 0.83 4.61 1.20

© ASCE 04017072-3 J. Comput. Civ. Eng.

 J. Comput. Civ. Eng., 2018, 32(1): 04017072 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
ni

ve
rs

ity
 o

f 
C

al
ga

ry
 L

ib
ra

ry
 o

n 
11

/0
5/

17
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



reduced the computational time significantly when the computa-
tions were distributed over multiple CPUs. Considering these
observations, the following sections of this article show further
improvements made to the GA design—including introducing a
stopping criterion, details of the graph-based fitness evaluation
method, and selection of optimal GA parameters—to minimize
computational time without sacrificing accuracy.

Problem Encoding

Arguably, the most important element in effective use of a GA is the
encoding of a problem solution as a genetic code. In terms of bio-
logical analogy, the problem solution can be considered as the or-
ganism or the phenotype and the genetic code is the genotype. The
method of reading a genome to produce a problem solution is the
embryology. The choice of encoding along with the associated em-
bryology, crossover, mutation, and selection operations can have a
significant effect on the effectiveness of the method (Affenzeller
et al. 2009). A simple encoding approach was determined to be
effective in modeling the TCT problem, and the genotype of a indi-
vidual is defined as a sequence of construction modes.

First, consider the time-cost optimization problem with n activ-
ities A ¼ fa1; a2; : : : ; ang, where ai is an integer that represents
the number of modes that can be assigned to the ith activity. Each
mode assignment, mi;j, is a cost-duration pair, mi;j ¼ ðci;j; di;jÞ,
where ci;j and di;j are respectively the cost and duration of
the ith activity using the jth mode. The genotype for a potential
solution set of mode assignments is given by the list G ¼
fg1; g2; : : : ; gng, where 1 ≤ gi ≤ ai for i ¼ 1; 2; : : : ; n. Here each
gene, gi, encodes the mode number for activity i.

The phenotype is constructed by assigning activity i to the
gith possible mode. This yields an embryology function EðGÞ
defined by

EðGÞ ¼ fð1; g1Þ; ð2; g2Þ; : : : ; ðn; gnÞg ð2Þ
A fitness function can then be determined in terms of the phe-

notype and genotype.

Fitness Evaluation

The fitness of an individual phenotype p ¼ EðGÞ is the total cost of
the construction process given the activity mode assignments. In
this context, an assignment is defined as an activity-mode pair.
For example, if activity i will implement mode gi, then the mode
assignment is pi ¼ ði; giÞ. This total cost, CT , consists of the sum
of the activity costs, CA, and the indirect costs, CI , of the total
project duration. That is

CT ¼ CA þ CI ð3Þ
This is simply Eq. (1) without the incentive and disincentive

terms—these terms can be simply added to the formula if the prob-
lem characteristics require.

Given individual p, CA, and CI can be calculated as

CA ¼
Xn

i¼1

cpi
ð4Þ

CI ¼ r
X

j∈L
dpj

ð5Þ

where r = indirect cost rate ($=time); and L = set of activities that
contribute to the critical path of the project.

By substitution of Eqs. (4) and (5) into Eq. (3), a fitness function
can be defined

FðpÞ ¼
Xn

i¼1

cpi
þ r

X

j∈L
dpj

ð6Þ

This can, in turn, be expressed in terms of the genotype using the
embryology [Eq. (2)]

F�ðGÞ ¼
Xn

i¼1

ci;gi þ r
X

j∈L
dj;gj ð7Þ

Computational complications arise from computing the latter
part of the formula caused by the necessity to compute the longest
path (i.e., critical path) of the network analyzed. A significant con-
tribution of this article to general construction engineering and
management literature is the computation of the critical path using
a robust and efficient method from graph theory. This method
removes the need for repeated topology sorting with different
time-cost mode allocation and improves overall computation time
substantially. Used in various other disciplines such as operations
management (e.g., minimum spanning tree), graph theory is the
mathematics of objects with interconnected relationships (Floudas
and Pardalos 2008). Although graph theory has been applied to gen-
eral scheduling problems (Dharwadker and Pirzada 2011), no such
study in construction engineering and management literature exists
to the best of the authors’ knowledge. The main advantage of using
a graph-based solution to the classical TCT problem is that the
requirement for topological sorting of the network needs only be
completed once, rather than the more traditional approach of iter-
atively constructing the critical path for each one of the GA solu-
tions. Because the time-cost pairs are assigned to activities in no
particular order in search of the lowest project costs, all correspond-
ing topologies need to be sorted (i.e., critical path) at each step of
genetic operations. It is not clear whether this iterative approach
was replicated in earlier literature, but this method was used in
the earlier optimization analyses conducted for this article. This
also explains the significant computational time associated with
these optimization runs.

Stopping Criteria

A challenge in using GA is to determine when to terminate
(Affenzeller et al. 2009; Kim 2013) the genetic operations. This
is a trade-off between the quality of the solution and the overall
execution time. With everything kept equal, more generations will
always lead to better solutions unless the correct answer is found
during computations; however, the rate at which this improvement
occurs is greatly dependent on the genetic diversity in the popula-
tion of solutions. When the diversity of the solutions gets low,
the populations stagnate and the solutions are essentially stabilized.
At this point there is little to be gained by continued genetic oper-
ations, and it is sensible to terminate the evolution to optimize the
required computation time. To achieve this, a measure of diversity
that compares the relative distance between fitness of the best indi-
vidual to the average fitness of the whole population was devised

SðPÞ ¼ 1 − jPj
min
G∈PF

�ðGÞ
P

G∈P F�ðGÞ ð8Þ

where P = gene pool, that is, the set of all genomes in the current
population. This stagnation criterion is used to determine the trade-
off between computational effort and solution accuracy. In this ar-
ticle, the stagnation threshold of T ¼ 5 × 10−5 and the stopping
criterion of SðPÞ < T were used.

© ASCE 04017072-4 J. Comput. Civ. Eng.

 J. Comput. Civ. Eng., 2018, 32(1): 04017072 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
ni

ve
rs

ity
 o

f 
C

al
ga

ry
 L

ib
ra

ry
 o

n 
11

/0
5/

17
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



Critical Path Computations

The total cost function [Eq. (3)] and derived fitness function
[Eq. (7)] consist of two distinct components: the activity costs and
the indirect cost. Of these, the indirect cost is more computationally
expensive due to the requirement that the critical path (i.e., duration)
of the project be calculated to determine the total project duration.
The reviewed construction engineering and management literature
has not explicitly stated the method used in computing the project
duration, but it appears this is computed as the longest path within a
network (Sonmez and Bettemir 2012). This can simply be calcu-
lated by iteratively computing the completion time of activities
using the precedence logic. In this article, the preliminary compu-
tations were run using this method. Once an individual activity
time-cost pair is selected from available modes for an activity,
the time is registered as the accepted activity duration and fed into
the critical path computations. This is identical to the forward
pass computations of the traditional critical path method (CPM).
Although effective in providing a simple solution to project dura-
tion computations, this approach proves to be inefficient due to the
excessive time required to compute the results, as in each iteration
the network topology needs to be recalculated because of the ac-
tivity mode selection.

Longest Path Problem
The critical path problem is a specific case of a longest path prob-
lem. This widely studied fundamental problem of finding the longest
path within a graph is essentially the very description to finding the
longest path within a given schedule (Floudas and Pardalos 2008).
Studying the effective solution algorithms devised from the longest
path problem, a computationally efficient solution for the TCT prob-
lems under consideration was developed.

Graph Method
A graph is defined as a set of vertices, V, and a set of edges, E. For
an undirected graph, vertices u; v ∈ V are said to be connected if
there is an edge e ∈ E such that e ¼ ðu; vÞ. The neighborhood of
vertex v by nðvÞ, that is, nðvÞ, is the set of all vertices in E that are
connected to v. Aweighted graph also includes a function ωðeÞ that
assigns edges to a measure of distance between its end points. Im-
portantly, a mode’s duration through the weighting function ωðeÞ
was explicitly encoded, which enables efficient preprocessing via a
topological sort.

A path is defined as a connected sequence of vertices Pv0;vn ¼ðv0; v1; : : : ; vnÞ, that is, for all i ∈ ½0; n − 1� there is an edge

ðvi; viþ1Þ ∈ E. The length of a path, denoted by DðPv0;vnÞ, is
the sum of the edge weights connecting the vertices in the path,
that is, DðPv0;vnÞ ¼

P
n−1
i¼0 ω½ðvi; viþ1Þ�.

The longest path problem can be stated as follows: Given a
weighted graph, G ¼ ðV;EÞ, with weighting function ωðeÞ and
two vertices s; t ∈ V, the task is to find a path Ls;t that satisfies

Ls;t ¼ argmax
Ps;t∈Φs;t

DðPs;tÞ ð9Þ

where Φs;t = set of all possible paths between s and t. For a gen-
eral graph G, the longest path problem has been shown to be
non-deterministic polynomial-time (NP)-hard—similar to the TCT
problem as noted by Sonmez and Bettemir (2012).

Solution for Directed Acyclic Graphs
There are two special types of graphs: directed and acyclic graphs.
A directed graph defines connectivity as unidirectional, that is, if
ðu; vÞ ∈ E then u is connected to v but v is not connected to u. A
graph is acyclic if there do not exist any paths with v0 ¼ vn; such a
path is called a cycle. Although the longest path problem is
NP-hard for a general weighted graph, an efficient algorithm exists
for graphs that are directed and acyclic with a nonnegative weight
function ωðeÞ ≥ 0 for all e ∈ E (Kahn 1962; Knuth 1968). The al-
gorithm consists of two steps: (1) sort the vertices topologically,
and (2) visit vertices in order and compute longest path as the lon-
gest path from each incoming edge.

A vertex list of a directed acyclic graph (DAG) is topologically
sorted if for every directed edge e ¼ ðvi; vjÞ, then i < j. That is, all
vertices from all possible paths leading to the jth vertex are visited
before the jth vertex itself. A topological sort can be computed us-
ing the algorithm shown in Fig. 1. A topological sort is only valid
for directed acyclic graphs. Once the topological sort has been ap-
plied, the longest path between all nodes can be computed using the
algorithm shown in Fig. 2.

This longest path algorithm has a computational complexity of
OðjVj þ jEjÞ. Because the activity dependency graph for a TCT
problem is directed, acyclic, and activity durations are always non-
negative, the algorithm shown in Fig. 2 is directly applicable.

Thus, the fitness function F�ðgÞ [Eq. (7)] can be computed ef-
ficiently in OðjVj þ jEjÞ operations (Cormen et al. 2001). Fig. 3
demonstrates the relative proportion of CPU time spent in fitness
evaluations using the graph-based scheme versus the original, iter-
ative approach. This figure shows computational demands for

Fig. 1. Topological sort algorithm

© ASCE 04017072-5 J. Comput. Civ. Eng.

 J. Comput. Civ. Eng., 2018, 32(1): 04017072 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
ni

ve
rs

ity
 o

f 
C

al
ga

ry
 L

ib
ra

ry
 o

n 
11

/0
5/

17
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



different parts of the overall computations and the advantage of the
DAG method over the traditional approach to the 63a problem.

DAG Implementation Using DEAP and SCOOP

A parallel genetic algorithm for solving the TCT using Python was
implemented, in which the computationally demanding critical
path durations were calculated using the graph theory. The DEAP
library was utilized for the genome definition population creation
and genetic operations (Fortin et al. 2012). The fitness evaluation
step, which is the most computational task, has been parallelized
using the SCOOP library (Hold-Geoffroy et al. 2014).

At the beginning of each iteration, individuals were randomly
paired together based on fitness based on one of several selection
methods. Crossover is then performed with each of these pairs to
produce exactly two offspring, upon which mutation is applied at
random. Finally, all offspring and parents are pooled into one pop-
ulation, from which the best 50% are selected for the next gener-
ation. This cycle repeats until a fixed generation limit is reached or
if the population stagnates [as computed by Eq. (8)]. An overview
of this approach is given in Fig. 4.

The most efficient method of computing the longest path in
a DAG consists of a topological sort followed by an incremental
build of the longest path by choosing the longest incident path
at each node. Because individual activity dependencies do not
change with different activity duration-cost pair selection, the topo-
logical sort needs to be applied once. This dramatically increases
the overall performance of the critical path computations. Larger
problems were solved efficiently by removing repeated topological
sorting. Because each fitness evaluation is completely independent,
these can be executed in parallel using the Python SCOOP library
(Hold-Geoffroy et al. 2014).

Parameter Selection

Performance (computation time and accuracy) of GAs is affected
by the parameter selection, and to the best of authors’ knowledge

no comprehensive parameter sweep of GA parameters has been
conducted on TCT problem solution criteria—examples of such
studies exist for different scheduling problems (Alcaraz andMaroto
2001). To address this research gap, approximate Bayesian compu-
tation (ABC) techniques were used to analyze the algorithm param-
eter distribution for a given desired accuracy threshold. The vector
of algorithm parameters, θ, was treated as a random variable with
probability distribution pðθÞ, then the parameter distribution was
computed, in which the solution under a given parameter set, Sθ,
is the exact minimum solution, SM using Bayes’ theorem

pðθ given Sθ ¼ SMÞ ¼
pðSθ ¼ SM given θÞpðθÞ

pðSθ ¼ SMÞ
ð10Þ

While Eq. (10) is not tractable, it can be estimated for a tol-
erable level of accuracy, ϵ, through GA simulations with random-
ized parameters. This method, given in Fig. 5, is known as the
ABC rejection sampling in the computational statistics literature
(Sunnaker et al. 2013).

This ABC rejection scheme was applied using the 63a and 63b
TCT problems using a target accuracy of ϵ ¼ 0.7% with uniform
initial parameter distributions. For the crossover and mutation rates,
this was continuous uniform distributions in the interval [0,1], and
the crossover, mutation, and selection functions were treated as uni-
form discrete random variables (i.e., each was selected with equal
probability from the available options within DEAP documenta-
tion). These values were used for the limits for the initial param-
eter distribution for ABC analysis. After computing 300 accepted
ABC samples, the optimum parameters in balancing accuracy and
processing time using the mean of the ABC samples were deter-
mined. For the selection, crossover, and mutation functions, this
mean was rounded and found the tournament selection function,
the one-point crossover function, and the shuffle indexes mutation
function to be optimal. The optimal mutation and crossover rates
were found to be 0.107� 0.079 and 0.474� 0.082, respectively.
The ABC analyses in this article exclude the number of generations
run and the population size because they were discussed in previous
parts of this article. A particularly interesting observation is the lack
of performance from widely popular functions such as NSGA-II
and SPEA-II. This can be explained in part because these algo-
rithms are suitable for multiobjective optimization, and the TCT
problems presented here are not and can be solved with simpler
and faster-converging algorithms.

Results and Discussions

Performance

Solution Accuracy
The largest network with clear accuracy numbers has been pro-
vided by Sonmez and Bettemir (2012), using their developed
hybrid GA, as 2.41 and 2.47% for 630a and 630b problems.
The algorithms used in this research produced significantly better

Fig. 2. Longest path algorithm for a topological sorted, nonnegatively weighted DAG

Fig. 3. Computational demand profile for GA implementation

© ASCE 04017072-6 J. Comput. Civ. Eng.

 J. Comput. Civ. Eng., 2018, 32(1): 04017072 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
ni

ve
rs

ity
 o

f 
C

al
ga

ry
 L

ib
ra

ry
 o

n 
11

/0
5/

17
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



results for the same networks during parameter selection analyses
described in previous sections of this article. The average accura-
cies were 0.79% (minimum = 0.43%, maximum = 1.57%) and
1.12% (minimum = 0.64%, maximum = 1.71%) for the 630a
and 630b problems, respectively. The results were encouraging
and clearly indicate the efficacy of the proposed optimization rou-
tine in achieving extremely accurate solutions to a large-scale TCT
problem. However, for any solution of this problem to be practi-
cally viable, accuracy needs to be accompanied by convergence
speed, as well as development effort—a factor mostly ignored
in earlier literature. Because of these encouraging results and

significantly faster convergence rates, larger networks of 1,800,
3,150, and 6,300 variables were solved to test the convergence lim-
its of the algorithms.

No stagnation criteria were used in these experiments because
the goal was to assess the limits of convergence, rather than prac-
tical solutions. The analyses were run five times for each of these
instances and average values for both accuracy and runtime are re-
ported in Table 3. The number of generations was set to 5,000 with
a population size of 2,750 to test the accuracy limits of the proposed
solution. These test instances were run with eight CPUs. The results
of these larger networks are also encouraging with the exception of

Activity Data

Topological Sort of
Dependency Graph

Generate inital Population P
g = 0

Evaluate Fitness in Parallel

F*(P1) F*(Pn)

Assign Pairs in P

Crossover pairs to
produce offspring O

Mutate O
Pool Population

P* = O + P

Select top 50% in P*

S(P*) < t ?

g = g + 1

End

F*(P1)

g > N ?

Start

Yes

No

Yes

No

Fig. 4. Flowchart of GA implementation

Fig. 5. ABC rejection sampling for optimal algorithm parameter selection

© ASCE 04017072-7 J. Comput. Civ. Eng.

 J. Comput. Civ. Eng., 2018, 32(1): 04017072 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
ni

ve
rs

ity
 o

f 
C

al
ga

ry
 L

ib
ra

ry
 o

n 
11

/0
5/

17
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



an 1,800-variable network. There are no clear explanations as to
why this variability of the accuracies was observed while process-
ing times were comparable to the network sizes. Another interest-
ing observation is that the growth in processing time appears to be
near linear with increased network size. This is a clear indicator of
the efficiency of the proposed method in addressing the computa-
tional complexity of the problems under assessment. The observed
variable accuracy might have been caused by the inherent variabil-
ity of the results consistency of metaheuristic methods for different
problems or that the complexities of solution surfaces of the origi-
nal 18-variable problem might be more complicated than those
of the 63-variable problem, although the latter is the much larger
network.

Development Effort
It is common in construction engineering and management research
to use existing, open source optimization routines (Kandil and El-
Rayes 2006) or purpose-specific software platforms (Menesi et al.
2013), or to develop customized optimization routines (Sonmez
and Bettemir 2012) using different software packages and program-
ming languages. In this article, DEAP, an open source development
project aimed at increasing the viability of evolutionary algorithms
written in Python, was used. In developing solutions for the TCT
and parallelism, the main goal was to minimize the development
efforts and rely as much as possible on off-the-shelf solutions. Sim-
ilar to GA development, the SCOOP package was used for parallel
computing, which was built into the DEAP package with minimal
alterations.

Runtime Performance and Processing Demand
Kandil and El-Rayes (2006) cited a TCT problem of a 720-variable
network that took 136.5 h to solve, which was reduced to 19.72 h
using parallel computing and 6.70 h when using coarse-grained
parallel modules. In a follow-up article, Kandil et al. (2010) re-
ported a 90-h runtime without parallel computing that can possibly
be attributed to faster processors. Kandil et al. (2010) also provide
a processing time versus number of processors to evaluate their
relationship. Following this approach, a comparison of reduced
processing time with added computational resources through par-
allel computing is provided. Table 4 summarizes the runtime per-
formance with added computational demand across multiple levels
of accuracy. It can be seen that problems of 630 variables are solved
in less than 10 min consistently using no more than eight CPUs.
This is significant because these results indicate a more than 100×
speed increase to the nongraph, nonparallel GA approach used
previously in this article (Table 2).

In parallel computing, the limitations of parallelization must
also be considered. The maximum speedup of a parallel algorithm
is constrained by the ratio of strictly serial portions of the code. This
is generally referred to as Amdahl’s law (Amdahl 1967). Essen-
tially, this is an example of the law of diminishing returns. As the
parallel portion of the code is increased, the strictly serial portion
becomes a bigger proportion of the total runtime. As the number of
cores goes to infinity, the limit of the speedup is the original serial

code runtime divided by the strictly serial portion of the parallel
code—theoretically, this is the maximum possible parallelization.
During the analyses, one to eight CPUs were considered. In a ma-
jority of these runs, no noticeable improvements in either time or
accuracy were noted when more than six CPUs were used. The
algorithms for this research effort were developed using a state-
of-the-art high-performance computing (HPC) facility, which cre-
ates questions about how viable this method is for implementation
on a personal computer. To test the viability of solving these prob-
lems on a personal computer, some of these test instances were also
run on a personal computer. This PC had a six-core Intel (Santa
Clara, California) Xeon CPU (W3670 clocked at 3.2 GHz) with

Table 3. Processing Time and Solution Accuracy for Very Large Networks

Network Runtime (h) Accuracy (%)

1800a 5.82 7.05
1800b 5.84 14.72
3150a 9.15 6.50
3150b 9.41 4.73
6300a 16.42 7.66
6300b 16.76 6.96

Table 4. Runtime and Accuracy versus Number of CPUs

Stopping criteria Network CPUs Runtime (min) Accuracy (%)

2,000 generations 63a 2 29.04� 0.31 0.28� 0.26
2,000 generations 63a 4 20.74� 0.65 0.34� 0.14
2,000 generations 63a 6 18.93� 0.38 0.33� 0.38
2,000 generations 63a 8 18.32� 0.17 0.48� 0.53
2,000 generations 63b 2 29.01� 0.73 0.75� 0.31
2,000 generations 63b 4 21.88� 2.78 0.96� 0.18
2,000 generations 63b 6 19.06� 0.32 0.89� 0.44
2,000 generations 63b 8 18.39� 0.13 1.20� 0.37
2,000 generations 630a 2 125.72� 5.38 1.47� 0.25
2,000 generations 630a 4 99.38� 11.80 1.62� 0.25
2,000 generations 630a 6 77.14� 2.24 1.78� 0.31
2,000 generations 630a 8 73.92� 0.07 1.93� 0.61
2,000 generations 630b 2 123.25� 2.08 1.84� 0.47
2,000 generations 630b 4 94.72� 9.78 2.20� 0.47
2,000 generations 630b 6 76.76� 1.86 2.30� 0.25
2,000 generations 630b 8 71.99� 1.79 2.47� 0.17
Stagnation 63a 2 2.15� 0.17 0.27� 0.18
Stagnation 63a 4 2.06� 0.28 0.39� 0.33
Stagnation 63a 6 1.91� 0.18 0.37� 0.25
Stagnation 63a 8 1.85� 0.13 0.26� 0.18
Stagnation 63b 2 2.00� 0.37 0.93� 0.64
Stagnation 63b 4 1.38� 0.42 1.84� 1.92
Stagnation 63b 6 1.73� 0.26 0.64� 0.32
Stagnation 63b 8 1.48� 0.23 1.24� 0.59
Stagnation 630a 2 10.08� 6.15 3.15� 3.44
Stagnation 630a 4 9.38� 4.13 2.25� 1.49
Stagnation 630a 6 5.11� 3.34 4.37� 3.11
Stagnation 630a 8 6.07� 2.27 2.76� 1.64
Stagnation 630b 2 8.93� 2.93 2.49� 0.83
Stagnation 630b 4 6.63� 1.38 2.63� 0.48
Stagnation 630b 6 4.73� 2.80 3.77� 2.60
Stagnation 630b 8 6.61� 0.77 2.29� 0.41
Literature accuracy 63a 2 1.65� 0.10 1.39� 0.25
Literature accuracy 63a 4 1.55� 0.06 1.33� 0.12
Literature accuracy 63a 6 1.54� 0.13 1.40� 0.17
Literature accuracy 63a 8 1.39� 0.08 1.50� 0.24
Literature accuracy 63b 2 1.68� 0.28 1.42� 0.15
Literature accuracy 63b 4 1.46� 0.12 1.65� 0.28
Literature accuracy 63b 6 1.50� 0.14 1.50� 0.24
Literature accuracy 63b 8 1.38� 0.19 1.50� 0.25
Literature accuracy 630a 2 10.52� 1.10 2.18� 0.15
Literature accuracy 630a 4 7.63� 0.64 2.18� 0.10
Literature accuracy 630a 6 7.10� 0.63 2.23� 0.06
Literature accuracy 630a 8 7.37� 1.26 2.33� 0.30
Literature accuracy 630b 2 10.36� 0.98 2.30� 0.13
Literature accuracy 630b 4 7.78� 1.13 2.32� 0.25
Literature accuracy 630b 6 7.09� 1.78 2.47� 0.33
Literature accuracy 630b 8 6.13� 0.58 2.43� 0.24

Note: Each of these test instances are run five times, and what is reported in
the runtime and accuracy columns is the average of these runs and half of
the range (maximum-minimum) for each. This is done to indicate the
approximate distances from the mean for each one of these runs.

© ASCE 04017072-8 J. Comput. Civ. Eng.

 J. Comput. Civ. Eng., 2018, 32(1): 04017072 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
ni

ve
rs

ity
 o

f 
C

al
ga

ry
 L

ib
ra

ry
 o

n 
11

/0
5/

17
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



16 GB of RAM and the operating system was the Red Hat
Enterprise Linux. This is a relatively old (∼2010) system that per-
formed on par with the HPC runs for larger problems, indicating
that common PCs can be used in applications based on the meth-
odology proposed here.

Strengths and Weaknesses of the Proposed Solution

The DAG model implemented in DEAP and SCOOP can be a via-
ble solution to large-scale discrete TCT problems that are common
in the construction industry. The implemented model was devel-
oped with minimum coding and software development using open
source tools, and processing demands can be met by a personal
computer while keeping the computational time manageable. The
solution developed in this article compares favorably in terms of
accuracy and processing time with the earlier studies. Development
effort comparisons are more challenging because specifics of ear-
lier studies are not detailed to provide such a comparison. It can be
deduced from the earlier articles that researchers have developed
problem-specific GA solutions (Sonmez and Bettemir 2012) and
built on existing algorithms (Kandil et al. 2010); however, there are
no discussions on the development efforts needed. The parameter
sweep analyses conducted indicate that the model performance will
be heavily dependent on problem formulation and GA parameter
selection. This is, perhaps, also the biggest weakness of the algo-
rithms developed in this article because their performance is not
consistent across different problems and users will have to make
decisions on what parameters should be selected. The proposed sol-
ution here is a steep improvement from traditional GA solutions to
the TCT problem; however, there are other solutions that can solve
the TCT problem (Aminbakhsh and Sonmez 2016). The solution
set presented in this article is not mutually exclusive to other efforts
because the DAG method can be implemented in the longest path
computation step of different algorithms.

Conclusion

This article presents an innovative approach to solving large-scale
construction time-cost trade-off problems using GAs that can solve
real-life-scale TCT problems with exceptional accuracy, while not
creating excessive computational demand or processing time. This
is achieved by using a well-studied, yet innovative, method of
graph theory in solving the critical path problem. The computa-
tional bottleneck in solving large-scale TCT problems is the fitness
assessment of different solutions because of the iterative and re-
peated computation of critical paths (i.e., the longest path in a net-
work). The graph method was used to carry out topology sorting
one time, which increases computational efficiency significantly.
Moreover, this research effort implemented parallel computing,
provided an approximate Bayesian assessment of optimum GA
parameters, and introduced an effective stopping criteria, all of
which further improve computational efficiency. The methods pro-
vided here represent the groundwork for analyzing even larger net-
works, and can be extended to different construction engineering
and management problems such as resource-constrained schedul-
ing and resource leveling. Because the methodological improve-
ments proposed here are non-domain-specific, they can be used
to efficiently solve different computational problems.

Acknowledgments

Computational resources and services used in this work were
provided by the High Performance Computing and Advanced

Research Computing support (HPC-ARCs) Group of Queensland
University of Technology, Brisbane, Australia. The authors also
thank Dr. Justin Lee for his technical support in genetic algorithm
design.

References

Affenzeller, M., Winkler, S., Wagner, S., and Beham, A. (2009). Genetic
algorithms and genetic programming, CRC Press, Boca Raton, FL.

Alcaraz, J., and Maroto, C. (2001). “A robust genetic algorithm for resource
allocation in project scheduling.” Ann. Oper. Res., 102(1–4), 83–109.

Amdahl, G. M. (1967). “Validity of the single processor approach to
achieving large scale computing capabilities.” Proc., Spring Joint
Computer Conf., Association for Computing Machinery, New York,
483–485.

Aminbakhsh, S., and Sonmez, R. (2016). “Discrete particle swarm optimi-
zation method for the large-scale discrete time-cost trade-off problem.”
Expert Syst. Appl., 51, 177–185.

Boussad, I., Lepagnot, J., and Siarry, P. (2013). “A survey on optimization
metaheuristics.” Inf. Sci., 237, 82–117.

Chassiakos, A. P., and Sakellaropoulos, S. P. (2005). “Time-cost opti-
mization of construction projects with generalized activity constraints.”
J. Constr. Eng. Manage., 10.1061/(ASCE)0733-9364(2005)131:10
(1115), 1115–1124.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2001).
Introduction to algorithms, MIT Press, Cambridge, MA.

Debels, D., and Vanhoucke, M. (2007). “A decomposition-based genetic
algorithm for the resource-constrained project-scheduling problem.”
Oper. Res., 55(3), 457–469.

Dharwadker, A., and Pirzada, S. (2011). Applications of graph theory,
CreateSpace Independent Publishing Platform, Gurgaon, Haryana,
India.

Fang, C., and Wang, L. (2012). “An effective shuffled frog-leaping algo-
rithm for resource-constrained project scheduling problem.” Comput.
Oper. Res., 39(5), 890–901.

Feng, C.-W., Liu, L., and Burns, S. A. (1997). “Using genetic algorithms to
solve construction time-cost trade-off problems.” J. Comput. Civ. Eng.,
10.1061/(ASCE)0887-3801(1997)11:3(184), 184–189.

Floudas, C. A., and Pardalos, P. M. (2008). Encyclopedia of optimization,
Vol. 1, Springer, Berlin.

Fortin, F.-A., De Rainville, F.-M., Gardner, M.-A., Parizeau, M., and
Gagné, C. (2012). “DEAP: Evolutionary algorithms made easy.” J.
Mach. Learn. Res., 13, 2171–2175.

Gaglioppa, F., Miller, L. A., and Benjaafar, S. (2008). “Multitask and multi-
stage production planning and scheduling for process industries.” Oper.
Res., 56(4), 1010–1025.

Ghoddousi, P., Eshtehardian, E., Jooybanpour, S., and Javanmardi, A.
(2013). “Multi-mode resource-constrained discrete time-cost-resource
optimization in project scheduling using non-dominated sorting genetic
algorithm.” Autom. Constr., 30, 216–227.

Hartmann, S., and Briskorn, D. (2010). “A survey of variants and exten-
sions of the resource-constrained project scheduling problem.” Eur. J.
Oper. Res., 207(1), 1–14.

He, Z., He, H., Liu, R., and Wang, N. (2017). “Variable neighbourhood
search and tabu search for a discrete time/cost trade-off problem to min-
imize the maximal cash flow gap.” Comput. Oper. Res., 78, 564–577.

Hegazy, T. (1999). “Optimization of construction time-cost trade-off analy-
sis using genetic algorithms.” Can. J. Civ. Eng., 26(6), 685–697.

Hold-Geoffroy, Y., Gagnon, O., and Parizeau, M. (2014). “Once you scoop,
no need to fork.” Proc., 2014 Annual Conf. on Extreme Science
and Engineering Discovery Environment, Association for Computing
Machinery, New York, 60.

Kahn, A. B. (1962). “Topological sorting of large networks.” Commun.
ACM, 5(11), 558–562.

Kandil, A., and El-Rayes, K. (2006). “Parallel genetic algorithms for
optimizing resource utilization in large-scale construction projects.”
J. Constr. Eng. Manage., 10.1061/(ASCE)0733-9364(2006)132:5(491),
491–498.

© ASCE 04017072-9 J. Comput. Civ. Eng.

 J. Comput. Civ. Eng., 2018, 32(1): 04017072 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
ni

ve
rs

ity
 o

f 
C

al
ga

ry
 L

ib
ra

ry
 o

n 
11

/0
5/

17
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

https://doi.org/10.1023/A:1010949931021
https://doi.org/10.1016/j.eswa.2015.12.041
https://doi.org/10.1016/j.ins.2013.02.041
https://doi.org/10.1061/(ASCE)0733-9364(2005)131:10(1115)
https://doi.org/10.1061/(ASCE)0733-9364(2005)131:10(1115)
https://doi.org/10.1287/opre.1060.0358
https://doi.org/10.1016/j.cor.2011.07.010
https://doi.org/10.1016/j.cor.2011.07.010
https://doi.org/10.1061/(ASCE)0887-3801(1997)11:3(184)
https://doi.org/10.1287/opre.1080.0525
https://doi.org/10.1287/opre.1080.0525
https://doi.org/10.1016/j.autcon.2012.11.014
https://doi.org/10.1016/j.ejor.2009.11.005
https://doi.org/10.1016/j.ejor.2009.11.005
https://doi.org/10.1016/j.cor.2016.07.013
https://doi.org/10.1139/l99-031
https://doi.org/10.1145/368996.369025
https://doi.org/10.1145/368996.369025
https://doi.org/10.1061/(ASCE)0733-9364(2006)132:5(491)
https://doi.org/10.1061/(ASCE)0733-9364(2006)132:5(491)


Kandil, A., El-Rayes, K., and El-Anwar, O. (2010). “Optimization re-
search: Enhancing the robustness of large-scale multiobjective optimi-
zation in construction.” J. Constr. Eng. Manage., 10.1061/(ASCE)CO
.1943-7862.0000140, 17–25.

Kim, J.-L. (2013). “Genetic algorithm stopping criteria for optimization of
construction resource scheduling problems.” Constr. Manage. Econ.,
31(1), 3–19.

Kim, J.-L., and Ellis, R. D., Jr. (2008). “Permutation-based elitist genetic
algorithm for optimization of large-sized resource-constrained project
scheduling.” J. Constr. Eng. Manage., 10.1061/(ASCE)0733-9364
(2008)134:11(904), 904–913.

Knuth, D. E. (1968). The art of computer programming, Vol. 1, Addison-
Wesley, Reading, MA.

Long, L. D., and Ohsato, A. (2009). “A genetic algorithm-based method for
scheduling repetitive constructionprojects.”Auto.Constr., 18(4), 499–511.

Menesi, W., Golzarpoor, B., and Hegazy, T. (2013). “Fast and near-
optimum schedule optimization for large-scale projects.” J. Constr.
Eng. Manage., 10.1061/(ASCE)CO.1943-7862.0000722, 1117–1124.

Merkle, D., Middendorf, M., and Schmeck, H. (2002). “Ant colony opti-
mization for resource-constrained project scheduling.” IEEE Trans.
Evol. Comput., 6(4), 333–346.

Michalewicz, Z. (1999). Genetic algorithms + data structures = evolution
programs, Springer, Berlin.

Monghasemi, S., Nikoo, M. R., Fasaee, M. A. K., and Adamowski, J.
(2015). “A novel multi criteria decision making model for optimizing
time-cost–quality trade-off problems in construction projects.” Expert
Syst. Appl., 42(6), 3089–3104.

Python [Computer software]. Python Software Foundation, Wilmington,
DE.

Red Hat Enterprise Linux version 6.4 [Computer software]. Red Hat, Inc.,
Raleigh, NC.

Senouci, A. B., and Eldin, N. N. (2004). “Use of genetic algorithms in re-
source scheduling of construction projects.” J. Constr. Eng. Manage.,
10.1061/(ASCE)0733-9364(2004)130:6(869), 869–877.

Sonmez, R., and Bettemir, Ö. H. (2012). “A hybrid genetic algorithm for
the discrete time-cost trade-off problem.” Expert Syst. Appl., 39(13),
11428–11434.

Sunnaker, M., Busetto, A. G., Numminen, E., Corander, J., Foll, M., and
Dessimoz, C. (2013). “Approximate Bayesian computation.” PLoS
Comput. Biol., 9(1), e1002803.

Tran, D.-H., Cheng, M.-Y., and Prayogo, D. (2016). “A novel multiple
objective symbiotic organisms search (MOSOS) for time-cost–labor
utilization tradeoff problem.” Knowledge-Based Syst., 94, 132–145.

Vanhoucke, M., and Debels, D. (2007). “The discrete time/cost trade-off
problem: Extensions and heuristic procedures.” J. Scheduling, 10(4),
311–326.

Zhang, H. (2011). “Ant colony optimization for multimode resource-
constrained project scheduling.” J. Manage. Eng., 10.1061/(ASCE)ME
.1943-5479.0000089, 150–159.

Zhang, H., Li, X., Li, H., and Huang, F. (2005). “Particle swarm
optimization-based schemes for resource-constrained project schedul-
ing.” Autom. Constr., 14(3), 393–404.

Zhang, Y., and Ng, S. T. (2012). “An ant colony system based decision
support system for construction time-cost optimization.” J. Civil Eng.
Manage., 18(4), 580–589.

© ASCE 04017072-10 J. Comput. Civ. Eng.

 J. Comput. Civ. Eng., 2018, 32(1): 04017072 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
ni

ve
rs

ity
 o

f 
C

al
ga

ry
 L

ib
ra

ry
 o

n 
11

/0
5/

17
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

https://doi.org/10.1061/(ASCE)CO.1943-7862.0000140
https://doi.org/10.1061/(ASCE)CO.1943-7862.0000140
https://doi.org/10.1080/01446193.2012.697181
https://doi.org/10.1080/01446193.2012.697181
https://doi.org/10.1061/(ASCE)0733-9364(2008)134:11(904)
https://doi.org/10.1061/(ASCE)0733-9364(2008)134:11(904)
https://doi.org/10.1016/j.autcon.2008.11.005
https://doi.org/10.1061/(ASCE)CO.1943-7862.0000722
https://doi.org/10.1109/TEVC.2002.802450
https://doi.org/10.1109/TEVC.2002.802450
https://doi.org/10.1016/j.eswa.2014.11.032
https://doi.org/10.1016/j.eswa.2014.11.032
https://doi.org/10.1061/(ASCE)0733-9364(2004)130:6(869)
https://doi.org/10.1016/j.eswa.2012.04.019
https://doi.org/10.1016/j.eswa.2012.04.019
https://doi.org/10.1371/journal.pcbi.1002803
https://doi.org/10.1371/journal.pcbi.1002803
https://doi.org/10.1016/j.knosys.2015.11.016
https://doi.org/10.1007/s10951-007-0031-y
https://doi.org/10.1007/s10951-007-0031-y
https://doi.org/10.1061/(ASCE)ME.1943-5479.0000089
https://doi.org/10.1061/(ASCE)ME.1943-5479.0000089
https://doi.org/10.1016/j.autcon.2004.08.006
https://doi.org/10.3846/13923730.2012.704164
https://doi.org/10.3846/13923730.2012.704164

