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Abstract—In the literature, Bode plots and Nyquist diagrams
are used extensively in stability analysis for admittance-based
models. In this letter, we demonstrate that eigenvalues obtained
from the total admittance lead to accurate prediction of stability
while Bode plots and Nyquist diagrams show limitations. A
voltage source converter with weak grid interconnection is used
as an illustrative example to demonstrate the pros and cons of
the three methods applied to dq-frame admittance matrices.

I. INTRODUCTION

FREQUENCY-domain methods (Bode plots and Nyquist
diagrams) are used extensively in stability analysis for

impedance- or admittance-based systems, e.g., [1], [2]. Alter-
natively, closed-loop system eigenvalues can also be obtained
from s-domain admittance matrix [3]. The latter, however,
is adopted in few literature. In this letter, we demonstrate
that eigenvalues lead to accurate prediction of stability while
Bode stability criterion has theoretic limitations and Nyquist
criterion has implementation limitations. A voltage source
converter (VSC) with weak grid interconnection is used as an
illustrative example to demonstrate the two analysis methods.

Section II presents a nutshell of the two types of stability
analysis for a system represented by two admittances. Section
III presents the example system stability analysis via eigen-
values, Bode plots, and Nyquist diagram. Concluding remarks
are also presented in Section III.

II. ADMITTANCE MODEL-BASED SMALL-SIGNAL
ANALYSIS IN A NUTSHELL

We use a simple system with two impedances to illustrate
the stability criterion. The example system in Fig. 1 represents
a converter connected to a grid. The converter is modeled in
Norton representation as a current source ic(s) in parallel with
an admittance Yconv(s). Its impedance is notated as Zconv

and Zconv = Y −1
conv. The grid interconnection is represented

as a Thevenin equivalent, a voltage source vg(s) behind an
impedance Zg(s). The current flowing into the converter can
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Fig. 1: Impedance model of a converter connected to a grid.
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be derived as follows.

i(s) = (I + YconvZg)
−1

(Yconvvg(s)− ic(s)) (1)

where I is the identity matrix. For the above system, two
assumptions are made. (i) The grid voltage vg(s) is stable;
(ii) the system is stable when the grid impedance Zg is zero,
i.e., Yconvvg(s)− ic(s) is stable. The first assumption is valid
for the real-world scenarios as long as the grid voltage is
within the limits. The second assumption is valid as long as
the inverter converter admittance Yconv is stable and current
order ic is stable. For properly designed converters, the second
assumption is also true.

Therefore, for the current i(s) to be stable, we only need to
examine (I + YconvZg)

−1. This circuit analysis problem may
be treated as a feedback system, as shown in Fig. 2, where
the input u is (Yconvvg(s)− ic(s)) and the output y is i(s).

Yconv Zg

+

-

u y

Fig. 2: Circuit analysis problem is converted to a feedback control problem.

Similarly, we may formulate a nodal equation for analysis:

v(s) = (Yg + Yconv)
−1

(Ygvg(s) + ic(s)) (2)

Stability Criterion 1: Roots of the characteristic polyno-
mial located in the LHP. The system’s stability is guaranteed
if the characteristic polynomial has no zero in the right half
plane (RHP) [4], or det(I + YconvZg) = 0 should have all
roots in the LHP.

Since det(I + YconvZg) = det(Zg) det(Yg + Yconv), with
the assumption that Zg and Yg are stable, the stability criterion
is equivalent to the following: the roots of det(Y ) should all
be located in the LHP, where Y is the total admittance and
Y = Yg + Yconv.

Stability Criterion 2: Generalized Nyquist Stability Cri-
terion or Bode Plots More often, open-loop analysis is used
for analysis. For scalar admittances or impedances, the Root-
Locus method and Nyquist Criterion can be applied. For 2×2
admittances, Generalized Nyquist Criterion developed in 1970
[5] has been popularly used in the field of frequency-domain
analysis for machines and converters, e.g., [6], [7]. Stability
can be examined by checking the eigen loci or the Nyquist
plots of the eigenvalues of open-loop gain YconvZg or ZgYconv.
If the eigen loci do not encircle (−1, 0), then the system
is stable. In Bode plots, when phase shift happens, the gain
should be less than 1 for a stable system. It has to be noted that
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the Bode stability criterion is a sufficient, but not necessary,
condition for instability. In addition, Bode stability criterion
applies to stable open-loop systems and it does not apply to
those open-loop systems with RHP zeros, or non-minimum
phase systems.

III. AN EXAMPLE: VSC IN WEAK GRIDS

In this section, we illustrate the two approaches of stability
analysis using an example: a grid-following voltage source
converter (VSC) with weak grid interconnection.

The grid-following VSC is assumed to achieve two control
functions: regulate the dc-link voltage and regulate the point of
common coupling (PCC) voltage. The admittance of the VSC
viewed from the PCC bus is desired. To find the admittance,
the integration system is constructed to have the PCC bus
connected to the grid voltage source through a very small
impedance (Rg and Lg). The topology is shown in Fig. 3.
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Fig. 3: Grid-connected VSC circuit diagram.

The analytical model of the system is constructed in the dq-
frame. This model has been used for stability analysis related
to VSC in weak grids [8]–[11]. The full details of the modeling
blocks are shown in Fig. 6(a). Using numerical perturbation
(e.g., MATLAB command linmod), lineraized model at an
operating condition can be found. An input/output linearized
model is found with the dq-axis voltages as input and the dq-
axis currents as output, shown in the following.

[
id(s)
iq(s)

]
= −

[
Ydd(s) Ydq(s)
Yqd(s) Yqq(s)

]
︸ ︷︷ ︸

Yconv

[
vgd(s)
vgq(s)

]
(3)

Fig. 6(b) presents the frequency-domain responses of the
admittance matrix viewed at a bus location close to the PCC
bus. The two buses are connected by a small impedance at
0.01 + j0.1 pu.

The analytical model shown in Fig. 6 has been derived in
our prior work [8]–[11] and can be used to demonstrate low-
frequency oscillations. Fig. 4 presents the system response
subject to a small step change in dc-link voltage order when
the grid is weak or transmission line reactance assumes a large
value (Xg = 0.8 pu). Note that the system is stable when Xg

is less than 0.8 pu.
a) Eigenvalue Analysis: We now approach to view the

system as a one-node system with two shunt admittances:
Yconv and Yg . The node is the PCC bus. The total admittance
viewed at the PCC bus is as follows: Y = Yconv + Yg , where

Yg = Z−1
g and Zg =

[
Rg + sLg −ω0Lg

ω0Lg Rg + sLg

]
and ω0 is the

nominal frequency. In this example, ω0 is 377 rad/s.
The system’s eigenvalues are the roots of det(Y ). We

use Matlab function tzero(Y) to find the eigenvalues. The
system has a total 9 eigenvalues. Six right most eigenvalues
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Fig. 4: Dynamic responses of the VSC grid integration system subject to
0.5% change in dc-link voltage order. Dash dotted line: Rg = 0.08 pu,
Xg = 0.8 pu. The system is unstable with growing 5 Hz oscillations. Solid
line: Rg = 0.05 pu, Xg = 0.5 pu. The system is stable.

at two different operating conditions (Xg = 0.5 pu versus
Xg = 0.8 pu) are plotted in Fig. 5. One pair of eigenvalues
with frequency of 5 Hz move to the RHP when Xg is 0.8 pu.
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Fig. 5: Eigenvalues obtained using admittance-based approach. The arrows
notate eigenvalue loci when Xg increases. The system is stable when Xg is
0.5 pu and unstable when Xg is 0.8 pu.

It can be seen that the eigenvalue analysis results correctly
indicate the system is unstable with a pair of eigenvalues
located in the RHP when Xg = 0.8 pu.

b) Bode plots and Nyquist Diagrams: Bode plots and
Nyquist diagrams based on the eigenvalues of YconvZg at every
frequency are also plotted. In Bode plots (Fig. 7), two different
colors notate two different eigenvalues computed at every
frequency. The phase shifting points are examined. It is found
that one eigenvalue loci has phase shift at 5.4 Hz for both cases
(Xg = 0.5 pu and Xg = 0.8 pu). The corresponding open-loop
gain magnitudes are all greater than 1. This indicates that both
systems are unstable. This conclusion is obviously not correct
since the simulation results indicate that the system is stable
when Xg is 0.5 pu.

This example indicates that Bode plots have limited appli-
cation scope. It is well-known that Bode plots cannot be used
for non-minimum phase system for stability analysis.

It is indicated in [12] that the Bode stability criterion cannot
be used to make definitive statement about the system stability.

Fig. 8 gives Nyquist plots of the open-loop gain from −100
Hz to −1 Hz and from 1 Hz to 100 Hz. Stability is indicated
by if (−1, 0) is encircled clockwise if the open-loop system is
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Fig. 6: Block diagram of the analytical model and its admittance frequency-domain responses. Parameters of the test case in pu: (Rg , Xg) : (0.001, 0.1),
(RL, XL) : (0.003, 0.15), inner current PI controller: (Kpi,Kii) : (0.3, 5), outer loop PI parameters: (1, 100), second-order PLL: (Kp,PLL,Ki,PLL) =
(60, 1400). Dc-link capacitor time constant τ : 0.0272 s.
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Fig. 7: Bode plots of the system at two Xg conditions. (a) Xg = 0.5 pu. (b)
Xg = 0.8 pu. Bode plots indicate the system is unstable under two conditions.

has no zero in the RHP. The number of encirclement should
be counted otherwise. This poses difficulty since (i) zeros of
the two single-input single-output (SISO) open-loop systems
based on the eigenvalues of the 2 × 2 matrix: YconvZg are
not straightforward to be computed; and (ii) it is difficult to
examine encirclement visually. Thus, Nyquist diagram is not
straightforward for stability check.

Concluding Remarks: In this letter, we use the VSC
with weak grid interconnection example to demonstrate that
eigenvalues computed based on a total s-domain admittance
can provide accurate stability analysis. We also show the limi-
tations of the frequency-domain approaches: Bode plots cannot
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Fig. 8: Nyquist diagrams of the eigenvalues of YconvZg . (a) Xg = 0.5 pu.
(b) Xg = 0.8 pu.

predict stability analysis accurately while Nyquist diagrams
are not straightforward for stability check.
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