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Abstract: Virtual Synchronous Generator (VSG) control has been proposed as a means to control power electronics converter
interfaced generation and storage which retains the dynamics of the conventional synchronous machine. This study provides a
comprehensive, transfer function based, analysis of VGS control, which can be used as the basis for the design of VSG
transient and steady-state performance. Based on a hardware validated, large signal model, a small signal model and
associated transfer functions which describe the changes in real and reactive powers in response to changes in references and
grid frequency disturbances. The derived transfer functions are used to obtain insight into the correct design of VSG controllers.
The small signal models, transfer functions and associated analysis are validated by comparison with measured results on a
scaled hardware system.

1 Introduction
The increase in penetration of power electronics connected
renewable generation into the power system raises issues of power
system stability. These inertia-less renewable energy sources
decrease the total inertia of the network and potentially pose
transient stability issues. In relation to this problem, Beck and
Hesse proposed the Virtual Synchronous Machine (VSM) method
in 2007 [1]. Its basic strategy is to control the Voltage Source
Converter (VSC) to mimic the synchronous generator (SG) by
implementing the swing equation in the control loop, thus
emulating the inertia of a conventional generator. In this way, the
DC side of the converter incorporating electrical energy storage
mimics the virtual kinetic energy, [2] and the renewable energy
source mimics the prime mover. Note both the terms and virtual
SG (VSG) have since been used interchangeably in literature to
denote this type of control approach, but for the sake of
consistency in this work, we use only the VSG terminology.

Since the VSG concept had been proposed, different
implementation methods have been designed [3]. Although some
VSG control approaches have been applied to current source/grid
feeding converters [4, 5], here the focus is on voltage source/grid
forming converters which become necessary in the scenario of
increased converter interfaced generation. The synchronisation of
the grid forming VSG is analogous to the SG, relying on the
filtered power synchronisation [6, 7], without the need for a phase-
locked loop (PLL). The Synchronverter [8] was proposed with a
self-synchronising method [9] to directly control the converter
terminal voltage and this method has been further investigated in
wind and PV systems [10–12]. The synchronverter is essentially a
second-order SG emulation with the swing equation to determine
voltage angle and a reactive power controller to determine voltage
amplitude. Alternatively, the higher-order self-synchronised VSM
topology, based on the outer voltage, inner current controlled
converter, presented by D'Arco et al. [13–16], applies power-to-
frequency control to achieve synchronisation and directly regulate
the output voltage. This approach is one of the most general
implementations [17–28] as it also features the inclusion of virtual
impedance in the VSG which could help compensate the resistive
line impedance. This method has also been investigated for wind
generation [21, 22], electric vehicle systems [23] and other
distributed energy resources [24–26]. These VSG controls were
typically applied to storage systems or systems where the DC link
voltage was regulated by the storage system. On the other hand,

many renewable generation systems operate with a grid side
converter the main function of which is to control the DC link.
Considering the application of VSG control to these converters, it
has been shown that the dynamics of the DC side capacitor are
similar to those of the kinetic energy or inertia of the SG [29], and
authors of [30, 31] proposed a VSG control method based on the
DC link capacitor voltage dynamics. However, the VSG
implementation of [13–16] has the strongest similarity with the
conventional SG, with their control settings characterised by virtual
inertia, damping and droop settings which can be directly
analogous to the SG and giving similar performance if set
identically [27]. For that reason, this work is most relevant to those
VSG implementations.

An advantage of the VSM over the real synchronous machine is
that the inertia and damping parameters are controller settings
which can be easily varied (within the limits of ratings). Taking
advantage of this, Alipoor et al. [32] suggested the use of varying
inertia to rapidly reduce frequency oscillation after a contingency.
Moreover, Li et al. [33] utilised a self-adaptive inertia and damping
combination control on VSG to improve performance on both
oscillation and settling time, although the mathematics relationship
between VSG parameters and the oscillation reduction is missing
in that paper. Although adaptive controls are not directly addressed
in this work, the relationships developed can be used to give
insight into adaptive control settings.

A solid mathematical basis for investigating the interaction
between the VSG and the power system is vital in order to
understand the possibilities which might arise from it in terms of
enhancing power system performance. In this regard, D'Arco et al.
[13–16] provide the overall small-signal modelling of VSG with
the full Jacobian matrix. Based on this, Shuai et al. [34] applied
Bifurcation Theory to synchronverter-based microgrid stability
analysis. Although the Jacobian matrix could be used to analyse
parametric sensitivity, the decoupled parametric effect on output
power performance can be more clearly presented by transfer
functions. In this respect, the authors of [35, 36] have provided a
complex transfer function analysis with both VSG and VSC
dynamics for the frequency to active power, while [37, 38] uses a
simplified second-order transfer function for the frequency to
active power considering virtual inertia and droop. Chen and
O'Donnell [39] provided the transfer function for reference active
power to actual power output and then analysed the VSG stability
constraints. In addition, Wang et al. [40] used an angle to active
power transfer function to analyse the influence of the virtual
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resistance on active power. The benefit of transfer function analysis
over state space analysis is its ability to provide more intuitive
insight into the parametric effects on the response. While the state
space approach, is appropriate for stability analysis in complex
multi-input–multi-output systems it is not so easy to understand the
direct effects of each parameter on the transient response. In other
words, the transfer analysis put more emphasis on the device level
analysis, although this analysis is limited to the single-input–
single-output, while the state space approach is more appropriate
for the system-level analysis. Therefore before studying the
incorporation of the VSG in larger power systems, a more
insightful analysis at the device level is required which adequately
captures the VSG terminal characteristics, their interaction with the
grid and the influence of the VSG settings on its characteristics.
However, to the author's knowledge, there is no paper which
provides the complete coupled analysis for voltage angle and
magnitude and grid frequency to active and reactive power using
transfer functions. Therefore the novel contributions of this paper
are (i) to propose a VSG large-signal model, which is simplified
compared with models in [13–16] and mainly focuses on the VSG
parameters; (ii) to provide not only frequency to active power
transfer function, but also the comprehensive transfer functions
from the all possible inputs, references and grid state changes, to
the outputs, real and reactive powers, including the cross couplings
between them; (iii) to make use of the transfer functions to clearly
relate VSG terminal performance (power overshoot and damping,
settling time and oscillation frequency) to its settings and the grid
characteristics. Furthermore, the analysis is used as a basis for
exploring the influence of the settings on the terminal
characteristics with simplified equations providing a basis for VSG
design. The developed models are validated with hardware
experiments. Under the parametric analysis, the VSG transient
performance, including the overshoot, settling time and steady-
state error can be predicted from the mathematics computation, this
is verified also by the hardware experiments.

This paper first introduces the large signal model of VSG in
Section 2. From this model, the transfer functions relating active
and reactive powers’ outputs to reference changes and grid
frequency changes are developed. In Section 3, based on the
transfer functions, the effects of VSG settings on its output
performance will be analysed. Finally, the VSG parametric effects
are validated in a hardware experiment in Section 5.

2 VSG large signal model
VSG control is implemented into grid-connected inverters, which
typically interface the DC bus voltage from renewable generation
or storage to the AC grid. The structure of the VSG consists of an
active power regulation block, reactive power regulation block,
virtual impedance and a conventional VSC as shown in Fig. 1. The
blocks highlighted in blue form is the core of VSG control, which
aims to compute the reference output voltage uo, ref for the VSC
according to the required power; the blocks highlighted in red form

is the conventional voltage controlled VSC with output voltage uo
tracking uo, ref. In this work it is assumed that the DC link voltage is
maintained constant, e.g. by the action of the controller for the
storage system. It is also assumed that the response time of the
VSG control is similar to that of the SG, i.e. in the range of
seconds, while the VSC voltage controller response time is <10 ms.
Considering this separation in response times, the large signal
model neglects the fast-response VSC and only models the VSG
(i.e. it essentially assumes that uo = uo, ref). The specific conditions
under which this assumption remains valid to have been verified in
[39]. It is also assumed that the VSG is connected to an infinite
bus, with voltage, ug, through a line impedance, Zg. Since the VSC
acts as a voltage controlled converter, the electric potential E∠δ is
the controlled VSC voltage after the filter. Owing to the
implementation of a virtual impedance, E can be considered a
virtual voltage and the actual output voltage of the VSG after the
virtual impedance is uo as shown in Fig. 2. 

2.1 Active power regulation

The active power exchanged between the VSG and the grid is
determined by the angle δ of the virtual electric potential, e,
relative to the grid voltage angle. This angle is composed of a
contribution from the reference active power setpoint which can
also include a droop component for steady-state frequency support,
and a contribution from inertia during transients. The inertia part is
determined from the swing (1) while the droop part is determined
from active power-frequency droop (2)

dΔωVSG
dt = P*

J − P
J − D ωVSG − ωg

J (1)

P* = P + Kd ωg − ω* (2)

where J is virtual inertia, D is damping gain, Kd is droop gain,
ωVSG is VSG frequency, ωg is grid frequency, ω* is reference
frequency, P is VSG output active power and P* is VSG reference
active power.

If the damping gain D is made equal to droop gain Kd, (1) and
(2) can be combined as follows:

dΔωVSG
dt = P*

J − P
J − Kd ωVSG − ω*

J (3)

The constraints for the parameters J and Kd to ensure stability have
been analysed in [39]. Compared with the use of different damping
and droop parameters, this approach has a narrower scope, since
one parameter serves the purpose of damping during transients and
droop during steady-state. It does have the advantage of
eliminating the need for a PLL. Although the analysis here is based
on (3), nevertheless, it would be possible to extend the analysis to
the method with separate damping and droop with (2). This
possibility is discussed later in Section 6.

2.2 Reactive power regulation

The reactive power exchanged between the VSG and the grid is
determined by the electric potential magnitude E and can
incorporate a reactive power-voltage droop term as in (4) [41]

E = U* + Kq Q* − Q (4)

where Kq is the reactive power droop gain, U* is the voltage
reference, Q* is the reactive power reference, and Q is the VSG
output reactive power.

2.3 Virtual impedance

The virtual impedance [36] Rv + jXv plays a similar role to the
stator impedance of a synchronous machine. Thus, the virtual
impedance connects the VSG to the transmission line in series as
shown in Fig. 2. Hence, the current through the virtual impedance

Fig. 1  Virtual SG control structure
 

Fig. 2  Electrical system model of VSG connecting to the grid
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is the VSG output current →⇀ i. Thus, the VSG output voltage uo
can be obtained as the electric potential minus the voltage drop on
the virtual impedance

uo = e − Rv + jXv i (5)

2.4 Electrical system model

In steady-state, the reactive power and active power references
determine the virtual electric potential and its phase angle,
respectively. Assuming the transmission line impedance between
the VSG and grid is Rg + jXg, and the grid voltage is ug and taking
the grid voltage as the reference as defined by (8), then the
resulting phase angle from the active power regulation is equal to
the phase difference between the grid and the VSG potential. Then
the electric potential can be defined as (6) in the static dq-frame,
where the angle is the integral of the frequency change in both
VSG and grid (7)

e = ed + jeq = Ecos δ + jEsin δ (6)

dδ
dt = ΔωVSG + Δωg (7)

ug = ugd + jugq = Ug (8)

where Ug is the magnitude of the grid voltage and
Δωg = ω* − ωg .

Fig. 2 presents the electrical system model of the VSG
connected to the grid.

From Fig. 2, the output current or line current can be easily
computed as

R = Rv + Rg (9)

X = Xv + Xg = 2π f VSGLv + 2π f gLv (10)

i = id + jiq = e − ug
R + jX (11)

The current in dq-frame would be

id = R
R2 + X2 ed − ugd + X

R2 + X2 eq − ugq

iq = − X
R2 + X2 ed − ugd + R

R2 + X2 eq − ugq

(12)

Substituting (6) into (5) gives the output voltage in the dq-frame

uod = Ecos δ − idRv + iqXv

uoq = Esin δ − idXv − iqRv
(13)

Equations (12) and (13) give the output current and voltage from
the VSG, respectively and its power output can be computed as
follows:

P = 3
2 uodid + uoqiq (14)

Q = 3
2 −uodiq + uoqid (15)

The active power P computed from (14) can be viewed as the
feedback for active power regulation in (3), while the reactive
power Q computed from (15) can be viewed as the feedback for
reactive power regulation in (4). Then (3)–(15) describe the closed-
loop VSG, large signal model. Fig. 3 depicts the VSG large signal
model where each part from the above section is indicated in the
figure. The input is the references (P*, Q*, U*) and grid
information (Ug, Δωg), while the output is the VSG generated
power or VSG output voltage and current. 

2.5 VSG large signal model validation

To validate the accuracy of the large signal model, we compare the
VSG large signal model (Fig. 3) result to measurements obtained
from a hardware in the loop test of a VSG controlled converter.
The hardware uses two 100 V, 2 kVA, three-phase AC/DC
converters with control and measurement implemented via an
OPAL-RT platform as shown in Fig. 4. Two converters are used,
with one converter implementing VSG control while the other
converter models the grid. These two converters use an LC filter
and connect through an inductance emulating a transmission line.
The parameters of the system and settings for the VSG are
summarised in Table 1. The large signal model is implemented in
Matlab/Simulink with the same VSG settings as given in Table 1. 

Initially, both reference active power and reactive power are set
to be 0 and the grid operates at 50 Hz. At 27.5 s, the reference
active power step increases to 300 W, while at 27.5 s, the reference
reactive power step increases to 300 Var. At 37.5 s, the grid
frequency decreases to 49 Hz with 1 Hz/s ramp.

Fig. 5a is the output active power, while Fig. 5b is the output
reactive power. From these results, the large signal model gives the

Fig. 3  VSG large signal model
 

Fig. 4  Hardware experimental set-up
 

Table 1 Hardware VSG settings
Parameter Value Parameter Value
PWM/sampling
time

1350/14.81 × 
10−6 s

filter inductance 0.033 H

rated voltage Ug 100 V filter resistance 0.1266 Ω
reference voltage
U*

100 V filter
capacitance

80 µF

reference angular
frequency ω*

2π*50sHz line inductance 0.033 H

VSG inertia J 20 W/rad−1 s2 line resistance 1.44 Ω

VSG damping/
droop Kd

80 W/rad−1s virtual
inductance

0.011 H

VSG reactive
power droop Kq

0.01 VA/V virtual
resistance

0.1 Ω

current controller
P/I

66/339.8 voltage
controller P/I

0.0535/11.987
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same performance as the hardware experiment. This hardware
validation gives confidence that the large signal model can be
validly used to analyse the effect of VSG settings on steady-state,
settling time and overshoot when the system is subject to changes
about the operating point.

3 Development of transfer functions
The aim of this section is to develop transfer functions, based on
the large signal model, which relate the VSG inputs to outputs. The
inputs to the VSG are reference active power P*, reference reactive
power Q* and grid frequency ωg, while the outputs from VSG are
active power P and reactive power Q. Therefore, the transfer
functions of interest are:

• GP_P reference active power to output active power
• GQ_P reference active power to output reactive power
• GP_Q reference reactive power to output active power
• GQ_Q reference reactive power to output reactive power
• GP_ω grid frequency to output active power
• GQ_ω grid frequency to output reactive power.

The analysis starts by using the electrical system model equations
to derive the relationships between angle, δ and potential E, to real
and reactive powers’ outputs. Since we neglect the fast VSC
dynamics, these relationships are a set of gains, HdP/dδ, HdQ/dδ
which relate a change in angle to the resulting change in real and
reactive powers, and HdP/dE, HdQ/dE which relate a change in the
potential to the resulting change in real and reactive powers.
Subsequently, from the active power regulation part, the transfer
function from reference active power and frequency to the angle δ
can be determined. Similarly, from the reactive power part, the
function from reference reactive power to potential E can be

determined. These can be combined with the gains to derive the
overall transfer functions of interest as listed above.

3.1 Small signal model and transfer functions

This section presents the development of the relationship of phase
angle to output real and reactive powers (HdP/dδ, HdQ/dδ) and the
potential to real and reactive powers (HdP/dE, HdQ/dE).

3.1.1 Initial operating point: Assuming in pre-disturbance the
VSG operates at phase angle δ0, and its electric potential is E0 then
substituting (6) into (12) we obtain the initial current

id0 = E0cos δ0 − Ug R + E0Xsin δ0

R2 + X2

iq0 = − E0cos δ0 − Ug X + E0Rsin δ0

R2 + X2

(16)

Substituting (16) into (13) we obtain the initial output voltages as
shown in the following equation: (see (17)) 

3.1.2 Small signal change in angle Δδ: Assuming a small signal
disturbance in angle, Δδ, and in currents, Δid, Δiq, substituting into
(16), expanding and assuming, cos(Δδ) ≃ 1,  and sin(Δδ) ≃ Δδ
then we obtain

Δid
Δδ = −Rsin δ0 + Xcos δ0

R2 + X2 E0

Δiq
Δδ = Xsin δ0 + Rcos δ0

R2 + X2 E0

(18)

(see (19)) 
With a similar approach using (13) and (18) in (14) and (15),

we can derive the transfer functions from small signal angle change
to real and reactive powers change

HdP/dδ = ΔP
Δδ = 3 E0UgRsin δ0 + E0UgXcos δ0

2 R2 + X2

− 3 E0UgR2Rvsin δ0 + E0UgX2Rvsin δ0

R2 + X2 2

(20)

HdQ/dδ = ΔQ
Δδ = 3 E0UgXsin δ0 − E0UgRcos δ0

2 R2 + X2

− 3 E0UgR2Xvsin δ0 + E0UgX2Xvsin δ0

R2 + X2 2

(21)

3.1.3 Small signal change in potential, ΔE: Following a similar
procedure for the change in currents due to a change in VSG
potential gives (22) and (23):

Fig. 5  Comparison results between hardware and large signal model
(a) Output active power, (b) Output reactive power

 

uod0 = E0cos δ0 + − E0cos δ0 − Ug RRv − E0XRvsin δ0 − E0cos δ0 − Ug XXv + E0RXvsin δ0

R2 + X2

uoq0 = E0sin δ0 + E0cos δ0 − Ug XRv − E0RRvsin δ0 − E0cos δ0 − Ug RXv − E0XXvsin δ0

R2 + X2

(17)

Δuod
Δδ = − E0sin δ0 + E0RRvsin δ0 − E0XRvcos δ0 + E0XXvsin δ0 + E0RXvcos δ0

R2 + X2

Δuoq
Δδ = E0cos δ0 + −E0XRvsin δ0 − E0RRvcos δ0 + E0RXvsin δ0 − E0XXvcos δ0

R2 + X2

(19)
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Δid
ΔE = Xsin δ0 + Rcos δ0

R2 + X2

Δiq
ΔE = Rsin δ0 − Xcos δ0

R2 + X2

(22)

Δuod
ΔE = cos δ0 + −RRvcos δ0 − XRvsin δ0 − XXvcos δ0 + RXvsin δ0

R2 + X2

Δuoq
ΔE = sin δ0 + XRvcos δ0 − RRvsin δ0 − RXvcos δ0 − XXvsin δ0

R2 + X2

(23)

Then the gains for potential to power can be obtained:

HdP/dE = ΔP
ΔE = 3 2E0R − UgRcos δ0 + UgXsin δ0

2 R2 + X2

+ 3 UgX2Rvcos δ0 + UgR2Rvcos δ0 − E0X2Rv − E0R2Rv

R2 + X2 2

(24)

HdQ/dE = ΔQ
ΔE = 3 2E0X − UgXcos δ0 − UgRsin δ0

2 R2 + X2

+ 3 UgX2Xvcos δ0 + UgR2Xvcos δ0 − E0X2Xv − E0R2Xv

R2 + X2 2

(25)

Now considering the above relationships, the closed-loop transfer
function diagram can be formed as shown in Fig. 6. The inputs are
reference active power change ΔP*, grid frequency change Δωg
and reference reactive power change ΔQ*. The outputs are output
active power change ΔP and output reactive power change ΔQ. 

3.2 Transfer functions

3.2.1 Reference active power step change: With reference to
Fig. 6 we can now find the transfer functions from reference active
power change to output active power and reactive power, assuming
the grid frequency and reference reactive power are invariant i.e.
ΔQ* = 0, Δωg = 0. The transfer functions are GP_P and GQ_P as in
(26) and (27).

GP_P = HdP/dδ − HdQ/dδHdP/dE(Kq/(1 + KqHdQ/dE))
Js2 + Kds + HdP/dδ − HdQ/dδHdP/dE(Kq/(1 + KqHdQ/dE))

(26)

(see (27)) 

3.2.2 Reference reactive power step change: Again, with
reference to Fig. 6, the transfer functions from reference reactive
power change to reactive GP_Q and active power output GQ_Q,
assuming the grid frequency and reference active power are
invariant (ΔP* = 0, Δωg = 0) are given by (28) and (29).

(see (28)) 
(see (29)) 

3.2.3 Grid frequency step change: The transfer function for grid
frequency change to active and reactive powers, assuming the
reference reactive and reference active power is invariant or
ΔP* = 0, ΔQ* = 0, are given by GP_ω and GQ_ω as (30) and (31),
respectively.

GP_ f = HdP/dδ − HdQ/dδHdP/dE(Kq/(1 + KqHdQ/dE)) Js + Kd

Js2 + Kds + HdP/dδ − HdQ/dδHdP/dE(Kq/(1 + KqHdQ/dE))
(30)

GQ_ f = (HdQ/dδ/(1 + KqHdQ/dE)) Js + Kd

Js2 + Kds + HdP/dδ − KqHdP/dE((1 + KqHdQ/dE)/HdQ/dδ)
(31)

Note that all of above transfer functions (26)–(31) are second
order, which arises from the fact that the work ignored the
dynamics of the VSC itself on the assumption that they are much
faster than the VSG controls.

3.3 Steady-state values

It is interesting to examine the steady-state value of the active and
reactive powers, after a change in inputs or grid frequency. These
steady-state values can easily be obtained from (26)–(31) by setting
s = 0 and are summarised in Table 2. From Table 2, it is obvious
that in steady-state the output active power can fully follow the
reference active power, is decoupled from the reference reactive
power and droops the active power according to the frequency
change. However, the output reactive power is coupled with the
reference active power and does not even fully follow the reference
reactive power. Essentially this is because the active power control
loop has an integrator as part of the swing equation thus forcing
zero steady-state error, while the reactive power control loop only
has a proportional gain or droop term. 

3.4 Damping ratios and natural oscillation

For the second-order transfer functions, the damping ratios and
natural oscillation frequency can be computed, which can then
further be used to determine settling times and overshoot.

Table 3 gives the damping ratio and natural oscillation
frequency for all the transfer functions. 

In GP_P and GP_ω, since reactive power is always positively
associated with electric potential, HdQ/dE > 0, thus,Fig. 6  VSG small signal closed-loop transfer function

 

GQ_P = HdQ/dδ

J 1 + KqHdQ/dE s2 + Kd 1 + KqHdQ/dE s + (HdQ/dδHdP/dE /HdQ/dE) + HdP/dδ 1 + KqHdQ/dE
(27)

GP_ω = JKqHdP/dEs2 + KdKqHdP/dEs
J 1 + KqHdQ/dE s2 + Kd 1 + KqHdQ/dE s + HdP/dδ + HdP/dδ − HdQ/dδ KqHdP/dE

(28)

GQ_ω = JKqHdQ/dEs2 + KdKqHdQ/dEs + HdP/dδKqHdQ/dE − HdQ/dδKqHdP/dE

J 1 + KqHdQ/dE s2 + Kd 1 + KqHdQ/dE s + HdP/dδ + HdP/dδKqHdQ/dE − HdQ/dδKqHdP/dE
(29)
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Kq/(1 + KqHdQ/dE) < Kq. Actually, according to (4),
Kq < (Umax − Umin)/(Pmax − Pmin), so that Kq would typically be a
small value. The effect of angle to reactive power and voltage to
active power is normally small, assuming large inductance to
resistance ratio. Thus HdP/dδ ≫ HdQ/dδHdP/dEKq. Therefore, the
damping ratio of GP_P and GP_ω can be simplified as Kd /2 JHdP/dδ.

In GQ_P and GQ_ω, similarly, HdQ/dδHdP/dE /HdQ/dE ≪ HdP/dδ.
Thus, the damping ratio of GQ_P and GQ_ω can be simplified as
Kd /2 JHdP/dδ.

In GP_Q, HdP/dδ ≫ HdQ/dδ and as mentioned above, Kq is small
enough that

KqHdP/dE ≃ KqHdQ/dE .

Thus, HdP/dδ + HdP/dδ − HdQ/dδ KqHdP/dE ≃ HdP/dδ 1 + KqHdQ/dE .
Therefore, GP_Q can be simplified as Kd /2 JHdP/dδ.

In GQ_Q, HdP/dδ ≫ HdQ/dδHdP/dEKq, and KqHdP/dE ≃ KqHdQ/dE.
Thus,

HdP/dδ + HdP/dδKqHdQ/dE − HdQ/dδKqHdP/dE ≃ HdP/dδ
1 + KqHdQ/dE .

Therefore, GQ_Q can be simplified as Kd /2 JHdP/dδ.
In total, the damping ratio for all of the mentioned second-order

transfer functions can be uniformly simplified as Kd /2 JHdP/dδ,
under the assumption that HdP/dδ ≫ HdQ/dδHdP/dEKq,

HdQ/dδHdP/dE /HdQ/dE ≪ HdP/dδ  and KqHdP/dE − KqHdQ/dE ≃ 0 or in
the case of a largely inductive line.

Similar terms occur in the expressions for the natural oscillation
frequency and thus, the simplification used for the damping ratio
analysis can directly be applied also to the natural oscillation
frequency analysis. Therefore, the natural oscillation frequency of
all of the mentioned second-order transfer function can be reduced
to HdP/dδ/J.

Considering that the damping ratio and natural oscillation
frequency have now been defined, the system stability condition,
settling time and overshoot can be computed.

3.4.1 System stability condition: For a second-order transfer
function, the stable condition is that the damping ratio ξ must be
greater than zero, i.e. in this case:

Kd

2 JHdP/dδ
> 0 (32)

Since damping/droop gain Kd and inertia J are always positive, the
system would be stable as long as HdP/dδ is positive i.e. (20) is
greater than zero, which depends on initial equilibrium point, line
and virtual impedance. To ensure a positive value of HdP/dδ, the
angle δ0 should not exceed 90° and the total impedance X should
not be less than zero.

Table 2 Steady-state value and overshoot
Transfer
function

Steady-state value S Overshoot PO

GP_P 1
exp − ξπ

1 − ξ2 + 1

GQ_P HdQ/dδ
HdQ/dδHdP/dE

HdQ/dE
+ HdP/dδ 1 + KqHdQ/dE

exp − ξπ
1 − ξ2 + 1 * HdQ/dδ

HdQ/dδHdP/dE
HdQ/dE

+ HdP/dδ 1 + KqHdQ/dE

GP_Q 0 KqHdP/dE
1 + KqHdQ/dE

GQ_Q HdP/dδKqHdQ/dE − HdQ/dδKqHdP/dE
HdP/dδ + HdP/dδKqHdQ/dE − HdQ/dδKqHdP/dE

KqHdQ/dE
1 + KqHdQ/dE

GP_ω Kd c1
ωP_ω

e−aP_ω ⋅ tP_ωsin ωP_ω ⋅ tP_ω + Kd 1 − e−aP_ω ⋅ tP_ωcos ωP_ω ⋅ tP_ω − aP_ω
ωP_ω

e−aP_ω ⋅ tsin ωP_ω ⋅ tp_ω

GQ_ω HdQ/dδKd

1 + KqHdQ/dE HdP/dδ − KqHdP/dE
1 + KqHdQ/dE

2

HdQ/dδ

c2
ωQ_ω

e−aQ_ω ⋅ tQ_ωsin ωQ_ω ⋅ tQ_ω + Kdc2
c3

1 − e−aQ_ω ⋅ tp_ωcos ωQ_ω ⋅ tQ_ω − aQ_ω
ωQ_ω

e−aQ_ω ⋅ tQ_ωsin ωQ_ω ⋅ tQ_ω

 

Table 3 Damping ratio and natural oscillation frequency
Transfer function Damping ratio ξ Natural oscillation frequency ωn

GP_P Kd

2 J HdP/dδ − HdQ/dδHdP/dE
Kq

1 + KqHdQ/dE

HdP/dδ − HdQ/dδHdP/dE
Kq

1 + KqHdQ/dE
/J

GQ_P Kd 1 + KqHdQ/dE

2 J 1 + KqHdQ/dE
HdQ/dδHdP/dE

HdQ/dE
+ HdP/dδ 1 + KqHdQ/dE

HdQ/dδHdP/dE
HdQ/dE

+ HdP/dδ 1 + KqHdQ/dE / J 1 + KqHdQ/dE

GP_Q Kd 1 + KqHdQ/dE

2 J 1 + KqHdQ/dE HdP/dδ + HdP/dδ − HdQ/dδ KqHdP/dE

HdP/dδ + HdP/dδ − HdQ/dδ KqHdP/dE / J 1 + KqHdQ/dE

GQ_Q Kd 1 + KqHdQ/dE

2 J 1 + KqHdQ/dE HdP/dδ + HdP/dδKqHdQ/dE − HdQ/dδKqHdP/dE

HdP/dδ + HdP/dδKqHdQ/dE − HdQ/dδKqHdP/dE / J 1 + KqHdQ/dE

GP_ω Kd

2 J HdP/dδ − HdQ/dδHdP/dE
Kq

1 + KqHdQ/dE

HdP/dδ − HdQ/dδHdP/dE
Kq

1 + KqHdQ/dE
/J

GQ_ω Kd 1 + KqHdQ/dE

2 J 1 + KqHdQ/dE
HdQ/dδHdP/dE

HdQ/dE
+ HdP/dδ 1 + KqHdQ/dE

HdQ/dδHdP/dE
HdQ/dE

+ HdP/dδ 1 + KqHdQ/dE / J 1 + KqHdQ/dE
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3.4.2 Settling time: When the system stability condition is
satisfied, the settling time can be calculated based on the damping
ratio ξ.

When 0 < ξ < 1, the system is underdamped. The settling time
ts to 2% steady-state error is

ts = 1
ωnξ

log 1
0.02 1 − ξ2 (33a)

ts = 2J
Kd

log 1
0.02 1 − Kd

2 /4JHdP/dδ
(33b)

When ξ > 1, the system is overdamped. The settling time ts to 2%
steady-state error is

ts = 4 T1
2 + T2

2 (34)

where T1 and T2 are the time constant of the real roots of the
overdamped second-order transfer function.

T1, T2 = − 1
−ωnξ ± ωn ξ2 − 1 (35a)

T1, T2 = 2J
Kd ∓ Kd

2 − 4JHdP/dδ
(35b)

3.4.3 Overshoot: When the system is underdamped, it gives rise
to overshoot during transients. The transfer function (26) is in the

standard second order format and (27), (30), (31) can be
transformed to standard second order format by multiplying by its
steady-state value S. However, (28) and (29) cannot be transformed
to a standard second order format. For those transfer functions in
standard second order format, the overshoot can be easily
computed, while for those non-standard transfer functions, the
overshoot can be calculated from the definition (detailed in
Appendix).

Table 2 presents the result of overshoot for all the considered
transfer functions.

3.5 Transfer function validation

To validate the transfer function, the results obtained from the
transfer function are compared to those obtained from the
previously validated large signal model by the means of Matlab-
based simulations. Fig. 6 shows the results for a step change in
reference active power (Fig. 6a), reference reactive power
(Fig. 6b), and frequency (Fig. 6c) where the frequency changes by
0.01 Hz (0.02π rad) with 1 Hz/s slope. The system parameters and
settings are the same as in Table 1. The results of output active and
reactive powers are shown in Fig. 7. 

From the results, the transfer function is accurate. The output
active power can precisely follow the reference, while the output
reactive power as expected, couples with input reference active
power and mismatches its reference.

The following validation is to confirm the calculation of steady-
state value S and overshoot PO, and compare the settling time ts
damping ratio ξ and natural oscillation frequency ωn obtained from
each transfer function to the simplified values. The results are
shown in Table 4. 

Fig. 7  Response from transfer function analysis compared to results from large signal model
(a) Input reference active power step change, (b) Input reference reactive power step change, (c) Input grid frequency 1 Hz/s slope change

 

Table 4 System performance parameters obtained from the transfer functions and comparison with values from simplified
expressions
Transfer function S PO ξ ωn ts
GP_P 1 1.41 0.2730 7.3251 1.9754
GQ_P −0.1018 −0.1432 0.2747 7.2795 1.9756
GP_Q 0 0.0108 0.2856 7.0033 1.9773
GQ_Q 0.0979 0.0968 0.2730 7.3251 1.9754
GP_ω 5.0265 10.5201 0.2730 7.3251 1.9754
GQ_ω −0.5055 −1.0530 0.2747 7.2795 1.9756
simplified — — 0.2732 7.3207 1.9754
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Comparing the results in Table 4 (steady-state S, overshoot PO
and settling time ts) and Fig. 7, the expressions used in Tables 2
and 3 are validated. Comparing the calculation using the simplified
expressions with the full expressions, the simplified expression for
damping ratio Kd /2 JHdP/dδ, natural oscillation frequency

HdP/dδ/J and settling time (33)–(35) are a good approximation.
With the understanding gained from the analysis of the VSG

input–output transfer functions, the behaviour of VSG can be fully
predicted.

4 Analysis of effects of VSG settings
Clearly, the VSG parameters determine its performance, and now
based on the derived transfer functions we can fully analyse the
effects of the various VSG settings on the performance. From the
above performance parameter analysis of steady-state value,
settling time and overshoot, the gains of power to angle and
electric potential HdP/dδ, HdQ/dδ, HdP/dE and HdQ/dE, the inertia J,
damping/droop gain Kd and reactive power droop gain Kq are
critical. For any given VSG, we will assume that the line
impedance is fixed. The design variables are therefore the VSG
settings, i.e. virtual impedance, inertia and damping/droop. To
illustrate the effects of the various settings, the paper uses the
example used in Table 1 to illustrate the relationships.

4.1 Virtual impedance effects

The virtual impedance essentially emulates the existence of an
extra impedance in series with the line impedance. Owing to the
fact that it is implemented via a control algorithm, the virtual
impedance can be positive (increase the impedance between
potential and grid) or negative. The virtual impedance directly
influences the values of HdP/dδ, HdQ/dδ, HdP/dE and HdQ/dE in (20),
(21), (24) and (25), respectively. These values subsequently
determine the steady-state value, settling time and overshoot and it
will be shown that after simplification, HdP/dδ dominates the
settling time and overshoot. Thus it is important to firstly analyse
the effect of the virtual impedance on the gains,
HdP/dδ, HdQ/dδ, HdP/dE and HdQ/dE as shown in Fig. 8. Although,
these values are also dependent on the initial angle δ0 and initial
potential E0, the effect of both δ0 and E0 are to scale (20), (21), (24)
and (25) so that they would not change the shape of the curves in
Fig. 8. 

From Fig. 8, it can be seen that all of the gains are sensitive to
the virtual inductance. Moreover, reducing the virtual inductance
can increase all the gains. This result has already been verified in
[42] and accords with the well-known power exchange equations

P = EUg Rcos δ + Xsin δ − RUg
2

R2 + X2 (36)

Q = EUg Xcos δ − Rsin δ − XUg
2

R2 + X2 (37)

where from (36) and (37) it is clearly seen that the inductance
reduction would increase both active and reactive power flow.

4.1.1 Virtual impedance effect on steady-state
value: Damping and inertia only affects the transient behaviour,
while the steady-state performance is only related to the impedance
and droop. From Table 2, it can be seen that the output active
power is fully controllable, i.e. its transfer function has zero steady-
state error. Thus, its steady-state value is independent of the VSG
settings. In contrast, the output reactive power is only partially
controllable, and its transfer function has a certain steady-state
error. Its steady-state value is dependent on the virtual impedance
as well as line impedance. Therefore, in steady-state analysis, we
focus on reactive power or SGQ_P, SGQ_Q (SGQ_ f ≃ KdSGQ_P). Fig. 9
illustrates the steady-state reactive power with reference to active
power change. 

As shown in Fig. 9, the virtual inductance increase and virtual
resistance reduction could reduce the absolute value of SGQ_P. This
reflects the fact that the increased X/R ratio helps decouple the
reactive and active powers [43].

Similarly, we can obtain the steady-state reactive power change
with reference reactive power change as shown in Fig. 10.
Impedance reduction can increase reactive power output as can be
deduced in (37), while the increased reactive power would result in
a reduced electric potential according to (4). Consequently, this
will reduce the reactive power in (37). Hence, the reactive power
has a maximum value as shown in Fig. 10b. 

4.1.2 Virtual impedance effect on settling time: The settling
time can be calculated from (33)–(35) and is only related to HdP/dδ.
Settling time is calculated by two different methods, depending on
the damping ratio value.

When 0 < ξ < 1, the settling time is computed from (33b). For
1 − (Kd

2 /4JHdP/dδ) ≤ 1, (33b) becomes:

ts = 2J
Kd

log 1
0.02 1 − Kd

2 / 4JHdP/dδ
≥ 2Jlog50

Kd
(38)

Fig. 8  Virtual impedance effects on H, Zbase = 10 Ω, Xg = 1.038 pu and
Rg = 0.144 pu
(a) Active power to angle change, (b) Reactive power to angle change, (c) Active
power to potential change, (d) Reactive power to potential change

 

Fig. 9  Virtual impedance effects on SGQ_P,, Zbase = 10 Ω, Xg = 1.038 pu
and Rg = 0.144 pu
(a) δ0–0 rad, (b) δ0–0.2793 rad

 

Fig. 10  Virtual impedance effects on SGQ_Q,, Zbase = 10 Ω, Xg = 1.038 pu
and Rg = 0.144 pu
(a) δ0–0 rad, (b) δ0–0.2793 rad
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The increased HdP/dδ makes damping ratio 1 − (Kd
2 /4JHdP/dδ)

approach 1, which makes ts approach 2Jlog50/Kd and increased
HdP/dδ reduces settling time.

When ξ > 1, the settling time is computed from (34) and (35b).
To satisfy ξ > 1, Kd should be greater than 2 JHdP/dδ. Thus, in
(35b), ts is dominated by T1, where

ts ≃ 4T1 = 8J
Kd − Kd

2 − 4JHdP/dδ
(39)

The decreased HdP/dδ makes Kd
2 − 4JHdP/dδ approach Kd, which

makes ts approach infinity and decreased HdP/dδ increases the
settling time.

In summary, whatever ξ is, as long as it is stable increasing
HdP/dδ would reduce settling time.

4.1.3 Overshoot: When the system is damped with 0 < ξ < 1,
overshoot arises during the transient. This overshoot may damage
the converters, due to the overload. For the second-order transfer
function, its overshoot is only related to its damping ratio. As
mentioned before, increasing HdP/dδ reduces damping ratio, which
will increase the overshoot. Thus, reducing virtual inductance will
result in overshoot increasing.

4.2 Virtual inertia and droop/damping effects

As mentioned in Section 2, it is common in VSG design, to make
droop and damping gains (in swing equation) equal, thus Kd has
both a droop feature and damping feature. Droop only influences
VSG steady-state performance, such as the steady-state, while
damping only influences VSG dynamic performance, such as the
damping ratio of the second-order transfer function, the settling
time and overshoot. It is obvious that increasing Kd can increase
the power output after grid frequency changes arising from the
droop feature of Kd. However, the transient response of the VSG
associated with Kd and inertia J is complex. This section will focus
on the damping feature of Kd as well as its coordination with
inertia J.

4.2.1 Effect of Kd and J on damping ratio and natural
oscillation frequency: The inertia J and the damping feature of Kd
only have effect on the VSG transient performance. The critical
factors for the VSG transient performance based on the second
order model are the damping ratio and natural oscillation
frequency. Both the damping ratio and natural oscillation frequency
can be simplified to Kd /2 JHdP/dδ and HdP/dδ/J, respectively.
This makes it clearer that the damping ratio is proportional to Kd,
while both damping ratio and natural oscillation frequency are
inversely related to the square root of inertia J.

As usual for a second order system, the value of damping ratio ξ
has important impacts on the VSG transient behaviour, i.e. ξ>1
overdamped, 1 > ξ>0 underdamped, 0 > ξ unstable. From

ξ = Kd /2 JHdP/dδ, since the active power to angle gain HdP/dδ is
normally positive as aforementioned, as long as both Kd > 0 and
J > 0, the system is stable. The effect of Kd and J on damping ratio
ξ is shown by the yellow surface in Fig. 11, where the red plane
represents critical damping, ξ = 1. For this plot, HdP/dδ = 1059 as
calculated from the settings in Table 1 and (20) with initial angle
δ0 = 0.2793 and initial potential E0 = 100. As expected, ξ, is
proportional to Kd while ξ is inverse proportional to J. Note as the
inertia J approaches to 0, ξ approaches to infinity. However, it
should be noted that when J equals zero, all the transfer functions
(see (26)–(31)) become first order where only the droop part is of
relevance. 

4.2.2 Settling time: Settling time is sensitive to the damping ratio,
where as shown, the damping ratio depends on the interaction
between the droop/damping gains Kd and inertia J. Thus, we
separately analyse the effect of Kd and J on settling time.

Firstly, consider the effect of Kd on settling time ts assuming J is
fixed. When the system is underdamped (1 > ξ>0), according to
(38), Kd is inversely proportional to ts. Thus, increasing droop/
damping gain results in settling time reduction.

However, when the system is overdamped (ξ>1), according to
(39), the effect of Kd is more complex. Taking the derivative of
Kd − Kd

2 − 4JHdP/dδ:

Kd − Kd
2 − 4JHdP/dδ ′ = 1 − 2Kd Kd

2 − 4JHdP/dδ
−1/2 (40a)

1 − 2Kd Kd
2 − 4JHdP/dδ

−1/2 < 1 − 2Kd Kd
2 −1/2 = − 1 (40b)

Since the derivative of Kd − Kd
2 − 4JHdP/dδ is negative, increasing

Kd leads to Kd − Kd
2 − 4JHdP/dδ decreasing, thus, the settling time

ts increases according to (39) under the ξ>1 condition.
Similarly, the effect of inertia J on settling time ts is directly

proportional from (38) when the system is underdamped.
However, when the system is overdamped, inertia J appears in

both denominator and numerator part in (39). Thus, making use of
L'Hôpital ‘s rule considering the derivative of the denominator and
numerator part separately

8J ′
Kd − Kd

2 − 4JHdP/dδ ′
= 8

4HdP/dδ/ Kd
2 − 4JHdP/dδ

(41)

In (41), the derivative of the denominator and numerator are both
positive, however, increasing inertia J will increase the derivative
of the denominator. In other words, when increasing inertia J, the
denominator part of (39) increases faster than its numerator part.
Thus, the settling time will reduce with increasing inertia J.

4.2.3 Overshoot: In Table 2, when the system is underdamped,
the overshoot associated with droop/damping gain Kd and inertia J
follows from the standard second order transfer function overshoot
expression exp −ξπ / 1 − ξ2 + 1  where a reduction in damping
ratio ξ increases overshoot. Therefore, increasing droop/damping
gain Kd or reducing inertia J can help decrease the overshoot.

4.3 Reactive power droop gain effects

Reactive power droop gain Kq has a similar effect on the potential
to reactive power as the active power droop gain Kd has on the
angle to real power. Therefore, the main effects of Kq are on the
steady-state value and overshoot.

4.3.1 Reactive power droop gain effect on steady-state: In
Table 2, only the steady-state value of GQ_P (or GQ_ω) and GQ_Q are
related to the reactive power droop gain Kq.

Fig. 11  Effects of droop/damping gain Kd and inertia J on settling time on
damping ratio ξ
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Owing to HdQ/dE > 0, increasing Kq leads to a reduction in
SGQ_P , while it results in an increase in SGQ_Q. Hence, increasing Kq
helps to, decouple reactive power from active power.

4.3.2 Reactive power droop gain effect on overshoot: 
Increasing Kq makes POGP_Q an approach HdP/dE /HdQ/dE, and

makes POGQ_Q approach 1, while decreasing Kq makes POGP_Q

approach KqHdP/dE, and makes POGQ_Q an approach KqHdQ/dE.
Therefore, decreasing Kq helps reduce overshoot.

4.4 Summary

The above analysis gives some useful insight into how VSG
control might be designed when applied to, for example, a storage
system. Table 5 summarises the parametric effects on transient
responses. The design of such a system might start from the
requirement to achieve a given droop response, thus fixing Kd, as
this determines steady-state output in reaction to a frequency
change and therefore largely impacts the storage capacity. As
regards dynamic response, another requirement might be that the
response be close to critically damped so as to limit overshoot and
oscillatory response after a disturbance. The simplified relationship
expression for the damping ratio, therefore, highlights that the
virtual inertia must be chosen to obtain the damping ratio thus
limiting its choice. It can also be seen that, the role of virtual
impedance is largely to affect the angle and potential to power
gains. Again the simplified expression for damping ratio highlights
that for a fixed damping ratio and droop, virtual inertia could be
increased if the angle to real power gain is reduced, which could be
achieved by an increase in virtual inductance. The increase in
virtual inductance can also help decouple the effect of an active
power reference change on reactive power output, i.e. reduce
HdQ/dδ (see Fig. 8b). 

As regards reactive power, the reactive power droop gain, Kq
can be chosen larger in order to decouple the reactive power from
active power, although on the other hand, this increases overshoot
so that there is clearly a trade-off involved.

5 Hardware validation
To further validate the above analysis and also to provide an
example, results from a small-scaled hardware experiment are
presented. The design requirements are reference voltage
V* = 100 V, reference frequency ω* = 100π rad/s, the converter
capacity S = 800VA, the DC source power PDC = 300 W, the
storage rate of discharge Ps = 250 W, the settling time ts < 2 s, and
the line impedance Rg + 2π f gLg = 1.44 + 100π × 0.033 Ω.

Designing for a grid frequency deviation, Δ f = 0.1 Hz,
substituting into (42) gives the droop/damping gain Kd:

Kd = Ps
2πΔ f = 300

2π × 0.1 = 400 W/Hz (42)

The initial grid voltage Ug = 100 V and frequency ωg = 100π
rad/s and we assume that the initial electric potential E0 = 100 V,
and there is no virtual impedance. Then, according to (37), the
initial angle difference δ0 can be calculated

δ0 = sin−1 PDC + PS 2π f gLg
E0Ug

= 0.6739 rad

For illustration purposes, we consider two values of virtual
impedance, 2π f gLv = 100π × 0.011 Ω, and
2π f gLv = 100π × 0.011 Ω which decreases and increases the actual
line inductance by 33.3%, respectively. Substituting these values of
virtual impedance and δ0 = 0.6739 into (20), (21), (24) and (25)
gives: when the virtual impedance is negative, HdP/dδ = 1867 and
when the virtual impedance is positive, HdP/dδ = 902.The damping
ratio ξ is given by:

ξ = Kd

2 JHdP/dδ
= 400

2 JHdP/dδ

and we present both underdamped case with J = 20 and
ξ ∈ 1.04, 1.49 , and overdamped case with J = 80 and
ξ ∈ 0.52, 0.74 .

The reactive power droop gain Kq considering its constraint is
given by

Kq < Umax − Umin
Pmax − Pmin

= 110 − 90
650 = 0.031

and the experiment tests values of Kq = 0.01 and Kq = 0.03
conditions.

The design of the VSC follows the design approach for a dq-
frame voltage controlled VSC as given in [44], with controller
settings as given in Table 1.

For the tests, the VSG experiences a reference active power step
change from 0 to 300 W at 1 s, and a grid frequency ramp change
from 50 to 49.9 Hz with 1 Hz/s slope at 4 s. The designed VSGs
has been validated on the hardware in the loop OPAL-RT platform.
The VSG transient response, i.e. the steady-state value, overshoot
and settling time is predicted from the mathematical computation
in Tables 2 and 3 with the above settings are given in Table 6.
Fig. 12 depicts the measured output power results from the
hardware tests. 

In comparison with the hardware result, the predicted steady-
state values, settling times and overshoot are accurate.
Furthermore, these results follow the analysis from Section 4.1.2.
For example, reducing the virtual inductance can reduce the
settling time (compare C1 and C3, C2 and C4). When the other
settings are identical, the overdamped situation with smaller inertia
settles faster than the underdamped situation (compare C1 and C2,
C3 and C4). Moreover, the reactive droop gain has no effect on
settling time (compare C4 and C5).

From Fig. 12a, as expected, in the underdamped situation with
inertia J = 80, reducing the virtual inductance results in an increase
in overshoot.

Under the active power variation, the reactive power output
Fig. 12b illustrates the degree of coupling. Since the reference
reactive power is zero, the curves which are closest to the zero
value represent the lower degree of coupling. The results serve to
validate the analysis that increasing the virtual inductance or
increasing the reactive power droop gain helps to decouple the
reactive power output from active power operation.

Table 5 Increased parameter effects on VSG transient responses.
Parameter increasing ξ = Kd

2 JHdP/dδ

0 < ξ<1 1 < ξ
Settling time ts Overshoot POG Settling time ts

virtual impedance increase increase reduce increase
virtual inertia J reduce increase increase reduce
virtual damping Kd increase Reduce reduce reduce
voltage droop Kq — — increase —
comments increase X/R ratio and Kq help decouple the reactive and active powers.
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6 Discussions
The analysis in the paper is applied to the VSG scheme where
droop and damping are combined in a single parameter with
equivalent droop and damping [7–12, 19, 20, 22, 27, 28, 34, 39,
40], and simple reactive power to voltage droop control [13–16, 23,
28, 37]. The analysis can, however, be extended to other schemes
such as the use of separate droop and damping parameters [13–18,
21, 23, 32, 33, 37] or other reactive power regulation approaches
such as voltage regulation [17, 18, 21, 22, 28] or reactive power
control [19, 20]. The diagram in Fig. 13 indicates how such
schemes could be added to the scheme analysed in the paper. For
the scheme using separate droop and damping the droop
contribution could be added as an outer loop which adjusts the
power setpoint according to the deviation in frequency, measured
by a PLL with transfer function H s . The transfer function from
power reference changes to output power, GP_P, GP_Q, GQ_Q, GQ_P
remain identical to those derived above. However, the transfer
function from grid frequency changes to output power becomes

more complex in this case. Specifically, there now exists three
components to this transfer function. One component is the same
GP_ω transfer function as derived in this paper, the second is
associated with the power setpoint change from the droop which is
given by KdH s GP_P, and the third is associated with the separate
damping term, a full discussion of which is beyond the scope of
this paper. 

As regards the other reactive power controls these can be easily
accommodated by the modification of the outer loop associated
with determining E. These additions required to accommodate
these different schemes are indicated by the blocks enclosed within
the sections marked by broken lines in Fig. 13.

7 Conclusions
The paper introduced the large signal model for VSG control of a
voltage controlled converter, and based on this develops a complete
set of transfer functions which can be used to analyse the output
real and reactive powers in response to changes in real and reactive
powers references and grid frequency disturbances. Using these
transfer functions the effect of various VSG design parameters
such as inertia, droop/damping and virtual inertia on the VSG
performance has been analysed. Moreover, the transfer functions
can provide the basis for VSG controller design taking into account
transient and steady-state performance and cross-coupling effects
between real and reactive powers. The choice of droop gain and
virtual inertia are clearly be linked through the requirement to
satisfy transient performance criteria such as damping, overshoot
and setting time. The inclusion of virtual impedance does give
another degree of freedom in the choice of these parameters.
Although the analysis in the paper is based on the VSG scheme
with equivalent droop and damping, and simple reactive power to
voltage droop control, it is possible to adapt to the analysis to
schemes with separate droop and damping settings, or with other
reactive power regulations.
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10 Appendix
 
The appendix will give a detailed computation for the overshoot
GP_ω and GQ_ω.

Defining c1 = HdP/dδ − HdQ/dδHdP/dE (Kq/(1 + KqHdQ/dE))

GP_ω =
HdP/dδ − HdQ/dδHdP/dE

Kq
1 + KqHdQ/dE

Js + Kd

Js2 + Kds + HdP/dδ − HdQ/dδHdP/dE(Kq/(1 + KqHdQ/dE))

= c1
s + (Kd /J)

s3 + (Kd /J)s2 + (c1/J)s

= c1
s

s3 + (Kd /J)s2 + (c1/J)s + c1
Kd /J

s3 + (Kd /J)s2 + (c1/J)s

(43)

Defining ωP_ω = (c1/J) − (Kd
2 /4J2) and aP_ω = Kd /2J, and

computing each part in (43) separately:

c1
s

s3 + (Kd /J)s2 + (c1/J)s = c1
ωP_ω

s + aP_ω
2 + ωP_ω

2 ⋅ 1
ωP f

= c1

ωP_ω
e−aP_ f ⋅ tsin ωP_ω ⋅ t

(44)

(see (45)) 
Inverse Laplace transform on (43):

c t = Kd − e−aP_ω ⋅ tKαsin ωP_ω ⋅ t + α (46)

c1
Kd /J

s3 + (Kd /J)s2 + (c1/J)s = Kd
1
s − s + (Kd /J)

s2 + (Kd /J)s + (c1/J)

= Kd
1
s − s + aP_ω

s + aP_ω
2 + ωP_ω

2 − aP_ω

s + aP_ω
2 + ωP_ω

2

= Kd 1 − e−aP_ω ⋅ tcos ωP_ω ⋅ t − aP_ f
ωP f

e−aP_ω ⋅ tsin ωP_ω ⋅ t

(45)
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dc t
dt = aP_ωe−aP_ω ⋅ tKαsin ωP f ⋅ t + α

−ωP_ωe−aP_ω ⋅ tKαcos ωP_ω ⋅ t + α

= e−aP_ω ⋅ tKαKβsin ωP_ω ⋅ t + α − β

(47)

When (47) equals to 0 could compute the time for overshoot
(raising time):

tp_ω = tan−1(ωP_ω/aP_ω) − tan−1(KdωP_ω/(KdaP_ω − c1))
ωP_ω

(48)

Then overshoot is:
(see (49)) 
Similarly, it could obtain OPQ_ f  by defining

c2 = HdQ/dδ/(1 + KqHdQ/dE),
c3 = − KqHdP/dE((1 + KqHdQ/dE)/HdQ/dδ) + HdP/dδ, aQ_ω = Kd /2J,
ωQ_ω = (c3/J) − (Kd

2 /4J2).

GQ_ω = (HdQ/dδ/(1 + KqHdQ/dE)) Js + Kd

Js2 + Kds − KqHdP/dE((1 + KqHdQ/dE)/HdQ/dδ) + HdP/dδ

= c2
s + (Kd /J)

s3 + (Kd /J)s2 + (c3/J)s

= c2
s

s3 + (Kd /J)s2 + (c3/J)s + c2
Kd /J

s3 + (Kd /J)s2 + (c3/J)s

(50)

c2
s

s3 + (Kd /J)s2 + (c3/J)s = c2

ωQ_ f
e−aQ_ω ⋅ tsin ωQ_ω ⋅ t (51)

(see (52)) 

c t = Kdc2

c3
− c2e−aQ_ω ⋅ tKαsin ωQ_ω ⋅ t + α (53)

dc t
dt = e−aQ_ω ⋅ tc2KαKβsin ωQ_ω ⋅ t + α − β (54)

tQ_ω = 1
ωQ_ω

tan−1(ωQ_ω/aQ_ω)

− tan−1 Kd /c3

(KdaQ_ω/c3ωQ_ω) − (1/ωQ_ω)
(55)

OPQ_ω = c2

ωQ_ f
e−aQ_ω ⋅ tsin ωQ_ω ⋅ t

+ Kdc2

c3
1 − e−aQ_ω ⋅ tcos ωQ_ω ⋅ t − aQ_ω

ωQ_ω
e−aQ_ω ⋅ tsin ωQ_ω ⋅ t

(56)

OPP_ω = c1

ωP_ω
e−aP_ω ⋅ tsin ωP_ω ⋅ tP_ω

+Kd 1 − e−aP_ω ⋅ tcos ωP_ω ⋅ tP_ω − aP_ω
ωP_ω

e−aP_ω ⋅ tsin ωP_ω ⋅ tP_ω

(49)

c2
Kd /J

s3 + (Kd /J)s2 + (c3/J)s

= Kdc2

c3
1 − e−aQ_ω ⋅ tcos ωQ_ω ⋅ t − aQ_ω

ωQ_ω
e−aQ_ω ⋅ tsin ωQ_ω ⋅ t

(52)
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