
Received October 29, 2020, accepted November 6, 2020, date of publication November 10, 2020,
date of current version November 23, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3037188

Domain Ontology Construction and Evaluation
for the Entire Process of Software Testing
ZHE SUN , CHI HU , CHUNLEI LI, AND LINBO WU
Institute of Computer Application, China Academy of Engineering Physics, Mianyang 621900, China

Corresponding author: Chi Hu (huchi16@nudt.edu.cn)

ABSTRACT As an important part of software engineering, software testing is a knowledge-intensive work.
In the process of software testing, inconsistent knowledge expression, diverse knowledge carriers, and a
few experienced people have mastered most of the knowledge, which hinders the transfer and sharing
of domain knowledge. Ontology is widely used in various stages of software engineering to define the
semantic relationship between relevant information and knowledge. To solve the problem of knowledge
silo in the process of software testing, this article forms an Entire Process Ontology on Software Testing
(EPOST). EPOST covers the concepts and relationships of software testing process information, software
test object information, and software defect information. The concepts and terms in the ontology are extracted
from ISTQB, SWEBOK, IEEE std.829-2008 standard, and IEEE std.610.12-1990 standard. We adopt a
comprehensive ontology construction method based on Dev. 101 method and Methontology method. The
developed ontology is successfully evaluated by using validation and verification tests. Ontology verification
uses an improved FOCA evaluation method by adding a cohesion metric. The evaluation result infers
that EPOST has a high quality of ontology and good domain coverage, and achieves the purpose of
ontology construction. Finally, we make a case study on the role of EPOST in software testing process.
The results show that ontology-based application in the software testing process can promote the sharing
and transmission of domain knowledge, and improve the testing process and testing quality.

INDEX TERMS Ontology construction, software testing, domain ontology, knowledge management,
ontology evaluation.

I. INTRODUCTION
Software testing is an important means of software quality
assurance, and most of the cost of software development and
maintenance is test cost [1]. The test objects and their busi-
ness fields are quite different. Software testers not only need
to master a large number of testing technologies and tools
but also need to understand the business characteristics of
the tested objects, which makes software testing knowledge-
intensive work. Given the different personal experiences and
abilities of testers, it is prone to incomplete consideration
of abnormal situations during software testing requirements
analysis, which leads to the problem of missing items in the
test criteria and test case design. In the process of test exe-
cution, testers use manual or automated methods to execute
test cases, diversifying the implementation and organization
of test scripts [1]. Test cases are stored in different places

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhe Xiao .

in the form of documents, forms, records, etc., which also
brings a lot of inconvenience to search. In terms of use
case design, tool selection, report preparation, etc., there is
no unified process and guidelines to guide, it is difficult
to categorize and reuse, resulting in the uneven quality of
test results. Therefore, domain knowledge isolation islands
are common in the practice of software testing. Knowledge
representation lacks a standardized and unified description,
knowledge management lacks a unified and effective plat-
form, knowledge search results are inaccurate, and most of
the experience knowledge is in the hands of a few people [2].
Software testing domain knowledge involves a large number
of concepts and the relationship between concepts. Only
efficient and accurate management of knowledge can better
improve the various stages of the software testing process [3],
[4]. To effectively avoid the problem of knowledge silo in
the software testing domain due to the large, scattered, and
difficult to obtain test data, it is necessary to organize domain
knowledge structurally and then express it formally.

205374 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-1576-4949
https://orcid.org/0000-0002-4314-5862
https://orcid.org/0000-0002-0440-5772


Z. Sun et al.: Domain Ontology Construction and Evaluation for the Entire Process of Software Testing

The ontology contains rich semantic information, which
can effectively reduce the ambiguity in conceptual under-
standing, and is of great help in improving the performance
of many text processing-related tasks. At present, ontology
is widely used in many tasks related to text processing, such
as information retrieval, information extraction, information
integration, data management, information recommendation,
text classification and clustering, question and answer sys-
tems, etc., and have achieved good results. [5]. According to
the currently widely accepted definition of ontology, ontol-
ogy is a standardized and clear definition of conceptual form
and the relationship between concepts [6]. An ontology usu-
ally consists of three parts: concepts, relationships between
concepts, and axioms based on relationships. By reviewing
the literature [3]–[17], it is found that researchers have done
a lot of work in the field of software testing knowledge
representation and ontology construction, but most domain
ontology coverage is not enough and cannot be applied to the
whole process of software testing, or can only be applied in a
certain test activity.

Based on the previous research work, this article constructs
an Entire Process Ontology on Software Testing (EPOST) to
improve the knowledge isolation island problem. The EPOST
ontology covers the software test objects, test methods, test
techniques, test tools, test cases, test reports, software defects,
and other information involved in the whole process of soft-
ware testing. The ontology construction method adopts a
comprehensive ontology construction method [18], and uses
the Protégé tool for ontology editing [4]. Ontology evaluation
uses HermiT [15] and OOPS! [19] to validate context, and
uses an improved FOCA method for ontology verification
[20], [21].

The rest of this article is divided into the following sec-
tions: Related works are presented in section 2. Section 3,
describes the construction of EPOST. The ontology evalua-
tion is presented in section 4. Section 5 describes a discussion
about the evaluation results. Finally, section 6, shows the
conclusion and future work.

II. RELATED WORK
The software testing process is composed of multiple seri-
alized activities. When representing domain knowledge and
constructing ontology, the relationship between each process
should be considered as much as possible. The test case is
a relatively important work content in the software testing
process, so most of the literature has built the correspond-
ing domain ontology around test cases [3], [4], [7]–[17].
To better support the running process of software testing,
some domain ontologies built by some work also focus on
test process, test technology, test activity, and test environ-
ment [3]. The content of knowledge representation needs
a consistent explanation. The resources cited in the defini-
tion of terms such as concepts in the ontology of software
testing are mainly International Software Testing Qualifica-
tions Board (ISTQB) [21], the Software Engineering Body of
Knowledge (SWEBOK) [22]. The current typical ontology

construction methods are most closely related to specific
ontology design projects [18]. At present, the main ontol-
ogy constructionmethods include TOVEmethod,Methontol-
ogy method, skeleton method, KACTUS method, SENSUS
method, IDEF5 method and Dev. 101 method [19]. These
methods are composed of an overall process and operation
rules of each step. In addition to the differences of various
methods, an ontology construction method should include the
following basic steps: first, acquiring knowledge, abstracting
and refining knowledge, then expressing it in a way that the
computer can understand, and then evaluating the quality
of the ontology and maintaining updates. Some auxiliary
technologies are usually used in the process of ontology
construction. The ontology representation language is OWL,
and the ontology editing tool is Protégé [4]. Besides, SWRL is
often used to describe ontology reasoning rules, and HermiT
is used as ontology reasoning tool [15].

As a knowledge-sharing model, the ontology provides
great convenience for the information interaction between
people and application systems in a specific field. It is also
because of this, combined with knowledge engineering, natu-
ral language processing, and other technologies, the introduc-
tion of ontology technology in the software testing process
can effectively reduce development costs, improve software
quality, increase the degree of knowledge reuse, and pro-
mote knowledge inheritance [24]–[31]. Many process man-
agement factors are involved in software testing, and an
effective way of expression and management is required.
Introducing knowledge management technology to improve
the software testing process, providing a standard structured
knowledge expression and query method, can alleviate the
inconveniences in the software testing process [29]. The
combination of ontology technology and reuse theory can
improve the reuse degree and retrieval efficiency of software
test cases [10], [25], [27]. Using ontology technology to
model knowledge with a hierarchical structure, and establish
an ontology-based knowledge-sharing platform to provide
semantic query, experts and non-experts can use this plat-
form to improve software testing quality [15]. Combining
the knowledge management model and using ontology tech-
nology to formally describe the software testing process can
promote the sharing and dissemination of software testing
knowledge [8], [14], [24], [26], and can also guide software
performance testing [4], software GUI test [30].

Most of the above work focuses on the application of
ontology technology to optimize a certain activity in the pro-
cess of software testing. Some are the construction or formal
representation of software testing knowledge ontology, and
some are aimed at the application of ontology technology in
a certain test activity or a specific step in the testing process.
They fail to think about the overall situation of software
testing and do not give a general plan. The software test
ontology constructed in the literature [8], [24], [29], [31]
can be used as a commonly controlled dictionary to provide
back-bone information for the content of the knowledge base
indexed by it, but they had not been evaluated or verified.

VOLUME 8, 2020 205375



Z. Sun et al.: Domain Ontology Construction and Evaluation for the Entire Process of Software Testing

Literature [4], [10], [25]–[27], [30] used the ontology to query
and reuse test cases, which guided software performance
testing or GUI testing, but the scope of a domain covered by
ontologies was limited and not comprehensive enough. Soft-
ware testing is a knowledge-driven work process. Knowledge
silo is mainly caused by the inconsistent data format and the
lack of effective sharing and query mechanisms. Improving
in a specific step does not contribute much to the overall
efficiency improvement. Ontology needs to be verified and
evaluated on its quality before use to ensure that the content
of the ontology is correct andmeets application requirements.
[4] used the criteria extracted from the Protégé tool to com-
pare ontologies, [14] used ontology competency questions to
verify ontology quality, the ontology developed by [15] was
evaluated in three methods such as internal, ontology expert
method and non-expert methods. But most of them do not
evaluate the structure of the ontology.

Based on the above review and analysis, this study con-
structs a software testing domain ontology, covering the infor-
mation driving and assisting the software testing process.
We use the multiple-criteria based method to evaluate the
quality of the ontology, including ontology validation and
ontology verification.

III. ONTOLOGY CONSTRUCTION
The ontology construction method is to guide developers to
construct ontology according to the required requirements
and basic steps, which directly determines the ontology’s
knowledge representation and logical reasoning. There are
two methods to construct the domain ontology of software
testing knowledge, one is to build a new domain ontology
directly, and the other is to expand the existing domain
ontology. When choosing ontology construction methods,
we should adopt the most appropriate method according to
the actual situation, or integrate the advantages of various
methods to improve and optimize the existing construction
methods. In view of the existing common ontology con-
struction methods, [18] compared them by some metrics,
such as the life cycle, the technology adopted, the details
of the method, the characteristics of the method, and the
application field of ontology. They considered that the rel-
atively complete and mature methods are Dev. 101 method
and Methontology method. Based on the integration of Dev.
101 method, Methontology method, and IDEF5 method, [18]
proposed a comprehensive ontology construction method.
This article uses the method of [18] to construct ontol-
ogy. As shown in Figure 1, this method includes six steps:
ontology requirement analysis, reusable ontology investiga-
tion, core concept establishment, concept classification level
establishment, class definition, and attribute creation, ontol-
ogy evaluation, and evolution.

A. ONTOLOGY REQUIREMENT ANALYSIS
First of all, the goal and scope of ontology construction
must be determined. The field of this research is software
testing process information. The goal of domain ontology

FIGURE 1. Ontology development process.

construction is to build a domain ontology that can cover the
whole process of software testing, so that the software testing
process information becomesmore structured, to facilitate the
acquisition and management of knowledge.

To determine the scope of the domain, you can use the
ontology capability analysis method, that is, to determine the
domain boundary through the following Competency Ques-
tions (CQs). What fields and stakeholders are involved in
the ontology? How to apply the information of the tested
object to test? How to structure the knowledge of the software
testing process? What activities and artifacts are covered in
the software testing process? What resources are needed for
software testing, and what technologies and tools are used?
How to analyze software defects found in software testing?

The scope of the domain ontology constructed includes
all information that can drive and assist the software testing
process, that is, the software test object, test method, test tech-
nology, test tools, test cases, test reports, software defects, and
other information used by software testing engineers in the
software testing process.

B. REUSABLE ONTOLOGY INVESTIGATION
One of the features of ontology is sharable and reusable.
Checking the possibility of scalable and reusable existing
ontology is an important way to ensure that this feature of
ontology can be realized. Reusing existing ontology can also
improve the efficiency of ontology construction. At the same
time, the ontology is also scalable and can be updated at
any time. It is also the architecture basis for reusing existing
ontology. To find research that has a rich ontological coverage
that includes non-functional and functional requirements, [3]
conducted a Systematic Literature Review (SLR) to identify,
evaluate and summarize the available research about concep-
tualized software testing ontologies selected. A new ontology
TestTDO was developed [3]. Similarly, in order to check
whether the existing ontologies can be reused, this article
extracts their relevant information and makes a comparative

205376 VOLUME 8, 2020



Z. Sun et al.: Domain Ontology Construction and Evaluation for the Entire Process of Software Testing

TABLE 1. Summary of Extracted Information for the Related Conceptualized Software Testing Ontologies in [3].

analysis with our research objectives. As shown in Table 1,
all of the them cover the concepts of SoftwareTesting(ST)
sub-domain considering terms related to testing activities,
artifacts, process, environments, tools, test levels, and tech-
niques(or methods) [3]. Few ontologies consider the terms in
the sub-domain of SoftwareFailure (SF) by using the words
such as ‘defect’, ‘failure’ and ‘bug’ [3]. On the other hand,
some ontologies have one term that refers to the sub-domain
of SoftwareUnderTest (SUT). Some of them call it ‘Code To
Be Tested’, ‘System Under Test Concept’, ‘Artifact Under
Testing’, ‘Subject Under Test’(1) and so on [3].

Analyzing the objectives of the selected ontologies, we can
conclude that none of them is totally in line with our research
objectives.

C. CORE CONCEPTS ESTABLISHMENT
This step is to determine the concepts involved in the infor-
mation domain ontology of the software testing process, list
all the important terms in the field, collect domain concepts,
semantics, attributes, examples, etc., and establish a concept
summary table after sorting and refining. The core concept
dictionary, as the grading concept of the conceptual model,
must meet the requirements of being unambiguous and cover-
ing the entire software testing domain knowledge. To prevent
the existence of heterogeneity between subdomain ontologies
at the same level, the description of the concept refers to
ISTQB [22], SWEBOK [23], IEEE std.829-2008 [32], and
IEEE std.610.12-1990 [33] standards on software testing.

Through the analysis of the software testing domain, it can
be seen that the software testing information mainly includes:
the structure, function, scale, module, and other related infor-
mation of the software under test; test requirements, test
plans, test cases, test problem reports and other related docu-
ment information generated by software testing; information

TABLE 2. Portion of the Core Concept Dictionary.

related to the failure type, failure cause, and failure impact
generated during the software failure analysis process; related
knowledge of testing techniques, methods, and experience
used in the testing process.

As shown in Table 2, the core concept dictionary table
of this field ontology mainly includes information about the
software under test, software testing process information, and
software defect information.

D. CONCEPT CLASSIFICATION LEVEL ESTABLISHMENT
This step defines the domain concepts sorted out and ana-
lyzes the possible relationships between concepts, including
explicit relationships and implicit ones. There are the top-
down method, bottom-up method, and middle-out method to
establish the hierarchical relationship of concept classifica-
tion. Since we have established the core concept dictionary,
this article will use the middle-out method to establish the
concept classification hierarchy.

The concepts and related terms in this field are extracted
from ISTQB [22], SWEBOK [23], IEEE std.829-2008 [32],

VOLUME 8, 2020 205377



Z. Sun et al.: Domain Ontology Construction and Evaluation for the Entire Process of Software Testing

FIGURE 2. Hierarchy of concept classes in EPOST.

and IEEE std.610.12-1990 [33] standard. According to the
concept definition and domain in the standard, the core con-
cepts in Table 1 can be organized into a hierarchical structure
as shown in Figure 2. Concept hierarchy is the framework of
ontology, which needs to be enriched and extended through
the attributes and relationships of concepts. The concept
hierarchy with relation is a typical structure with semantic
ability, which can better organize and express knowledge.
With the development of ontology construction, the concept
hierarchy may modify, add, and delete the concepts and their
relationships in the concept dictionary.

After the hierarchical structure of the concept is defined,
we can use ‘is-a’ or ‘part-of’ to express the taxonomic
relationship between them. Then, as shown in Figure 3,
we need to define the other non-taxonomic relationships to
make EPOST have strong semantic capabilities. The software
testing process is a set of serialized test steps, and each test
step executes and maintains related test activities according
to the test purpose. A test step can consume or generate some
test artifact and require different test resources. The whole
test process can be divided into different test stages according
to different outputs. The test steps are selected and tailored
according to the test requirements and purpose of the software
under test. Testing different versions of software need to
determine the corresponding test activities and processes. The
software structure and software module of the tested software
can determine the testing technology and testing tools. The
test resources needed in the test environment need to refer to
the software environment tested by the software under test.
The test type and test level are related to the critical level
of the software under test. The quality criteria of software
under test is an important input of test criteria. Software
test results include various software failures. Software failure
analysis needs to understand the software module division,
to carry out failure mode analysis, give failure causes, and
formulate containment measures according to failure effect
analysis.

E. CLASS DEFINITION AND ATTRIBUTE CREATION
A class in ontology is a collection of individuals that share
some attributes and belong to the same group. Generally,
each knowledge point is set as a separate class. The upper
knowledge point is defined as the parent class according to
the knowledge level, and the lower knowledge point is taken
as the subclass. The highest level class represents the most
abstract entity concept. Each subclass inherits the abstract
characteristics of its parent class and is a more specific and
smaller entity concept than its parent class. In this process,
according to the pre-defined upper-level abstract parent class,
the next level subclass is specified gradually.

The two attributes of a concept are the numerical attributes
describing its structure information and the object attributes
describing the relationship between concepts. Each attribute
has its attribute name, which determines the class it describes.
This process of defining classes and creating attributes is
the representation of ontology. Ontology development often
uses modeling tools or languages to define classes and create
attributes. In this study, Protégé is selected as the ontology
modeling tool, and OWL recommended by W3C is used as
the ontology description language. The classes and attributes
constructed are shown in Figure 4. In Figure 4, the solid
line represents the subordination relationship, and the dotted
line represents the association relationship.EPOST includes
217 concepts, 53 relational properties, 42 datatype proper-
ties, 278 SubClassOf axioms, 40 DisjointClasses axioms, and
241 AnnotationAssertion aximos. There are 143 concepts in
SoftwareTesting sub-ontology, 55 concepts in SoftwareUn-
derTest sub-ontology, and 19 concepts in SoftwareFailure
sub-ontology.

IV. ONTOLOGY EVALUATION
After the ontology is initially constructed, it can be eval-
uated and improved. Ontology evaluation is a process of
the comprehensive evaluation of various factors affecting the
quality of ontology based on various evaluation indicators

205378 VOLUME 8, 2020



Z. Sun et al.: Domain Ontology Construction and Evaluation for the Entire Process of Software Testing

FIGURE 3. Non-taxonomic relationships of concept classes in EPOST.

FIGURE 4. Part of EPOST on Protetge OntoGraf.

and scientific evaluation methods [34]. The content of ontol-
ogy evaluation includes checking whether the objectives
set in the requirement analysis stage are met, and verify-
ing whether the ontology constructed is correct. Ontology
evaluation activities involve three aspects: evaluation meth-
ods, evaluation indicators, and evaluation tools. The widely
accepted ontology evaluation is the five criteria proposed by
Gruber: clarity, consistency, extensibility, minimum coding
preference, minimal ontology commitment. The main ontol-
ogy evaluation methods include evaluation methods based
on metric systems, evaluation based on tasks or applications,
evaluation based on statistical analysis, evaluation based on

logic or rules, and ‘‘Golden-Standard’’ evaluation methods.
At present, the commonly used ontology evaluation tools are
Ontoclean, Core, OOPS!, TEXCOMON, etc. [34].

A. INTERNAL CONSISTENCY CHECK
Semantic-based ontology reasoning tools use the initial set
of axioms to infer the consistency of the logical sequence
of the content, including consistency checking, concept
satisfiability, classification, and realization [4]. To get an
accurate reasoning result, different reasoning tools use dif-
ferent methods and strategies. During the construction of
EPOST, we used the built-in reasoning tool HermiT1.4.3.456

VOLUME 8, 2020 205379



Z. Sun et al.: Domain Ontology Construction and Evaluation for the Entire Process of Software Testing

FIGURE 5. FOCA method.

in Protégé 5.5.0 to check internal consistency and reasoning
results. After ontology reasoning, the reasoner shows no cir-
cularity errors, no partition errors, and no semantic errors in
EPOST.

B. CONTEXT PITFALL DETECTION
OOPS! [19], which stands for Ontology Pitfall Scanner!, can
help us to detect some of the most common pitfalls appearing
when developing ontologies. OOPS! is an online automatic
detection tool for ontology defects, and lists 29 ontology
pitfalls. This tool evaluates ontology from six dimensions:
human understanding, logical consistency, modelling issues,
ontology language specification, real world representation,
and semantic applications, and divides the results into three
levels: critical, important, and minor according to the degree
of impact. As shown in Table 3, the evaluation results of
EPOST using OOPS! include the occurrence frequency, spe-
cific description, and modification suggestions of ontology
pitfall. We have modified and improved the EPOST ontology
according to the modification suggestions given in Table 3.

C. ONTOLOGY VERIFICATION
Among the criteria-based evaluation methods, FOCA [20]
is a relatively mature method for evaluating the quality of
ontology. FOCA includes determining the type of ontology,
a questionnaire to evaluate the components, a framework to
follow, and a statistical model that calculates the quality of
the ontology. FOCA goes through three verification steps,
as shown in Figure 5 [20]. To get a more accurate evalua-
tion result, [21] added an ontology cohesion metric to the
FOCA evaluation metrics system to investigate the closeness
of ontology concepts.We use the ontology verification frame-
work in [21] to evaluate the quality of EPOST.

1) ONTOLOGY TYPE VERIFICATION
The FOCA defines two types of ontology, one is a
domain or task ontology, and the other is application ontol-
ogy. The questions that need to be answered are also different.
The EPOST focuses on information that can drive and assist
the software testing process, is a domain ontology (Type 1).

The proposed ontology describes, respectively, the vocabu-
lary of a genetic domain. Therefore, Question 4 should not
be verified for Goal 2 shown in Table 4, because it only asks
for specific domains.

2) QUESTIONS VERIFICATION
In this step, it needs to answer the questions following
the goal/question/metric (GQM) approach for the improved
FOCA methodology is shown in Table 4. When a cohesion
metric is added, this method contains 5 goals, 14 questions,
and 6 metrics [21]. Because the EPOST is a type 1 ontology,
13 out of 14 questions (should answer Q5 instead of Q4)
should be answered. These 13 questions serve for 5 goals,
and each question fulfills one of the ontology quality criteria.
Each question has a description that explains how to verify
it, and each answer has a grade ranging between 0 and 100.
Depending on the answers to these if questions regarding the
developed ontology, the EPOST received a grade for each
metric, as shown in Table 4 [35]. Therefore, the mean of the
grades from each goal can be calculated.

3) QUALITY VERIFICATION
After verifying the questions, it needs to calculate the quality
of the ontology. The quality of the ontology (a score in (0, 1))
is calculated by the beta regression models [20], as shown in
(1). It can be calculated in two ways, total quality and partial
quality. Because most goals are considered in the evaluation,
this article used total quality verification.

µ̂i=

exp {−0.44+0.03(CovS × Sb)i+0.02(CovC×Co)i
+0.01(CovR × Re)i + 0.02(CovCp × Cp)i
−0.06LExpi − 25(0.1× Nl)i}

1+exp {−0.44+0.03(CovS×Sb)i+0.02(CovC×Co)i
+0.01(CovR × Re)i + 0.02(CovCp × Cp)i
−0.06LExpi − 25(0.1× Nl)i}

(1)

To calculate the total quality: CovS is the mean of the
grades from Goal 1. Goal 1 contains three sub-questions,
therefore the grade of Goal 1 is the mean between the three
sub-questions. Finally, CovS is the mean between Question 1,
Question 2 and Question 3. CovC is the mean of the grades
fromGoal 2. Because the EPOST is a domain ontology,CovC
is the mean between Question 5, Question 6, and Question 7.
CovR is the mean of the grades from Goal 3. CovCp is the
mean of the grades from Goal 4. LExp is the variable for eval-
uator experience, with 1 being very experienced and 0 being
not experienced at all. Nl is 1 only if some Goal is impossible
for the evaluator to answer all the questions. Sb = 1, Co = 1,
Re = 1, Cp = 1, because the total quality considers all the
roles.

By substituting these values into equation (1), we can
obtain the quality result. The result of the total quality is
0.9881 and it is near to 1, which shows the quality of the
EPOST is high. Thus, the proposed EPOST was successfully

205380 VOLUME 8, 2020



Z. Sun et al.: Domain Ontology Construction and Evaluation for the Entire Process of Software Testing

TABLE 3. Ontology Pitfall Description and Solution Proposed.

TABLE 4. Applying the GQM Approach [26] on EPOST.

validated and verified.

µ̂i =

exp{−0.44+0.03×(100× 1)+ 0.02× (83.3× 1)
+0.01× (100× 1)+ 0.02× (87.5× 1)
−0.06× 1− 25× (0.1× 1)}

1+ exp{−0.44+0.03×(100×1)+ 0.02×(83.3×1)
+0.01× (100× 1)+ 0.02× (87.5× 1)
−0.06× 1− 25× (0.1× 1)}

= 0.9881

D. ONTOLOGY-BASED APPLICATION
This section will focus on the role of ontology in software
testing, and state how an ontology can be utilized for software
testing.

1) ROLE OF ONTOLOGY IN SOFTWARE TESTING
The application aims at supporting testers’ decisions with
domain knowledge of technologies used in testing software,
validating and recommending options according with the

test environment, goals, tools and activities that tests might
present [4]. In Figure 6, the black solid line represents the tra-
ditional software testing process, and the blue dotted line indi-
cates the usage of EPOST domain knowledge as an important
test support resource. After preprocessing the user’s query
request, the retrieval module conducts semantic reasoning,
transforms the reasoning results into query language for
retrieval, sorts them according to the matching degree, and
returns the query results to the user as required [36]–[38].
The SoftwareUnderTest domain knowledge in EPOST helps
testers analyze the tested object, identify test tasks, define
test goals and test activities. Software testers refer to the
domain knowledge and related rules in SoftwareTesting and
SoftwareFailure, and testers can easily transform the general
test objectives into a series of specific test conditions and test
cases, and reuse test cases and test questions. For running test
cases, tracking issues, and control version systems, ontology
can be used to support test integration [29]. After the analysis
of test results, it is necessary to evaluate whether there is new

VOLUME 8, 2020 205381



Z. Sun et al.: Domain Ontology Construction and Evaluation for the Entire Process of Software Testing

knowledge generated, and update the useful knowledge to the
corresponding ontology database or rules [36].

2) TESTING QULITY ENTROPY
EPOST provides knowledge for software testing activities,
that is, it provides information for software testing as a source.
The amount of information contained in domain ontology
knowledge can affect the quality of software testing activities.
By the calculation of the information entropy of problem sets
in software testing, [36] proposed the concept of testing qual-
ity entropy and used it to measure software testing quality.

Testers design test cases with the help of software domain
knowledge, complete the test and detect problems. For the
testing problem set Q, there are detected problems and unde-
tected problems. The two kind problems are independent of
each other, so they can be described by a probability matrix,
as shown in (2). In (2), the number of detected problems is
q1, and its occurrence probability is p(q1); the number of
undetected problems is q2, and its occurrence probability is
p(q2).Q is the state space of the testing problem,

∑
p(qi) = 1.[

Q
P(q)

]
=

[
q1 q2
p(q1) p(q2)

]
(2)

For any kind of testing problem qi, the testing quality
index I (qi) is defined as the negative value of its probability’s
logarithm. If the occurrence probability of testing problem qi
is p(qi), then its quality index can be calculated by (3).

I (qi) = − logP(qi) (3)

On the problem set Q, the mathematical expectation of
testing quality index is taken as the measurement of software
testing quality. This is the expression of entropy, which is
called testing quality entropy [36]. According to the problem
set Q in (2), its testing quality entropy can be calculated as
shown in (4).

H (Q) = E [I (qi)] = −
2∑
i=1

P(qi) logP(qi) (4)

By calculating the entropy of the state space of the problem
set, the quantitative evaluation of the software testing quality
is realized [36]. In fact, the number of undetected problems
is difficult to figure out. Therefore, we postulate some condi-
tions in the engineering application. The best case for the test
team is to find all the problems, and the worst case is to find
50% of the problems [36]. So, the numerical value of testing
quality entropy is 0 for the best case, and 1 for the worst case.

3) EXPERIMENT SETUP
In this section, we design an experiment to verify the appli-
cation effect of EPOST based software testing. For the exper-
iment, testers carry out the activities in the traditional testing
process and EPOST based testing process as shown in Fig-
ure 6. By measuring the quality of testing process and testing
results, we quantify the software testing quality [36]

To reduce the influence of knowledge level and test ability
on experimental results, we randomly selecte 6 testers who
have been engaged in testing for 3 years and divided them
into two test teams, groupA and group B. They independently
carry out test tasks, generate test artifacts according to the
process requirements, record the test results. In order to col-
lect statistical test data clearly and effectively, each test case
is designed to detect only one problem at a time. In addition,
the number of failed test cases is not merged with similar
problems. In the experiment, group A use EPOST domain
knowledge as support resources to carry out the test work,
and group B carry out the test according to the traditional test
process.

This article takes ATM software as the test object. ATM
software is a non-embedded application software running on
the desktop. The user account registration and login operation
can be completed according to the interface prompt. After
login, the functions of deposit, withdrawal, transfer, deposit
query, withdrawal query, transfer query, balance query, pass-
word modification and other functions can be completed.

4) EXPERIMENT RESULTS
As shown in Figure 7 and Figure 8, the two test teams
are quite different in terms of safety, performance, strength,
reliability, availability and other key test types. We can infer
that with the increase of test knowledge, the more test items
and test cases are obtained, and the more comprehensive the
analysis of the test types which are more difficult and have
a greater impact on the software test quality level. It can be
seen that knowledge will affect the quality of testing process.

After the test, 44 test problems were found by group A and
31 problems by group B. The comparison of test problems
with different critical levels between the two test teams is
shown in Figure 9. In terms of the total number of testing
problems detected, groupA is more than group B. So, the pro-
portion of problems detected by using EPOST is higher,
indicating that the size of knowledge affected the quality of
testing results. In terms of the number of fatal problems and
serious problems, the difference between the two groups is far
greater than the proportion of total problems, which indicates
that knowledge can support the test of finding key problems,
and more knowledge support is needed for the test with high
difficulty and high requirement.

In order to evaluate the software testing quality, the influ-
ence of knowledge on the test quality level can be quanti-
tatively analyzed by calculating the testing quality entropy
[36]. Then, we use (2), (3), and (4) to calculate the testing
quality of the two testing teams in the best and the worst case
respectively.

In the best case, the number of problems found in group
A is set to the total number of problems in ATM software.
When calculating the entropy, the total number of problems
detected by group A is taken as the denominator of distribu-
tion probability. The calculation results are shown in Table 5.
The testing entropy of group A is 0, and that of group B is
0.876. When SA > SB, HA(Q) < HB(Q). The results show

205382 VOLUME 8, 2020



Z. Sun et al.: Domain Ontology Construction and Evaluation for the Entire Process of Software Testing

FIGURE 6. Role of EPOST in software testing.

FIGURE 7. Number of test requirement analysis items.

FIGURE 8. Number of test cases.

TABLE 5. Value of Testing Entropy in the Best Case.

that the more knowledge, the lower testing quality entropy,
and the more stable testing results.

FIGURE 9. Number of detected problems with different critical level.

TABLE 6. Value of Testing Entropy in the Worst Case.

According to the worst case, the number of problems found
in group B is set to 50% of the total number of problems in
ATM software. When calculating the entropy, the distribution
probability takes 2 times of the total number of problems
detected by group B as the denominator. The calculation
results are shown in Table 6. The testing entropy of group
A is 0.869, and that of group B is 1. Similarly, when SA >
SB, HA(Q) < HB(Q). We can also conclude that the more
knowledge, the lower testing quality entropy, and the more
stable testing results.

V. DISCUSSION
Ontology evaluation is to evaluate the performance and
applicability of an ontology in a specific application
domain or environment. It can help users choose the ontology
that best meets the application requirements, and it can also

VOLUME 8, 2020 205383



Z. Sun et al.: Domain Ontology Construction and Evaluation for the Entire Process of Software Testing

help the ontology constructor to check the effectiveness of
the ontology, adjust the irrationality in time, and ensure that
the user’s requirements are met to the maximum extent. The
evaluationmethod is the core of ontology evaluation, the eval-
uation metric system is the basis of ontology evaluation,
and the evaluation tool is the realization method of ontology
evaluation. The organic combination of these three aspects
can make the assessment activities more comprehensive and
effective.

This study used an ontology evaluation method based on
FOCA [20], which was a multiple-criteria evaluation method.
This type of evaluation method first determined a set of
evaluation metrics based on the factors that affect the qual-
ity of the ontology, then designed a criteria measurement
method for each evaluation metric, and finally combined
the weight of each metric to obtain the final evaluation
result. According to the evaluation method of [21], EPOST’s
ontology quality score was 0.9881, which was close to 1,
indicating that the ontology quality was high and the design
requirements and purposes of ontology. Although this type
of evaluation method had good scalability and operability,
and could better reflect the quality of the ontology, it was
difficult to develop a comprehensive and reasonable evalua-
tion index system. In terms of the evaluation metrics system,
there was currently no unified authoritative standard. Ontol-
ogy evaluation activities involved the design and calculation
of evaluation metrics that would change with the research
object, making the evaluation of the ontology more compli-
cated and more research perspectives. The evaluation metrics
covered in this study included 8 quality indicators: complete-
ness, competence, adaptability, cohesion, consistency, clarity,
computational efficiency, and coherence. There were risks
of incomplete coverage of the metric system, such as not
considering accuracy, organizational fitness, coupling, etc.
To fully evaluate the quality of the ontology, this study used
the built-in tool HermiT1.4.3.456 [15] to reason about the
consistency of the ontology content and used OOPS! [15],
[19] to detect ontology pitfalls.

From the comparative analysis of the above experimen-
tal results, it infers that the knowledge quantity can affect
the quality of the testing process, and the knowledge quan-
tity is directly related to the testing quality level. The test
with higher requirements and more difficulty requires more
knowledge support. It is very important to establish a knowl-
edge base of standard, and ontology has a great advantage
to support that. Using EPOST domain knowledge as support
resources can reduce the influence of human factors on the
quality of testing process and testing quality, and make the
test task more targeted. The improvement of software quality
level by EPOST based testing process is better than the
traditional testing process.

VI. CONCLUSION AND FUTURE WORK
To solve the problem of knowledge silo in the software testing
process, this article used ontology to organize the knowledge

in the entire software testing process, developed a compre-
hensive, accurate, and structured domain knowledge ontol-
ogy EPOST. The EPOST ontology covered the concepts and
relationships of software testing process information, soft-
ware testing object information, and software failure infor-
mation. Extracting concepts and related terms from ISTQB
[22], SWEBOK [23], IEEE std.829-2008 [32], and IEEE
std.610.12-1990 [33] standards, the concept description in
domain knowledge was more accurate and comprehensive.
We used a comprehensive ontology construction method [18]
to construct ontology. Ontology evaluation used HermiT [15]
and OOPS! [15], [19] to perform context validation, and used
an improved FOCA method [21] for ontology verification.
The evaluation results shown that EPOST has a good domain
coverage, was being formally rigorous, implemented also
non-taxonomic relations, and achieved the purpose of ontol-
ogy construction, andmet the needs of ontology construction.
Ontology application effect evaluation used test cases and test
results to qualitatively analyze the test process quality, and
quantitatively analyze the quality of test results by calculating
testing quality entropy [36]. The experimental results showed
that, compared with the traditional software testing process,
using EPOST domain knowledge as the support resources to
carry out the testing work, testers can have more comprehen-
sive test requirements analysis, better coverage of test cases,
higher probability of detecting problems, and better quality
of test results.

Domain ontology also has a life cycle [18]. After the
construction of ontology, it will be a long-term ontology oper-
ation stage and maintenance stage. For future work, we will
focus on the continuous improvement of EPOST.

REFERENCES
[1] Z. Sun, Y. Zhang, and Y. Yan, ‘‘A Web testing platform based on hybrid

automated testing framework,’’ in Proc. IEEE 4th Adv. Inf. Technol.,
Electron. Autom. Control Conf. (IAEAC), Chengdu, China, Dec. 2019,
pp. 689–692, doi: 10.1109/IAEAC47372.2019.8997684.

[2] L. Xue-Mei, G. Guochang, L. Yong-Po, and W. Ji, ‘‘Research and imple-
mentation of knowledge management methods in software testing pro-
cess,’’ in Proc. WRI World Congr. Comput. Sci. Inf. Eng., Los Angeles,
CA, USA, 2009, pp. 739–743, doi: 10.1109/CSIE.2009.360.

[3] G. Tebes, D. Peppino, P. Becker, G. Matturro, M. Solari, and L. Olsina,
‘‘Analyzing and documenting the systematic review results of software
testing ontologies,’’ Inf. Softw. Tech., vol. 123, pp. 1–23, Mar. 2020, doi:
10.1016/j.infsof.2020.106298.

[4] A. Freitas and R. Vieira, ‘‘An ontology for guiding performance testing,’’ in
Proc. IEEE/WIC/ACM Int. Joint Conf. Web Intell. (WI), Intell. Agent Tech-
nol. (IAT), Warsaw, Poland, Aug. 2014, pp. 400–407, doi: 10.1109/WI-
IAT.2014.62.

[5] R. Fei-Liang, S. Ji-Kun, S. Bin-Bin, and Z. Jing-Bo, ‘‘A review for
domain ontology construction from text,’’ Chin. J. Comput., vol. 42, no. 3,
pp. 654–676, Mar. 2019, doi: 10.11897/SP.J.1016.2019.00654.

[6] T. R. Gruber, ‘‘A translation approach to portable ontology specifica-
tions,’’ Knowl. Acquisition, vol. 5, no. 2, pp. 199–220, Jun. 1993, doi:
10.1006/knac.1993.1008.

[7] H. Zhu and Q. Huo, ‘‘Developing software testing ontology in UML for
a software growth environment of Web-based applications,’’ in Software
Evolution With UML and XML. Hershey, PA, USA: IGI Global, 2005,
pp. 263–295.

[8] E. F. Barbosa, E. Y. Nakagawa, A. C. Riekstin, and J. C. Maldonado,
‘‘Ontology-based development of testing related tools,’’ in Proc. 20th Int.
Conf. Softw. Eng. Knowl. Eng., San Francisco, CA, USA: SEKE, 2008,
pp. 697–702.

205384 VOLUME 8, 2020

http://dx.doi.org/10.1109/IAEAC47372.2019.8997684
http://dx.doi.org/10.1109/CSIE.2009.360
http://dx.doi.org/10.1016/j.infsof.2020.106298
http://dx.doi.org/10.1109/WI-IAT.2014.62
http://dx.doi.org/10.1109/WI-IAT.2014.62
http://dx.doi.org/10.11897/SP.J.1016.2019.00654
http://dx.doi.org/10.1006/knac.1993.1008


Z. Sun et al.: Domain Ontology Construction and Evaluation for the Entire Process of Software Testing

[9] X. Bai, S. Lee, W.-T. Tsai, and Y. Chen, ‘‘Ontology-based test mod-
eling and partition testing of Web services,’’ in Proc. IEEE Int.
Conf. Web Services, Beijing, China, Sep. 2008, pp. 465–472, doi:
10.1109/ICWS.2008.111.

[10] L. Cai,W. Tong, Z. Liu, and J. Zhang, ‘‘Test case reuse based on ontology,’’
in Proc. 15th IEEE Pacific Rim Int. Symp. Dependable Comput., Shanghai,
China, Nov. 2009, pp. 103–108, doi: 10.1109/PRDC.2009.25.

[11] P. G. Sapna andH.Mohanty, ‘‘An ontology based approach for test scenario
management,’’ in Proc. 5th Int. Conf. Inf. Intell. Syst. Technol. Manag.,
vol. 141. Berlin, Germany: Springer, 2011, pp. 91–100.

[12] G. Arnicans, D. Romans, and U. Straujums, ‘‘Semi-automatic generation
of a software testing lightweight ontology from a glossary based on the
ONTO6 methodology,’’ Front. Art. Intell. Appl., vol. 249, pp. 263–276,
Sep. 2012.

[13] A. Asman and R. M. Srikanth, ‘‘A top domain ontology for software
testing,’’ M.S. thesis, Jönköping Univ., Stockholm, Sweden, 2015.

[14] E. F. Souza, R. A. Falbo, and N. L. Vijaykumar, ‘‘Using ontology patterns
for building a reference software testing ontology,’’ in Proc. 17th IEEE
Int. Enterprise Distrib. Object Comput. Conf. Workshops, Vancouver, BC,
Canada, Sep. 2013, pp. 21–30, doi: 10.1109/EDOCW.2013.10.

[15] S. Vasanthapriyan, J. Tian, D. Zhao, S. Xiong, and J. Xiang, ‘‘An
ontology-based knowledge sharing portal for software testing,’’ in Proc.
IEEE Int. Conf. Softw. Qual., Rel. Secur. Companion (QRS-C), Prague,
Czech Republic, Jul. 2017, pp. 472–479, doi: 10.1109/QRS-C.2017.82.

[16] S. Vasanthapriyan, J. Tian, and J. Xiang, ‘‘An ontology-based knowledge
framework for software testing,’’ in Proc. Commun. Comput. Inf. Sci.,
2017, pp. 212–226, doi: 10.1007/978-981-10-6989-5_18.

[17] H. de S. Campos Junior, C. A. de Paiva, R. Braga, M. A. P. Araújo,
J. M. N. David, and F. Campos, ‘‘Regression tests provenance data in
the continuous software engineering context,’’ in Proc. 2nd Brazilian
Symp. Systematic Automated Softw. Test. (SAST), 2017, pp. 1–6, doi:
10.1145/3128473.3128483.

[18] Z. Wen-Xiu and Z. Qing-Hua, ‘‘Research on construction methods of
domain ontology,’’ Library Inf., no. 1, pp. 16–19, Jan. 2011.

[19] M. Poveda-Villalón, A. Gómez-Pérez, and M. C. Suárez-Figueroa,
‘‘Oops!(ontology pitfall scanner!): An on-line tool for ontology
evaluation,’’ Int. J. Semantic Web Inf. Syst., vol. 10, no. 2, pp. 7–34,
Apr. 2014.

[20] J. Bandeira, I. Ibert Bittencourt, P. Espinheira, and S. Isotani, ‘‘FOCA:
A methodology for ontology evaluation,’’ 2016, arXiv:1612.03353.
[Online]. Available: http://arxiv.org/abs/1612.03353

[21] X. Hu and J. Liu, ‘‘Ontology construction and evaluation of UAV
FCMS software requirement elicitation considering geographic environ-
ment factors,’’ IEEE Access, vol. 8, pp. 106165–106182, 2020, doi:
10.1109/ACCESS.2020.2998843.

[22] ISTQB. International Software Testing Qualifications Board, Standard
Glossary of Terms Used in Software Testing, Version 3.2. Accessed: 2019.
[Online]. Available: https://www.istqb.org/

[23] IEEE. The Institute of Electric and Electronic Engineers: Computer
Society, SWEBOK. A Guide to the Software Engineering Body of
Knowledge. Accessed: 2014. [Online]. Available: http://www.computer.
org/portal/web/swebok

[24] H. Jian-Ying, Y. Hai-Hua, and L. Chao, ‘‘Study of ontology-based software
testing knowledge management model,’’ Comput. Sci., vol. 34, no. 10,
pp. 281–283, Oct. 2007.

[25] S. Guo, J. Zhang, W. Tong, and Z. Liu, ‘‘An application of ontology to test
case reuse,’’ in Proc. Int. Conf. Mech. Sci., Electr. Eng. Comput. (MEC),
Jilin, China, Aug. 2011, pp. 775–778, doi: 10.1109/MEC.2011.6025579.

[26] X. Li and W. Zhang, ‘‘Ontology-based testing platform for reusing,’’
in Proc. 6th Int. Conf. Internet Comput. Sci. Eng., Zhengzhou, Henan,
Apr. 2012, pp. 86–89, doi: 10.1109/ICICSE.2012.18.

[27] Z. Ying, ‘‘The research and application of software testing method based
on domain knowledge,’’ M.S. thesis, Softw. Technol. Inst., Dalian Jiaotong
Univ., Dalian, China, 2014.

[28] É. F. de Souza, R. D. A. Falbo, and N. L. Vijaykumar, ‘‘Knowledge man-
agement initiatives in software testing: A mapping study,’’ Inf. Softw. Tech-
nol., vol. 57, pp. 378–391, Jan. 2015, doi: 10.1016/j.infsof.2014.05.016.

[29] S. Sharma, L. Raja, and D. P. Bhatt, ‘‘Role of ontology in software
testing,’’ J. Inf. Optim. Sci., vol. 41, no. 2, pp. 641–649, Feb. 2020, doi:
10.1080/02522667.2020.1733196.

[30] H. Li, F. Chen, H. Yang, H. Guo,W. C.-C. Chu, andY. Yang, ‘‘An ontology-
based approach for GUI testing,’’ in Proc. 33rd Annu. IEEE Int. Com-
put. Softw. Appl. Conf., Seattle, WA, USA, Jul. 2009, pp. 632–633, doi:
10.1109/COMPSAC.2009.92.

[31] H. Xian-Yu, ‘‘Construction of software testing information domain ontol-
ogy,’’ Softw. Guide, vol. 12, no. 9, pp. 29–31, Sep. 2013.

[32] IEEE Standard for Software and System Test Documentation—Redline,
IEEE Standard 829-2008, 2008.

[33] IEEE Standard Glossary of Software Engineering Terminology, IEEE
Standard 610.12-1990, 1990.

[34] X. Lei, ‘‘Research advances in ontology evaluation,’’ J. Chi. Soc. Sci. Tech.
Inf., vol. 35, no. 7, pp. 772–784, Jul. 2016.

[35] H. Alrumaih, A. Mirza, and H. Alsalamah, ‘‘Domain ontology for require-
ments classification in requirements engineering context,’’ IEEE Access,
vol. 8, pp. 89899–89908, 2020, doi: 10.1109/ACCESS.2020.2993838.

[36] C. Yang, ‘‘Reliability knowledge-based software testing model and its
application,’’ Ph.D. dissertation, Wuhan Univ. Tech., Wuhan, Hubei,
China, May 2017.

[37] Y. Yuehua, D. Junping, and P. Yuan, ‘‘Ontology-based intelligent infor-
mation retrieval system,’’ Ruan Jian Xue Bao/J. Softw., vol. 26, no. 7,
pp. 1675–1687, Jul. 2015, doi: 10.13328/j.cnki.jos.004622.

[38] L. Xiaoqi, Y. Genxing, C. Lizhi, and Z. Juan, ‘‘Ontology description and
retrieval of test case based on reuse behaviour,’’ Comput. App. Softw.,
vol. 28, no. 10, pp. 65–68, Oct. 2011.

ZHE SUN received the B.S. degree in soft-
ware engineering from Xidian University (XDU),
Xi’an, China, in 2009, and the M.S. degree in soft-
ware engineering from the University of Science
and Technology of China (USTC), Hefei, China,
in 2012. He is currently an Engineer with the Insti-
tute of Computer Application, China Academy of
Engineering Physics, Mianyang, China. His cur-
rent research interests include ontology modeling,
software testing, and software reliability.

CHI HU was born in China in 1988. He received
the B.S. degree in computer science and technol-
ogy from the University of Electronic Science and
Technology of China (UESTC), in 2010, and the
M.S. degree from the College of Information and
Software Engineering, UESTC, in 2013. He is cur-
rently pursuing the Ph.D. degree with the National
University of Defense Technology. He is also an
Engineer of the China Academy of Engineering
Physics. He has three years of experience in CPS

system safety and security evaluation. His research interest includes orienta-
tion is software testing and verification.

CHUNLEI LI received the B.S. degree in intel-
ligent monitoring and control from the Nan-
jing University of Aeronautics and Astronautics,
China, and the M.S. degree in 2007. He is cur-
rently an Engineer with the Institute of Com-
puter Application, China Academy of Engineering
Physics, Mianyang, China. His current research
interests include embedded system distributed co-
simulation, software security reliability simula-
tion, and testing.

LINBO WU was born in 1983. He is currently
a Senior Engineer. His current research interests
include software modeling and verification, and
simulation verification technology. Hewas amem-
ber of China Computer Federation.

VOLUME 8, 2020 205385

http://dx.doi.org/10.1109/ICWS.2008.111
http://dx.doi.org/10.1109/PRDC.2009.25
http://dx.doi.org/10.1109/EDOCW.2013.10
http://dx.doi.org/10.1109/QRS-C.2017.82
http://dx.doi.org/10.1007/978-981-10-6989-5_18
http://dx.doi.org/10.1145/3128473.3128483
http://dx.doi.org/10.1109/ACCESS.2020.2998843
http://dx.doi.org/10.1109/MEC.2011.6025579
http://dx.doi.org/10.1109/ICICSE.2012.18
http://dx.doi.org/10.1016/j.infsof.2014.05.016
http://dx.doi.org/10.1080/02522667.2020.1733196
http://dx.doi.org/10.1109/COMPSAC.2009.92
http://dx.doi.org/10.1109/ACCESS.2020.2993838
http://dx.doi.org/10.13328/j.cnki.jos.004622

