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A B S T R A C T

Due to high penetration of distributed energy resources, integration of intermittent renewable energy resources
and deployment of demand-side management, highly accurate short-term load forecasting becomes increasingly
important. This paper proposes a full wavelet neural network approach for short-term load forecasting, which is
an ensemble method of full wavelet packet transform and neural networks. The full wavelet packet transform
model is used to decompose the load profile and various features into several components with different fre-
quencies and these components are used to train the neural networks. To perform load forecasting, the full
wavelet packet transform model decomposes features into various components that are fed into the trained
neural networks, and the outputs of the neural networks are constructed as the forecasted load. The proposed
model is applied for load prediction in the electric market of Ontario, Canada. Simulation results show that the
proposed approach reduces the mean absolute percentage error (MAPE) by 20% in comparison with the tra-
ditional neural network method. The proposed approach can be used by utilities and system operators to forecast
electricity consumption with high accuracy, which is highly demanded for renewable energy integration, de-
mand-side management and power system operation.

1. Introduction

The power system operation and control are complex and challen-
ging. The high penetration of distributed energy resources, integration
of intermittent renewable energy resources, adoption of electric ve-
hicles and deployment of demand-side management add more layers of
complexity to the power system operation [1]. Under this context, short
term load forecasting from one hour to one week becomes increasingly
important since high accurate short term load forecasting can be used to
improve power system reliability and energy efficiency while reducing
the system operational cost [2–4].

Short term load forecasting methods can be mainly classified into
two categories: statistical methods and artificial intelligence methods
[5,6]. The statistical methods include time series forecasting [7,8], re-
gression methods [9,10], Parsimonious stochastic methods [11,12] and
exponential smoothing methods [13]. These methods have shown high
accuracy for linear systems but suffered from the low performance if
inputs and outputs are nonlinearly related [14]. Therefore, these
methods are not suitable for highly complex and nonlinear electricity
load prediction.

Artificial intelligence methods have been used to cope with the

nonlinear load prediction including supervised or unsupervised neural
networks [15,16], fuzzy logic [17], support vector machine [18,19] and
data clustering [20,21]. However, the fluctuation of electricity load is
highly complex due to users’ electricity consumption patterns, special
events and weather variations, which limits the accuracy of load pre-
diction [22]. To further improve the performance of load forecasting,
ensemble methods of the traditional wavelet transform and neural
networks were developed [19–22]. In these studies, different levels of
wavelet transform are performed, and various algorithms are applied to
train the neural networks. For instance, trial and error method was used
to determine the best level of wavelet transform and the modified bee
colony optimization method was used to improve the learning accuracy
[22]. A hybrid method of traditional 3-level wavelet transform and
neural networks was proposed for day-ahead load prediction, in which
the adaptive particle swarm algorithm was used to train the neural
networks [23]. The MAPE was reduced to 1.9% (using the hybrid
method) from 2.6% (using the basic particle swarm algorithm). The
combination of 1-level wavelet transform and neural networks was
developed to study the peak demand and the genetic algorithm is used
to train the neural networks. [24]. In a different way, a 3-level wavelet
transform with an echo state network technique was developed to
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predict hour-ahead and day-ahead load and temperature, in which the
shuffled frog leaping algorithm was adopted to optimize the echo state
network [25]. The MAPE for load prediction was 3.3%.

Since the full wavelet packet transform can reveal more information
on load fluctuation than the traditional wave transform, it has been
used in many applications such as noise reduction [26], optical com-
munications [27], smart sensor utilization [28], and power system
protection [29,30] However, the full wavelet packet transform com-
bined with neural network has not been widely applied for electricity
load forecasting.

In this study, we propose an ensemble method of full wavelet packet
transform and neural networks for day-ahead load forecasting.
Important features are identified for load forecasting. We divide these
features and load profiles into training, testing and cross-validation
sets. The training data and testing data are used to select hyperpara-
meters. Finally, we use the cross-validation data set to evaluate the
performance of the proposed model. In each stage, data are decom-
posed into various components and these components are fed into the
neural networks. The outputs of the neural networks are then re-
constructed. Simulation results show a high accuracy of load fore-
casting. The main contributions are summarized as follows.

1 A full wavelet packet transform model is developed to enhance the
traditional wavelet transform. It is used to decompose the load
profile into various components with different frequencies, which
exploits electricity consumption patterns.

2 Multi-layer neural networks are designed, and the number of neu-
rons is optimized.

3 A full wavelet neural network model is developed by combining the
proposed full wavelet packet transform model and the neural net-
works, which dramatically increases the accuracy of short term load
forecasting.

4 The proposed full wavelet neural network demonstrates great reli-
abilities under various conditions and the error statistic information
provided confident levels of load forecasting.

5 The approach can be used for high accuracy short term load fore-
casting, which highly demanded in various smart grid applications.

The rest of the paper is organized as follows. Section 2 introduces
the background of wavelet transform and neural networks. The meth-
odology is illustrated in Section 3 followed by simulation results in
Section 4. A discussion of the results is provided in Section 5. Section 6
concludes this work.

2. Background

2.1. Neural networks

As one of the most important techniques of artificial intelligence,
neural networks can accurately predict the output of a complex and
nonlinear system without explicitly modeling it. Fig. 1 shows a typical

3-layer neural network, in which the layers are input layer, hidden
layer and output layer. Each layer consists of a set of neurons (shown in
Fig. 2), and these neurons are connected by synaptic weights. These
weights are initialized randomly and then adjusted by training algo-
rithms (e.g., the Levenburg-Marquardt algorithm). Each neuron sums
the weighted inputs and maps the summation by an activation function
given as follows [13].
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where sj is the weighted sum, wij represents weights, and bj is the bias.
xiis the input.

The activation functions represent the nonlinear relationship be-
tween the inputs and outputs, which include Sigmoid (Logistic),
Hyperbolic Tangent and ReLU functions. The neural network iteratively
adjusts its parameters to reduce the error between the predicted outputs
and the actual outputs until the error is minimized.

Neural networks have been widely applied to predict time series
electricity load [31]; however, the electricity load is highly complex
and nonlinearly depends on features such as temperature, month and
day types. On the other hand, the load profile is aggregated from many
individual loads such as factory machines, commercial lighting and
residential appliances, whose load profiles have different inherent
patterns (e.g., frequency). Therefore, the load profile can be pre-
processed (e.g., decomposed based on the frequency) and then applied
to neural networks. This combination can significantly improve the
accuracy of prediction.

2.2. Wavelet transform

Wavelet transform converts the signal from the time domain into a
time-scaled frequency domain. This method can decompose a nonsta-
tionary and nonlinear signal profile to a group of profiles with different
frequencies. High-frequency signals containing short-term fluctuation
can be extracted and used to improve the accuracy of short-term pre-
diction [32].

Wavelet transform decomposes the original signal into two cate-
gories: approximation (A) data that have low-frequency coefficients,
and detail (D) data that have high-frequency coefficients. The original
signal is decomposed in multiple levels; however, the traditional wa-
velet transform only decomposes approximation data (with low fre-
quencies). Fig. 3 shows the 3-level signal decomposition. In Aα; β and Dα;

β, α represents levels and β resents the index of the signal in level-α
[33].

Different levels of decomposition (e.g., 1-5) can be conducted [3];
however, research shows that in traditional wavelet transform, the 3-
level shows the best performance in time series load forecasting [23].

In general, there are two types of wavelet transform: continuous
wavelet transform and discrete wavelet transform defined in Eq. (2)–(5)
[34].
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where a and b are the scale and time shift, respectively. x(t) represents
the original signal and ψ(t) represents the mother function. m and k is
the scale and shift parameter respectively, and they are integers. n re-
presents the discrete-time. a0 and b0 are constant values.

Performing continuous wavelet transform is complex and time-Fig. 1. The diagram of neural network [5].
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Fig. 2. The diagram of a neuron.

Fig. 3. 3-level wavelet transform. In Aα; β and Dα; β, α represents levels and β
resents the index of the signal in level-α.

Fig. 4. Level-3 full wavelet packet transform. In Aα; β and Dα; β, α represents
levels and β resents the index of the signal in level-α.

Fig. 5. The diagram of full wavelet neural network.

Table 1
Data on December 26, 2015.

Hours Day Day type Load (MW) Temp (°C) Humidity (%)

1 7 0 13,820 11.4 89
2 7 0 13,319 12.1 85
3 7 0 13,045 12.6 81
4 7 0 12,930 10.3 90
5 7 0 12,858 10.3 98
6 7 0 13,077 11.3 99
7 7 0 13,589 11.5 95
8 7 0 14,186 11.5 92
9 7 0 14,830 10.6 86
10 7 0 15,375 9.3 85
11 7 0 15,823 6.6 67
12 7 0 16,117 4.4 69
13 7 0 16,229 3.8 65
14 7 0 16,108 3.6 62
15 7 0 15,856 2.9 65
16 7 0 15,967 2.8 66
17 7 0 16,591 2.8 67
18 7 0 17,554 2.6 70
19 7 0 17,266 2.7 69
20 7 0 16,714 2.5 69
21 7 0 16,138 2.4 70
22 7 0 15,678 2.1 72
23 7 0 14,937 2 71
24 7 0 13,965 1.8 72

*In day type, 0 represents holiday and weekend while 1 represents weekday.
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consuming since the continuous wavelet transform analyzes the mother
function continuously and produces huge amount of data. By contrast,
discrete wavelet transform computes parameters in discrete values,
which is much more efficient. Therefore, in this study, we use a discrete
wavelet transform.

3. Methodology

In this work, we enhance the traditional wavelet transform by de-
veloping a full wavelet packet transform. We also developed a full
wavelet neural network method by combining the full wavelet packet
transform and neural networks. This section discusses the proposed full
wavelet packet transform and full wavelet neural network. In addition,
we describe the data preparation and feature selection method.

3.1. Full wavelet packet transform

The proposed full wavelet packet transform model can decompose
not only the approximation components with low frequencies but also
the detail components with low frequencies at each level. Therefore,
more information can be exploited from the original signal. For ex-
ample, the original signal is decomposed into 4 sets of signal: (A3; 1,D3;

2), ⋅⋅⋅, (A3; 7,D3; 8) in the level-3 shown in Fig. 4.

3.2. The proposed full wavelet neural network

Fig. 5 shows the diagram of the full wavelet neural network, in
which the following procedure is performed. We first prepare the data
including 1-day lag load, 1-week lag load, temperature, humidity,
hours, days, and day types (including weekdays, weekends and holi-
days). The method of data preparation is described in Section 3.3.

The data are divided into three sets: training, testing, and cross-
validation. In the training stage, the training set is decomposed into a
number of components with different frequencies. The number of
components depends on the level of decomposition. For example, there
are 8 components for 3-level decomposition. These components are
used to train the neural networks.

In the testing stage, the testing data set is decomposed into various
components. The trained neural networks are used to predict the load
profile for each component. These load profiles are reconstructed for
the final load prediction. In this study, we optimize the numbers of
neurons in the hidden layer to maximize the prediction accuracy.
Finally, we use cross-validate data to evaluate the accuracy.

3.3. Data preparation and feature selection

The historical data used for the case studies are from Ontario's in-
dependent electricity system operator (IESO), Canada, from 2011 to

Table 2
Holidays in Ontario, Canada, 2015.

Stationary Holiday Date

New Year's Day January 1
Family Day February 16
Good Friday April 3
Easter April 6
Victoria Day May 18
Canada Day July 1
Civic Holiday August 3
Labor Day September 7
Thanksgiving October 12
Christmas Day December 25
Boxing Day December 26

Fig. 6. Load profiles in three different types of day. Holiday (Jan. 1st 2016),
weekday (Jan. 11th 2016), and weekend (Jan. 10th 2016).

Fig. 7. Load profiles in summer and winter.

Fig. 8. The actual load profile from January 2011 to December 2016.

Fig. 9. The actual load and predicted load. NN represents the predicted load
using the neural network.
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2016 [35]. Table 1 provides the data on December 26th, 2015 and
Table 2 shows the holidays in the same province in the same year.

Many missing data are identified in the input dataset. These missing
data are replaced by the average load of the same day in the previous
years.

Since preparing the feature matrix is paramount in load forecasting,
the features must be carefully selected. To select the best features, we
observe the data by plotting them in different ways. For example, we
plot the load profiles for various day types such as weekdays, weekend
and holidays. Fig. 6 shows load profiles in three different day types. We
can see that the day types have a significant impact on electricity
consumption. For instance, the electricity consumption on weekdays is

the highest followed by the ones on weekends, while the electricity load
is the lowest during the holidays.

In addition, weather variations have a big influence on the load
profile. As shown in Fig. 7, the load profile is different between winter
and summer. More specifically, the peak demands occur in evenings
and mornings in winter season while in summer, the peak demand is at
noon. Based on these observations, the following factors are identified
as the most important features: temperature, humidity, hours, days, and
day types. The temperature and humidity are collected from Canada
Historical Climate Data [36].

Fig. 10. Load profiles of one week decomposed by a 3-level traditional wavelet transform.
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4. Simulation results

We conduct a number of simulations in different scenarios as fol-
lows.

1 Using only neural networks;
2 Using traditional wavelet transform with neural networks;
3 Using the proposed full wavelet neural network, which assembles
the full wavelet package transform and neural networks;

4 Evaluation of the proposed full wavelet neural network.

4.1. Experimental setup

In this study, we use MAPE as the measurement to compare the
accuracy among different scenarios. In this section, we also describe the
method to divide the data set. The Levenberg-Marquardt algorithm [37]
is used to train the neural networks.

4.1.1. Mean absolute percentage error
MAPE and mean absolute error (MAE) shown in Eqs. (6) and (7) are

used to evaluate the accuracy of different approaches [38].

∑= −
=

MAE
n

X1 Ẋ
i i

n

i i
(6)

∑= − ×
=

MAPE
n

X
X

1 Ẋ 100%
i

n
i i

i1 (7)

where n is the number of data. X and Ẋi i are the actual and forecasted
values respectively.

4.1.2. Data division
Fig. 8 shows the load profile used in the simulation. In all the sce-

narios, the data are divided into three sets: training, testing, and cross-
validation. We randomly select 80% of the data as the training set that
contain 35,064 hourly data. The remaining 20% (8784 hourly data)
were treated as the testing set. From the training set, we select one-
week data as the cross-validation data set. The training data are used to
train the neural networks, the testing data are used to select hy-
perparameters (e.g., the number of neurons and the number of wavelet
transform levels), and the cross-validation is used to presents the pre-
diction accuracy.

4.2. Scenario #1 using only neural networks

We use the data to train a neural network, in which, the hidden
layer contains 20 neurons. Tanh-Hyperbolic tangent function is used as
an activation function. Since the Levenberg–Marquardt algorithm has a
fast rate of convergence, we use it to train the parameters of the neural
networks in this study. The MAPE for this method is 1.91%. Fig. 9
depicts the actual load and predicted load using the neural network.

4.3. Scenario #2: using traditional wavelet transform with neural networks

In this scenario, we replaced the full wavelet packet transform
shown in Fig. 5 by the traditional wavelet transform. We use various
levels of decomposition including 1-level, 3-level and 5-level. In the
neural networks, we use 20 neurons in the hidden layer.

Fig. 10 shows the load profiles of one week decomposed by a 3-level
traditional wavelet transform. The load profile of the week was de-
composed into four components with different frequencies including
A3;1, D3;2, D2;2, and D1;2. The A3;1 is the approximation component
in which the high-frequency fluctuation is removed but the trend is
sustained. The D3;2, D2;2, and D1;2 are the detail components that
contain the irregular fluctuations of the original signal. Therefore, the
electricity consumption patterns encoded in signals with various fre-
quencies can be exploited.

Fig. 11 day-ahead predicted load profiles using traditional wavelet
neural networks with different levels of decomposition. The MAPE of
the load forecasting with the 3-level wavelet transform was 1.72%
while the MAPEs were 1.85% (with 1-level decomposition) and 1.82 %
(with 5-level decomposition). As can be seen, the load forecasting with
3-level wavelet transform showed the best performance.

4.4. Scenario #3: using the proposed full wavelet neural network

In this scenario, we evaluate the proposed model, which ensemble
full wavelet package transform and multi-level neural networks.

The full wavelet packet transform decomposes not only the ap-
proximation components but also the detail components so more in-
formation can be exploited. 3-level decomposition was selected to de-
compose the original data into 4 sets of components: (A3; 1,D3; 2), ⋅⋅⋅,
(A3; 7,D3; 8). Fig. 12 shows the waveform of the original one-week load
profile and its decompositions. These components are used to train the
neural networks.

In the prediction stage, features with the same index and level are

Fig. 11. Day-ahead predicted load profiles using traditional wavelet neural
network techniques (a) 1-level wavelet transform. (b) 3-level wavelet trans-
form. (c) 5-level wavelet transform.

M. El-Hendawi and Z. Wang Electric Power Systems Research 182 (2020) 106265

6



fed into the trained neural networks to predict the load profile for each
component. Finally, the predicted load profile is constructed. Fig. 13
shows the actual and predicted load profile using full wavelet neural
networks The MAPE was 1.52%.

4.5. Scenario #4: evaluation of the proposed full wavelet neural network

In this scenario, the proposed full wavelet neural network is eval-
uated in different months and different day types.

4.5.1. Evaluation in different months
Fig. 14 shows the MAPE in the months of 2016. As can be seen, the

MAPEs were small and slightly fluctuate among the months. The

minimum of the MAPE was 1.2% in May and the maximum MAPE was
in June and December with 2%. The average was 1.5%.

4.5.2. Evaluation in different day types
Table 3 shows the MAPEs in working days, weekends and holidays.

As can be seen, the MAPE in working day was the lowest with 1.03%
while the MAPE was 2.14% on holidays that was the highest. The MAPE
of the load forecasting on weekends was 1.33%.

5. Discussion

The proposed model is applied for day-ahead load forecasting in
case studies for the Ontario electric market, Canada. Simulation is

Fig. 12. One-week load data samples decomposed by a 3-level full wavelet packet transform approach.
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conducted in scenarios using various methods including neural net-
works, a combination of traditional wavelet transform and neural net-
works, and the proposed full wavelet neural network. In addition, dif-
ferent levels of traditional wavelet transform are evaluated.

Table 4 shows the MAE and MAPE using these methods. The pro-
posed wavelet packet transform and neural networks perform the best
with the lowest MAE (232.8 MW) and MAPE (1.52%). By contrast, the
neural networks show the highest MAE (287.2 MW) and MAPE
(1.91%). The performance of the combination of traditional wavelet
transform and neural networks stays in the middle, among which, the 3-
level decomposition appears the best with MAE (254.1 MW) and MAPE
(1.72%). As can be seen, the proposed full wavelet neural network
improves the accuracy by 20% from using the neural network method
and 11.6% from using 3-level traditional wavelet transform combined
with neural networks.

Fig. 15 shows the actual load and predicted load using the testing
data set of the year 2016, which shows the reliability of the proposed
approach with good accuracies of load forecasting in different months.
The accuracy of load forecasting for June and December appears lower
than the other months. This is because the demand variation is large
due to the irregular usage of air conditioners in June or space heaters in
December.

Fig. 16 shows the actual load, forecasted load and the MAE using the
cross-validation data set of one week. The MAPE is as low as 1.04%.

Fig. 17 illustrates the statistics of the MAPE of load forecasting using
the testing data set (8784 hourly data). On each box, the central mark
indicates the median of the data. The bottom edge of the box indicates
the 25th percentile and the top edge of the box indicates the 75th per-
centile. The whiskers extend to the maximum and the minimum data
points without considering outliers. For instance, at 1:00, the median

MAPE was 1% indicated by the central mark. The maximum and
minimum MAPE were 4% and 0% respectively.

Furthermore, load forecasting using the proposed full wavelet
neural network show that the human factors have significant impact on
the load variation and hence influence the accuracy of load prediction.
More specifically, load forecasting in working day has a higher accu-
racy than weekends and holidays since people have a regular routine
during weekdays while the activities during weekends and holidays are
more random.

6. Conclusion

This paper proposes a full wavelet neural network model that can be
used for high accuracy short term load forecasting. This model en-
sembles two approaches: the full wavelet packet transform and multi-
layer neural networks. The full wavelet packet transform decomposes
the original load profile into components with different frequencies to
exploit electricity consumption patterns. The neural networks are
trained to predict load for each wavelet component using the
Levenberg–Marquardt algorithm. The predicted load profiles are con-
structed as the final load prediction. This method is applied for load
prediction in the electricity market of Ontario, Canada in case studies.
Simulation results show that the proposed full wavelet neural network
approach has the lowest prediction error of 1.52% (MAPE) in com-
parison with neural networks and traditional ensemble methods.
Furthermore, the approaches demonstrate a high prediction accuracy
and great reliability under various conditions such as different months
and day types (e.g., weekday, weekend and holiday).

Fig. 13. The actual and predicted load profile using full wavelet neural net-
works.

Fig. 14. Monthly MAPE % through the year 2016.

Table 3
Load prediction accuracy using full wavelet
neural network in different day types.

Day type MAPE%

Working day 1.03
Weekend 1.33
Holiday 2.14

Table 4
MAE and MAPE using different methods.

Error type Neural network 1- level 3-level 5-level FWNN

MAE (MW) 287.2 278.2 254.1 268.8 232.8
MAPE (%) 1.91 1.85 1.72 1.82 1.52
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