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Quaternary stereocentres via an 
enantioconvergent catalytic SN1 reaction
Alison E. Wendlandt1, Prithvi Vangal1 & Eric N. Jacobsen1*

The unimolecular nucleophilic substitution (SN1) mechanism features prominently in every introductory organic 
chemistry course. In principle, stepwise displacement of a leaving group by a nucleophile via a carbocationic intermediate 
enables the construction of highly congested carbon centres. However, the intrinsic instability and high reactivity of 
the carbocationic intermediates make it very difficult to control product distributions and stereoselectivity in reactions 
that proceed via SN1 pathways. Here we report asymmetric catalysis of an SN1-type reaction mechanism that results 
in the enantioselective construction of quaternary stereocentres from racemic precursors. The transformation relies 
on the synergistic action of a chiral hydrogen-bond-donor catalyst with a strong Lewis-acid promoter to mediate the 
formation of tertiary carbocationic intermediates at low temperature and to achieve high levels of control over reaction 
enantioselectivity and product distribution. This work provides a foundation for the enantioconvergent synthesis of 
other fully substituted carbon stereocentres.

Quaternary stereogenic centres are important structural motifs in 
natural products and biologically active compounds, conferring val-
uable structural, conformational and metabolic properties. Their 
construction has long been recognized as an important challenge to 

the field of chemical synthesis, and several distinct catalytic, enanti-
oselective approaches have been developed in response1–4. Notable 
examples include cycloadditions5, α- and β-alkylation and aryla-
tion of carbonyls6–8, 3,3′-additions9, SN2′ reactions10 and Heck-type  
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Fig. 1 | Approaches to the enantiocontrolled 
construction of quaternary stereocentres. 
a, Traditional methods for the synthesis of 
quaternary-stereocentre-containing molecules use 
stereochemically defined prochiral substrates.  
b, The SN1 approach to the construction of quaternary 
stereocentres described here. c, Enantioselective 
allylation of propargyl acetates using chiral squaramide 
catalysts and TMSOTf as a promoter. LG, leaving 
group; Np, naphthyl; TMS, trimethylsilyl.
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cross-couplings11. Each of these methods relies on enantiofacial addi-
tion across a prochiral substrate (Fig. 1a) and therefore requires the 
preparation of stereochemically well-defined starting materials (such as 
trisubstituted olefins) and subsequent enantioselective bond formation.

We envisioned that stepwise nucleophilic substitution reactions that 
proceed through prochiral carbocationic intermediates could provide 
a useful and complementary strategy for the enantioselective synthe-
sis of compounds with quaternary stereocentres. Unlike the synthetic  
approaches noted above, quaternary-stereocentre construction via 
an SN1-like pathway might be stereoablative12 and could therefore 
use readily accessed racemic compounds as substrates (Fig. 1b). 
Although realization of this strategy would lift the requirement for 
stereocontrol in the synthesis of the substrate, doing so requires several 

very substantial challenges to be overcome. The requisite catalytic sys-
tem must (a) generate a reactive tertiary carbocationic intermediate,  
(b) minimize undesired elimination and rearrangement pathways, and 
(c) exert enantiocontrol in additions of a carbon-centred nucleophile 
to a high-energy cationic intermediate. As a result, despite the prac-
tical appeal of an enantioconvergent approach to the construction of 
quaternary stereocentres, only isolated examples have been reported 
so far9,13,14.

Over the past decade, chiral, dual hydrogen-bond-donor (HBD) 
catalysts have been developed that promote enantioselective nucleo
philic substitution and addition reactions via ion-pair intermediates. 
These catalysts promote ion-pair formation via direct anion abstrac-
tion15 or by substrate protonation with a co-catalytic Brønsted acid16. 
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Fig. 2 | Asymmetric allylation of 
propargyl acetates. a, Substrate 
scope. Reactions were run on  
a 0.6-mmol scale with 0.1 equiv.  
1a, 1.0 equiv. TMSOTf and 6.0  
equiv. allyltrimethylsilane  
in 0.1 M Et2O at −78 °C for 24 h. 
aReaction time was 4 h. bReaction 
time was 14 d. cNMR yield.  
b, c, Hammett plot of the σ+ values 
of the substituents in 2a–2d versus 
the enantiomeric ratios (log(e.r.)) 
obtained in the formation of 3a–3d 
(b) (ρ+  = −0.43) and versus the 
relative reaction rates (log(νX/νH)) 
determined for each substrate 
(c) (ρ+  = −5.48). d, Linear free-
energy plot of the calculated 
polarizability of the aromatic 
rings in 2a and 2e–2 g versus the 
enantiomeric ratios (log(e.r.)) 
obtained in the formation of 3a and 
3e–3g (R2 = 0.97). a.u., arbitrary 
units. e, The absolute configuration 
of (−)-3b was determined by 
X-ray crystallography (structure 
shown), following derivatization 
to triazole 5b; the configuration 
of all other products was assigned 
by analogy. Conditions: (a) tetra-
n-butylammonium fluoride (2.0 
equiv.), THF, room temperature; 
(b) 4-nitrobenzylbromide (1.1 
equiv.), NaN3 (1.1 equiv.), CuSO4 
(0.1 equiv.), sodium ascorbate (0.2 
equiv.), tBuOH/H2O (1:2), 50 °C; 
(c) HCl (3 M in Et2O).
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Asymmetric induction is typically achieved from the resultant ion 
pair as a consequence of specific attractive non-covalent interactions 
between the corresponding cationic intermediate and the chiral HBD 
catalyst17–19. Reported examples have been limited to heteroatom- 
stabilized cations, owing to the challenges in generating the requisite 
ion pair and suppressing elimination and rearrangement pathways. The 
ability of HBD catalysts to control enantioselective nucleophile addition 
into non-heteroatom-stabilized carbocations has, to our knowledge, 
not been demonstrated.

It was discovered recently that chiral squaramide catalysts could 
be used in conjunction with Lewis acids such as trimethylsilyl  
trifluoromethanesulfonate (TMSOTf) to promote enantioselective 
reactions20. This dual-catalyst system was shown to promote the for-
mation of oxocarbenium ions from dialkyl acetals—substrates that 
are unreactive under previously developed HBD-promoted reaction 
manifolds—while still engaging in attractive non-covalent interactions 
to achieve enantioinduction. We envisioned that the strong ionizing 
ability of this dual-catalyst system could provide access to carbocationic 
intermediates that lack heteroatom stabilization, thus allowing us 
to examine whether small-molecule HBDs can be used to promote 

productive, enantioselective reaction pathways from such high-energy 
intermediates.

Reaction development
After an extensive evaluation of potential tertiary electrophile– 
carbon-centred nucleophile coupling partners, the reaction of propargyl  
acetate 2a with allyltrimethylsilane was identified as a useful model 
system with which to test this proposal (Fig. 1c). In the absence of an 
HBD catalyst, the Lewis-acid-promoted reaction affords a 1:1 mix-
ture of the desired product 3a and the elimination product 4a (Fig. 1c, 
entry 1). When readily accessed squaramide 1a (10 mol%) was added 
to the reaction, however, 3a was obtained in high yield (40:1 3a:4a; 
Fig. 1c, entry 2) and enantioselectivity (91% enantiomeric excess, e.e.). 
Product ratio and enantioselectivity were strongly dependent on the 
nature of the HBD moiety: the related N,N-dimethylated squaramide 
(1b), thiourea (1c) and urea (1d) catalysts afforded 3a in low yield and 
enantiomeric excess (Fig. 1c, entries 3–5). No reaction was observed 
with squaramide, thiourea or urea HBD catalysts in the absence of 
TMSOTf.

We then evaluated a series of tertiary propargyl acetates to probe 
the reaction scope and to generate preliminary information about 
the mechanism of the enantioselective substitution reaction (Fig. 2a). 
Substrates with electron-donating (such as 2b and 2c) and electron- 
withdrawing (2d) substituents underwent allylation with high  
enantioselectivity ( >90% e.e.) and product selectivity ( >30:1 3:4). A 
linear correlation with a small negative slope (ρ+  = −0.43, Fig. 2b) was 
observed between the Hammett substituent σ+ constants and log(e.r.) 
for substrates 2a–2d (e.r., enantiomeric ratio). By contrast, a linear cor-
relation with a large negative slope (ρ+  = −5.48, Fig. 2c) was obtained 
from the corresponding plot of the σ+ constants versus log(νX/νH) for 
the same substrates (where νX/νH is the reaction rate of substrate that 
contains substituent X relative to that of the analogous unsubstituted 
substrate). The observation of a linear free-energy dependence (ρ+) 
of this magnitude provides direct evidence of positive charge accu-
mulation in the rate-determining transition state, consistent with an 
SN1-type ionization mechanism21.

Despite the very subtle dependence of enantiomeric excess on the 
electronic properties of the substrate substituents noted above, reaction 
enantioselectivity was strongly responsive to changes in the expanse 
and position of the aryl moiety of the substrate. A linear correlation 
was observed between polarizability values calculated for the aryl sub-
stituent22 and log(e.r.) of products 3a and 3e–3g (Fig. 2d), indicating 
that stabilizing aromatic interactions are likely to serve as a contri
buting factor in enantiodifferentiation23. Evidence for the existence 
of such stabilizing interactions could be gleaned from computational 
analysis of the putative complex between catalyst 1a and substrate 2a 
(Supplementary Fig. 9). Steric congestion near the reaction site also 
correlates with enantioselectivity. Thus, the o-tolyl-substituted deriva-
tive 2j underwent an allylation reaction to afford a product with higher 
enantiomeric excess (82%) than obtained using the p- or m-substituted  
analogues 2h and 2i (66%–67%). Similarly, the ethyl-substituted  
product 3k was obtained in higher enantiomeric excess (94%) than the 
methyl-substituted product 3b (91%).

Substrates containing electron-rich heterocycles also under-
went highly enantioselective substitution. Representative S- and 
O-heterocyclic substrates underwent reaction with allyltrimethylsilane 
to afford quaternary products (3l–3n) in high yield and enantiomeric 
excess and with no detectable elimination by-products. Following deri-
vatization, the absolute stereochemistry of product 3b was determined 
by using X-ray crystallography (Fig. 2e).

Mechanistic studies
We undertook a mechanistic study of the reaction between a repre-
sentative tertiary propargyl acetate substrate and allyltrimethylsilane 
promoted by squaramide 1a and TMSOTf to obtain insights into the 
underlying catalytic mechanism. The disappearance of 2b could be 
monitored over the entire course of the reaction using in situ infrared 
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spectroscopy. Runs carried out at different initial concentrations of 
2b but with the same excess in concentration of allyltrimethyl silane 
(a ‘same-excess’ experiment24) produce good graphical overlay in 
the kinetic data (Fig. 3a), demonstrating that no catalyst decompo-
sition or product inhibition occurs over the course of the reactions. 
The linearity of the plot further indicates that the reaction obeys a 
first-order rate dependence overall. Runs carried out with a different 
excess in the initial concentration of allyltrimethyl silane relative to 
2b also produce good overlay in the kinetic data (a ‘different-excess’ 
experiment24), revealing that the reaction obeys a first-order rate 
dependence on the concentration of 2b and has no rate dependence 
on the concentration of allyltrimethylsilane. These kinetic findings 
are consistent with a stepwise reaction mechanism whereby substrate 
C–O cleavage is turnover-limiting and nucleophile addition occurs in 
a post-turnover-limiting step (Fig. 3b). Kinetic studies further revealed 
a sub-first-order dependence of the reaction rate on the concentration 
of TMSOTf, and a first-order dependence of the reaction rate on the 
concentration of 1a with a non-zero y intercept. The kinetic depend-
ence on the concentrations of 1a and TMSOTf is consistent with pre- 
equilibrium formation of a resting-state 1a·TMSOTf complex that 

reacts directly with substrate 2. The non-zero y intercept is consist-
ent with the competing background reaction that is observed in the 
absence of 1a (see Supplementary Information). The observation that 
optimal enantioselectivities are obtained under conditions where a 
background, uncatalysed reaction is expected is intriguing, and the 
subject of continued study.

Having established that the squaramide-TMSOTf-promoted forma-
tion of the carbocationic intermediate is rate-limiting, we performed 
a series of experiments to interrogate the critical post-rate-limiting 
steps. We determined that the formation of the elimination by-product  
was irreversible on the basis of a crossover experiment in which 
1-naphthyl-substituted enyne (4a, 0.25 equiv.) was introduced to the 
reaction of 2-naphthyl-substituted acetate (2f) under otherwise stand-
ard reaction conditions. This reaction afforded 2-naphthyl-substituted 
product 3f in 80% yield, and alkene 4a was recovered in 97% yield with 
no trace of 1-naphthyl allylated product 3a detected (Fig. 4a).

To evaluate whether the reaction proceeds through an enantio
selective or enantiospecific mechanism, the allylation was carried out 
by subjecting scalemic substrate (−)-2f (81% e.e.) to both enantiom-
ers of the squaramide catalyst 1a (Fig. 4b). After 1 h of reaction time, 
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product 3f was obtained in 86% enantiomeric excess and 24% yield 
using (S)-1a; in the presence of (R)-1a, product 3f was obtained in simi-
lar yield but with opposite enantioselectivity (−85% e.e.). In both cases, 
the substrate 2f that was recovered was observed to have undergone 
only a small degree of epimerization, comparable to that observed when 
2f was treated with TMSOTf and in the absence of squaramide catalyst. 
The results of these experiments are consistent with a stereoablative 
mechanism, that is, an enantioselective process that proceeds through 
an achiral carbocationic intermediate. By contrast, a dynamic kinetic- 
Resolution pathway can be ruled out, whereby 2f undergoes rapid  
racemization and one enantiomer preferentially undergoes stereo
specific substitution.

We considered two limiting mechanistic possibilities with regard 
to the enantiodetermining step: (a) irreversible nucleophile addition 
followed by rapid silyl elimination (Fig. 4c, top), and (b) rapid and 
reversible nucleophile addition, followed by enantiodetermining silyl 
elimination (Fig. 4c, bottom). These two scenarios are predicted to pro-
duce different carbon isotope effects at the allyl fragment. The carbon 
kinetic isotope effects (KIEs) were determined with natural-abundance 
materials using an NMR methodology25 (Fig. 4c, see Supplementary 
Information). A large primary KIE of 1.027 was observed at the posi-
tion of bond formation (internal allylic methylene), whereas no KIE 
was observed at the terminal position. These results demonstrate 
that the first C–C bond-forming step is irreversible and therefore 
enantiodetermining.

Conclusion
We have shown that the cooperative effect of chiral squaramides and 
TMSOTf generates tertiary carbocations that lack heteroatom stabili-
zation from racemic precursors, controls enantioselectivity in additions 
of a carbon-centred nucleophile, and attenuates undesired elimination 
pathways. The strategy outlined here may be generalizable to the con-
struction of many types of highly congested stereogenic centre.

Data availability
The crystallographic data for compound 5b·HCl can be obtained free of charge 
from the Cambridge Crystallographic Data Centre (https://www.ccdc.cam.ac.uk) 
under identifier CCDC 1822228. The raw data for the kinetics experiments are 
available from the corresponding author on request. All other data that support 
these findings are available within the paper or Supplementary Information.
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