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A B S T R A C T

Despite Wireless Sensor Networks (WSNs) significantly developing over the past decade, these networks,
like most wireless networks, remain susceptible to malicious interference and spectrum coexistence. Other
vulnerabilities arise as WSN applications adopt open standards and typically resource and energy-constrained
commercial-off-the-shelf equipment. Deployments include safety-critical applications such as the internet of
things, medical, aerospace and space and deep-sea exploration. To manage safety and privacy requirements
across such a diverse wireless landscape, security on wireless edge devices needs improvement while main-
taining low complexity. This paper improves wireless edge device security by developing a novel intelligent
interference diagnostic framework. Received in-phase (I) and quadrature-phase (Q) samples are exclusively
utilized to detect modern, subtle and traditional crude jamming attacks. This I/Q sample utilization inherently
enables decentralized decision-making, where the low-order features were extracted in a previous study
focused on classifying typical 2.4–2.5 GHz wireless signals. The associated optimal intelligent models are
leveraged as the foundation for this paper’s work. Initially, Matlab Monte Carlo simulations investigate the
ideal case, which incorporates no hardware limitations, identifies the required data type of signal interactions
and motivates a hardware investigation. Software-defined radios (SDRs) collect the required live over-the-
air I/Q data and transmit matched signal (ZigBee) and continuous-wave interference in developed ZigBee
wireless testbeds. Low complexity supervised machine learning models are developed based exclusively on the
low-order features and achieve an average accuracy among the developed models above 98%. The designed
methodology involves examining ZigBee over-the-air data for artificial jamming and SDR jamming of ZigBee
signals transmitted from SDR and commercial (XBee) sources. This approach expands to a legitimate node
classification technique and an overall algorithm for wireless edge device interference diagnostic tools. The
investigation includes developing Support Vector Machine, XGBoost and Deep Neural Network (DNN) models,
where XGBoost is optimal. Adapting the optimized models to global positioning system signals establishes
the transferability of the designed methodology. Implementing the designed approaches on a Raspberry Pi
embedded device examines a relatively resource-constrained deployment. The primary contribution is the real
experimentally validated interference diagnostic framework that enables independent device operation, as no
channel assumptions, network-level information or spectral images are required. Developed models exclusively
use I/Q data low-order features and achieve high accuracy and generalization to unseen data.
1. Introduction

Successful wireless sensor network (WSN) deployments across a
diverse range of safety-critical applications have developed WSNs into
essential telecommunication infrastructure components. Both civil, for
example, the Internet of Things (IoT) [1] and medical, for example,
remote patient monitoring [2], deployments utilize WSNs as visualized
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in Figs. 1(a) and 1(b), respectively. Adopting WSNs permits easier
design, installation and maintenance, while simultaneously providing
new deployment options and cost benefits. However, as WSNs be-
come integrated with critical use-cases, the incentive to attack/disrupt
these networks intensifies. Other incentivizing deployments include
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control systems for smart homes [3], space-based WSNs [4], missile
defense [5], wireless body area networks (WBANs) [6], aerospace’s fly-
by-wireless, using Low Earth Orbit satellites as components [7] and typ-
ical surveillance and industrial sensing. These machine-to-machine and
machine-to-people communications generally transmit private time-
dependent data, resulting in critical privacy and reliability require-
ments. These requirements inherently create new security, spectral
coexistence and threat identification challenges. The unprecedented
growth rate of wireless devices (29 billion devices are forecast by
2022 [8]) magnifies these challenges. Typically, WSNs are long-lived
deployments consisting of low-cost, compact resource-constrained de-
vices that are coupled to their operating environment and do not
have the capability to implement complex or computationally inten-
sive security protocols. Securing WSNs and associated edge devices
is essential as an attack on a WSN enabled application could have
significant privacy and safety consequences, particularly in real-time
sensitive medical and control systems.

This paper’s central research question surrounds how to improve
security on resource-constrained wireless edge devices by only using
data consistently available to a functioning receiver. The aim is to
extract high-level interference information from low-level in-phase (I)
and quadrature-phase (Q) received samples. Despite technological ad-
vancements, wireless networks remain vulnerable to radio jamming
attacks, due to the open nature of wireless channels and the lack
of practical physical-layer wireless technologies that can efficiently
decode data packets in the presence of jamming attacks. This paper
focuses on improving security through interference detection diagnostic
tools in wireless sensor networks and global positioning system (GPS)
signals. Stealthy attackers transmit short jamming signals to become
less detectable with less energy and yet powerful enough to ruin entire
packet transmission [9]. As a result, both crude traditional and modern
stealthy attacks are examined. Jamming attacks (denial, deception
and/or destruction) have traditionally been the domain of Electronic
Warfare [10]. However, these techniques are gradually being adopted
for criminal activities as readily available hardware supports the devel-
opment of effective systems that can circumvent jamming prevention
techniques. WSN compromise, whether malicious or unintentional, is
achievable and threat detection and analysis need to match advancing
attack strategies [10], while not overly consuming device resources.

This study uses the IEEE 802.15.4 derived ZigBee [11] protocol
and available GPS signals to develop a novel low complexity inter-
ference diagnostic framework for WSN and GPS resource-constrained
edge devices. The framework exclusively utilizes consistently available
received I/Q samples, permitting the analysis of signal interactions with
the fluctuating wireless environment to develop decentralized decision-
making device capabilities. Performing mitigation once an attack (or
packet loss reason) is detected compels this development, as edge nodes
can usually deliver packets to non-jammed neighbors [12]. Initially,
I/Q data is acquired by applying Matlab Monte Carlo simulations across
various jamming-to-signal ratios and interference types. Simulations
evaluate the ideal case for using I/Q samples without hardware limita-
tions, identify the required data for model development and, notably,
operate on a reduced feature set. The positive simulation results moti-
vated and guided the real over-the-air ZigBee/SDR testbed, where the
focus was applied to matched signal (ZigBee) and continuous wave
(CW) interference. Software-defined radios (SDRs) provided access to
the live I/Q data from XBee ZigBee devices and implemented the
required jamming signals and continuous ZigBee transmissions when
required. The live I/Q data diagnostic tools use novel low-order fea-
tures previously extracted across time, frequency and space in [13]
and further elaborated on in [14]. In-depth analysis and validation of
the low-order features for interference detection was achieved using
machine learning-based classifiers, namely Support Vector Machine
(SVM), XGBoost and deep neural networks (DNNs). The developed
models are evaluated using available test data, including ‘‘unseen data’’,
2

and K-fold cross-validation.
The developed live data diagnostic tools investigated legitimate
node classification and over-the-air jamming using commercial and
SDR ZigBee transmitters. An artificial jamming scenario was also exam-
ined, using individually collected signal data and adding the samples in
software. The developed methodology’s transferability was investigated
by applying the strategy to GPS signals. The study illustrates the value
of analyzing received I/Q samples and low-complexity solutions for
interference detection on edge devices. The main contribution lies in
the developed diagnostic framework that enables independent opera-
tion, as no channel assumptions, network-level information or spectral
images are required. It differentiates itself by solely analyzing the I/Q
data, which is consistently available to functioning receivers while
achieving high accuracy and generalization to unseen data. To fully
validate the designs, DNNs are developed and compared to the low-
complexity solutions. A Raspberry Pi embedded device implementation
study examines a relatively resource-constrained deployment. An over-
all diagnostic algorithm is formulated based on the developed models
and the signal classification approach in [13].

The remainder of this paper is organized into three main sections,
excluding the related work discussion and conclusion. Section 2 de-
scribes the related work and outlines what differentiates this study. The
initial ZigBee simulation-based experimental approach and associated
results are described in Section 3. Section 4 depicts the live wireless
data strategy and collection process for both WSN and GPS signals. The
live wireless signal machine learning evaluation results are outlined
in Section 5, which includes an implementation on a Raspberry Pi
embedded device. Section 6 concludes this paper and outlines future
work.

2. Related work

This section reviews the main related topics and how this paper’s
work differentiates itself from comparative literature. Topics include
interference detection in wireless communications networks, namely
WSNs, and the exclusive use of raw I/Q samples. Regarding WSNs,
detecting interference and classifying the signal type is not an orig-
inal concept but requires continual improvements to keep up with
current hardware/software enhancements. For WSNs and associated
resource-constrained devices, jamming is a significant threat. Key de-
sign objectives here are low complexity and independent operation,
as resource consumption can be reduced if devices make real-time
decisions and algorithms have low computation costs.

Vital aspects of WSN intrusion detection systems (IDSs) are dis-
cussed in [15], where jamming is outlined as a very destructive at-
tack and the need for comprehensive IDS analysis, in both simulation
and real-world implementations, is identified. Developing a balance
between accuracy, generalization to new data and consumption of
resources is also highlighted. In terms of this paper, simulation and
real-world experimental analysis are provided in Sections 3 and 5,
respectively. The work focuses on anomaly detection in received WSN
signals, but the potential exists for malicious node identification, as
explained in Section 5. The authors in [16] describe the lack of tra-
ditional physical switches or gateways in WSNs as a vulnerability and
emphasize the need for detection approaches. Finally, an IDS should not
degrade WSN performance or introduce new weaknesses but should be
reliable and transparent to the system [16].

Classic WSN techniques and IDSs typically analyze the received
signal strength indicator (RSSI) and packet rates [17]. This method
requires high volumes of transmitted packets to calculate representative
packet rates, such as packet error rate (PER), and devices, even those
operating at the edge, to obtain network-level knowledge. Other packet
rate systems analyze collaborative approaches [18] that evaluate packet
delivery rates (PDRs) in a given area. This permits faster detection
than end-to-end PDR and achieves jamming detection accuracy of over
97% [18]. In contrast, chip sequence error patterns are used in [19] to

identify the channel and, as a result, the emitting interference. This is a
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Fig. 1. Example critical use-cases of WSNs. (a) Civil WSN utilization in WSN and/or IoT applications by providing the communication link from the sensing/actuating platform to
the IoT gateway or network access point. (b) Example WBAN (subset of WSNs) application depicting the potential critical use in health-care architectures and associated private
data being transmitted. The end users include physicians, emergency services, medical/personal server etc.
step above raw I/Q sample analysis and four major chip error patterns
were identified that allowed the distinction between inference from
different sources, including IEEE 802.11 and 802.15.4. This approach
requires edge devices to buffer known patterns and calculate a pattern
recognition classifier. Also, if packets cannot be received, essentially
all the chips are incorrect and the type of interference can be one of a
variety of transmissions, given enough power. In contrast, SonIC [20]
samples received RSSI values to extract features for a decision tree
classifier for edge device applications. However, this process is limited
as it requires a successful retransmission of the previously identified
error packet, for comparison, and needs a buffer to store the most recent
error packet. SVMs and RSSI samples are used in [21] to develop an
accurate and fast interference detection process using four SVMs and a
logic decision stage.

In [22], the potential uses of machine learning in WSNs is discussed,
where security and anomaly detection are identified as viable use
cases. In [23], network information, for example, packet received signal
strength, packet drop rate and retransmission rate, among others, is
used to detect intrusions. The use of received signal strengths and
packet descriptive rates are sufficient for specific applications. How-
ever, more information can be discovered by expanding into other
frontiers. In [24], the throughput, packet drop ratio and the packet
average delay of sensor nodes are used in a Bayesian classifier to
identify anomalous nodes. Different techniques are compared in their
ability to identify WSN outliers in [25]. An example of using decision
trees as an intrusion detection method is provided in [26], where
the main advantages include having the best detection performance,
ease of model construction and interpretation and scalability for large
datasets. Notably, Random Forest was highlighted as outperforming
other classifiers in terms of identifying whether data traffic is normal
or under attack when using the NSL-KDD dataset in [27]. The Random
Forest technique was also previously shown to be capable of detecting
jamming in GPS signals in [28].

Other approaches aiming to prevent jamming attacks exist in the
literature. Examples of these approaches include a hybrid approach
that uses a combination of direct sequence frequency hopping/time-
hopping spread spectrum to protect against jamming [29] and is only
validated in simulations. In [30], another simulation-based detection
approach is proposed that focuses on effective channel utilization and
interference power. In [31], a technique based on clustering and node
timestamps is proposed, which performs well under several metrics,
including routing overhead, energy usage and packet delivery rate.
However, it is only validated using simulations (Matlab). Finally, the
authors in [32] illustrate a link quality-aware bypassing mechanism to
negate the presence of jamming by bypassing the jammed zone. Results
indicated that typical network performance metrics increased, yet it is
3

limited by the lack of a real wireless deployment or analysis. Many of
the proposed approaches for negating or detecting jamming lack the
results from live wireless signals and require information from high up
in the network stack.

Focusing solely on using received raw I/Q samples for decisions is
a relatively new concept. In [33], the authors achieve uncooperative
direction finding using a single uncalibrated directional receiver by
utilizing deep learning techniques focused on the characteristics of a
transmitter’s I/Q components. The authors in [34] identify transmit-
ters by using high dimensional features extracted from I/Q imbalance
information. Rogue transmitters are detected by applying a generative
adversarial network (GAN), while trusted transmitters are classified
by convolutional and fully connected deep neural networks. Recurrent
neural networks (RNN) and I/Q information are used in [35] to predict
primary user (SDR transmitters) activity in dynamic spectrum access
networks. Unchanging, hardware-based characteristics of individual
transmitters were extracted from I/Q data in [36] and used in a deep
learning approach for radio device identification. Raw I/Q samples are
used as specific components in the design of a signal classification
approach for LTE, WiFi and DVB-T signals in [37]. However, additional
RSSI and spectrogram features were required, in addition to raw I/Q
samples. The literature proves that using only raw I/Q samples can be
useful while opening new areas for investigation.

This paper differentiates itself from the literature by exploring a
novel investigation concentrated on exclusively using raw I/Q samples
and low-cost open-source hardware and software for WSN interference
detection and classification. The solution focuses on independent edge
device decisions based entirely on the wireless channel’s effects on
received I/Q samples, makes no channel assumptions and requires no
network-level data. The Matlab simulations in [38] and [39] provided
the initial motivation for solely using I/Q samples. This paper expands
on previous simulations and explores real over-the-air signals. The use
of fundamental supervised algorithms based on effective and descrip-
tive data analytics/signal processing highlights that heavily studied
machine learning approaches are still fit for purpose. The main con-
tribution is the real world validated interference diagnostic tool for
independent compact WSN devices based on raw I/Q samples and a
novel low-order statistical feature-set. This design highlights that low-
level data can be used to make typical higher-level decisions. Finally,
in contrast to previous work, only the designed, optimized machine
learning model is required on the device, and both malicious and
unintentional interference can be classified.

3. Experimentation: ZigBee simulations

This study establishes a simulation-based approach to interference
detection as the ‘‘ideal’’ case without such hardware limitations as,
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Table 1
IEEE 802.15.4 PHY frame layout.

Synchronization PHY Header PHY Service Data Unit
Header (SHR) (PHR) (PSDU)

Preamble SFD Length Payload FCS
4 Bytes 1 Byte 1 Byte 0–125 Bytes 2 Bytes

or example, reference voltage and analog to digital converter (ADC)
esolution. The previous signal classification work in [13] produced
4 features from the analysis of time, frequency and the probability
ensity function (PDF). The simulations use a reduced feature set of 9,
ue to the lack of hardware restrictions. This simulated work identified
he type of data required for interference detection and contrasted the
ata needed for legitimate signal classification. ZigBee was chosen as it
s the de-facto standard for WSNs, as almost all available commercial
nd research sensor nodes have a ZigBee transceiver chip [40].

.1. Experimental setup

The Matlab simulations focused on node-to-node communications
nd applied ZigBee specifications [11] where possible. The ZigBee
rame, visualized in Table 1, contained the required preamble of four
eros, start frame delimiter (SFD) of ‘‘7a’’ and a randomly populated
ayload. The cyclic redundancy codes, used as a frame check sequence
FCS), were fixed at ‘‘aa’’, as all packets (and associated elements) were
vailable during simulations, whether error-free or erroneous. Monte
arlo simulations were implemented across a range of jamming to
ignal ratios (JSRs), packet overlaps and payload lengths. To ensure
andomness in the simulated payload data, the seed of the Matlab
andom number generator ‘‘rand’’ was set using the current time. The
enerated random numbers were between 0 and 255 (inclusive), as the
ayload is formulated using 8-bit numbers. The random number distri-
ution was investigated using five million iterations and the maximum
llowable PHY payload length of 125 bytes. The distribution results
evealed a satisfactory uniform distribution.

Additionally, every simulated transmission includes additive noise,
hich satisfies a zero-mean Gaussian distribution, to support a simpli-

ied authentic transmission model. The noise signal is in-band noise
ith the same number of samples as the simulated ZigBee signals,
here corresponding samples add together. The noise is constructed as
complex (I/Q) signal with sufficient power not to cause errors in the

ransmission process. This simulation approach was explored by trans-
ating the Matlab code into Python3, where equivalent Matlab functions
rom the ‘‘SciPy’’ library were implemented. These custom ZigBee sam-
les were transmitted using an Analog Devices ADALM-PLUTO Active
earning Module (Pluto SDR) and compared to a commercial ZigBee
ransmitter, the DIGI XBee. The results are visualized in Fig. 2, where
he simulated process correlates well with the commercial ZigBee trans-
ission and, so, the proposed Matlab simulated setup is validated. This

eal-world investigation identifies that the transmitted signals were
eceived without error in the presence of noise. Python3 was chosen
s this enabled the SDR to be controlled remotely by a Raspberry Pi
mbedded device and allowed for a side-by-side comparison to the
aspberry Pi-controlled XBee devices. This testbed setup is explained

n greater detail in Section 4. This experimental approach validated the
igBee signal construction approach in the simulations.

Different forms of interference were examined using varying power
evels to understand the effects of these interference signals on ZigBee
IEEE 802.15.4) transmissions. This range of JSRs provided for several
nterference classes, including error-free, unintentional, subtle jamming
nd saturation. A random frequency offset from the ZigBee operating
requency was added to each interference signal to resemble real-world
ransceiver conditions. This center frequency offset is in the range
f a few tens of kilohertz and based on a random number from the
tandard uniform distribution. The applied interference signals were
4

s

ig. 2. A Tektronix DPX image [41], which is a digital signal processing software that
asterizes samples into pixel information, of the customized SDR and commercially
ransmitted ZigBee signal.

W jamming, matched signal interference (same and adjacent channel),
hermal noise (attenuation channel) and WiFi (802.11b) coexistence.
atched signal interference is an intelligent deceptive jammer attack

tyle that transmits packets that match the spectral identity of le-
itimate signal (ZigBee) [42]. Each simulated interference signal is
onstructed with the same number of samples as the ZigBee signal and
ollows appropriate standards or signal formula such as, for example,
he known CW I/Q signal model. The interference is in-band and sam-
led using the same sampling frequency as the simulated ZigBee signal.
he corresponding samples from the legitimate ZigBee and interference
ignals combine with the noise signal to form the received signal at the
imulated receiver. All interference signals are based on random data
rom a standard normal distribution. The samples are transmitted with
n interference power related to the known power of the legitimate
igBee transmission, providing the required JSR.

CW jamming corresponds to typical spurious jammers, including
onstant, random, deceptive and reactive approaches and does not need
o know what protocol is in use. CW methods operate by emitting
purious RF signals into busy wireless channels without permission
nd breaking spectrum laws. Matched signal interference operates by
onitoring the network and identifying the operating protocol (for

xample, ZigBee) before injecting protocol-specific interference, which
s more difficult to detect than conventional jamming techniques [42].
he thermal noise approach relates to noisy and hostile environments,
hich cause higher transmission gains to achieve the same signal-

o-noise ratio. WiFi signals, at the three possible frequency offsets
2, 3 and 7 MHz), were used to investigate the problem of system
oexistence and whether misuse can lead to malicious interference.
hese interference signals and the described Monte Carlo approach
ere used to develop a database of received ZigBee error-free and
rroneous I/Q samples.

A maximum likelihood decoder is deployed as the simulated re-
eiver using the ZigBee sampling rate of 4 MHz. Each received 32-chip
seudo-random noise (PN) sequence ‘‘P’’ is compared with a lookup
able of ZigBee’s predefined sixteen direct-sequence spread spectrum
N codes (PN1, PN2, . . . , PN16). Specifically, received samples are
ompared to an ideal set of samples for each PN code. In either case, the
omparison produces a set of results, (k1, k2, . . . , k16), which indicate
he Hamming distance, H, of the received PN sequence to each se-
uence in the lookup table, where H indicates the number of misaligned
amples. Minimizing H maximizes the correlation and k denotes the in-
ex producing the minimum value in (1), where 𝐻(𝑃 , 𝑃𝑁𝑘) is the Ham-
ing distance between two sequences. Typically, during packet trans-
issions, samples/chips can be corrupted due to spurious intentional

nd/or unintentional interference, coexistence, fading, path losses, ob-
tacles, etc. However, as long as the value of H (chip/samples errors
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Fig. 3. Number of ZigBee frame bit errors in five categories under matched signal
nterference for a range of JSR values, which provided the initial motivation for
nvestigating the use of received I/Q samples in designing an interference detection
trategy.

er PN code) is below a certain correlator error threshold (identified
s ten chip errors in [19]), the correct symbol will be selected.

𝑎𝑟𝑔
𝑘
𝑚𝑖𝑛 𝐻(𝑃 , 𝑃𝑁𝑘), 𝑓𝑜𝑟 𝑘 = (1, 2,… , 16) (1)

For this study, a correlation failure, which is an incorrect symbol
having the minimum Hamming distance, defines an error. In these sim-
ulations, the maximum likelihood receiver demodulates the received
samples according to the minimum achieved Hamming distance for
each set of 32 chips. As the transmitted signal is available in each
simulated transmission, the received bits can be compared to the trans-
mitted bits. As a result, the maximum likelihood receiver uses Eq. (1)
to identify received errors analytically. A single-bit error causes a
packet error since either the synchronization or FCS fails. The described
simulation process provides both error-free and erroneous received I/Q
samples. These samples are explored to detect if any statistical differ-
ences (features) exist between error-free and erroneous samples and
between the interference signals. Particularly, subtle jamming attacks
are explored as, typically, these attacks are more difficult to detect
using traditional PER and RSSI methods.

3.2. Bit-error location analysis

The initial results focused on where the bit errors occur across the
ZigBee frame for a range of JSR values. The matched signal interference
attack was analyzed as it generates a PER of 18% at a JSR of 0 dB [42],
thereby being the most effective of the studied attacks. The results
are provided in Fig. 3, where the bit errors occur across the frame
at high jamming powers and become more specific to the payload as
the jamming power decreases. The CW attack was investigated and
similar observations were obtained, as shown in Fig. 4. The bit-error
location results indicate that the probability of bit errors occurring in
the packet preambles decreases with decreasing jamming power, which
increases the probability of synchronizing to packets under the presence
of a jammer. Therefore, an interference detection framework needs to
analyze packets with bit errors and when no packets can be received
or before transmitting a packet. This finding was the first indication
that investigating received I/Q samples had promise, as I/Q samples
can always be received, by a functioning receiver, from the wireless
channel.

3.3. Feature extraction

The simulation method depicted in Section 3.1 was used to develop
a database of simulated I/Q samples consisting of six interference
setups, fifteen packet overlap scenarios and error-free signals. The JSR
range consisted of 1 dB increments from −15 dB to 30 dB, while
5

Fig. 4. Number of ZigBee frame bit errors in five categories under CW interference for
a range of JSR values, which upheld the initial insight of using received I/Q samples
in the design of an interference detection strategy.

the interference signal overlaps encompassed overlaps for both before
and after legitimate transmissions, for percentage overlaps of 10, 20,
40, 50, 60, 80, 90 and 100%. The analysis signals included error-free
ZigBee, matched signal interference, CW, WiFi (at the three possible
center frequency offsets) and Thermal Noise. Extracted features aim to
distinguish error-free ZigBee signals from ZigBee signals with errors
caused by an interference signal. In practice, the I/Q samples are
accessible using software-defined radios, as shown in Section 4, or,
possibly, in the device’s debug mode, if otherwise unavailable. The
following features were originally extracted in [38] and analyzed in
both [38] and [39], based on matched signal interference. This paper
expands the previous work using the same features to analyze the full
signal and overlap range.

Features were initially extracted from the measured PDF, as when
interference is low and packets are error-free, the PDF is a relatively
narrow bimodal shape with a low degree of variance. As the interfer-
ence power increases in the channel, the PDF becomes more bimodal
with larger variance. This result is evident in the PDF for matched
signal interference, provided in Fig. 5, where the trend under increasing
levels of JSR allows distinguishable features to be extracted. Notably,
the error-free PDF in Fig. 5 closely resembles what is observed in the
spectrum, visualized using the Tektronix RTSA in Fig. 2. The extracted
PDF features include the area between bins −2 to +2, the averaged area
of the bins −128 to −3 and +3 to 127, the number of non-zero bins and
the maximum peak. Matlab’s trapz function calculates the areas and is
shown in (2), where the spacing is constant, due to PDF construction,
𝑓 (𝑥) is the PDF function and N is the corresponding number of bins.
As the JSR increases, both the total area in the center bins and the
maximum peak decrease, while the averaged area in the outer bins and
the number of non-zero bins increase. This process is possible here, as
simulations incur no hardware related restrictions.

∫

𝑏

𝑎
𝑓 (𝑥)𝑑𝑥 ≈ 𝑏 − 𝑎

2𝑁

𝑁
∑

𝑛=1
(𝑓 (𝑥𝑛) + 𝑓 (𝑥𝑛+1)) (2)

The features are expanded by analyzing the received I/Q samples
irectly as a time series. Derived features include the sample variance
and standard deviation to investigate which feature is essential), the
ignal’s entropy, the mean value and the absolute maximum value in
he received sample set. As the jamming power increases, so too does
he variance, standard deviation, mean and absolute maximum of the
/Q samples. The entropy is calculated using (3), where 𝑃𝑖 contains the

available samples’ normalized histogram counts. The entropy decreases
as the noise-like error-free signal becomes encompassed by a more
dominant interferer. Entropy is described as ‘‘a statistical measure of
randomness’’, which implies that noise signals typically have a higher
entropy value than high powered dominant signals, like an applied
interferer.

𝐻 = −
∑

𝑖
𝑃𝑖 log2 𝑃𝑖 (3)
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Fig. 5. Measured PDF of simulated I/Q samples under matched interference for various
JSR values, specifying the increasingly bimodal shape as the JSR value is increased.

Table 2
Four interference types: random forest algorithm — sampling bias comparison.

All data Training data Validation data Testing data

Error Free 0.1219 0.1219 0.1219 0.1219
Matched 0.2416 0.2416 0.2417 0.2416
CW 0.0196 0.0196 0.0196 0.0196
WiFi 0.2416 0.2416 0.2416 0.2416
Noise 0.3753 0.3753 0.3753 0.3753

3.4. Interference detection results

For the simulated I/Q datasets, the well researched and imple-
mented SVM [43] and Random Forest [44] machine learning tech-
niques were applied based entirely on the feature set from Section 3.3.
The procedure focused solely on matched signal interference and was
validated using a SVM in [38] and expanded into a multi-class classifier
by utilizing the Random Forest decision tree approach in [39]. The
results here expand on those initial studies by including the full set
of identified interference signals and overlaps. The data was split into
training (70%), validation (20%) and testing (10%), resulting in an
estimate of the error rate in new cases, known as the generaliza-
tion error (or out-of-sample error), being achievable. In each dataset,
the proportion of each interference signal and error-free samples was
consistent to avoid sampling bias, which is visualized in Table 2.

The initial matched signal SVM results are provided in Table 3,
where the radial basis function (RBF) kernel was selected using avail-
able validation data. In this analysis, the SVM was trained using data
points from −10 dB → 20 dB and different binary detection thresholds
to present a comprehensive study of the algorithm’s performance.
Table 3 identifies these thresholds, which are based on the bit-error
analysis and feature trends outlined in [38]. Testing data included JSR
points outside the training range to examine how the model generalizes
to unseen data. The aim was to identify the lowest JSR value with
which the algorithm could accurately identify the presence of inter-
ference. Table 3 indicates that sufficient differences exist between the
non-interfered and interference corrupted data, even at low JSR levels.
The main source of error is classifying between different interference
regions, see Table 3. As a binary detection approach, the SVM achieves
near-optimum performance, as per Table 4.

The Random Forest results for the matched signal interference case
are shown in Fig. 6, where validation data determined the optimal
metrics (hyper-parameters). These metrics were the number of deci-
sion trees and predictor depth and were chosen based on the lowest
achieved generalization error, model training time and average pre-
diction time. The four-class case is presented based on the packet and
bit error analysis presented in [39] and outlines how a single Random
Forest model can predict between different categories. A PER of ≤ 10%
and bit errors ≤ 15 defines a region where unintentional interference
6

or high channel noise may exist, a PER from 11% → 32% and bit errors t
Fig. 6. Designed Random Forest algorithm for the matched interference Four-Class
Case (Error free, unintentional, subtle jamming and high impact jamming) - Validation
Generalization Error.

Table 3
Matched interference SVM results (training data): multiple detection thresholds and
radial basis function kernel.
JSR detection
threshold:

Selection reason 10-Fold cross
validation error

Test data error

≥ 5 dB
Identified initial

6.9619% 4.4508%Threshold from
Feature trends

≥ 0 dB Expected spectral 3.9628% 2.6515%Power

≥ −5 dB
Below -5dB: likely

0.9741% 0.8380%Error-Free SHR
(Preamble and SFD)

≥ −10 dB Lowest training 2.35e−04% 0.0%JSR point

Table 4
SVM results (training data): binary classification and radial basis function kernel.

Training time Number of
test points

Percentage
error

Avg. analysis
time

10-Fold cross
validation
error

Matched Interference

11.057 s 78,854 0% 1.15 ms 0.0011%

Four interference types — full packet overlap

60.62 s 247,615 0.00723% 1.67 ms 0.0082%

Four interference types — varying packet overlaps

426.69 s 1,611,311 0.001489% 1.3 ms 0.0016%

from 16 → 20 defines a subtle jamming or signal collision region and
above these resides a high impact jamming region. In terms of JSR,
these zones correspond to < −2 dB, −2 𝑑𝐵 → 2 dB and > 2 dB,
espectively, which provided the four-class classification case when
ombined with error-free data. These thresholds differ from the SVM
pproach as the analysis was expanded to include the PER at the
pecific JSR values.

This design produced results as per Table 5, where most errors
ccurred during classification into interference operating zones. When
his approach is applied as a binary classification, using the same met-
ics, the error was approximately 0% with an average prediction time
f 43.1 ms. For the SVM, using the same data, the error was the same
0%), but the average prediction time was just 1.15 ms, see Table 4.
hese initial results motivated the expansion of the interference types.
urthermore, for binary interference detection at the edge, where real-
ime decisions are crucial as data can become obsolete in a matter of
illiseconds, the SVM is the chosen approach.

The next phase examined using the designed features to classify
he interference type, which included matched signal, CW, WiFi and
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eneralization error, (c) the training time and (d) the average prediction time.
p
e

f
0
t
t

able 5
esigned random forest algorithms: specifications.
Data Predictor

depth
Number of
trees

Training
time

Prediction
time

Test error

4-Class matched interference

Validation 5 55 31.23 s 133 ms 6.10%

Training 5 55 129.80 s 372 ms 6.14%

4 interference types (Matched, CW, WiFi & Noise Interference)

Validation 4 46 85.72 s 234 ms 4.32%

Training 4 46 343.5 s 714.24 ms 4.227%

Inclusive of varying overlaps

Training 4 46 6423 s 5.2525 s 4.027%

thermal noise. Based on the matched signal study, the examination
applies a SVM as the binary interference detector, while the Random
Forest algorithm predicts the interference type. This approach permits
the design of individual SVM and Random Forest models, rather than
multiple SVM models for different classification situations (thereby
reducing computational requirements).

The initial results target full packet overlap, where the attack packet
is the same length as the legitimate packet. The SVM results are
supplied in Table 4, which correspond to classification between error-
free I/Q samples and I/Q samples containing the presence of different
interference signals. Analysis of the validation and testing data deter-
mined the RBF kernel to be optimal. Based on the available testing
data, the generalization error for full packet overlap was established
as 0.00723% with an average prediction time of 1.67 ms.

For the Random Forest approach, optimal metrics (predictor depth
and the number of trees) were determined using the validation and
testing data. The results provided in Fig. 7, which depicts the gen-
eralization error in Fig. 7(b), training time in Fig. 7(c) and average
prediction time in Fig. 7(d), identified the optimal metrics. Fig. 7(b)
7

b

Fig. 8. Confusion Matrix for the designed multi-class Random Forest classifier, where
the results are based on available testing data and classes are as follows: 1-No Interferer
Present, 2-Matched, 3-CW, 4-WiFi, 5-Noise.

shows that the error plateaus when approximately 40–50 trees are
being used, regardless of the predictor depth. The lowest error occurs
when using a predictor depth of two or three, but this produces the
longest prediction time. A trade-off exists and the designed Random
Forest model metrics were chosen to be 46 trees and a predictor depth
of 4. The corresponding performance using training data is specified
in Table 5, where the generalization error was 4.227% with an aver-
age prediction time of 714.24 ms. The associated confusion matrix is
rovided in Fig. 8, which provides an insight into the misclassification
rrors and suggests that the majority of cases can be correctly classified.

The binary classification results of the Random Forest method for
ull packet overlap achieves a similar degree of error (approximately
.0011%), compared to the SVM. However, a higher average prediction
ime is required in all but the single tree case (as shown in Fig. 7(a)),
hereby reinforcing the use of a SVM for initial interference detection.

For varying degrees of overlap, which is the most advanced SVM
inary classifier designed, the error was 0.001489% with an average
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Fig. 9. Confusion Matrix for the designed SVM based on the data including varying
overlaps, where the results are based on available testing data and the classes are as
follows: 1-No Interference Present, 2-Interference Present.

Fig. 10. Data flow diagram representing the developed two model approach which
leverages binary and multi-class classifiers.

prediction time of 1.3 ms. The confusion matrix for this SVM classifier
was investigated and is supplied in Fig. 9, where the corresponding area
under the curve (AUC) of the receiver operating characteristic (ROC)
curve is approximately unity. These results motivated investigating a
live over-the-air wireless signal approach and adopting the SVM classi-
fier as the interference detection mechanism, visualized in Fig. 10. As
energy is typically limited on edge devices, the process of interference
detection should only occur once a packet error has occurred and
results determined as quickly as possible to enable real-time responses.

When the varying overlaps data were analyzed using the optimal
Random Forest metrics for full overlap, the generalization error was
4.027%. The confusion matrix is shown in Fig. 11, using all available
testing data to understand where the errors were occurring. The results
show that the designed multi-class classifier detects interference for
each instance that encompasses a sufficient interference signal. The
errors occur when determining the interferer type, as shown by exam-
ining the corresponding segment in the confusion matrix. Errors can be
reduced by adding more instances of certain interference types, such
as, for example, CW, or by utilizing a boosting algorithm like XGBoost.
However, these are simulations and are computed only as an initial
insight into the methodology development. The results indicate the
optimal approach adopts a SVM for initial interference detection and,
if interference is detected, a Random Forest interference classification
model. The analysis of the live signals will investigate whether a similar
approach is viable for wirelessly received signals in Section 5.

When these results are compared to fast jamming detection focused
on collaborated packet rate information [18], the simulated perfor-
mance achieves equal, if not better, results. The approach in this paper
provides novelty over PDR based systems as individual nodes can make
decisions based on I/Q samples received from the wireless channel. This
method results in fast response times and high accuracy without the
need for edge device collaboration or network parameter information.
The simulated results have revealed a detection approach for individual
edge devices that is both fast and accurate, which is advantageous
compared to clustering or network parameter techniques [31].
8

Fig. 11. Confusion Matrix for the designed multi-class Random Forest classifier
including the varying packet overlaps, where the results are based on available testing
data and classes are as follows: 1-No Interferer Present, 2-Matched, 3-CW, 4-WiFi,
5-Noise.

Table 6
SDR specifications.

Analog pluto RTL-SDR

Connectivity USB 2.0 USB 2.0

Frequency range 325 MHz–3.8 GHz 25 MHz–1.75 GHz

Max. RF 20 MHz 2.4 MHz
Bandwidth (3.2 MHz Max)

Sample rate 65.2 ksps - 2.048 Msps61.44 Msps

Sample depth 12 bits 8 bits

TX | RX channels 1 | 1 0 | 1

However, these simulated results, which exhibit low levels of error
and ‘‘ideal’’ classifier performance, do not have to consider hardware
restrictions and cannot model live wireless signals (and associated
environmental interactions) exactly. Wireless channel characteristics
such as, for example, fading levels, obstacles, path losses, spurious
interference, etc., are inadequately modeled. The absence of a real ADC
means available resources do not limit the simulations. The simulation
work provided insights for live data feature extraction and data analysis
but lacked real environmental issues evident in wireless transmissions.
The promising simulation results suggest that this framework is a
feasible solution that warrants a hardware approach rooted in real over-
the-air signals, focused on the simulation study’s attributes. Notably,
the simulation study has identified the type of data needed to train the
jamming detection models, i.e., signal interactions of legitimate ZigBee
signal and a jamming signal.

4. Live data collection & experimentation

The data strategy, accounting for data quality, quantity and source,
incorporates SDRs and Raspberry Pi embedded devices [45]. SDRs are
reconfigurable radio systems whose characteristics are partially or fully
defined via software or firmware [46] and whose main components
are the antenna, RF front-end and processing unit. The Raspberry
Pi can control, configure and power the selected SDRs by utilizing
available Python3 libraries. This data strategy targets collecting typical
wireless I/Q data in real-time for off-line feature extraction to develop
an interference detection method. These SDRs interact with the RF
environment by utilizing a hardware peripheral, whose capabilities
characterize transceiver operation, while the software component’s per-
formance depends on the proficiency of the RF front-end. It is critical
to use a SDR with the appropriate hardware for analyzing the chosen
RF WSN signals. Two separate hardware approaches were developed
for ISM RF band and GPS signals, respectively.
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4.1. Data collection: ZigBee

This investigation’s main work focuses on WSN edge device security
by implementing an interference detection and classification tool. The
WSN data collection process adopted a previously developed ZigBee
testbed that consists of DIGI XBee ZigBee nodes connected to Rasp-
berry Pi devices that incorporate live sensor data by implementing
the SenseHat environmental sensor. The setup included one receiver
(coordinator) and several transmitters. The Raspberry Pi controlled all
transceivers and sensors using available Python 3 libraries, including
‘‘sense-hat’’ and ‘‘digi-xbee’’. The SenseHat sensor provided access to
live environmentally sensed data, including temperature, humidity and
pressure, while all transmissions could be tracked using the Raspberry
Pis. IoT capabilities are enabled by authorizing a WiFi-enabled coor-
dinator to utilize the open-source Dropbox Uploader tool, exploiting a
Dropbox API application, to upload received data to the internet for
remote analysis. This functionality emphasizes how ZigBee provides
sensor level communication in the overall IoT architecture (Fig. 1(a)).

To receive I/Q samples from and to implement penetration tests on
this WSN testbed, the Analog Pluto [47] (≈ $149) SDR was utilized.
This device has specifications as per Table 6 and is based on the
Analog Devices AD9363 transceiver. This SDR receives I/Q samples
in the range of [−248:2047]. The Pluto SDR can be controlled by
Matlab/Simulink, using the Communications Systems Toolbox add on,
and by python (pyadi-iio) or 𝐶∕𝐶#∕𝐶 + +, using the ‘‘libiio’’ library.

he python3 ‘‘pyadi-iio’’ and ‘‘libiio’’ libraries are implemented on a
aspberry Pi device for lightweight and remote operation. At the same

ime, Matlab is utilized to provide the jamming signals with sufficient
requency to interact with the WSN signals. The ZigBee Siretta stubby
ntenna [48], designed for use in the 2.4→2.5 GHz range, was selected
o provide optimal operation in the ISM RF band.

The commercial ZigBee nodes transmit the required WSN commer-
ial packets while the SDR receives WSN data on the required channel,
cquiring I/Q samples in the process. The SDR is additionally utilized to
rovide constant ZigBee based signals while in the presence of jamming
also transmitted from an Analog Pluto SDR). A sampling rate of 4
Hz, twice the ZigBee baseband signal bandwidth of 2 MHz, is applied

n all experimental approaches, as this study targets WSN interference
etection for edge devices. As shown in Section 3.1, the customized
igBee approach can be used to transmit ZigBee signals (Fig. 2) from a
uitable SDR. The hardware approach depicted in Fig. 12(a) can receive
SN I/Q data for off-line analysis and model development and transmit
atched signal interference, along with other suitable interference

ignals. For the interference signals, a 20 dB CN0417 2.4 GHz RF power
mplifier permits the Pluto SDR to transmit higher-powered signals,
s the typical transmit power is limited to a maximum of 7 dBm.
SN jamming signals are applied wirelessly over short time intervals

n a specific WSN to avoid attacking commercial applications while
till analyzing legitimate signals in a typical wireless environment. A
ata storage device is utilized, as received I/Q data requires post-
rocessing to extract the required signals and features. Overall, this SDR
tilization provides the necessary I/Q data access under normal and
nterference conditions for various interference types. For this study,
W and matched signal interference are the focus.

.2. Data collection: GPS

GPS signal data was acquired to investigate whether the developed
iagnostic approach could be adapted to other wireless spectrum areas.
PS signals are becoming increasingly important for civilians, services
nd industries due to the dependence on GPS-derived location and time
easurements. This study uses GPS signals, on account of previous
ork in GPS interference detection [28], signal availability and due to
nintentional and malicious in-band interference being the single most
9

ignificant threat to GPS applications and users.
To expand on previous work [28] and to analyze as many satellites
s possible, GPS data was collected across a full 24 h period, where
ll available satellites were visible at least once. This approach was
alidated by using GNSSRadar [49], a software tool used to show
he current GPS constellation for a specific location and the satellites’
rbital speeds. This methodology means that associated results are
ot dependent on a specific subset of satellites. The NESDR SMArTee
TL-SDR (≈ $32) [50] was the chosen receiver and receives samples

n the range [−128:127]. This SDR has specifications as per Table 6
nd utilized a magnetically mounted active GPS L1 patch antenna
hat provides approximately 20 dB of gain. This RTL-SDR (Realtek
TL2832U chipset) was chosen as it has associated software, ‘‘rtl-sdr’’,

or I/Q data collection, functions on a Raspberry Pi and produces data
utputs that are compatible with ‘‘fastgps’’ [51]. A 2.048 MHz sampling
ate is applied, which is twice the GPS baseband signal bandwidth.
his program is a GPS software receiver that performs the entire signal
rocessing in software, allowing for smooth adjustments at all stages:
orrelation, acquisition, and navigation. This receiver uses the received
/Q data from the hardware approach shown in Fig. 12(b) to identify
he received satellites. GPS data needs to contain data from at least four
atellites to be useful. The ‘‘fastgps’’ program, running on a Raspberry
i, validates if the required number of received satellites are present
n the collected I/Q data. This procedure allows for collecting both
ood (4 satellites or more) and interfered data for off-line analysis.
his results in the approach illustrated in Fig. 12(b) being an all-in-one
PS data collector and receiver. The receiver’s antenna position was
onfirmed to be able to access each of the required satellites before
ollecting the required data.

As GPS signals are received at such low power levels (typically
125 dBm), relatively low powered jammers, which broadcast noise
n GPS frequencies, will typically block the reception of GPS signals.
his fact implies that a jammer can have a large effective range, even
hough it might be a relatively low powered signal. Here, the primary
ource of interference was CW interference, while offset quadrature-
hase shift keying (O-QPSK) transmissions were also investigated. The
election of these signals is based on the hypothesis that different
ignal types can jam a GPS receiver. The most common is a CW signal,
ut other modulation schemes can be used. The ZigBee modulation
cheme is leveraged as a GPS jamming signal. This process investigates
f the developed approach can be used in a different area of the RF
pectrum. Both signals were emitted into the GPS reception method
sing a wired approach to avoid jamming nearby GPS receivers. The
pproach specified in Fig. 12(b) depicts the GPS reception method
ith and without interference. No power amplifier is required in this
rocess as the transmission power needs to be attenuated and the Pluto
DR supplies a maximum attenuation of 89.75 dB. A DC block and a

signal adder are applied in the collection process to avoid damaging the
device. However, when no interferer is connected, a 50Ω termination
needs to be applied to the DC block to mimic the Pluto SDR and have
comparable results. Both cases need to be under matched impedance
conditions.

5. Results: ZigBee and GPS data

The simulation results in Section 3.4 enabled jamming/interference
detection for a variety of regions, including an unintentional interfer-
ence or high channel noise region, subtle jamming or signal collision
region and a high impact jamming region. The features extracted from
the simulation results in Section 3.3 are as a result of the ideal case
where the PDF and samples have no numerical limitations. However,
additional features are required due to the hardware restrictions (ref-
erence voltage and ADC resolution). This requirement was identified
when developing an ISM band signal classification tool in [13], where
additional features were required to classify signals when the receiver
was saturated or when signals used similar modulation schemes. The

developed signal classification models achieved high accuracy and
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Fig. 12. Pluto SDR and RTL-SDR dongle approaches, in Theory and Practice, being controlled and configured by a Raspberry Pi 3 embedded device for (a) WSN analysis and
interference addition and (b) GPS signal reception and interference addition.
generalized well to unseen data. The received data was collected using
an Analog Pluto SDR and the samples were scaled to the range [−1:+1]
to provide features with similar value ranges. This technique typically
results in higher-performing machine learning models. In this study,
the Analog Pluto’s received samples are scaled to the range [−1:+1]
for consistency, while the GPS signal data remain in the RTL-SDR
range of [−128:+127] for an additional examination of the features.
The work in [13] extracted 14 low-order features, from sample sizes
of 1250 samples, that included: (1) Number of non-zeros entries in
the calculated PDF, (2) The area in the center bins ([−0.1:0.1] or
[126:132]), (3) The area in the left hand side bins ([< -0.1], [< -126]),
(4) Hjorth parameters [52] - Activity (Sample Variance), (5) Sample
Absolute mean value, (6) The sample root-mean-square (RMS) value,
(7) Hjorth parameter — Mobility, (8) Hjorth parameter — Complexity,
(9) Shannon Entropy — using a user-specific approach, (10) Matlab’s
‘‘approximateEntropy’’ function, (11) Number of Fast Fourier Trans-
form (FFT) points over a predefined threshold, (12) Number of zero
Crossings, (13) Unique function that uses the FFT points to estimate
signal bandwidth and (14) PDF center bin (0) value. The features are
numbered as per the associated column in the feature vector 𝑋 =
{𝑥1, 𝑥2,… , 𝑥14}. The slight differences in the WSN and GPS signals’
calculated features examine how the developed low-order feature set
reacts to different numerical ranges of data, which is an important
characteristic to determine.

The PDF features are determined from the calculated PDF (examples
are visualized in Figs. 5 and 13), where areas are calculated using
trapezoidal numerical integration. Each time-domain feature is deter-
mined from the specific set of I/Q samples being analyzed, where the
feature is determined for each channel and the average taken. The
Hjorth parameters use the 1250 samples as 𝑦[𝑛] and are determined
based on the equivalent discrete-time equations developed in [52]. The
FFT functions are unique in this paper. A 2048 point FFT, as this is
the next power of 2 above the length of samples being analyzed (1250
samples), is applied. The function related to the number of FFT points
over a predefined threshold calculates the complex point’s absolute
value and compares it to a predefined threshold. The number of points
that surpass this threshold is the final result. This paper’s threshold
corresponds to 30, which was experimentally determined. The function
for estimating the bandwidth was developed as a user-defined function
where the primary goal is to distinguish larger bandwidths from nar-
rower ones. The function takes the calculated FFT’s absolute value and
then analyzes the raw data to determine a single sided spectrum of data.
The raw data is analyzed to find the summation of the values from a
predefined start point to the outermost point of the FFT. In this study,
the start point is fixed at 175 when the FFT length of the single side
representation is 1024.

The independent ensemble decision-tree Random Forest approach
[44] produced effective results in the simulations in Section 3. How-
ever, the simulations were the ideal case without numerical or hard-
ware limitations. As a result, more advanced approaches that are
10
known to outperform independent ensemble models are legitimately
required. As part of the work in [13] two optimized multi-class machine
learning approaches were developed based on the above features,
which were XGBoost [53,54] and a DNN. These approaches applied
the concept that feature-based machine learning approaches are the
preferred real-world deployment option for signal classification [55].
As single classifier predictions result in low generalization to unseen
data, more modern machine learning approaches define the implemen-
tation strategy. XGBoost was chosen as dependent ensemble methods
are known to outperform independent ones [44] and boosting with
regularization achieves the desired performance in this study. DNNs are
developed and compared to the low-complexity solutions to determine
if there is any loss of performance by not implementing modern neural
network approaches. Based on these details and achieved high accuracy
and generalization when classifying ISM band wireless signals, XGBoost
and DNNs are applied in this live data study. The optimal XGBoost
hyperparameters are specified in Table 7, while the DNN structure is
provided in Table 8. Due to these developed models’ achieved accura-
cies and ability to generalize to unseen data, the two approaches are
applied here as the base model to develop the WSN machine learning
diagnostic tool for interference detection and classification. Later in the
study, the previously designed signal classification approach will be
combined with the models developed in this paper to establish a WSN
edge device diagnostic framework. SVM models are investigated, based
on the simulated study, for high speed and low complexity detection,
enabling jamming classification when jamming is detected. The overall
diagnostic methodology is visualized in Fig. 10, where the received I/Q
samples are deconstructed into the set of 14 features and passed to the
trained classification models.

This concept is based on the hypothesis that I/Q samples are always
available to a functioning receiver at the edge, while analysis focuses
on the presence of a legitimate signal (ZigBee for WSNs and receiving
four or more satellites for GPS applications). If an erroneous packet or
less than four satellites is received, the samples can be passed to the
interference detection algorithm for jamming detection and/or classifi-
cation. For this, a database of legitimate signal data and combinations
of legitimate signals and jamming signals is required. This approach
requires high accuracy and model generalization to unseen data while
simultaneously achieving low complexity and low order features, fast
optimization and prediction times and a computation fingerprint that
is as small as possible. As a result, a machine learning diagnostic tool
is developed for use on low-power resource-constrained edge devices.
Each model is trained and tested using the available Python3 libraries
running on an Intel i7-9700 3 GHz CPU. Additionally, the DNNs are
developed using Keras and TensorFlow on an Nvidia GeForce RTX 2060
graphical processing unit (GPU) with 6 GB of RAM. Notably, this study
demonstrates that less complex machine learning approaches can match
the performance of DNNs, but for a small fraction of the required time
and resources when sufficiently detailed features are applied. A vital
characteristic to observe relates to the designed models. As the data
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Table 7
Optimized XGBoost hyper-parameters.

Parameter: Value:

No. decision trees 5
Learning 0.8
Max. tree depth 10
Min. child weight 2
Data used 95%
Booster gbtree
Column sub-sampling 75%
Min. Loss reduction (gamma) 0.5

Table 8
Optimized DNN structure: TensorFlow/Keras.

Layer type Layer size Activation function

Input 14 neurons relu
Fully connected 50 neurons relu
Fully connected 34 neurons relu
Fully connected 17 neurons relu
Output No. classes softmax

Fig. 13. The probability density of the raw received I/Q samples collected under a
range of interference conditions and signals, with the clean case marked.

in this study are collected in a typical domestic operating environment
under typical wireless channel fluctuations, the novelty is the designed
methodology and diagnostic framework, rather than the trained and
tested machine learning model.

5.1. GPS results

Initially, the focus is on GPS signals as their associated low re-
ceived power levels, approximately −125 dBm, are comparable to
signal classification as received signals resemble noise, where relatively
low powered jammers can readily block satellite reception. A relativ-
ity simple feature set focused on the calculated PDF can determine
the presence of unwanted signals. This approach was successful in a
previous study [28] focusing on the Random Forest machine learning
approach, a low complexity feature set and data from a subset of
available satellites. The typical unimodal shape of the GPS signals (as
shown in Fig. 13) becomes distorted as the jamming power increases.
However, if a more advanced feature set is implemented, the jamming
signal can be classified. For this process, the previously developed op-
timal machine learning models and associated features in [13] will be
used to investigate whether a GPS jamming detection and classification
approach can be designed. Data was collected for clean GPS signals
and GPS signals in the presence of CW and O-QPSK modulated signals
(ZigBee).

The designed GPS interference detection process is in two stages,
a low-complexity linear binary classifier for detection and a multi-
class classification model for signal classification. Low complexity and
minimum response times (prediction and optimization) were the essen-
tial design requirements. To validate the developed approach, a DNN
11
was designed and compared against less complex SVM and XGBoost
approaches. This work expands on the previous study [28] by looking
at satellite data across a full 24-hour period (31 satellites in total) and
classifying the jamming signal.

The two-stage approach of detection and classification was the
proposed design strategy, as jamming signal classification should only
be implemented once interference is detected, to minimize computa-
tional use on resource-constrained devices. This investigation applies
an ISM RF band wireless signal classification algorithm, based on
received I/Q samples, to GPS signal jamming detection and classi-
fication. However, clean GPS data and associated data for jamming
scenarios at 1.57542 GHz was required. The XGBoost hyperparameters
as per Table 7, were applied and the DNN structure in Table 8 is
applied with two output neurons for detection and three neurons for
classification (Clean, CW and O-QPSK). GPS signals can leverage the
full previously developed scheme as GPS signals resemble noise under
typical operating conditions.

The binary jamming detection and multi-class classification results
are provided in Table 9. The test data can be classified as unseen since
the data was collected over 24 h and used several different power
levels for the two jamming signals. The data were randomly allocated
to training and testing in the conventional 80 ∶ 20 split. Each received
data grab was analyzed for at least forty different time segments, where
both the GPS signals and jamming signals were time-varying. Hence,
each data segment analyzed is a unique set of data points as no specific
time instance is analyzed twice. Thus, the data instances are mutually
distinct. This data analysis meant that the developed models were not
dependent on any specific part of the received data outputted from the
RTL-SDR dongle. Additionally, as the data instances were sufficiently
randomized before allocation to either training or testing, the testing
data was unseen during training.

The detection results clearly show that the designed approach can
detect variations from the expected received signal even when Pluto
SDR jamming signals incurred a ‘‘−70 dB’’ gain. At those low jamming
evels, a few satellites can still be received. It was envisaged that the
eveloped SVM would be the initial detector, where the radial basis
unction was determined to be the optimal kernel. However, the most
ccurate overall model was the developed XGBoost, which outper-
ormed the SVM and DNN while simultaneously attaining the fastest
raining and average prediction times. Hence, a one-stage XGBoost
pproach could be implemented for this GPS interference detection
roblem. Notably, these models used the optimal parameters of the ISM
and signal classification models. Due to the achieved accuracy and
ess computational resources compared to the DNN, it was concluded
hat this XGBoost model was optimal for this GPS investigation. The
GBoost models were investigated further by implementing 50-fold
ross-validation for both the binary and multi-class models. The mean
ccuracy score of 50 different models was 99.9949% and 99.99489%
or the binary and multi-class models, respectively. The corresponding
tandard deviation of the 50 different models’ accuracy score was
.02496% and 0.02499%, respectively. Both model’s deviation is very
ow, meaning that it is unlikely that either model is overfitted.

These GPS results proved that the developed features in [13] are
ot confined for use in the 2.4–2.5 GHz RF band. Additionally, the
bility for the developed, optimized models (Tables 7 and 8) to be
ransferred to new data and be useful for jamming detection and classi-
ication bodes well for use in WSN applications. Overall, this GPS signal
nvestigation was a bridging investigation between the previously de-
igned signal classification approach and the WSN jamming detection
nd classification. This GPS exploration proves that the concept of
ocusing on raw received I/Q samples for low complexity interference
etection is a solution that has value, given a descriptive feature set and
ptimal model hyperparameters. Furthermore, this GPS examination
roved that the 14 developed features also work for ranges larger than
−1:+1] as the GPS signal data was analyzed in the received range
f [−127:128]. This result adds another layer of evaluation to the

developed feature set and the usefulness of these features in received

signal analysis.
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Table 9
GPS jamming detection and classification results.

Training
time

Prediction
time (ms)

Accuracy
(%)

No. errors No. test
points

Model
size (kB)

Binary detection

SVM
(RBF)

1067.82
ms

0.118 99.99 1 9808 22

XGBoost 45.85 ms 0.05745 100 0 9808 3
DNN 14719 s 22.4 99.98 2 9808 152

Multi-class classification

XGBoost 103.72
ms

0.061 99.98 1 9808 11

DNN 15456.67
s

24.82 99.94 6 9808 153

5.2. WSN results

The designed GPS approach cannot be applied to WSN signals due to
the received power levels, which are much higher in comparison. This
observation is why the simulation study was critical, as it contributed
to the development of the WSN interference detection strategy. The
simulations were the ideal scenario, which operated without hard-
ware restrictions and the data needed for jamming identification and
classification was identified. The simulation results specified that the
data needs to be a combination of legitimate and jamming signals
to accurately train the interference detection model and identify the
differences between error-free and jammed operation. The 14 features
previously developed and extracted in [13] are explored to determine
whether the new data can be leveraged with an existing ISM band
signal classification scheme. Furthermore, by focusing on the same
features for multiple models and classification, an overall diagnostic
strategy can be formulated. In the subsequent model development in-
vestigations, low complexity and minimized response times (prediction
and optimization) are the essential design requirements. As a result,
where optimizations can be made over the parameters in Tables 7 and
8, the lower complexity XGBoost approach will be examined.

The simulation results in Section 3.4 established the detection
methodology as a two-phase detection process. This process is visu-
alized in Fig. 10 and implements a data pipeline approach. The first
distinct model’s output is used to decide whether the second multi-
class model is applied to the input signal. This approach saves time
and energy as the binary classification model is implemented initially
when a packet is received with an error and used to activate the multi-
class classifier, as required. The following results (and implementation
study) demonstrate the developed diagnostic framework and feature
set’s usefulness. The collected data was split into training, validation
and testing, which allows an estimate of the error rate on new cases,
known as the generalization error (or out-of-sample error), to be found.

For the WSN jamming detection and classification study, several dif-
ferent situations were investigated using the 14 features and optimized
models mentioned above. These different studies aimed to develop a
diagnostic strategy for edge devices that can operate under several
conditions. The work included the five steps mentions below, which
will be investigated separately before being combined into an overall
edge device interference diagnostic tool.

• Legitimate node classification (Radio Classification)
• Legitimate XBee node vs. non-legitimate SDR classification, where

both signals have the same spectral image (Fig. 2)
• Artificial jamming of legitimate XBee node data
• SDR transmitted ZigBee live wireless jamming
• Live subtle CW jamming of commercial XBee nodes

The first concept investigated was whether the 14 features could
12

dentify individual commercial nodes (radio identification), which are
DIGI XBee nodes in this study. This classification would allow a ma-
licious commercial node to be identified if transmitting data in the
network. Since the 14 features were designed to identify legitimate
ZigBee transmissions, the results provided in Table 10 are as expected.
The DNN and XGBoost models are compared here as this is a multi-
class classification, where a single model was desired. The original
model for the XGBoost outperforms the DNN and optimizing the DNN
would increase the training, optimizing and prediction times, along
with the overall model complexity. As a result, the optimum XGBoost
model was determined to use 500 decision tree estimators, a learning
rate of 0.4, a maximum tree depth of 20, a minimum child weight
of 1, used 95% of available data per tree, used the ‘‘gbtree’’ booster,
sub-sampled 90% of the feature columns and applied a minimum loss
reduction of 0. This optimal model only achieved a 5.74% reduction in
the model error. This error reduction is smaller when a 50 Fold cross-
validation is applied, where the optimal approach achieves 71.4988%
accuracy compared to 66.8211% when using the parameters as per
Table 7. The confusion matrix for this approach is provided in Fig. 14(a)
where the classifier fills every classification possibility. These features
cannot develop a radio classification model, but the results suggest
that legitimate radios may be classified, as the results indicate the 14
features do characterize the commercial nodes together.

As the individual XBee could not be individually identified with
sufficient accuracy, the next phase aimed at classifying legitimate (XBee
Node) and non-legitimate (SDR) nodes. This method involved using
data from 5 individual XBee nodes, which transmitted SenseHat data
and network operation signals, such as, for example, acknowledgments,
and SDR ZigBee transmissions using SenseHat and random data. The
ZigBee signals have the same spectral visualization, as shown in Fig. 2
and the SDR deploys the ZigBee frame (Table 1). The signals have sim-
ilar packet structures and spectral shapes, but the SDR devices are not
explicitly designed for WSN ZigBee operation. The 14 features extracted
in [13] for WSN signal classification can be used to enhance diagnostics
on edge devices by implementing this malicious node identification
tool. The classification results are provided in Table 10 where the SVM,
DNN and XGBoost models are compared. The XGBoost model, using
the parameters in Table 7, outperformed the DNN and SVM, where
the RBF kernel was determined to be the optimal approach. As the
XGBoost achieved the best accuracy, it was further investigated to
see if the error could be reduced. The optimum XGBoost model was
determined to use 200 decision tree estimators, a learning rate of 0.6,
a maximum tree depth of 5, a minimum child weight of 1, used 75% of
available data per tree, used the ‘‘gbtree’’ booster, sub-sampled 75%
of the feature columns and applied a minimum loss reduction of 0.
These results show that the SDR can be identified, with relatively low
error, from amongst the commercial XBee nodes as a malicious external
node. The confusion matrix for this classifier is shown in Fig. 14(b).
Using the positive result as an SDR transmission, the optimal classifier
incurs two false positives and four false negatives. These results indicate
a sensitivity of 0.993 and a specificity of 0.998, where sensitivity
refers to the ability to correctly detect a positive result (non-legitimate
signal) in the received I/Q samples and specificity characterizes the
ability to correctly identify (reject) a legitimate ZigBee signal. As these
classification concepts approach 1, the more optimal the developed
classifier. However, the received samples do portray similar properties,
as shown in Fig. 15, and spectral shape (Fig. 2). As a result, to overcome
network failure under jamming, these SDR ZigBee signals can be used
to examine the jamming and ZigBee signal interactions in live over-the-
air transmissions to gain the required insights for commercial ZigBee
signals. Additionally, it suggests that a matched signal attack could be
detected and classified, as it is envisaged that matched interference
attacks would be implemented using a type of SDR. Furthermore, as
the small deviations between the SDR samples and XBee samples are
identified by this feature set, subtle interference can be detected.

Before investigating the live signal jamming scenarios using the

SDRs to transmit ZigBee signals continuously without the need to be
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Fig. 14. The Confusion Matrices for the optimal XGBoost approach for (a) The XBee Node radio identification, where the predictors 0–4 correspond to a specific XBee node. (b)
The Legitimate ZigBee Signal Identification where predictor 0 is the XBee Signals and 1 is the SDR ZigBee signals. (c) Artificial Jamming Signal Classification where the predictors
are (0) ZigBee XBee (1) CW Jammed (2) WiFi Jammed (3) Matched Signal Interference.
Fig. 15. A comparison between received samples from a ZigBee signal transmitted
from a XBee device and a SDR.

Table 10
XBee node classification results.

Training
time

Prediction
time (ms)

Accuracy
(%)

K fold CV K fold
Acc. (%)

K fold
Std. (%)

XBee node identification — 627 test points

XGBoost 43.88 ms 0.064 66.67 50 66.82 7.91
DNN 909.27 s 23.17 55.66 5 53.05 1.765
XGBoost
(Optimal)

1600.61 ms 0.216 72.4 50 71.49 5.53

Legitimate ZigBee signal — 1518 test points

SVM (rbf) 1162.16 ms 0.143 96.9 50 97.8 1.15
XGBoost 477.38 ms 0.098 98.35 50 98.07 1.183
DNN 1778.24 s 27.54 95.52 5 95.45 0.77
XGBoost
(Optimal)

210.44 ms 0.09 99.60 50 99.31 0.708

connected to a network, an ‘‘Artificial’’ jamming approach was devel-
oped. Previously collected over-the-air I/Q samples for XBee ZigBee,
WiFi, CW and SDR ZigBee signals were utilized to jam the legitimate
ZigBee data in software. This technique involved randomizing the
previously collected XBee data and adding another previously collected
signal to the received ZigBee I/Q samples segment. These signals in-
cluded CW, WiFi and SDR transmitted ZigBee data acting as a matched
interference signal. All of the data was collected through over-the-air
live experiments in a typical operating ISM RF band environment where
the number of connected devices, demand and services in operation can
all change. The Pluto SDR receiver’s maximum values were maintained
by limiting all ‘‘jammed’’ samples to the region of [−2048:2047] or
[−1:+1] when scaled. The investigation results are provided in Ta-
ble 11, where each investigated model performs well for the jamming
detection and classification. As this artificial jamming examination uti-
lizes the original 14 features, the assessment of these features improves,
as they have been adapted to WSN jamming detection.

In terms of jamming detection, as simulation results indicated, the
SVM approach using the RBF kernel is the optimal model for both
performance and complexity. However, the difference in performance
13
between the SVM, XGBoost and DNN models is minimal. The XGBoost
provides the quickest average prediction time, but overall the SVM is
the optimal approach in terms of the trade-off between performance
and implementation times. The DNN slightly outperforms the XGBoost
model for jamming signal classification. However, the XGBoost model
was investigated for a more optimal approach to determine if the lower
complexity XGBoost could achieve the same results as the DNN for this
classification problem. The examination produced the optimal XGBoost
as using 25 decision tree estimators, a learning rate of 0.7, a maximum
tree depth of 10, a minimum child weight of 1, used 95% of available
data per tree, used the ‘‘gbtree’’ booster, sub-sampled 90% of the fea-
ture columns and applied a minimum loss reduction of 1. This optimal
XGBoost outperforms the developed DNN and produces the results for
reduced computation and time requirements, which is critical for edge
device operation. These results indicate that the 14 features should
be applicable to jamming detection in a live experimentation and the
classifier’s confusion matrix is specified in Fig. 14(c). This confusion
matrix outlines that classifier performs perfect classification between
non-jammed and jammed conditions, resulting in a sensitivity and a
specificity of 1.

This artificial jamming scenario was crucial as it provided addi-
tional evidence that the designed feature set could be applied to WSN
jamming detection and classification. Furthermore, it evaluated the
required data outlined in the simulation study and provided a glimpse
into what the signal interactions would resemble in live experiments.
In contrast to the two-stage approach indicated by the simulations,
this artificial jamming study suggests that a single multi-class model
(Table 7) can be implemented without incurring much of a loss in
accuracy. Simultaneously, the single XGBoost model achieves a faster
prediction time than the binary SVM detection and any two-stage
approach. These results indicate that the 14 features outperform the
original simulation features even with hardware restrictions, poten-
tially discovering the real-world differences that were a simulation
limitation. Notably, these results motivate live over-the-air experimen-
tation and outline expected types of signal interactions (Fig. 16(a)).
Finally, this ‘‘artificial’’ jamming is justified as the signal data are not
collected simultaneously, so the sample interactions are random. As a
result, this approach imitates the random signal interactions in over-
the-air transmissions, where different packet segments can interact,
over time, with different jamming signals. This procedure is mainly
investigating reactive high power jamming where the legitimate signal
is sensed before transmitting a jamming signal. Hence, the signals get
the opportunity to interact before being received. It also examined
constant jammers where the legitimate signal has enough power to
transmit through the interference but is received with errors.

As the artificial jamming allowed high-powered jamming to be
examined and indicated successful model development, a live over-
the-air approach was warranted. Enough power in the jamming signal
disrupts legitimate ZigBee network operation. Reactive, which only
jams once a legitimate signal is detected in the channel, and constant
jamming approaches are investigated. As a result, an efficient method

for the continuous transmission of signals that neglected the presence
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Table 11
Artificial jamming results.

Training
time

Prediction
time (ms)

Accuracy
(%)

K fold CV K fold
Acc. (%)

K fold
Std. (%)

Jamming detection — 2224 test points

SVM
(RBF)

359.04 ms 0.125 99.96 50 99.83 0.28

XGBoost 478.72 ms 0.0785 99.91 50 99.73 0.341
DNN 2269.19 s 22.14 99.87 5 99.76 0.1146

Jamming signal classification — 2224 test points

XGBoost 253.3 ms 0.06 99.595 50 99.62 0.567
DNN 2320.94 s 22.22 99.73 5 99.6177 0.1566
XGBoost
(Optimal)

689.3 ms 0.088 99.96 50 99.72 0.4093

Fig. 16. An example of a ZigBee signal interacting with a CW Jamming signal for (a)
he artificial jamming approach involving XBee signals and (b) The live SDR ZigBee
nd CW jamming investigation. Both approaches indicate a similar interaction of the
igBee signal in each case includes a CW trend.

f jamming was required to gain access to the required data of O-QPSK
ZigBee) transmissions interacting with other signals. This method,
s mentioned earlier, utilized SDRs to transmit the required ZigBee
ignal structure. Even though the SDR and XBee ZigBee signals can
e classified from each other, this investigation allows for an initial
nsight into how the O-QPSK signals interact with jamming signals in
live operating environment. The SDR jamming results followed what
as discovered during the ‘‘artificial’’ jamming investigation. The sim-

larities are visualized by examining an example of the I data resulting
rom the ZigBee (O-QPSK) and CW interactions. This visualization is
rovided in Fig. 16, where Fig. 16(a) specifies the artificial situation
nd Fig. 16(b) visualizes the live SDR investigation. These results indi-
ate that the XBee ZigBee/jamming signal interactions in the artificial
cenario mirror the interactions observed in the live over-the-air SDR
igBee/jamming signal interactions, but at higher jamming powers.
his indication validates investigating SDR transmission and it can
e hypothesized with sufficient confidence that the XBee over-the-air
nteractions would correlate with this SDR method.
14
The collected data included SDR transmitted signals with no jam-
ming signal and in the presence of CW and matched signal interference.
The SDR jamming signal power gains varied from −55 to −34 dB
on the Pluto SDR, where the CN0417 power amplifier provided an
additional 20 dB gain to the Pluto SDR output, approximately. The
power amplifier was implemented to mimic typical scenarios where
a power amplifier would be necessary to attack a sufficiently large
network area. These signal powers were sufficient to cause signal
interactions while not being too high so as to block all transmissions. As
a result, this examination occupies the subtle and low-power jamming
region, which is more difficult to detect than the high impact jamming
that blocks all signals due to the power levels in operation. For this
investigation, clean SDR ZigBee data is used as the ‘‘Good ZigBee’’ data
since the results would be skewed if XBee data were used due to the
previous SDR/XBee ZigBee classification results.

The need for a new model was validated by using the previously
developed ISM band signal classification model on the collected data.
This model was trained with SDR and XBee ZigBee instances. Nearly
all of the SDR jammed data was classified as ZigBee due to subtle
jamming being implemented and the signal classification being built
upon distinct signals. As a result, a model based on signal interactions
is needed and this SDR approach provides the most efficient solution.
The collected SDR data is randomly assigned to training and testing in
the ratio of 80:20, respectively, and is labeled as either clean, CW or
matched interference data. As the data is collected as per Section 4.1,
the SDR receives all data on the required channel during data collec-
tion. All of the data collected during the various jamming scenarios
was labeled as jammed. However, some instances may be mislabeled
as the Pluto SDR jammer stops transmitting briefly when changing
gain or frequency values. As a result, some instances may not include
jamming or only include some small jamming power that results in the
received signal being error-free. However, this examination provides
sufficient evidence that the developed features and models can detect
jamming signals and generalize to new data. As the data is collected
over time in a live wireless operating environment, each collected
signal is unique. Each signal is divided into three segments for analysis
and then randomly assigned to training or testing. The overall process
results in the testing data being unseen to the training data due to each
data segment’s unique timestamps and interactions.

The results are specified in Table 12 for both jamming detection and
classification. In contrast to the artificial jamming study, the XGBoost
model achieved the highest accuracy at 97.57%. As a result, it was
investigated to determine if a more optimal approach existed. The
optimum XGBoost model for binary jamming detection uses 25 decision
tree estimators, a learning rate of 0.2, a maximum tree depth of 20,
a minimum child weight of 1, used 95% of available data per tree,
uses the ‘‘gbtree’’ booster, sub-sampled 90% of the feature columns
and applied a minimum loss reduction of 5. There was a trade-off
for this optimal XGBoost model as a slightly more accurate (0.054%)
model uses 250 decision tress, but the 25 decision tree approach was
chosen for a less complex approach. A similar trend was discovered
in the jamming classification since, of the two original models, the
XGBoost outperformed the DNN and a more optimum approach existed.
The optimal XGBoost setup for jamming classification (Clean, CW or
matched interference) uses 25 decision tree estimators, a learning rate
of 0.2, a maximum tree depth of 20, a minimum child weight of 1, used
95% of available data per tree, used the ‘‘gbtree’’ booster, sub-sampled
90% of the feature columns and applied a minimum loss reduction of 0.
A slightly more accurate model (0.05%) uses 50 decision trees, but to
keep the approach less complex, the 25 trees were chosen. The resulting
confusion matrices for the binary and multi-class SDR classifiers are
provided in Figs. 17(a) and 17(b), respectively. Both classifiers exhibit
high performance in terms of identifying the presence of interference
(positive case) and rejecting legitimate clean signals (negative case).

The jamming detection model results in a sensitivity of 0.996 and a
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Fig. 17. The confusion matrices for the optimal XGBoost approach for (a) The SDR ZigBee Jamming detection where the predictor are (0) ZigBee Clean, (1) Jammed (b) The SDR
ZigBee Jamming Classification where the predictors are (0) ZigBee Clean, (1) CW Jammed (2) Matched ZigBee Interference (c) XBee CW Jamming Detection where the predictors
are (0) ZigBee XBee (1) CW Jammed.
Table 12
Over-the-air SDR jamming results.

Training
time

Prediction
time (ms)

Accuracy
(%)

K fold CV K fold
Acc. (%)

K fold
Std. (%)

Jamming detection — 1852 test points

SVM
(RBF)

1817.24 ms 0.145 95.68 50 95.42 1.56

XGBoost 488.78 ms 0.062 97.57 50 96.52 1.406
DNN 2784.2 s 23.5 96.38 5 95.005 0.594
XGBoost
(Optimal-
250)

1046.22 ms 0.0743 99.03 50 97.65 1.42

XGBoost
(Optimal-
25)

93.749 ms 0.0705 98.97 50 97.46 1.32

Jamming signal classification — 1852 test points

XGBoost 39.89 ms 0.0495 95.57 50 95.25 1.817
DNN 2619.56 s 22.22 95.03 5 92.97 0.917
XGBoost
(Optimal)

481.71 ms 0.054 97.52 50 96.637 1.44

specificity of 0.975, which means that the classifier can correctly detect
interference and reject legitimate ZigBee signals.

This study’s final aspect is the achievable low power CW jamming in
an active ZigBee network consisting of XBee nodes. The data collected
in this approach is sparse and inefficient as the network reacts to the
jamming signals. CW jamming was chosen as the simulations predicted
this jamming approach to be less effective than matched interference,
resulting in a higher chance of collecting the necessary data using the
SDR. An example of the collected I data, labeled as a CW interference
signal interaction, is shown in Fig. 18, which indicates a similar trend to
the artificial and SDR jamming approaches in Fig. 16. This data strategy
was implemented to identify the signals that incurred a CW interaction.
As the number of packets received at the receiver was tracked (on the
Raspberry Pi), it was known that some good signals were being trans-
mitted and those I Data segments followed the previously developed
signal classification data [13]. This is in contrast to the SDR approach
as there was no packet monitoring during that investigation. The ZigBee
packets were received as the SDR jammer briefly stops transmitting due
to the Matlab functions being used. A set of CW jammed XBee data
was collected and used to develop a model based entirely on XBee data
and as testing data for the model designed using SDR ZigBee data. The
previously developed XBee data was employed as the ‘‘good’’ ZigBee
data and an additional test dataset was collected as ‘‘unseen’’ data.
The results for the XBee models are specified in Table 13. The optimal
determined XGBoost model uses 200 decision tree classifiers. However,
an approach that uses only five decision trees produces a less complex
design and only suffers from a 0.1% accuracy drop. As a result, the
optimal hyperparameters use 5 decision tree estimators, a learning rate
of 0.9, a maximum tree depth of 10, a minimum child weight of 5,
95% of available data per tree, the ‘‘gbtree’’ booster, sub-sample 90%
of the feature columns and apply a minimum loss reduction of 0. The
resulting confusion matrix that achieves 98.2% accuracy is specified
15
Fig. 18. An example of a ZigBee signal interacting with a CW Jamming signal for the
live XBee ZigBee and CW jamming investigation, which incurs a similar interaction to
that observed during the artificial and SDR jamming situations.

in Fig. 17(c). Using the case that a positive result (‘‘1’’) indicates a CW
jammed reception, the classifier’s sensitivity is 0.978 and the specificity
is 0.9865. These model results prove that the developed classifier has
high performance in detecting jamming and rejecting legitimate ZigBee
signals.

The SDR based jamming and unjammed XBee ZigBee data were used
to train a new XGBoost model, which was tested using only unjammed
XBee and XBee CW jammed data. This model investigated whether
the SDR jammed data could be used to detect interference in the
XBee data. The optimal XGBoost hyperparameters used five decision
trees and the achieved accuracy was 90.62%. This result indicates the
usefulness of the SDR data, which can be classified amongst XBee
nodes, and the accuracy can be improved with more subtle jamming
data. All of the available XBee and SDR ZigBee data were used to
train and test another XGBoost model. This method examined if the
SDR data’s presence reduced the detection accuracy and if the SDR
data can be applied as additional data for continuous jamming signals
that deny services and block transmission in ZigBee networks. This
approach would enable acquiring data for reactive jamming scenarios.
An XGBoost model consisting of 25 decision tree classifiers produced
an accuracy of 98.34%. These results validate focusing on SDRs for
a more efficient WSN jamming signal investigation. Additionally, the
result indicates that the SDR approach, where higher jamming data and
different jamming signals can be implemented, enhances WSN jamming
detection and classification diagnostic tools once available commercial
ZigBee (XBee) data is also employed. This insight means more efficient
model development is achievable without the loss of accuracy.

This study’s developed models provided sufficient evidence that the
developed features and model structure are applicable for WSN ZigBee
jamming detection and classification. The previously developed signal
classification model can be combined with the jamming detection and
classification models to create an overall low-complexity WSN edge
device interference diagnostic framework based on data that is always
available to a functioning receiver. The required implementation algo-
rithm for the edge node is provided in Algorithm 1. This algorithm
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Table 13
Over-the-air XBee CW jamming results.

Training
time

Prediction
time (ms)

Accuracy
(%)

K fold CV K fold
Acc. (%)

K fold
Std. (%)

XBee jamming detection — 1237 test points

SVM
(linear)

829.88 ms 0.132 93.93 50 90.6413 3.00

XGBoost 199.43 ms 0.06 94.9 50 96.544 1.70
DNN 17788.88 s 22.275 93.16 5 91.77 1.45
XGBoost
(Optimal)

205.42 ms 0.07 98.2 50 96.625 1.572

outlines when each of the designed models should be implemented
and why using the same 14 features in each developed algorithm is
crucial for the diagnostic framework’s overall design. Each model can
use the same 14 features as an input, and so it minimizes, to an
extent, the computation required at the edge. This algorithm and the
developed machine learning diagnostic tools achieve low complexity
solutions to edge device diagnostic challenges in WSN applications.
The individual machine learning models achieve similar, if not better,
accuracy to the approaches introduced in Section 2. For example, the
collaborative packet rate analysis system in [18] achieves jamming
detection accuracy of over 97% and the chip sequence error pattern
approach in [19] achieves accuracies of over 96% for all signals ana-
lyzed and an average of 98.29%. In [37], where raw I/Q samples are
the main focus, the highest accuracy achieved for the designed signal
classification approaches is 98%. As a result, the framework developed
in this study uses a less complex methodology, has several applications,
is transferable across the RF spectrum, and achieves accuracy compa-
rable to the literature. The novelty surrounds using data continuously
available to a functioning receiver and low order features to develop
low complexity yet high performance machine learning models. The
developed 14 features and associated low complexity models achieve
equivalent accuracy and generalization error results as the developed
fully connected deep neural networks, but for a small fraction of the
computation requirements and in a vastly reduced timescale. This
designed diagnostic framework for interference detection enhances
WSN edge devices’ security and provides multiple detection scenarios,
critical for an overall secure wireless system.
Algorithm 1: Edge Node Diagnostic Routine
Data: Received I/Q Samples
if Packet Received without errors then

Run Legitimate Node Classification;
if Node is legitimate then

Continue;
else

Malicious Signal;
end

end
if Packet received with errors then

Implement Jamming Detection Model;
if Jamming Detected then

Run Jamming Classification;
else

Continue;
end

end
if No Packets Received then

Run ISM band channel/Signal classification model;
else

Other Fault;
end

5.3. Implementation

In this study, a subset of the developed supervised machine learning
algorithms was implemented on a Raspberry Pi embedded device with
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Table 14
Raspberry Pi XGBoost model results.

Training time (ms) Prediction time (ms) Accuracy (%)

Artificial jamming detection
939.82 12.92 99.78
Artificial jamming classification
16831.39 14.52 99.69
SDR jamming detection
1569.59 0.789 98.596
SDR jamming classification
5163.98 0.791 97.08
XBee CW jamming detection
157.03 0.85 97.99

1 GB of RAM and a quad-core Broadcom Arm Cortex A53 processor
(1.4 GHz). This Raspberry Pi utilization is the initial implementation
step required to achieve edge device operation. The Raspberry Pi
can run python code and all required machine learning libraries for
XGBoost. The data for training and testing the models were stored
on the Raspberry Pi device. The jamming detection and classification
results for the artificial jamming and SDR over-the-air scenarios, along
with the XBee CW jamming detection, were investigated. The optimal
XGBoost models were applied in each case and the results are provided
in Table 14, where, for each model, similar accuracies were achieved,
due to differences in multi-threading. However, the training and av-
erage prediction times incurred substantial increases. These increases
in training and prediction times would be much more considerable
for a DNN, but, generally, training times are not a concern as it can
be rectified by training and optimizing the model on a much more
advanced machine. Only the optimally trained model must be uploaded
and used on the lightweight embedded device, but the prediction time
and required computational resources are important factors. A few
ms differences can be significant factors for real-time decisions, and
lightweight models are needed for resource-constrained devices, where
energy usage needs to be optimum. The Raspberry Pi was chosen as
it is an example of how low cost hardware has advanced over the past
decade or so. As we look to the future, it is not unreasonable to suggest
that edge devices will have similar specifications.

Furthermore, implementing machine learning at the edge on
resource-constrained devices is feasible due to advances in hardware,
like the Raspberry Pi implementation, and low numeric approaches for
machine learning. In [56], customizable hardware architectures, such
as field-programmable gate arrays (FPGAs) provide opportunities for
data width specific computation by implementing unique logic config-
urations. As a result, highly optimized processing, that is unattainable
by full precision networks, is achieved. The techniques gained from
such low numeric experimentation will enable machine learning at the
edge. Low precision networks, which suit computationally constrained
devices, typically incur a classification accuracy penalty. However, this
can be recovered through increased computation [56]. As a result, this
study and the developed diagnostic framework is a feasible solution for
WSN applications and wireless GPS edge devices.

Overall, the simulations, the GPS investigations and the several
ZigBee over-the-air data examinations have provided sufficient evi-
dence that the developed low order features, and associated models,
can detect and classify interference in WSN and GPS applications.
The low-order feature set based entirely on analyzing received I/Q
samples is novel and several models can use the same feature set
as an input to develop a diagnostic strategy. More data is required
to realize the potential of the developed framework fully. However,
for a typical domestic environment, this study’s results have demon-
strated the effectiveness of the designed methods, which differ from
the literature by only requiring access to raw received I/Q samples,
permitting independent device decisions and using low-order statistical
features. Despite the trend to use deep learning approaches, this study
employed potent data analysis and signal processing to prove that
traditional techniques effectively facilitate parsimonious interference

detection and classification.
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6. Conclusion

This study employed low-order features extracted entirely from
received I/Q samples to develop a WSN interference diagnostic frame-
work for resource-constrained edge devices. Matlab Monte Carlo simu-
lations provided the initial evidence that I/Q samples can be employed
to detect interference in ZigBee signals. These simulations involved CW,
matched, WiFi and thermal noise interference in the ideal case, where
no hardware restrictions were in operation. The developed simulations
concluded that both jamming detection and signal classification were
achievable and the required data was ZigBee and jamming signal in-
teractions. These simulations implemented a smaller feature set, due to
the lack of hardware restrictions, resulting in the PDFs and I/Q samples
having no numerical limits. SDRs, XBee commercial ZigBee nodes and
Raspberry Pi embedded devices were employed to design hardware
testbeds and the overall data strategy to investigate live over-the-air
signals. Both WSN ZigBee and GPS signals were investigated using an
SDR as the jamming device, transmitting both CW and matched ZigBee
interference.

The live signal investigation used a previously designed low or-
der feature set [13] that extracted features directly from the time,
frequency and PDF analysis of received I/Q samples. These features
used the simulations as a base but needed expansion to overcome
the hardware limitations. The optimal XGBoost and DNN architectures
from the previous study were leveraged in this jamming detection
and classification study to increase efficiency and begin diagnostic
framework design. The XGBoost algorithm outperformed or matched
the DNN in each case for a small fraction of the required time and
computational resources. This insight proved that traditional feature-
based methods are still fit for purpose, particularly for low complexity
solutions, and achieve high performance when potent data analysis and
novel descriptive features are applied.

Accurate XGBoost models were developed for legitimate XBee node
vs. non-legitimate SDR classification, artificial jamming of legitimate
XBee node data, SDR transmitted ZigBee live wireless jamming and
live subtle CW jamming of commercial XBee nodes. Additionally, GPS
jamming detection and classification models proved that the framework
is transferable across the RF spectrum. The designed models were
combined to develop an edge device low complexity, low order WSN
interference diagnostic framework, which is the main contribution of
the study. The framework provides multiple detection scenarios, using
the same features in each case, and enables independent decisions on
edge devices as no network-level data is required. This novel frame-
work has low complexity, high accuracy (> 95%) and fast optimization
and prediction times, critical for real-time edge device operation.

Future work aims to analyze a more extensive set of potential inter-
ference attack styles while collecting data on edge devices in different
operating environments. This additional data will enable more accurate
models to be developed and increase the probability of generalizing to
new operating environments. Model and feature optimization can be
further explored to see whether more refined approaches can be ob-
tained for resource-constrained edge devices. However, as the same 14
features were used for various models and classifications in this study,
trade-offs might exist when refining the feature set, where similar or
better accuracy is achieved for one approach, while a performance
degradation is seen in another. As a result, due to the multiple uses
of the developed low-order feature set, this work’s main future goals
focus on applying the designed interference diagnostic framework to
edge devices in different operating environments.
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