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A B S T R A C T   

Electric vehicles are a sustainable substitution to conventional vehicles. This study introduces an 
integrated framework for urban fast charging infrastructure to address the range anxiety issue. A 
mesoscopic simulation tool is developed to generate trip trajectories, and simulate charging 
behavior based on various trip attributes. The resulting charging demand is the key input to a 
mixed-integer nonlinear program that seeks charging station configuration. The model minimizes 
the total system cost including charging station and charger installation costs, and charging, 
queuing, and detouring delays. The problem is solved using a decomposition technique incor
porating a commercial solver for small networks, and a heuristic algorithm for large-scale net
works, in addition to the Golden Section method. The solution quality and significant superiority 
in the computational efficiency of the decomposition approach are confirmed in comparison with 
the implicit enumeration approach. Furthermore, the required infrastructure to support urban 
trips is explored for future market shares and technologies.   

1. Introduction 

Crude oil price fluctuations and major concerns about vehicle emissions have pushed the car industry towards investment in 
electric vehicle (EV) production (Dong et al., 2014; He et al., 2013; Kavianipour et al., 2020). EVs remove on-road emissions and can 
mitigate air pollution significantly if accompanied by green energy production. Limited driving range and insufficient supporting 
infrastructure, as well as long charging times, however, have hindered the acceptance of the EVs in the market (He et al., 2013; Nie and 
Ghamami, 2013). Although some current EV models can exceed 300 miles per charge, the range is still lower than that of similar 
conventional vehicles (CV). Also, unlike CVs, the performance of EVs decreases further in cold weather (Krisher, 2019). Therefore, 
customers are concerned about being stranded along their way by running out of charge while without access to charging stations, 
called range anxiety (Tate et al., 2008). Providing adequate charging infrastructure mitigates some such challenges associated with 
EVs, and is known to be among the main factors to increase their market share (Nie et al., 2016). 

The driving pattern of EVs with their initial state of charge can be used to determine the optimal location of charging stations. Some 
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studies have used travel surveys, e.g. National Household Travel Survey and Metropolitan Travel Survey Archive, to find the users’ 
driving pattern information including trip travel times, distances, origins, and destinations (Andrews et al., 2012; Avci et al., 2012; 
Sweda and Klabjan, 2011). Taxi GPS data can also provide similar information, but their applications are limited to charging station 
planning for on-demand ride services (Shahraki et al., 2015; Tu et al., 2016). Due to the unavailability of EV trajectories, simulation- 
based data sets can be used as a surrogate (Dong et al., 2014; Xi et al., 2013). 

The main focus of this study is on developing an integrated modeling framework for urban charging infrastructure planning, 
considering DC fast chargers with 50–150 kW charging powers. Distances of single urban trips are generally much shorter than the 
range of typical EVs in the market, but vehicles are supposed to serve a daily chain of trips instead of a single trip. Also, not all urban 
trips can begin with fully charged batteries due to various reasons such as unavailability of level 2 (L2, with 6.2 kW power) chargers 
(Wood et al., 2017), lack of charging time, or owners simply forgetting to fully recharge overnight. This calls for a comprehensive data 
set that includes daily chains of trips for all travelers and availability of level 2 chargers at each intermediate destination. However, 
most of the urban planning agencies do not have access to these data, and rely on static zone-to-zone demand tables with aggregate 
data on trip purposes and land use characteristics at zone levels. Thus, an innovative approach is developed in this study to: (i) generate 
required dynamic travel demand information from available aggregate data, (ii) build a charging behavior simulation tool to assign the 
stochastic initial state of charge for each vehicle trajectory according to the departure time, trip purpose, and land use characteristics at 
the origin, (iii) feed this spatial and temporal distribution of charging demand into a micro-simulation charging infrastructure opti
mization framework, which captures travelers’ charging behavior for a given market share of EVs, and ensures the feasibility of all EV 
trips. The mathematical model is decomposed into two subproblems that find the optimal location of stations and the number of 
chargers at each location separately. 

The state-wide roadway network in Michigan provided by the Michigan Department of Transportation (MDOT) is considered as the 
main network of interest. Real-time traffic volume observations from loop detectors are used together with daily static demand data to 
estimate time-dependent demand tables. Then, a simulation-based dynamic traffic assignment tool, DYNASMART-P (Jayakrishnan 
et al., 1994), is used to provide trip trajectories, and zone-to-zone time-dependent travel time and distance skims. Time-dependent trip 
purposes are also available from a travel survey in Michigan (Wilaby and Casas, 2016). Finally, land-use attributes at origin and 
destination zones are used to determine trip purposes and to simulate charging behavior for any city of interest in the state-wide 
network. Regional networks for three cities with various sizes, namely Marquette, Lansing, and Detroit, are used to demonstrate 
the successful implementation of the proposed optimization framework for various charging technological advancement. 

The remainder of this paper is organized as follows. The next section provides a literature review on charging station optimization 
and lists the key contributions of this study. The research framework section then presents the traffic simulation model, the charging 
behavior simulation model, and optimization model, as well as a solution methodology. Next there are demonstrations of numerical 
experiments including setup of the case studies, data, and results. The final section provides concluding remarks and future research 
directions. 

2. Literature review 

To address the concerns on EVs, many studies have investigated the charging station location problem. The main steps in planning 
charging stations are finding the charging demand and providing chargers at stations to serve this demand. Two common approaches 
are exploited to locate stations. The first approach clusters the charging demand and deploys stations to meet this demand (Ip et al., 
2010). The other approach considers the demand as network flow (Hodgson, 1990) and maximizes the captured flow by providing the 
charging stations on the intersecting roads. Other variants of this model consider the charging behavior of vehicles to find the locations 
that maximize the number of served vehicles (Kim and Kuby, 2012; Kuby and Lim, 2005; Upchurch et al., 2009). Even though the 
models considering demand as flow or clusters at nodes of the network are well-suited to capture the intercity trips of EV users, they 
might not serve the urban trips of EV users the best because they include a combination of trips. This study presents a framework 
simulating EV charging behavior and charging demand in urban areas using trip-based demand models. The current models are also 
applied to intercity networks where users start their trips with a similar state of charge. However, EVs begin their urban trips with 
different states of charge, which mandates considering the charging demand in more detail. One of the main contributions of this study 
is capturing variations in charging demand based on trips and land use characteristics. To find the charging demand in urban networks, 
one approach is to incorporate data-driven models developed from travel surveys considering endpoint, distance, purpose, departure 
time, and arrival time of each trip. The charging demand is then used to select charging stations from a set of candidate locations to 
minimize the number of unfulfilled trips (Andrews et al., 2012; Chen et al., 2013). Another approach is to incorporate a micro- 
simulation approach developed based on travel surveys to simulate all trips and have an extensive dataset, including the trajectory 
of vehicles. This approach provides the opportunity to solve complex problems under various hypothetical scenarios that often cannot 
be addressed directly from survey data (e.g., due to small sample sizes). In this study, we propose to use this approach to simulate 
vehicle trajectories and have access to information such as departure time and the initial state of charge, to capture the temporal 
variations in travel times and shortest paths. These features are necessary to be considered for planning and designing infrastructure in 
urban networks (specially for charging stations of EVs), which the proposed micro-simulation model in this study considers. 

Beside using travel survey data, exploiting trip trajectory travel data is another common approach to find the charging demand. The 
trip trajectory of taxis has been used in numerous studies; e.g., to identify the locations with longest dwell times as the candidate points 
(Cai et al., 2014), adopt an optimization-based approach to find the hotspots maximizing the vehicles-miles-traveled (VMT) on 
electricity (Shahraki et al., 2015), and minimize the infrastructure cost considering congestion at charging stations (Yang et al., 2017). 
The models using taxi trajectories can be applied for taxis or buses, but are not suitable for private EVs due to the limited availability of 
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GPS data. Therefore, an alternative approach to capture travel data is to use traffic simulation for the origin-destination demand tables. 
In this regard, some studies consider the fixed-route choice and travel patterns (Berman et al., 1992; Hodgson, 1990; Kuby and Lim, 
2007, 2005; Lim and Kuby, 2010; Nourbakhsh and Ouyang, 2010; Upchurch et al., 2009; Xie et al., 2016; Zockaie et al., 2016), while 
others capture the interactions between service facility locations and the traffic assignment problem (Bai et al., 2011; Fakhrmoosavi 
et al., 2021; Ghamami et al., 2020; Hajibabai et al., 2014; He et al., 2013, 2018; Kavianipour et al., 2021; Riemann et al., 2015). 
Capturing these interactions makes the problem computationally cumbersome in large scale networks. This study relies on traffic 
simulation to generate vehicle trajectories. It captures the interaction between charging station locations and assignment of vehicles, 
then introduces a heuristic technique to reduce the problem. 

Due to the lack of real-world data on details of EVs’ trip trajectories, and their state of charge along their trips, simulation tools were 
implemented to generate this data. Some studies locate charging stations using a simulation-optimization model, minimizing in
vestment cost for different types of chargers and/or the number of trajectories that are unable to reach their destination due to the lack 
of infrastructure (Dong et al., 2014; Xi et al., 2013). Another approach adopts real-time trajectories of taxis, and uses a time-series 
simulation model for traveling and charging behavior of plug-in hybrid electric vehicles, so as to provide insights on optimal 
charging station development plans (Li et al., 2017). This study addresses unavailability of charging and trip trajectory data by 
developing a state-of-charge simulator within a simulation-optimization framework. 

The queuing delay is usually incorporated into a bi-level or single-level problem to determine the number of chargers. Xie et al. 
(2018) defined one feasible path for each OD pair and provided enough chargers to certify a certain level of service under stochastic 
queuing. A stochastic queuing model is adopted in Yang et al. (2017) as well, and the nonlinear queuing constraints in the optimization 
models are linearized with logarithmic transformation, and the models solved using commercial solvers. Some studies also consider the 
impact of queuing on the assignment of users. Jung et al. (2014) located the charging stations for electric taxis via a stochastic dynamic 
itinerary-interception model with stochastic queuing delay. They considered that users have information on the expected queuing 
delay in each charging station, which affects their assignments decisions through a bi-level setting. The lower level incorporates an 
activity-based simulation framework to capture the routing behavior of EVs based on the charging stations and chargers found in the 
upper level. Another study defined different charging scenarios and embedded the expected waiting time under stochastic queuing into 
link travel times, assuming that EVs have access to the expected waiting time information (Wang et al., 2019). Ghamami et al. (2020) 
developed a bi-level model to investigate the optimum charging infrastructure considering deterministic queuing in intercity networks. 
The user equilibrium at the lower level assumes that users have information on queuing delay and charging station availability 
(Ghamami et al., 2020). Similarly, Chen et al. (2020) found the optimum charging infrastructure through a bi-level problem where 
stochastic queuing was incorporated at the lower level, while Zhang et al. (2018) investigated joint operations and pricing mechanisms 
of coupled power and electric transportation systems for electric unmanned aerial vehicles. In this study, we assume queuing delay 
information is available through different platforms (i.e., charging station apps), and users are assigned based on the availability of 
charging stations and chargers. Our modeling framework considers either deterministic or stochastic queuing delay at charging sta
tions. When the arrival rate exceeds the service rate, random fluctuations in the arrival and service processes will tend to cancel out, 
and hence we use deterministic queueing, which simply assumes uniform arrival and services. When the service rate is greater than the 
arrival rate, however, the deterministic queuing delay would be zero, which fails to capture the random surges in arrivals or services. In 
such a case, the stochastic queuing delay model would be considered, assuming a Poisson distribution for the arrival of vehicles and 
exponential distribution for service times. Either way, the charging station power capacity and the number of chargers (decision 
variables) determine the service rate, and the assignment of users to each charging station (state variables) determines the arrival rate. 

To the best of the authors’ knowledge, there is no study which considers all the components we include in this study. We reviewed 
the exact impact of queuing on the assignment of users, while other studies just consider the average queuing. Further, the problem 
formulation is comprehensive, reviewing every constraint required for the assignment of vehicles. Compared to the previous studies in 
charging station planning, this study contributes to the literature in the following aspects: 1) Presenting a framework simulating EV 
charging behavior and charging demand in urban areas using trip-based demand models; 2) Considering the initial state of charge 
variations, range anxiety, detour delay, charging delay, and queuing delay for each user; 3) Using a decomposition technique to 

Fig. 1. Components in the proposed research framework.  
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effectively solve the problem; 4) Developing a framework that distinguishes between deterministic and stochastic queueing delays 
based on relative arrival and service rates; 5) Incorporating calibrated and realistic input parameters based on various stakeholders’ 
feedback from real-world case studies to provide meaningful insights for system planners. 

3. Research framework 

This section first presents the proposed research framework (Fig. 1) by demonstrating the connections between traffic simulation, 
charging behavior simulation, and a mathematical optimization model. The traffic simulation component uses the Origin-Destination 
(OD) demand table and road network properties as inputs, incorporating a simulation-based dynamic traffic assignment tool 
(DYNASMART-P), to analyze the travelers’ route choice behavior. Trip trajectories and skim tables are the main output of this 
component. The former includes traveled paths and travel time stamps along each path for each vehicle, and the latter are the average 
zone-to-zone travel distances and times. The next component, charging behavior simulation, utilizes temporal distribution of trip 
purposes, land use data, and trip trajectories from the first component to simulate travelers’ charging behavior based on a random 
distribution of the initial state of charge and the required energy to complete their trips. The vehicles unable to fulfill their trips need to 
be recharged, forming the charging demand. This charging demand along with travel skims will be fed into an micro-simulation based 
urban charging infrastructure planning model. This model, which is formulated as a nonlinear mixed-integer program, is decomposed 
into two subproblems; one locates the charging stations in the network, and the other finds the number of chargers at each station. 

This section also presents a decomposition approach to solve the mathematical optimization model. The problem is decomposed 
into two subproblems; one locates the charging stations in the network, and the other finds the number of chargers at each station. 
First, the cost function of the first subproblem, which includes charging stations’ costs and users’ refueling times and travel detours, is 
minimized to determine the locations for charging station installation. In this cost function, refueling times and detour times are 
monetized by incorporating the average value of time. Please note that this subproblem minimizes the energy required for the EVs to 
reach the charging stations, since the detour and refueling times are functions of energy consumption. This subproblem also ensures 
that all EVs can fulfill their trips by visiting one of the built charging stations. The solution of the first subproblem provides the time- 
dependent incoming traffic flow and energy demand in each station. This information is then used in the second subproblem to find the 
number of chargers needed to minimize the charger installation cost and users’ waiting time cost (deterministic or stochastic). In fact, 
this subproblem minimizes the time loss under the condition provided by the first subproblem, i.e., minimal energy. The first sub
problem is a linear mixed-integer mathematical model. While commercial solvers, e.g. CPLEX and Gurobi, can solve it for small-scale 
networks, a metaheuristic algorithm is developed in this study for larger-scale networks in this study. The second subproblem is a non- 
linear mixed-integer mathematical model whose objective function is proven to be convex in Appendix B, and hence, the golden 
section method is proposed to solve this subproblem. 

3.1. Traffic and charging behavior simulation 

The statewide road network of Michigan consists of 37,125 links, 16,976 nodes, and 2,330 traffic analysis zones. The static demand 
matrix for different OD pairs is provided on a daily basis by the Michigan Department of Transportation (MDOT). Hourly factors are 
multiplied into the static demands to convert them into a time-dependent OD demand matrix. Hourly factors are estimated based on 
the information of 122 loop detectors installed across Michigan highways. These loop detectors are mostly located inside the city 
boundaries, which are the focus of the current study. For example, Detroit, Lansing, and Marquette networks contain 46, 20, and 2 loop 
detectors on their links, respectively. To consider the directionality of traffic during different hours of a day, the closest loop detector 
counting the traffic of the same direction as the OD pair direction is found. Based on the traffic counts of the selected loop detector for 
the OD pair of interest, the hourly demand factors are then defined for the OD pair. 

Travelers’ route choice is a collective decision-making process that results in a certain traffic state and congestion level at the 
network level. Traffic simulation provides trip trajectories that can be used to predict the time-dependent charging demand. Each 
trajectory provides information regarding the chosen path, timestamps of travel along the path, origin zone, destination zone, de
parture time interval, vehicle type (randomly assigned, based on the given market share), total travel time, and total travel distance. In 
this study, a mesoscopic traffic simulation tool, DYNASMART-P, is incorporated to provide user information applicable to the state- 
wide network of Michigan, and then the required trip trajectories for the cities of interest are extracted. The trajectories of all vehi
cles, along with the dynamic skims including travel times and distances for every OD-pair, are reported as the outputs of this research 
component. 

Intercity trips are often considered as stand-alone trips, in which EVs are highly likely to have fully charged batteries due to their 
preplanned nature. Urban trips, however, are part of a chain of trips, in which EVs might have any state of charge (depending on the 
availability of chargers and dwell time for recharging at the trip origin). Therefore, the charging incidence in one trip may depend on 
its sequential trip as well, i.e., the vehicle might recharge during a feasible trip to prevent charging in a subsequent infeasible one 
(Usman et al., 2020). However, the availability of trip chain information is still limited and transportation agencies still rely on zone-to- 
zone OD demand tables. Therefore, developing a framework to capture the EVs charging demand based on zone-to-zone OD demands is 
crucial. In this study, a simulation tool is developed to estimate the charging behavior of EVs based on their departure time, trip 
purpose, and land use characteristics of their origin and destination zones. The simulation tool estimates the initial state of charge at 
the origin, and the desired state of charge that the EV drivers prefer to have upon arrival at the destination. 

The proposed simulation tool assumes that users departing from home/workplace have a higher chance to have access to level 2 
chargers than those departing from other areas. While home charging is the dominant way to charge EVs, some workplaces provide 
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level 2 charging facilities for their employees. Therefore, the proposed simulation tool distinguishes the trips that begin from home/ 
workplace by assigning them a higher initial state of charge. Further, it considers a higher initial state of charge for single-family 
residential areas than multi-family ones because the former have more space/authority to deploy chargers. The simulation tool in
corporates a survey conducted by MDOT in 2016 (Wilaby and Casas, 2016) that presents the time-dependent trip purpose distribution 
in Michigan. The survey categorizes the activities into seven groups, including home-based work (HBWork), non-home-based work 
(NHBWork), home-based school (HBSchool), home-based shop (HBShop), home-based social (HBSocial), home-based other 
(HBOther), and non-home-based other (NHBOther). HBWork shows a trip directly from home to work or from work to home. 
NHBWork shows trips with one end at work while the other end is not home. HBSchool shows a trip from home to school or from school 
to home. HBShop shows a trip from home to shop or shop to home. HBSocial shows a trip from home to a recreational place or vice 
versa. HBOther shows a trip with one end at home while the other end is not in the previous groups. NHBWork shows a trip that has an 
end at work, but its other end is not home. NHBOther shows the trips that have no end at home or work. However, as mentioned before, 
in terms of EV applications, we need to distinguish between trips based on whether they originate from home/work or not (to consider 
higher availability of level 2 chargers at home/work). Thus, the defined seven activity types in the survey are categorized into four 
groups: HBWork, NHBWork, NHBOther, and the home-based non-work (HBNWork). Note that HBSchool, HBShop, HBSocial, and 
HBOther are combined in the latter group (HBNWork) since they all provide similar charging opportunities for users. The time- 
dependent probabilities for these four categories are then calculated by aggregating the survey results. These probabilities are then 
used to assign a trip purpose to each vehicle trajectory. 

The other input to the simulation tool is the land use characteristics at the origin and destination of trips. The simulation tool 
focuses on three land use characteristics due to their impacts on charging behavior, namely residential (R), commercial (C), and other 
(O) and their area ratio (the ratio of the land use characteristic area over the total TAZ area) in zone k is denoted by S 1

k , S 2
k , and S 3

k , 
respectively (S 1

k + S
2
k + S

3
k = 1). Note that the last category, O, includes recreational, transport, and agricultural land uses. Thus, 

there are nine possible combinations of origin and destination zone types for each trip. The unadjusted static probability of origin 
(o)-destination (d ) paired land use characteristics, pi j

od , is defined as below: 

p
i j

od = S
i

o .S
j

d (1)  

where i and j represents the land use characteristics. Assuming the purpose of each trip can be captured stochastically through its 
origin and destination land use, the nine possible combinations are crossed with the four sets of activities discussed earlier. Therefore, 
HBWork includes R–C and C–R, HBOther includes R–R, O–R, and R–O, NHBWork includes C–C, C–O, and O–C, and NHBOther 
includes O–O. Since the time-dependent distribution of each trip purpose (activity) is known, the origin-destination paired land use 
probabilities need to be adjusted according to their trip departure time intervals, using a temporal factor defined as follows: 

T
t

od ,m =
A

t

m∑
ijx

i j
mS

i

o .S
j

d

. (2)  

where T t
od ,m is the temporal factor for activity m at time t for od and A t

m is the time dependent share of activity. x i j
m is a binary 

parameter indicating if land use combination i j is a subset of m. The probability associated with each OD pair land use can be adjusted 
for each time interval by multiplying the defined temporal factor. The probability associated with each OD pair land use can be 
adjusted for each time interval by multiplying the defined temporal factor. Then, the origin-destination pair land use (thus associated 
trip purpose group) can be probabilistically assigned for each EV trajectory. To clarify this point, assume a hypothetical example as 
follows: Assume that HBWork share for a trip departure time interval is 0.55, shares of R and C land uses at the trip origin zone are 0.7 
and 0.2, and shares of R and C land uses at the trip destination zone are 0.3 and 0.5. Then, the unadjusted probability associated with 
R–C and C–R would be 0.7× 0.5 = 0.35, and 0.2× 0.3 = 0.06, respectively. The temporal factor would be (0.55/(0.35+0.06)) and 
the adjusted probability for the trip to have R-C as the origin-destination paired land use would be 0.35× (0.55/(0.35 + 0.06)). 

Once the trip purpose, origin-destination paired land use characteristics, and residential type (if applicable) are assigned for each 
EV trajectory, using associated truncated random normal distributions, the initial and desired state of charge would be determined for 
the trajectory. The difference between the desired state of charge and the initial state of charge plus the charge spent en-route to reach 
the destination is the total charge required for each EV trajectory. If this value is positive, the EV would need to recharge along its path 
to the destination and its charging demand should be provided to the optimization model as an input; otherwise, the EV trajectory 
would not need recharging and would not be considered in the optimization model. 

3.2. The mathematical optimization model 

This section aims to present the developed modeling framework that minimizes the cost for providing the charging infrastructure, 
as well as the users’ charging, queuing, and detour delays. The following notation is used in this study:  

Sets 
i ∈ I  Set of zones 
τ ∈ T  Set of time intervals that vehicles get to charging stations 
θ ∈ T  Set of time intervals that vehicles leave charging stations 

(continued on next page) 
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(continued ) 

j ∈ J  Set of electric vehicles that need recharging 
Decision variables 
xi  Binary decision variable for availability of a charging station at zone i which equals 1 if there is a charging station at zone i and zero otherwise  
zi  Integer decision variable for number of chargers to be provided at the charging station in zonei  
State variables 
Qτθ

ij  Charging incidence matrix, which is one if EV j arrives to charging station in zone i at time interval τ and depart from it towards its destination at time 
interval θ  

πτ
i  Total charging and queuing delay experienced by EVs reaching to the charging station of zone i at time τ  

TTdj  Detour travel time required to reach the assigned charging station for EV j refueling  
yτ

i  Total number of EVs visiting the charging station at zone i at timeτ  
vτ

i  Total energy demand of EVs visiting charging station in zone i at timeτ  
tτ
i  Average remaining charging time for users at zone i at timeτ  

μτ
i  Service rate of the charging station in zone i at time τ  

λτ
i  Arrival rate to the charging station in zone i at timeτ  

qτ
i  Queuing time for the last vehicle joining the queue of the charging station in zone i at timeτ  

χτ
i  Incidence matrix of observing queuing for the entire period of τ at the charging station of zone i. It is equal to one if there is a residual queue at the end of 

time interval τ, and zero otherwise.  
δτ

i  Portion of time that queue length is greater than zero in charging station of zone i during time interval τ  
Wτ

i  Average waiting time in charging station of zone i for EVs arriving at timeτ  
Rij  Refueling time for EV j recharging at the charging station of zonei  
ρτ

i  Utilization rate of charging station zone i at timeτ  
Pτ

i0  Probability of not having any vehicles using any chargers at charging station of zone i at timeτ  
lτi  Number of customers in the queue at charging station of zone i at timeτ  
Parameters 
Cs

i  Cost of building and maintaining a charging station at zone i, converted to the depreciation cost per day (the assumed analysis period in the model 
formulation)  

Cp
i  Cost of one charger installation and maintenance at zone i, converted to the depreciation cost per day  

γ  Value of time 
M  An arbitrary big number 
Eθ

ij  Required energy for EV j to reach the charging station at zone i and depart from it toward its destination at time intervalθ  

ζj  Desired state of charge for EV j at the destination  
F  Maximum amount of charge that EVs can store 
sj  Initial state of charge for EVj  
β  Battery performance 
dc
(a,b) Distance between the centroid of zones a and b for vehicles departing at time c 

smax  State of charge that the charging speed drops beyond it 
smin  Minimum state of charge that drivers let their batteries drop to 
tc
(a,b) Average travel time of vehicles departing zone a to destination zone b departing at time c 

t’
j  Departure time for EV j from its origin  

tj  Departure time interval for EV j from its origin  
O(j) Origin zone of EVj  
D(j) Destination zone of EVj  
T0  Duration of each time interval 
α  Charging efficiency of batteries 
P  Charging power 
ε  An arbitrary small number  

Three main assumptions are made to formulate the problem of interest in this study:  

i. Users are assigned to paths and charging stations to minimize the total system cost.  
ii. Detour of EVs for recharging does not affect network link travel times, i.e. EVs are not congestion makers, but congestion takers 

(Sheppard et al., 2017).  
iii. Travel distances in urban networks are within the full range of EVs. Therefore, EVs that need recharging only recharge one time 

per route.  
iv. The expected state of charging stations (average waiting times and charger occupancy rates) are known to the system. 

In this study, we assume that the optimization models (especially the lower-level one) are implemented in different platforms (i.e., 
charging station apps), which not only provide routing guidance to users but also predict the queuing delay at each user’s estimated 
future arrival time at various potential stations based on the availability of chargers and the best estimated demand. Such information 
can be updated dynamically, and then be disseminated to users to guide their route decisions. 

The network considered in this study consists of a set of zones (i ∈ I). A set of time intervals (τ ∈ T) at which EVs can arrive at 
charging stations. This discrete set allows the model to capture the visiting flow to stations over time. Another set of time intervals (θ ∈

T) shows the time intervals at which vehicles depart the charging stations. This set enables the model to differentiate between the 
congestion levels in the arrival and departing time intervals. We assume T0 is the duration of each time interval. Each electric vehicle 

M. Kavianipour et al.                                                                                                                                                                                                 



Transportation Research Part D 93 (2021) 102769

7

(j ∈ J) has a trajectory that is known as a priori, with origin O(j), destination D(j), exact departure time t’
j , departure time interval tj, trip 

length dtj
(O(j),D(j) ), travel time ttj

(O(j),D(j) ), initial state of charge sj, and desired state of charge at destination ζj. The solid line in Fig. 2 shows 
the shortest direct path from origin to destination. 

If a lack of energy is an issue, the EV must recharge at one of the available charging station options (In,n = 1⋯4). The EV will charge 
enough to reach its destination with its desired state of charge at destination (ζj). The energy required for EV j to reach to its desti
nation, while visiting a charging station along its route and leaving it at time θ can be calculated as: 

Eθ
ij = ζjF − sjF +

1
β
[dtj

(O(j),i ) + dθ
(i,D(j) )], ∀j ∈ J, i ∈ I (3) 

In the above formulation, F is the battery capacity, and β is the battery performance in(mile
kWh), which converts the energy to distance. 

Note that the inverse of this parameter (1
β), is the energy consumption rate per unit of distance (kWh

mile). While EVs’ battery performances 
might differ based on the vehicle type and model, an average battery performance is considered for all EVs in the urban network. The 
required energy is calculated using the desired state of charge at destination, the initial state of charge and the distances from the origin 
zone to the charging zone, and from the charging zone to the destination zone. Having the charging demand, a micro-simulation-based 
model can be formulated as follows: 

min
∑

i∈I
(Cs

i xi + Cp
i zi)+ γ(

∑

i∈I

∑

τ∈T
πτ

i +
∑

j∈J
TTdj) (4) 

The objective function (4) consists of two main terms. The first term calculates the total infrastructure investment cost including the 
costs associated with the availability of charging stations, xi, and the integer variable zi that represents the number of chargers at each 
location i. The next term provides the monetary value of the total delay of all EV travelers that need recharging, including those related 
to the total queueing and charging delays, πτ

i , at all charging stations for different arrival time intervals, as well as those related to the 
total detour time, TTdj, experienced by EV users to access a charging station. These delays are multiplied by the value of time factor, γ, 
to calculate their monetary values. Please note that just an average value of time is considered for simplicity. This assumption can be 
easily updated and the research framework can be adjusted to capture the variations of value of time due to different classes of users, 
activities, and trip purposes. The objective function (4) is subject to constraints (5)–(18) and (21)–(27). 

xi ∈ {0, 1}, andzi ∈ {0, 1, 2,⋯}, ∀i ∈ I (5)  

zi ≤ xiM, ∀i ∈ I (6)  

∑

τ∈T

∑

θ∈T
Qτθ

ij Eθ
ij ≤ smaxF − sjF +

dtj
(O(j),i )

β
, ∀j ∈ J, i ∈ I (7)  

∑

i∈I

∑

τ∈T

∑

θ∈T
Qτθ

ij dtj
(O(j),i ) ≤ β(sj − smin)F, ∀j ∈ J (8)  

∑

τ∈T

∑

θ∈T
Qτθ

ij ≤ xi, ∀i ∈ I,∀j ∈ J (9)  

∑

τ∈T

∑

θ∈T

∑

i∈I
Qτθ

ij = 1, ∀j ∈ J (10)  

TTdj =
∑

τ∈T

∑

θ∈T

∑

i∈I
Qτθ

ij (t
tj
(O(j),i) + tθ

(i,D(j)) − ttj
(O(j),D(j))), ∀j ∈ J (11)  

t’
j + ttj

(O(j),i) − T0τ ≤
(

1 − Qτθ
ij

)
M, ∀τ ∈ T, θ ∈ T, i ∈ I, j ∈ J (12) 

Fig. 2. An electric vehicle’s route choices.  
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t’
j + ttj

(O(j),i) − T0(τ − 1) ≥
(

Qτθ
ij − 1

)
M, ∀τ ∈ T, θ ∈ T, i ∈ I, j ∈ J (13) 

Constraint (5) states the binary decision variable to determine if a zone is equipped with a charging station (x = 1) or not (x = 0). 
Constraint (6) is a logical constraint ensuring that there is no charger in zone i if the zone does not have a charging station. Constraint 
(7) accounts for the maximum charge intake. It limits the charging incidence matrix by not letting the required charge exceed the 
available fast charging capacity in the battery at the time of arrival to the station. Constraint (8) ensures that each EV can only be 
charged in zones within its viable range. It should be noted that while the least energy level that EV users let their charge drop to is 
determined by smin, the desired state of charge that they choose to have upon their arrival at a destination is determined by ζj. This 
value might be greater than smin as a vehicle might need a higher state of charge for its subsequent trips. Constraint (9) ensures that 
charging can only happen when there is a charging station at zone i. Constraint (10) ensures that each EV charges exactly one time 
(note that the trajectories are filtered to the EVs requiring recharging). Constraint (11) calculates the detour travel time for each EV to 
get to the charging station. The detoured path travel time includes the average time-dependent travel time from the origin to the 
charging station and then to the destination. The original path travel time is the average travel time of vehicles with the origin of O(j) 
and destination of D(j). Constraints (12) and (13) are feasibility constraints that ensure vehicles can be allocated to a charging station 
upon arrival at the station. 

yτ
i =

∑

j∈J

∑

θ∈T
Qτθ

ij , ∀τ ∈ T, i ∈ I (14)  

vτ
i =

∑

j∈J

∑

θ∈T
Qτθ

ij Eθ
ij, ∀τ ∈ T, i ∈ I (15) 

Constraints (14) and (15) find the temporal charging demand for each station. Constraint (14) calculates the total number of EVs 
visiting the charging station of zone i at time τ, yτ

i . Constraint (15) finds the required energy for all EVs visiting the charging station of 
zone i during time interval τ, vτ

i . The arrival rate, λτ
i , which is the average number of EV users per charger visiting the station of zone i at 

time interval τ, is defined as: 

λτ
i =

yτ
i

T0zi
, ∀τ ∈ T, i ∈ I (16) 

Similarly, the average charging time for a group of EVs visiting the charging station of zone i is denoted by tτ
i and defined as: 

tτ
i = α vτ

i

Pyτ
i
, ∀τ ∈ T, i ∈ I (17)  

where P represents the charging power. The service rate, μτ
i , is defined as the number of EVs that can be charged in one hour and is 

calculated as follows: 

Fig. 3. Four queuing scenarios upon the arrival of EVs at charging stations.  

M. Kavianipour et al.                                                                                                                                                                                                 



Transportation Research Part D 93 (2021) 102769

9

μτ
i =

1
tτ

i
, ∀τ ∈ T, i ∈ I (18) 

The queueing delay at the end of time interval τ can be calculated as follows: 

qτ
i =

(
λτ

i − μτ
i

)
T0

μτ
i

+ qτ− 1
i , ∀τ ∈ T, i ∈ I. (19)  

Here, qτ
i shows the longest waiting time experienced in station i at time interval τ. When EVs reach charging stations, four scenarios 

might occur depending on the remaining queue from the previous time interval, the arrival rate, and the service rate. These scenarios 
are illustrated in Fig. 3. If there is no remaining queue and the service rate is greater than the arrival rate, (μτ

i > λτ
i ), EVs experience no 

queue (Fig. 3a). If there is no remaining queue,(qτ− 1
i = 0), but the arrival rate is greater than the service rate, (μτ

i < λτ
i ), EVs experience 

queuing during the entire time interval (Fig. 3b). If there is a remaining queue form the previous time interval,(qτ− 1
i > 0), and the 

service rate cannot dissipate the queue by the end of the time interval, EVs experience queuing during the entire time interval (Fig. 3c). 
In this case, charging access cannot be provided to any incoming flow. Therefore, all vehicles will experience the queue and wait in line 
to get access to an available charger at a later time. In the last scenario (Fig. 3d), there is a remaining queue from the previous time 
interval but it dissipates before the end of the current time interval. Therefore, after a time, δτ

i , the incoming EVs can be charged upon 
their arrival. The value of δτ

i can be calculated as follows (see Appendix A for proof): 

δτ
i =

μτ
i qτ− 1

i

μτ
i − λτ

i
(20) 

The above-mentioned deterministic queuing formulations can be summarized as follows: 

qτ
i ≥

(
λτ

i − μτ
i

)
T0

μτ
i

+ qτ− 1
i (21)  

qτ
i ≥ 0, ∀i ∈ I (22)  

q0
i = 0, ∀i ∈ I (23)  

(
λτ

i − μτ
i

)
T0

μτ
i

+ qτ− 1
i ≤ χτ

i M, ∀τ ∈ T, i ∈ I (24)  

(
λτ

i − μτ
i

)
T0

μτ
i

+ qτ− 1
i ≥ (χτ

i − 1)M, ∀τ ∈ T, i ∈ I (25)  

δτ
i = T0χτ

i +
μτ

i qτ− 1
i

μτ
i − λτ

i
(1 − χτ

i ), ∀τ ∈ T, i ∈ I (26)  

Wτ
i =

δτ
i

T0

(
qτ

i + qτ− 1
i

2

)

, ∀τ ∈ T, i ∈ I. (27) 

Constraints (21)–(23) calculate the queuing delay at the end of each time interval. Constraint (21) sets a lower bound for the 
queuing delay by summing the queuing delay of the previous time interval and the additional queuing delay for the current interval. 
Constraint (22) ensures the estimated queue is always non-negative. Constraint (23) is a boundary condition assuming the system starts 
with no initial queue. Constraints (24) and (25) determine the type of queuing for time interval τ using the fully queued incidence 
matrix χτ

i . If the left-hand side of equation (24) is positive, resulting in a positive queue at the end of the time interval, the fully queued 
incidence matrix would be equal to one (χτ

i = 1). In this case, constraint (25) would not be binding. If the left-hand side of the 
constraint (25) becomes negative, the fully queued incidence matrix would be set to zero (χτ

i = 0). In this case, constraint (24) would 
not be binding. Constraint (26) calculates the portion of time interval with a queue. If the fully queued incidence matrix is equal to one, 
the second term of this constraint is zero and δτ

i = T0. If the queue dissipates within the time interval, the first term will be zero and the 
second term calculates the δτ

i . Constraint (27) calculates the average queuing time for EVs visiting the charging station in zone i at time 
interval τ. 

Finally, the following constraints provides the relationships among various time variables. 

Rθ
ij = α

Eθ
ij

P
, ∀i ∈ I, j ∈ J (28)  

πτ
i = yτ

i W
τ
i +

∑

θ∈T

∑

j∈J
Qτθ

ij Rθ
ij, ∀τ ∈ T, i ∈ I (29)  

t’
j + ttj

(o(j),i) +Rθ
ij +Wτ

i − T0θ ≤
(

1 − Qτθ
ij

)
M, ∀τ ∈ T, θ ∈ T, i ∈ I, j ∈ J (30) 
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t’
j + ttj

(o(j),i) +Rθ
ij +Wτ

i − T0(θ − 1) ≥
(

Qτθ
ij − 1

)
M, ∀τ ∈ T, θ ∈ T, i ∈ I, j ∈ J (31) 

Constraint (28) calculates the required time to recharge each EV at each charging station considering the loss of electricity factor 
and the charging power. Constraint (29) calculates the total delay in each charging station by summing up the total queuing delay for 
all EVs visiting the charging station at that time interval and the total refueling time of EVs for all departure time intervals from that 
station. Constraints (30) and (31) determine the departure time interval in which a vehicle would be able to leave the station. They 
ensure that the summation of the EV departure time, average travel time from origin to the charging station, the refueling time and 
waiting time in the queue matches the departure time interval from the station. 

Note, in this mathematical modeling, only deterministic queuing is considered. In the next section the presented mathematical 
model is decomposed to two-subproblems. In the second subproblem the proposed solution approach accounts for both deterministic 
and stochastic queueing delays. 

3.3. Solution methodology 

The proposed Mixed-Integer Non-Linear Programming (MINLP) model in the previous section has multiple nonlinear constraints. 
The impact of queuing on the assignment of charging demands to charging stations, makes the problem highly nonlinear and chal
lenging. In the literature, queuing time is usually considered only to determine the number of required chargers via a bi-level 
formulation or as a separate problem (Jung et al., 2014; Wang et al., 2019; Xie et al., 2018). Therefore, the proposed problem is 
decomposed into two subproblems assuming the queuing does not affect the assignment of charging demands to charging stations. 

Fig. 4. The SA-based solution algorithm to find the optimal location of charging stations.  
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Since the decomposition approach is a heuristic approach, an implicit enumeration approach is compared with this approach for a 
small case study in the numerical experiments section to show its efficiency and accuracy. Note that the formulated problem is highly 
non-linear with mixed-integer variables. Thus, there is no exact solution methodology, and common commercial solvers cannot be 
implemented even for small case studies. Even in the decomposed approach, the first subproblem requires a heuristic approach for 
large scale applications. 

3.3.1. Optimal locating of charging stations 
In the first subproblem, a minimization problem is solved that considers the monetary value of detour and refueling times and the 

cost of charging stations, ignoring the charging queue. In this study, the number of chargers in each station is not limited, thus enough 
chargers would be provided at each station to provide a consistent level of service at each location, proportional to the charging 
demand. The mathematical model for the first subproblem, including the objective function and constraints, is as follows: 

min
∑

i∈I
(Cs

i xi)+ γ(
∑

τ∈T

∑

θ∈T

∑

i∈I

∑

j∈J
Qτθ

ij Rθ
ij +

∑

j∈J
TTdj) (32) 

Subject to: 
Constraints (5), (7)–(13), (28), and 

t’
j + ttj

(O(j),i) +Rθ
ij − T0θ ≤

(
1 − Qτθ

ij

)
M, ∀τ ∈ T, θ ∈ T, i ∈ I, j ∈ J (33)  

t’
j + ttj

(O(j),i) +Rθ
ij − T0(θ+ 1) ≥

(
Qτθ

ij − 1
)

M, ∀τ ∈ T, θ ∈ T, i ∈ I, j ∈ J (34) 

In this subproblem, the departure time confines the charging incidence matrix through constraints (33) and (34). In this model, the 
queuing delay in charging stations is ignored, unlike the primary optimization model. Therefore, per assumption, vehicles can be 
charged once they get to charging stations. 

The objective function (32) along with its constraints form a mixed-integer linear model. Commercial solvers such as CPLEX and 
Gurobi, solve moderate sized instances effectively. However, as the size of the problem grows, the computational requirements in
crease exponentially. Therefore, a metaheuristic approach is also provided for large-scale case studies based on Simulated Annealing 
(SA) approach. For more details please refer to (Ghamami et al., 2020, 2016; Kavianipour et al., 2019; Zockaie et al., 2016) for similar 
applications of the SA algorithm. 

To improve the efficiency of the algorithm, the following strategies are shown to be effective in generating neighboring solutions. 
More details of the algorithm can be found in Fig. 4.  

1. To add a station randomly to a traffic analysis zone, each zone is weighted based on the number of crossing EV trajectories. 
Accordingly, the zones visited by a higher number of crossing trajectories, have a higher chance of being added to the current 
solution.  

2. To remove a station randomly from traffic analysis zones equipped with one in the current solution, the zones are weighted based 
on the inverse of their number of incoming EV flows. Accordingly, stations with a lower incoming flow, have a higher chance to be 
removed from the current solution. 

3.3.2. Optimal number of chargers at each charging station 
To find the number of chargers in each charging station, the second subproblem is formulated as follows for each selected station in 

the first subproblem such as i: 

minCp
i zi + γ

∑

τ∈T
yτ

i W
τ
i (35) 

Subject to 
(14)–(18) and (21)–(27) 
The objective function (35) includes the total installation and maintenance costs of chargers, and the monetary value of total 

travelers’ queuing delay at each station, which depends on the number of chargers allocated to the station. The objective function 
needs to be minimized for each charging station selected in the first subproblem, to find the optimum number of chargers, as the main 
decision variable. This problem is a MINLP. 

In the first subproblem, EV trajectories requiring recharging are assigned to each charging station, forming a temporal arrival 
distribution for each charging station. Based on the availability of chargers at the station, they either charge upon their arrival or wait 
in the queue for an available charger. This subproblem makes a trade-off between providing more chargers or letting users wait in the 
queue for an available charger. 

Assuming a uniform arrival and service rates for each time interval, the queuing behavior can be modeled based on a deterministic 
queue modeling approach (Zukerman, 2013), as presented in (21)–(27). The objective function (35) along with its constraints forms a 
mixed-integer problem with nonlinear constraints. Since the objective function is strictly convex (see Appendix B for the proof) and the 
constraints are convex, the proposed problem can be solved using numerical solution approaches such as the Golden-section search 
technique. This technique is designed to find the extreme value of a function in a pre-defined interval as its domain (Kiefer, 1953). The 
deterministic queuing assumption provides the minimum number of chargers required to support the charging demand. 
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The deterministic queueing model, which assumes uniform arrival and service rates, results in zero queueing delay when the 
service rate is greater than the arrival rate. Thus, if enough chargers are provided to avoid the deterministic queue, the service rate 
would be greater than the arrival rate. However, if the arrival of vehicles to the charging station is assumed to follow a Poisson 
distribution and service rates distributions are assumed to be exponential, then there is a chance for queuing even when the service rate 
is greater than the arrival rate (Zukerman, 2013). It should be noted if the arrival rate is greater than the service rate, only the 
deterministic approach is applicable. If a steady-state condition is assumed in each time interval, the M/M/k (M stands for Markovian, 
which is a Poisson distribution for arrival rates and an exponential distribution for service time distribution and k represents multiple 
number of chargers) queuing model can be used to model the stochastic queuing delay. The formulation is as follows: 

ρτ
i =

λτ
i

ziμτ
i
, ∀τ ∈ T, i ∈ I (36)  

Pτ
i0 = (

∑zi − 1

m=0

(ziρτ
i )

m

m!
+

(ziρτ
i )

zi

zi!(1 − ρτ
i )
)

− 1

, ∀τ ∈ T, i ∈ I (37)  

lτ
i =

Pτ
i0(

λτ
i

μτ
i
)

zi ρτ
i

zi!(1 − ρτ
i )

2, ∀τ ∈ T, i ∈ I (38)  

Wτ
i =

lτ
i

λτ
i
, ∀τ ∈ T, i ∈ I (39) 

In these formulations, Eq. (36) finds the utilization, ρτ
i , at each charging station in each time interval. Eq. (37) finds the probability 

that there is no queue in the system. Eq. (38) finds the number of customers in the queue. Finally, equation (39) calculates the average 
waiting time in the queue. These equations are based on queuing theory for M/M/k queues. For more information on queuing theory, 
please refer to Zukerman (2013). The average queue size of the M/M/k system is convex with respect to the traffic flow (Grassmann, 
1983). Therefore, the optimum value of the objective function can be calculated using the Golden-section search technique similar to 
the deterministic approach. The two-stage framework for finding the optimal number of chargers considering both deterministic and 
stochastic approaches is presented in Fig. 5. Note that the deterministic model provides a lower bound for the stochastic model, 
without which the Golden-section method cannot be applied to the stochastic model. Furthermore, in case of a non-zero deterministic 
queue in the first stage, the stochastic queueing model would be irrelevant. 

4. Numerical experiments 

This section first introduces the case studies and their network specifications. Then, it provides the input data used in the charging 
behavior simulator. Next, it briefly discusses the considered parameter values in the optimization model. It is worth noting these values 

Fig. 5. Two-stage framework for finding the optimal number of chargers considering deterministic and stochastic queuing delays.  
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are derived based on the provided feedback in stakeholder meetings in Michigan and can be calibrated for each region based on the 
input from various stakeholders’ meetings as part of the EV charger placement project in Michigan. Finally, some scenarios are 
introduced to be accompanied by sensitivity analyses to provide applied insights for the EV fast-charging infrastructure deployment in 
urban areas. 

4.1. Case studies 

The road network and OD travel demand information in the State of Michigan are provided by MDOT. The regional road networks 
for the cities of Marquette, Lansing and Detroit are extracted, as shown in Fig. 6, beyond the actual city borders. The city of Marquette 
is considered as a small-sized network which has 62 nodes, 21 zones, and 336 lane-miles in length. The city of Lansing is considered as 
a medium-sized network with 896 nodes, 91 zones, and 2,030 lane-miles in length. The city of Detroit is the large-scale network used in 
this study, which has 5,461 nodes, 301 zones, and 8,776 lane-miles in length. 

The land use information is provided by MDOT for each traffic analysis zone in the state-wide network. The land acquisition costs 
are provided for each traffic analysis zone by city municipalities. Utility provision costs are provided through utility companies serving 
these three cities (DTE Energy and Consumers Energy). Two levels of powers are considered for charging stations: 1) 50 kW with a 

Fig. 6. (a) Michigan state-wide network. (b) City of Marquette case study network. (c) City of Lansing case study network. (d) City of Detroit case 
study network. 
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station cost of $48,437 and a charger cost of $33,750, 2) 150 kW with a station cost of $80,125 and a charger cost of $76,250. Two 
battery sizes of 70 kWh and 100 kWh are considered for EVs. The battery performance is assumed to be 3.5 mi/kWh (with an energy 
consumption rate of 0.3 kWh per mile) during the summer, with a 30% reduction for winter weather conditions (the latter is 
considered as the critical case for Michigan). The data were obtained through various stakeholder meetings from car companies (i.e., 
Ford, GM, etc.) An EV adoption rate of 6% is considered, which means that 6% of total trajectories are by EVs, based on the projected 
2030 EV market share in Michigan by MISO Energy (MISO Energy, 2018). A value of time of $18/h is used to monetize traveler delay. 
The combination of the two battery capacities and charger powers leads to four scenarios, which are investigated for each city in the 
next section. 

In this study, the initial state of charge (as a fraction of the EV battery capacity) before noon is assumed to follow a normal dis
tribution with the average and standard deviation values presented in Table 1. It is worth noting that these values are based on the 
current circumstances in Michigan. For the trips departing between noon and 5:00 PM, the mean values are assumed to be reduced by 
0.1. For trajectories departing after 5:00 PM, another 0.1 reduction is implemented. Moreover, a normal distribution with a mean of 
0.15 and a standard deviation of 0.1 is considered for the desired state of charge for EVs at their destination. 

4.2. Results 

In this section, we first explore various aspects of the solution methodology to demonstrate the performance of the proposed 
approach (i.e. validation of the decomposition approach for the main problem, comparison of the metaheuristic approach with the 
commercial solver for the first subproblem, and comparison of the deterministic and stochastic queuing models in the second sub
problem). Then, the results are provided for the four defined scenarios in two large case studies. 

4.2.1. Enumeration versus decomposition 
To test the performance of the decomposition approach, i.e., its solution quality and convergence speed, we compare it with a 

simple enumeration approach which exhausts all facility combinations. Since such a simple approach cannot be applied even to small- 
sized networks, a subset of zones is selected as candidate locations for the charging stations in the smallest case study, Marquette 
network. We test an application with five randomly selected zones (out of 21 zones) to be candidates for charging stations. 

First, the dynamic traffic assignment tool, DYNASMART-P, uses the dynamic OD demand table to simulate traffic and generate 
vehicle trajectories. Then, the charging behavior simulation takes the trajectories from the dynamic traffic assignment tool and assigns 
initial/desired SOC for each trajectory considering its departure time, land use characteristics at origin/destination, and residential 
type (if applicable). Note that in addition to the dynamic traffic demand, different time-dependent distributions are considered for the 
initial/desired SOC based on the trip departure time. Considering 70 kWh batteries, 197 EV trajectories need to recharge to fulfill their 
trips in city of Marquette. This charging demand is the input to both decomposition and explicit enumeration approaches. To make the 
enumeration approach traceable, first the decomposition problem is solved, then the enumeration set is defined accordingly using the 
decomposition solution to generate an upper bound solution. To solve the problem using the decomposition approach, this demand is 
provided to its first subproblem which finds the location of charging stations. The first subproblem is solved using a commercial solver, 
CPLEX, and suggests four charging stations, i.e., x = [1,0,1,1,1]. The second subproblem needs to be solved for each selected charging 
station to determine the number of chargers within them. As the first subproblem suggests four charging stations, the second sub
problem is solved four times, once for each selected candidate location in the first sub-problem. The location of charging stations and 
the number of chargers within each charging station is the output of the decomposition approach. The decomposition approach so
lution includes a maximum of three chargers among the selected candidate locations, i.e., z = [3, 0, 2, 2, 2]. The result of the 
decomposition approach needs to be verified, which is accomplished by comparing it against the explicit enumeration. In this 
approach, the objective function value of the main problem is calculated for all possible combinations of charging stations and 
chargers. The maximum number of required chargers at each station should not be bounded in theory, but failure to set a cap on the 
maximum number of chargers prevents exhausting all combinations. Therefore, a subset of scenarios needs to be considered. Since the 
solution from the decomposition approach uses a maximum of three chargers over the different locations, we set the maximum number 
of chargers per station to four in our enumerations (assuming building four chargers at each candidate location as an upper bound 
solution). In this case, each candidate location can have zero, one, two, three, or four chargers, yielding five different settings for each 
candidate charging station. If a location is associated with at least one charger, a station must also be available there. On the other 
hand, zero charger at a candidate location will mandate that no charging station is built there, and no traveler will be assigned by the 
commercial solver to that candidate location. The total number of combinations can be calculated as below. 

Table 1 
Parameters of normal distributions for the initial state of charge.   

Initial state of charge (% battery) 

Battery (kWh) 70 100  

Mean SD Mean SD 

Home- single family 0.75 0.05 0.7 0.05 
Home- multi family 0.5 0.2 0.6 0.2 
Work 0.6 0.2 0.65 0.3 
Other 0.55 0.3 0.6 0.3  
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Nc = (Ns)
Nl (40)  

where Nc is the total number of combinations, Nl is the number of candidate locations, and Ns is the number of settings that chargers 
can have in each candidate charging station. Therefore, the total number of possible charger installation combinations is equal to 55. 
For each of these combinations, the assignment of charging demand to available charging stations is solved using Knitro, and the 
objective function is evaluated. The combination with the minimum objective function value suggests a maximum of three chargers, i. 
e., z = [3, 0,2, 1, 2], and does not reach the cap of four chargers. This solution is compared with the solution of the decomposition 
approach in Table 2, which also provides results for an application with seven randomly selected zones as an alternative application to 
quantify the impacts of the problem size on the solution time for the enumeration approach. Fig. 7 shows the number of combinations, 
57, which should be tested for this application. In this figure, each box represents a candidate location, and each value represents the 
number of settings that each candidate location may take for number of chargers. Note that the optimization problem finds the number 
of chargers for each candidate location. However, in Table 2 only the total number of chargers over different locations is reported to be 
consistent with the larger case studies, where the location-specific number of chargers cannot be provided in tables. 

For the application with seven candidate locations, both approaches suggest a similar solution, i.e., z = [4, 0, 0, 2, 1, 0, 2], and 
provides the same objective function. The results show the decomposition technique provides a solution that is very close to, or 
identical to, the optimal solution (within zero or one percent difference). However, the solution time is much faster. Since the number 
of facility combinations grows exponentially with the network size (e.g., number of candidate zones), it is impossible to solve the full- 
scale problem even for small case studies via the enumeration approach. In contrast, the decomposition approach can provide a near- 
optimum solution instantaneously for this small case study. 

4.2.2. Robustness 
This section studies the impact of seed numbers on the optimum solution. Seed numbers determine the random number generation, 

affecting the simulated users’ charging behavior since the initial and desired SOC are determined based on random numbers. Thus, the 
impact of ten different seed numbers, i.e., scenarios, are studied in the medium-sized network (city of Lansing). The objective function, 
number of stations, and number of chargers are compared in these scenarios. Fig. 8a shows the objective function values vary by almost 
3 percent in these scenarios, which shows the availability of almost identical solutions with different representations. Fig. 8b shows 
most of the scenarios have 16 charging stations, while the highest number of charging stations is 18, which indicates the number of 
stations is quite stable over different scenarios. Our solution shows only about 16–18 built charging stations in about 94 TAZs (as a 
result of cost-benefit trade-offs). Note that TAZs are defined as candidate locations to be equipped with charging stations. Thus, there 
will be, at most, one charging station at each TAZ. This is a justified assumption considering the role of TAZs in defining network travel 
demand. 

Lastly, Fig. 8c shows the number of chargers at each TAZ across all scenarios, where each (non-zero) spike indicates the installation 
of a charging station at that location. Since the jumps are typically occurring at the same locations, it shows that location of charging 
stations is almost the same for all scenarios. Thus, it can be concluded that in addition to the number of charging stations, the spatial 
distribution of the stations is also fairly stable across the random scenarios. Furthermore, according to Fig. 8c, the number of chargers 
and their spatial distribution change only slightly (which is expected because of the charging demand variations across random re
alizations). The charging demand in different charging stations varies from one scenario to another, due to changes of spatial dis
tribution of EV trajectories that require charging in various scenarios with different seed numbers. While the differences in scenarios 
are small, the solution robustness can be improved by considering multiple random seeds for random number generation and applying 
the proposed framework for each scenario. Since the focus of the study is to develop the framework, the numerical experiments are 
performed for one seed number. 

4.2.3. CPLEX versus simulated Annealing 
We further test the SA approach for the first subproblem (i.e., locating charging stations). Fig. 9 shows the convergence of the 

metaheuristic approach for the city of Lansing toward the optimal value provided by CPLEX. It shows that the objective function of the 
metaheuristic approach can get very close to the optimal solution. The solution quality of the metaheuristic approach is evaluated for 

Table 2 
Comparing the enumeration and decomposition technique for a small network.  

Scenario 5 Candidate Stations 7 Candidate Stations 

Technique Enumeration Decomposition Percent Difference Enumeration Decomposition Percent Difference 

Number of Stations 4 4 0.0% 4 4 0.0% 
Number of Chargers 8 9 12.5% 9 9 0.0% 
Average Charging delay (min) 15.73 15.82 0.6% 15.31 15.31 0.0% 
Average detour delay (min) 5.84 5.75 − 1.5% 4.51 4.51 0.0% 
Station Cost (m$) 0.56 0.56 0.0% 0.56 0.56 0.0% 
Chargers Cost (m$) 0.29 0.32 12.5% 0.32 0.32 0.0% 
Infrastructure Cost (m$) 0.84 0.88 4.2% 0.88 0.88 0.0% 
Total objective function value ($/day) 1511 1520 0.6% 1417 1417 0.0% 
Solution time (s) 12,600 4 − 100.0% 241,200 4 − 100.0%  
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the city of Lansing and Detroit in Table 3. Although the optimum objective function value for the first subproblem increases by 1.5% 
and 2.4% for the two cities, the computational efficiency in terms of the required memory is decreased significantly by 84% and 96%, 
respectively. Furthermore, the solution time of the metaheuristic approach is reduced by a 30% margin for the medium-size case study, 
and over 50% for the large-scale case study. One should note the problem size is almost tripled in terms of the number of zones from 
Lansing case study to Detroit case study. However, the memory requirement is increased by a factor of 20. This shows the importance 
of the metaheuristic approach for even larger case studies. 

Furthermore, the charging station configurations at the network level are provided in Fig. 10. The red dots represent installed 
charging stations, while the blue dots show candidate locations that have not been selected. The size of each red dot represents the 
recommended number of chargers. The size of the traffic analysis zones increases as the population density decreases. Fig. 10 shows 
that the locations of charging stations are almost the same in both approaches. 

Fig. 7. Permutation of available combinations for enumeration approach.  

Fig. 8. The impact of seed number on the (a) optimum objective function value (b) number of stations (c) Number of chargers at each TAZ for city 
of Lansing. 
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4.2.4. Deterministic versus stochastic queueing models 
Deterministic queuing provides a zero queuing time when the service rate exceeds the arrival rate. In this case, a steady state 

stochastic queuing, which does not exist when the service rate is smaller than arrival rate, can be applied. Fig. 11 compares the 
deterministic queueing model with an M/M/k model for a sample charging station, and provides the values of the two-stage model. 
Note that the deterministic model provides a left bound (minimum number of chargers that certify higher service rate relative to the 
arrival rate) for the stochastic model, without which the Golden-section method cannot be applied to the stochastic model. The figure 
plots the objective function value relative to the number of chargers for each stage. The objective function of the stochastic queuing can 
be determined when the service rate is higher than the arrival rate, as reflected in Fig. 11. As it is shown, a greater number of chargers is 
required to count for the stochastic queueing delay, in addition to the deterministic queueing delay. 

For Lansing and Detroit, four scenarios are investigated based on battery capacity and charging power. Table 4 summarizes the 
model output. Consideration of 150 kW chargers provides a lower total investment cost despite a higher unit cost for these chargers 
(Kavianipour et al., 2021). Furthermore, they provide lower charging and queuing times for travelers. Meanwhile, the 70 kWh vs. 100 
kWh battery scenarios demonstrate a slight reduction in the number of charging stations under the larger battery size, as expected. 
However, the total number of chargers remains almost the same. The main reason for this observation may be caused by the fact that 
the charging behavior simulation tool uses various distributions for the initial and desired states of charge as a fraction of the battery 
size. This is a different pattern relative to a recent study (Ghamami et al., 2020) for intercity networks (which is different in nature to 
urban areas). 

5. Conclusion 

This study develops a methodological framework to find the optimum investment plan for building a network of charging stations 
for urban areas considering queueing delays and feasibility of EV trips. This study finds the locations for charging stations and the 
number of chargers at each location, with an approximate cost of building such networks. A charging behavior simulator tool is 
developed and used along with a traffic simulation tool to provide simulated user charging demand as the main input. No study in the 
literature captures all of these features for urban areas. The optimization model is decomposed into two subproblems. The first 
subproblem finds the location of the charging stations, and the second subproblem finds the required number of chargers at those 

Fig. 9. The convergence of the metaheuristic method toward the optimal objective function provided by CPLEX for the city of Lansing.  

Table 3 
Comparing CPLEX and SA performance in solving station location subproblem.  

City Lansing Detroit 

Technique CPLEX SA Percent difference CPLEX SA Percent difference 

Battery size (kWh) 70 70 – 70 70 – 
Charging station (kW) 50 50 – 50 50 – 
Number of zones 92 92 – 301 301 – 
EV Trajectories 28,574 28,574 – 212,299 212,299 – 
Number of Stations 16 16 0.0% 62 62 0.0% 
Number of Chargers 87 92 5.7% 641 639 − 0.3% 
Average delay (min) 10.75 10.93 1.7% 11.19 11.37 1.6% 
Station Cost (m$) 2.52 2.66 5.3% 15.37 15.37 0.0% 
Chargers Cost (m$) 3.48 3.30 − 5.2% 23.22 23.15 − 0.3% 
Infrastructure Cost (m$) 6.00 5.95 − 0.8% 38.59 38.52 − 0.2% 
Charging station location subproblem objective function value ($/day) 7,747 7,860 1.5% 67,543 69,193 2.4% 
Total objective function value ($/day) 8,803 8,858 0.6% 74,507 76,118 2.2% 
Required memory (GB) 5.20 0.82 − 84.2% 107 4.2 − 96.1% 
Solution time (s) 323 238 − 26.3% 16,717 8311 − 50.3%  
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stations. The former is solved using two approaches, a metaheuristic algorithm and using commercial solvers. The latter is solved using 
the Golden-section method via a two-stage algorithm that captures both deterministic and stochastic queueing delays. The method
ology is first validated for a small case study in the city of Marquette. Then, the research approach and results are presented for two 
urban areas in Michigan, namely the cities of Lansing and Detroit, to ensure the feasibility of the urban trips of EV users in those regions 
by 2030 under a predicted market share. The winter scenario with 70 percent battery performance is tested under battery energy levels 
of 70 kWh and 100 kWh, and charger power levels of 50 kW and 150 kW. 

The results of the tested scenarios provide the key findings as follows: 

gnisnaLrofAS)b(gnisnaLrofXELPC)a(

tiorteDrofAS)d(tiorteDrofXELPC)c(

Fig. 10. Charging station configurations for the cities of Lansing and Detroit with CPLEX and SA algorithm.  

Fig. 11. The optimum number of chargers for a sample charging station considering deterministic and stochastic queuing models.  
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• The decomposition approach provides near-optimum solution to the main problem (within one percent of the optimal solution 
provided by the enumeration approach) in the small case study.  

• 150 kW chargers reduce the charging and waiting time for travelers, as compared to that of 50 kW chargers.  
• Due to the higher throughput of 150 kW chargers, the number of 150 kW chargers needed to support the EV trips in urban areas is 

much smaller than that of 50 kW chargers. Therefore, implementing a network of 150 kW chargers is less costly despite the higher 
per unit cost of these chargers.  

• The battery size does not affect the number of chargers in urban areas, unlike the intercity network, as the length of the urban trips 
is significantly lower than the range of EVs. 

The presented numerical results are provided based on the estimated input parameters via several meetings with various stake
holders. This provides applied insights for planning agencies on appropriate estimates for the required infrastructure investment to 
support EV trips in urban areas. However, this study incorporates the market share as a given input. It is expected that the market 
acceptance of EVs be affected by the available charging infrastructure. Thus, capturing the endogeneity of the market share and the 
charging infrastructure at the network level is one of the main future research directions. Further, incorporating trip chain data and 
adjusting the model accordingly is an important future research direction. Another future path to consider is the impact of vehicle type 
and model on the battery performance and capacity. 
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Appendix A 

Based on Fig. 3d, y*
i can be derived as follows: 
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Appendix B 

If the objective function and feasible set is convex, then the problem has a unique solution and the Golden-section method can be 
applied to solve the problem. 

First, we examine the objective function: 

Γ = Cp
i zi + γ

∑
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2
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Table 4 
Comparing the optimum solutions under various battery capacity and charger power for the cities of Lansing and Detroit.  

City Lansing Detroit 

Battery size (kWh) 70 100 70 100 70 100 70 100 

Charging power (kW) 50 50 150 150 50 50 150 150 
Number of zones 92 92 92 92 301 301 301 301 
# EV trajectories 28,574 28,574 28,574 28,574 212,299 212,299 212,299 212,299 
# of stations 16 14 13 10 62 51 52 40 
# of chargers 85 89 36 33 639 618 239 228 
Station cost (Million dollar) 2.52 2.21 2.47 1.88 15.37 12.64 14.54 11.18 
Charger cost (Million dollar) 3.39 3.56 2.96 2.73 23.15 22.39 18.82 17.95 
Total infrastructure cost (Million dollar) 5.91 5.78 5.43 4.62 38.52 35.03 33.35 29.13 
Average charging and queuing delay (min) 10.8 14.74 3.83 5.26 11.37 15.29 3.98 5.30  
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In the above formulation, Cpand γ are parameters and yτ
i is known as it is the output of the location subproblem. Based on the 

constraint (26), δτ
i is a function of χτ

i and zi. qτ
i is also a function of χτ

i , zi, and qτ− 1
i . 

Inductive reasoning can be used to show the convexity of qτ
i as follows: 

Step 1: The convexity of qτ
i should be checked for τ = 1. 
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(47) and (48) are both convex, which shows the convexity of the qτ
i for τ = 1. 

Step 2: It is assumed that qτ
i is convex for τ = n − 1 → qn− 1

i is convex. 
Step 3: The convexity of qτ

i should be checked for τ = n 

qn
i = χn

i (
T0

μn
i

(
yn

i

T0zi
− μn

i

)

+ qn− 1
i ) (49)  

If = 0 → qn
i = 0 (50)  

Ifχn
i = 1qn

i =
T0

μn
i

(
yn

i

T0zi
− μn

i

)

+ qn− 1
i (51)  

(50) is convex. (51) consists two terms: the first is convex similar to (48) and the second term is convex per assumption in step 2. 
Therefore, the convexity of qτ

i can be concluded based on inductive reasoning. 
The next step is to prove the convexity of the objective function. The objective function is a function of zi and χn

i ,n = 1,⋯τ. The first 
part of the objective function is convex. Therefore, the second part is evaluated for convexity as follows: 
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The convexity of yτ
i W
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i is similar to the convexity of Γ’(Boyd and Vandenberghe, 2009). 
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The convexity of δτ
i (qτ
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i ) is similar to the convexity of Γ˝(Boyd and Vandenberghe, 2009). 
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χτ
i is a binary variable indicating if there is a queue in the time interval (χτ

i = 1) or not (χτ
i = 0). Therefore, the convexity of the function 

is evaluated for different values of χτ
i . 
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i = 1 
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(57) is convex as it is the summation of two convex terms, as proved in the above section, and this indicates the convexity of the 
objective function when χτ

i = 1. 
Case 2: χτ

i = 0 
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μτ
i does not affect the convexity of (58). Therefore, considering λτ

i =
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T0zi

, the convexity of this phrase can be evaluated as follows: 
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>0 Further, as proved in (48), the first derivative of qτ

i is negative. Therefore, the second de
rivative is always positive since all terms in (62) are positive. 

As the objective function is convex for both of the cases, we can conclude that it is always convex. 
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