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A B S T R A C T   

Transitioning the electric power sector to rely more on wind and solar photovoltaics (WPV) has long been cited 
as a potential solution to reducing harmful greenhouse gas emissions associated with fossil fuel electricity 
production. An under-explored implication of this transition, however, is whether increasing the amount of net 
generation supplied by WPV negatively impacts power system reliability? In this paper, we empirically inves
tigate the preceding question using an unbalanced panel dataset of utility-scale operations between 2013 and 
2017. Disruptions in power system reliability are measured by the frequency and duration of power system 
disruptions experienced by end-consumers. Results suggest net generation from WPV, on average, has a signif
icant positive impact on the length of power system disruptions experienced, but only at low levels of net 
generation from WPV. As net generation from WPV increases, the duration of power system disruptions de
creases. To provide insight into the policy implications of these results, we forecast disruptions in power system 
reliability, assuming different renewable energy policy scenarios for states across the United States with active 
renewable support policies in place. We estimate the economic costs of forecasted disruptions using an open- 
source, interruption cost estimate calculator.   

1. Introduction 

Extreme weather events, including major hurricanes along the 
eastern and Gulf coasts, freezing weather in the Northeast, and uncon
trollable wildfires in the West continue to reveal the potential risks to 
power system reliability.1 In addition to mitigating these potential risks, 

electric power system operators face the ongoing challenge of ensuring 
the current grid system has adequate infrastructure to keep pace with 
the increasing penetration of renewable energy resources, including 
wind and solar photovoltaics (WPV).23 

In response to rapid technological advancement, falling energy pri
ces, and evolving regulatory environments, over the past decade grid 

* Corresponding author. 
E-mail addresses: ajharkersteele@gmail.com (A.J. Harker Steele), burnettjw@cofc.edu (J.W. Burnett), jberg@uga.edu (J.C. Bergstrom).   

1 It is estimated that Superstorm Sandy inflicted nearly $70 billion USD in damages and left over eight million customers across twenty-one states without power 
for multiple days and weeks (Henry and Ramirez-Marquez, 2016). In preparation for potential wildfires in the West, Pacific Gas and Electric (PG&E) shut-off power to 
over 940,000 homes and businesses in California – leaving nearly 2.7 million people without power (Newburger 2019).  

2 As penetration of WPV continues to grow, the electric utility sector will have to adapt to new requirements for electrical interconnection, utility rate tariffs, and 
franchise rights to accommodate the growing number of renewable generators. In addition, increased capacity being generated by customers (i.e., behind the meter 
resources) will require additional infrastructure along the grid that allows for the two-way flow of power being generated. This study does not consider behind-the- 
meter resources as contributors to net generation supplied by WPV.  

3 The term WPV and distributed energy resources (DERs) are often used interchangeably when analyzing topics related to electric power generation. The two 
terms, however, are in fact different. The term WPV refers to any electricity generating resources whose output is not perfectly controllable/predictable (Bird et al., 
2013). The term DERs refers to any electricity generating resource that is directly located on the distribution system and could partially or completely offset customer 
demand (FERC, 2018). Examples of DERs include “at home” installations of wind or solar photovoltaics, energy efficiency investments, demand response resources 
(FERC, 2018). 
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systems powered by WPV have proliferated across the United States (U. 
S.).4 While WPV provide an opportunity to reduce the greenhouse 
emissions associated with traditional fossil fuel electricity generation, 
their inherent variable nature has raised some questions within the en
ergy policy literature. Perhaps the most important of which are: 1) Does 
increasing the amount of the net generation supplied by WPV negatively 
impact power system reliability? and 2) If so, then what are the eco
nomic costs associated with decreased reliability of the power system? 

This paper helps to answer these two interrelated questions by 
empirically examining whether increasing the amount of utility-scale 
net generation from WPV influences the frequency or duration of dis
ruptions in power system reliability experienced by end-consumers. For 
the purposes of this study, we assume electrical system reliability can be 
defined as the ability of the electrical grid generating system and its 
components to provide a consistent, steady, uninterrupted supply of 
power to end-consumers. To investigate this relationship, we compiled 
data from two annual surveys administered by the U.S. Energy Infor
mation Administration (EIA). This dataset consists of an unbalanced 
panel of disruptions experienced by end-use customers and electric 
utility operational information, including net generation supplied by 
WPV between 2013 and 2017. 

A random-effects model specification was used to estimate the effect 
of increasing net generation supplied by WPV on the frequency and 
duration of disruptions experienced by end-consumers. We used an 
instrumental variables (IV) specification to control for the potential 
endogeneity between the amount of net generation supplied by WPV, 
which is likely affected by a state’s policy support for renewable elec
tricity generation, and the frequency and duration of disruptions expe
rienced. Commonly used test statistics confirmed the validity of the 
chosen instruments. 

Empirical results suggest net generation supplied by WPV has had, at 
the margin, an economically small but statistically significant impact on 
the duration of disruptions experienced by end-consumers. Based on 
these findings, we forecast the near-term future economic costs associ
ated with potential disruptions for states across the United States (U.S.) 
with current renewable support policies in place. Cost estimates are 
generated from the Interruption Cost Estimate (ICE) Calculator (Sullivan 
et al., 2018). Results suggest, as the net capacity supplied by WPV in
creases, the total cost of sustained power system interruptions ranges 
from $1.5 million U.S. Dollars (USD) to $2.5 trillion USD. The cost per 
unserved kilowatt-hour of electricity ranges from $29 to $160 USD. 

Our particular study is critical because the grid system is still in its 
infancy regarding the shift towards non-centralized generation. Yet next 
to natural gas, newly installed electric capacity is projected to come 
primarily from wind and solar (U.S. Energy Information Administration 
(EIA), 2020). Furthermore, as Clearly and Palmer (2019) and Imedla 
et al. (2018) suggest, as generation from renewables increases, early 
identification of potential vulnerabilities (i.e., extreme weather, insuf
ficient infrastructure) is critical to ensuring grid system failures are 
minimized. To this note, our study makes an important contribution to 
the literature by providing an early analysis of the vulnerability of the 
power grid system to disruptions in service reliability resulting from 
increased net generation from WPV. 

The remainder of this paper is organized as follows. Section 2 pro
vides an overview of recent literature related to our research. Section 3 
provides background context for our empirical analysis. Section 4 pro
vides a detailed explanation of how we measure disruptions in the 
reliability of service, describes the data used for our empirical analysis, 
and explains our empirical approach. Section 5 discusses the results of 
our study. We conclude in Section 6 by providing a summary of the main 

findings, discussing the policy implications of this work, and potential 
future work from this research. 

2. Literature review 

Much of the prior published work related to electric grid system 
reliability has focused on uncovering time-trends in bulk power system 
(BPS) interruptions, which have implications for public policy and in
vestment decisions surrounding the revitalization of the U.S. electrical 
grid (Eto and LaCommare 2008; Hines et al., 2009; Larsen et al. 2015, 
2016).5 Past findings suggest most adverse system interruptions, when 
and if they do occur, occur at the distribution level (Hines et al., 2009; 
Eto et al., 2012). Following suggestions from Eto et al. (2012), this study 
focused on disruptions experienced at the distribution-level by 
end-consumers resulting from increased net generation from WPV. 

Burtraw et al. (2013) addressed reliability concerns brought about by 
U.S. public policy initiatives designed to reduce the amount of GHG 
emissions produced from electricity generation. Their results suggest 
regulations lead to investments in pollution control technologies, which 
provide the opportunity for utilities to reduce the emissions associated 
with traditional fossil-fuel power generation without necessarily 
changing inputs.6 Burtaw et al.’s (2013) findings raise the question: 
What happens when the energy resource inputs used to generate elec
tricity are altered to achieve emissions reductions targets? 

This fundamental question has been considered in the engineering 
literature for some time now. A somewhat recent example includes 
Wangdee (2014), who uses a systems well-being-analysis framework to 
investigate the effect of adding wind capacity to a generating system 
that has historically relied on traditional fossil fuels. Wangdee’s (2014) 
primary analysis is theoretical, which demonstrates the gap in the 
literature to empirically examine system reliability implications as net 
generation from WPV continues to expand, which this study fulfills. 

3. Background 

Currently, there are inconsistencies in the terminology used to 
distinguish between the types of energy resources used to generate 
electricity. From a resource economics perspective, energy resources 
used to generate electricity can be divided into two categories: fund 
resources and flow resources. Fund resources include energy resources 
that exist as a given, fixed stock, both in terms of quality and quantity 
(Bergstrom and Randall 2016, pgs. 30–37). Examples include fossil fuels 
(i.e., coal, oil, and natural gas). 

Flow resources have unknown quality and quantity dimensions and 
can be either storable or non-storable (Bergstrom and Randall, pgs. 
30–37). As their name suggests, storable flow resources used to generate 
electricity (which include hydropower and geothermal energy) can be 
captured and stored for future use, making them dispatchable (Nikole
tatos and Tselepis 2015).7 Conversely, non-storable flow resources used 

4 According to the U.S. Energy Information Administration (EIA) since 2007, 
WPV have continued as the second largest contributor to utility-scale capacity 
additions and currently account for nearly 10% of total generating capacity in 
United States (U.S. Energy Information Administration (EIA), 2017). 

5 The bulk power system (BPS) is a large interconnected electrical system 
made up of generation and transmission facilities and their control systems 
(NERC 2018).  

6 Burtraw et al. (2013) examine the impacts of the Cross-State Air Pollution 
Rule (CSAPR) and the Mercury and Air Toxins Standards (MATS) on electrical 
system reliability in the United States using the Haiku electricity market 
simulation model developed by Resources for the Future (RFF).  

7 The term energy storage can be used to describe technologies or devices 
that store energy for future use. Examples of energy storage devices include 
large-scale lithium-ion based batteries, pumped hydro storage, flywheel energy 
storage, compressed air storage, and solid mass gravitational storage. Because 
storage is not used on a large scale yet, when classifying energy resources used 
to produce electricity, system operators and utilities refer to resources as being 
either dispatchable or non-dispatchable. By their nature, all fund resources 
(both exhaustible and non-exhaustible) can be dispatched when and if they are 
needed, although at different ramp rates and associated costs. 
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to generate electricity (which include WPV) cannot be stored for future 
use without large-scale batteries. Instead, their availability depends on 
real-time meteorological conditions, making them non-dispatchable. 

To see the potential grid implications of the increased net generation 
from WPV, consider Fig. 1, which depicts California’s load curve – 
otherwise known as the “duck curve” due to its shape.8 The load curve in 
Fig. 1 illustrates the early-morning ramping period (approximately four 
to 6 a.m.), wherein the California Independent System Operator (ISO) 
must ensure an adequate amount of electricity is being generated to 
meet morning demand. Following the initial morning ramp, electricity 
demand declines rapidly as individuals leave home for work, school, or 
other obligations. 

At this same time, the sun is coming up, allowing more solar to be 
brought online and conventional non-renewable generating resources to 
be ramped down. In the late afternoon-to-evening hours, as individuals 
begin to head home, generating capacity must ramp back up quickly to 
meet the increased demand. The sun, however, is starting to set, and 
solar is contributing less to power production. To meet this increase in 
demand, the system operator must re-ramp its non-renewable genera
tion fleet. 

According to the California ISO (2016), the curve illustrates three 
potential consequences of growing WPV penetration: ramping, over
supply, and decreased frequency response. As generation from WPV 
increases, the system operator must quickly bring on or shut down 
non-renewable generation to meet increasing or declining demand. Any 
fast ramp leads to a real risk of producing more electricity than is needed 
to meet the demand requirements, the management of which increases 
operating costs.9 

As more renewable generators displace conventional generation, a 
loss of inertia occurs on a traditional power grid system (i.e., a system 

designed for electrons to flow from producer to end-consumer and not 
vice-versa). The mechanical energy produced from conventional fossil 
fuels is no longer the primary source of electricity being supplied. 
Instead, the power system now relies on variable energy resources, 
including WPV, whose mechanical energy output can fluctuate. The 
addition of WPV can cause the operator to lose the automated capability 
to manage frequency response. Consequently, the system becomes 
exposed to potential disruptions in generation or transmission outages, 
which following the traditional structure of the power grid system, can 
ultimately lead to disruptions for end-consumers.10 

Given the availability of WPV depends directly on real-time meteo
rological conditions, it is difficult for the California ISO (or any system 
operator) to predict with absolute certainty the contribution the re
sources can make in real-time to overall capacity, especially during peak 
demand hours (Bird et al., 2013; Skea et al., 2008).11 The variation in 
output from solar photovoltaics is generally more natural to model than 
wind, although cloud cover can make solar energy production far less 
predictable (Bird et al., 2013). That is, the variability in cloud cover can 
cause rapid changes in the output produced from installed solar panels 
(i.e., photovoltaic [P.V.] systems) (Bird et al., 2013). 

4. Methodology 

This section provides an overview of the data and empirical analysis 
techniques used to examine whether increasing the net generation of 
electricity supplied by WPV affects the duration or frequency of power 
system disruptions experienced by end-consumers. 

Fig. 1. California’s duck curve: Over-generation of solar energy. 
Source: California ISO (2016) 

8 For more information on how utilities in California are enabling WPV to 
contribute to a larger share of their net generation, including an explanation of 
how generation from WPV is managed during times of insufficient demand visit 
the California Public Utilities Commission Website or the California Indepen
dent System Operator’s (CAISO) website.  

9 It is worth noting that California ISO’s operational decisions are driven, in 
part, by natural market processes. In other words, the near-zero marginal costs 
from renewable technologies are leading to a decline in wholesale electricity 
prices and affecting the operator’s merit-order dispatch decisions (Prol et al., 
2020). 

10 For more information see https://www.eia.gov/energyexplained/electricit 
y/how-electricity-is-generated.php.  
11 Another issue that makes integrating more WPV onto the grid more difficult 

is that in its current state, electricity along the U.S. electrical grid only flows in 
one direction, from central generation to the end-consumer (Department of 
Energy 2015). As a result, any disruption that occurs at any point along the grid 
(e.g., during the generation, transmission, or distribution phases of production) 
can impact the ability of customers to receive an uninterrupted supply of 
power. For further clarification see Figure 7a. Three Phases of the Electricity 
Production Process in the list of figures at the end of the paper. 
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4.1. Data 

To conduct our empirical analysis, data was collected from two 
annual surveys administered by the United States (EIA). Namely, survey 
Form EIA-923 and survey Form EIA-861. Survey Form EIA-923 provided 
yearly data on the operational characteristics of power-plants that 
supplied electricity to the grid between 2013 and 2017. Power plants 
were matched by utility name and id to observations in survey Form EIA- 
861, which provided information on the frequency and duration of 
power system disruptions experienced by end-consumers during each 
year, data on which has been collected by the EIA since 2013. Some 

utilities reported data for a varying number of years. As a result, our 
dataset existed as an unbalanced panel with 276 annual observations 
from 2013 to 2017. Summary statistics are presented in Table 1. 

4.2. Measuring power system disruptions 

The system average interruption duration index (SAIDI) reports the 
duration (usually measured in minutes) of power system disruptions 
experienced by end-consumers. The system average interruption fre
quency index (SAIFI) reports the frequency of disruptions (i.e., the 
number of times a customer has gone without power during the year). 

Table 1 
Panel summary statistics (2013–2017).  

Variable Description Mean Std. Dev. Min Max 

SAIDI System Average Interruption Duration Index 67.67 76.86 0 700.20       

SAIFI System Average Interruption Frequency Index 0.82 1.77 0 43.20       

Customers Number of Customers Served (Millions) 0.38 0.79 0 5.12       

Auto Indicator if Utility has an Automated Outage Management System 0.46 0.50 0 1       

IEEE Indicator for IEEE-1366 Standard 0.57 0.50 0 1       

Circuits Number of Distribution Circuits 427.73 712.71 1 4552       

Sales Total Electric Retail Sales (GWh) 9091.35 16,832.7 0 110,326.70       

TR Indicator = 1 if Utility Transmits Electricity 0.65 0.48 0 1       

DR Indicator = 1 if Utility Distributes Electricity 1.00 0.06 0 1       

GR Indicator = 1 if Utility Generates Electricity 0.91 0.30 0 1       

FRCC Indicator = 1 if Utility Identifies Florida Reliability Coordinating Council as NERC Region 0.06 0.23 0 1       

HICC Indicator = 1 if Utility Identifies Hawaiian Islands Coordinating Council as NERC Region 0.02 0.13 0 1       

MRO Indicator = 1 if Utility Identifies Midwest Reliability Organization as NERC Region 0.17 0.37 0 1       

NPCC Indicator = 1 if Utility Identifies Northeast Power Coordinating Council as NERC Region 0.07 0.26 0 1       

RFC Indicator = 1 if Utility Identifies Reliability First Corporation as NERC Region 0.15 0.36 0 1       

SERC Indicator = 1 if Utility Identifies Southeast Electricity Reliability Council as NERC Region 0.14 0.35 0 1       

SPP Indicator = 1 if Utility Identifies Southwest Power Pool as NERC Region 0.08 0.28 0 1       

TRE Indicator = 1 if Utility Identifies Texas Regional Entity as NERC Region 0.02 0.15 0 1       

WECC Indicator = 1 if Utility Identifies Western Electricity Coordinating Council as NERC Region 0.26 0.44 0 1 
ASCC Indicator = 1 if Utility Identifies Alaska Systems Coordinating Council as NERC Region 0.02 0.15 0 1       

Cooperative Indicator = 1 if Utility is Owned by a Cooperative as NERC Region 0.07 0.25 0 1       

Investor Indicator = 1 if Utility is Investor Owned 0.37 0.48 0 1       

Municipal Indicator = 1if Utility is Owned by Municipality 0.48 0.50 0 1       

Subdivision Indicator = 1 if Utility Owned by a Subdivision 0.08 0.27 0 1       

State Indicator = 1 if Utility is State Owned 0.004 0.06 0 1       

Net Generation Net Generation (GWh) 7237.10 15,639.06 − 113.06 115,648.60       

WPV Net Generation (GWh) supplied by Wind and Solar Photovoltaics 98.93 646.38 0 11,680.17       

WPV2 Net Generation (GWh) supplied by Wind and Solar Photovoltaics Squared 427,169.30 5,894,633 0 13,600,000,000       

WPV Prime Indicator Utility has at Least one Wind or Solar as Prime Mover 0.23 0.42 0 1       

Instrumental Variables (Annual) 
RPS Requirement Requirement (%) to meet Renewable Portfolio Standard 6.83 8.80 0 55 
REPTC Potential Compensation (USD) from Renewable Electricity Production Tax Credit 2,276,733 1,490,000,000 0 27,300,000,000  

A.J. Harker Steele et al.                                                                                                                                                                                                                       



Energy Policy 151 (2021) 111947

5

SAIDI and SAIFI were developed by the Institute of Electrical and Elec
tronics Engineers (IEEE) (1998). The two indices are said to provide a 
consistent approach for utilities interested in measuring the reliability of 
their electricity distribution system (Eto et al., 2012; Malla 2013). 

SAIDI is calculated as follows 

SAIDI =
∑n

i=1
(di*Ni)

/

Nt . (1) 

In Eq. (1) di is used to represent the restoration time (i.e., the amount 
of time it takes for power to be restored to the customer) in minutes; Ni is 
used to denote the number of customers who experienced the power 
system disruption; and Nt is used to represent the total number of cus
tomers served by an individual utility during time period t. 

SAIFI is calculated as follows: 

SAIFI =
∑n

i=1
Ni

/

Nt
. (2)  

Ni and Nt in Eq. (2) are defined the same as in Eq. (1). By design, larger 
values of SAIDI and SAIFI indicate less reliable electricity distribution 
service (i.e., more prolonged and more frequent disruptions have 

occurred) and lower values of SAIDI and SAIFI represent more reliable 
electricity distribution service.12 

Following Eto et al. (2012) and Malla (2013), we separated disrup
tions that occurred during major event days (MEDs) from disruptions 
that did not happen during MEDs.13 Because we were interested in 
understanding the impact of using WPV on reliability, our analysis only 
considered values for SAIDI and SAIFI recorded on non-MEDs. 

4.3. Empirical analysis 

Our empirical analysis followed four main steps. First, consistent 
with Eto et al. (2012), we transformed both indices (SAIDI and SAIFI) 
using a log-transformation. Also, we employed an inverse hyperbolic 

Table 2 
First Stage OLS Estimates. Dependent variables WPVit and.WPV2

it  

Dependent Variable WPVit   WPV2
it  

Excluded Instruments 
RPS percent requirement 0.1610* RPS percent requirement sq. 1.163  

(0.009)  (1.677) 
Qualifying amount REPTC ($) 4.35× 10− 5***  Qualifying amount REPTC ($) sq. 1.91× 10− 9***   

5.82× 10− 8   2.56× 10− 11  

Other Exogenous Variables 
WPV Prime Mover − 0.1171 WPV Prime Mover 743.93  

(0.4341)  (765.53) 
Customers − 0.4061 Customers − 507.99  

(0.3436)  (632.45) 
IEEE 0.1802 IEEE 63.21  

(0.1200)  (273.86) 
Circuits 0.0007 Circuits 0.8127  

(0.0004)  (0.7001) 
GR − 0.0863 GR − 164.11  

(0.1452)  (334.44) 
Constant − 0.3307 RPS percent requirement 2.4272  

(0.3685)     
Qualifying amount REPTC ($) − 0.0005    

(0.0007)   
Constant − 207.25    

(974.15) 
Observations 924 Observations 924 
R2  0.9997 R2  0.9997 

Notes: (i) Standard errors in parenthesis. (ii) The asterisk symbols represent the following: *p < 0.10, ** p < 0.05, *** p < 0.01. (iii) Parameter estimates not included 
in results: the total amount of retail sales (GWhs), an indicator for transmission, an indicator for distribution, and an indicator for automatic detection for system 
disruptions. (iv) Year, NERC Region, and Ownership fixed effects are included in both models. 

Table 3 
F-Test Results for Hypothesis that Utility-Level Specific Effects have No Effect on 
Duration and Frequency of Disruptions in Power Reliability.  

Reliability Metric F-test Degrees of Freedom (between/within) Prob. > F 

ln(SAIDI) 7.90 (247/661) <0.000     

ln(SAIFI) 7.09 (247/661) <0.000     

arsinh(SAIDI) 9.06 (247/661) <0.000     

arsinh(SAIFI) 7.20 (247/661) <0.000 

Notes: The representation for the natural logarithmic and inverse hyperbolic 
sine functions are ln(∙) and arsinh(∙), respectively. 

12 Values for SAIDI and SAIFI reported on survey form EIA-861 from 2013 to 
2017 are presented in the online appendix. See Figs. 1a and 2a. 
13 A major event day (MED) is defined as a day where a power system inter

ruption is likely the result of a severe weather-related event (e.g., a lightning 
strike, snowstorm, ice storm, hurricane, tornado, or flood). Values for SAIDI and 
SAIFI are likely to be inflated on MED. Eto et al. (2012) and Malla (2013) both 
argue that failure to separate power system disruptions that occur during MED 
from outages that occur on non-MED could degrade the comparability of the 
indices across different utilities because depending on which region the electric 
utility operates in; they could naturally be more prone to experiencing major 
weather events. For example, utilities that operate along the coast are inher
ently more prone to hurricanes than those who operate inland. 
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Table 4 
Random effects model results for duration and frequency of power disruptions experienced.   

ln(SAIDI) ln(SAIFI) arsinh(SAIDI) arsinh(SAIFI) ln(SAIDI) ln(SAIFI) arsinh(SAIDI) arsinh(SAIFI) 

WPV 0.0009*** 0.0002 0.0009*** 0.0002** 0.0009*** 0.0002 0.0009*** 0.0002*  
(0.0003) (0.0002) (0.0003) (0.0001) (0.0003) (0.0002) (0.0003) (0.0001) 

WPV2 
− 3.60× 10− 7**  − 1.16× 10− 7  − 3.50× 10− 7**  − 1.18× 10− 7***  − 3.57× 10− 7**  − 1.09× 10− 7  − 3.46× 10− 7**  − 1.13× 10− 7**   

(1.51× 10− 7)  (8.17× 10− 7)  (1.52× 10− 7)  (5.43× 10− 8)  (1.52 × 10− 7) (8.12 × 10− 7) (1.53 × 10− 7) (5.42 × 10− 7)

WPV Prime − 0.3435*** − 0.0586 − 0.3551*** − 0.1133*** − 0.3421*** − 0.0582 − 0.3537*** − 0.1131***  
(0.1156) (0.0778) (0.1233) (0.0388) (0.1154) (0.0778) (0.1232) 0.0388 

Customers − 0.4805** − 0.3085 − 0.4642** − 0.1700*** − 0.4813** − 0.3085 − 0.4650** − 0.1700**  
(0.1986) (0.2006) (0.2126) (0.0862) (0.1988) (0.2006) (0.2128) (0.0862) 

IEEE 1.2550*** − 0.1743* 1.4095*** 0.2630*** 1.2550*** − 0.1743* 1.4095*** 0.2629***  
(0.2022) (0.0971) (0.2128) (0.0430) (0.2022) (0.0972) (0.2128) (0.0430) 

Circuits 0.0004** 0.0001 0.0005* 0.0001 0.0004** 0.0001 0.0005* 0.0001  
(0.0002) (0.0001) (0.0002) (0.0001) (0.0002) (0.0001) (0.0002) (0.0001) 

GR − 0.2909 0.3182** − 0.3237 0.0124 − 0.2909 0.3182** − 0.3237 0.0125  
(0.1955) (0.1508) (0.2188) (0.0509) (0.1955) (0.1508) (0.2188) (0.0509) 

Constant 5.2183*** 0.4628** 5.8395*** 1.1422*** 5.2174*** 0.4629** 5.8387*** 1.1422***  
(0.5804) (0.2434) (0.6509) (0.1653) (0.5804) (0.2434) (0.6509) (0.1653) 

NERC Region Yes Yes Yes Yes Yes Yes Yes Yes 
Ownership Yes Yes Yes Yes Yes Yes Yes Yes 
Year Yes Yes Yes Yes Yes Yes Yes Yes 
Specification OLS OLS OLS OLS IV IV IV IV 
Observations 924 924 924 924 924 924 924 924 
Hausman test (m-value) 8.36 18.87 8.71 11.32 8.39 18.86 8.73 11.32 
Hausman χ2(13) 0.820 0.127 0.798 0.584 0.817 0.128 0.793 0.5838 
IV Diagnostics         
First stage F-Test of excluded instruments (F-stat, p-value) 0.00    
Under identification (Kleibergen-Papp rank LM F-stat, p-value) 0.00    
Over-identification (Hansen’s J, p-value) 0.52    
Weak identification (Cragg-Donald Wald Test F-stat) 1.50× 105     

Stock-Yogo critical value: 10% max 19.93    
Stock-Yogo critical value: 15% max 11.59    
First stage F-Test of excluded instruments (F-stat, p-value) 0.00    

Notes: (i) Standard errors in parenthesis. (ii) The asterisk symbols represent the following: *p < 0.10, ** p < 0.05, *** p < 0.01. (iii) Parameter estimates not included in results: the total amount of retail sales (GWhs), an 
indicator for transmission, an indicator for distribution, and an indicator for automatic detection for system disruptions. (iv) SAIDI denotes system average interruption duration index; SAIFI denotes system average 
interruption frequency index. (v) IV. 
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sine (IHS) transformation of the two indices (Johnson, 1949).1415 Sec
ond, we conducted F-tests on both transformed values of SAIDI and SAIFI 
to determine if accounting for utility-specific effects was warranted. 
Third, we conducted a Hausman (1978) specification test to determine 
whether a fixed or random-effects model approach was more appro
priate. Fourth, we estimated two sets of models using the transformed 
values of SAIDI and SAIFI as the dependent variable. 

The reduced-form model used to test our hypothesis takes the 
following form: 

Disruptionit = β0 + β1WPVit + β2WPV2
it + β3WPVPrimeit

+ δXit + γYeart− 1 + ci + μit.
(3) 

The dependent variable in Eq. (3), Disruptionit, is a positive, contin
uous variable equal to the natural log or the IHS transformed values of 

SAIDI or SAIFI. Our primary variables of interest are WPVit and WPV2
it 

continuous variables equal to the amount of net generation supplied by 
WPV (measured in GWhs) by each utility i in each time period t and its 
square.16 The variable WPV2

it is included to capture the potential 
diminishing marginal effect of net generation supplied by WPV on the 
frequency or duration of power system disruptions experienced. 

As utilities supply more net generation from WPV, it is plausible that 
they may become better equipped to manage power system disruptions 
resulting from their use. Therefore, we hypothesized the estimated co
efficient for β2will be negative. Following, this same logic we hypothe
sized initial increases the amount of net generation from WPV would 
lead to an increase in the frequency and duration of disruptions expe
rienced; hence, we expected a positive sign for the estimated coefficient, 
β1. As a robustness check, we also include a variable labeled as 
WPVPrimeit which is a binary indicator variable if a utility company 

Fig. 2. States with and without active renewable support policies in place. 
Source: National Conference of State Legislatures (2019). 

14 While the log-transformation is convenient, applying such a transformation 
can lead to negative values for SAIDI and SAIFI being recorded, which is 
problematic as the negative of a power system disruption is nonsensical. 
Furthermore, given values of SAIDI and SAIFI are skewed to the right and a 
large number of utilities recorded values of SAIDI and SAIFI equal to zero across 
various years, we apply the IHS transformation to values for SAIDI and SAIFI. 
The IHS transformation is defined at zero, corrects for skewness, and is 
approximately equal to log(2yit) or log(2)+ log(yit). As a result, parameters of 
interest can still be interpreted as the percentage change in a reliability index, 
given a one-unit change in a variable of interest.  
15 Fig. 3a through 6a in the online appendix show the results of the data 

transformations applied. 

16 Generation from WPV excludes generation supplied to utilities through net 
metering programs. 

A.J. Harker Steele et al.                                                                                                                                                                                                                       



Energy Policy 151 (2021) 111947

8

identified either wind or solar photovoltaics as a prime mover for at least 
one of the generating plants it used to supply electricity.17 

We control for year fixed effects by including the variable Yeart− 1, 
which represents a set of year indicator variables for all but one of the 
five years of observation. The term ci denotes the unobserved 
individualutility-level effects believed to influence disruptions in the 
reliability of service. The idiosyncratic error term is represented in Eq. 
(3) by μit. The term Xit represents a vector of operational characteristics 
that influence the frequency and duration of power system disruptions 
experienced by end-consumers. 

Control variables in Xit included: Autoit, a binary indicator variable if 
the electric utility had an outage management system capable of auto
matically detecting disruptions; TRit , a binary indicator variable if the 

utility transmits electricity; and DRit , a binary indicator variable if the 
utility operates its own distribution lines. Further, we control for: GTit , a 
binary indicator variable if the utility generates its own electricity, 
Circuitsit, a continuous variable equal to the number of distributional 
circuits operated by each utility i in time period t; and, Salesit , total 
annual retail sales for each utility (measured in gigawatt-hours [GWh]). 
Finally, the term IEEEit denotes a binary indicator variable if the utility 
uses the IEEE Standard 1366 to record and measure values for SAIDI and 
SAIFI.18 

Consistent with the previous literature, we control for the size of 
each utility by including a variable equal to the total number of 

Table 5 
Predicted frequency of disruptions (SAIFI) based on results from the random 
effects IV regression.  

States with Renewable 
Portfolio Standards (RPS) 

% of Net Generation Projected to be Supplied By 
WPV 

5% 10% 25% 50% 75% 100% 

Arizona AZ 1.82 0.63 0.53 0.53 0.53 0.53 
California CA 1.82 1.80 1.73 1.57 1.43 1.35 
Colorado CO 2.27 2.10 1.46 1.29 1.06 0.86 
Connecticut CT 2.28 2.28 2.28 2.28 2.28 2.28 
Delaware DE 2.58 2.58 2.58 2.58 2.58 2.58 
Hawaii HI 3.07 3.11 3.19 3.17 2.99 2.76 
Illinois IL 2.20 2.21 2.23 2.24 2.22 2.16 
Iowa IA 1.97 1.80 1.42 1.27 1.21 1.21 
Maine ME 3.33 3.33 3.33 3.33 3.33 3.33 
Maryland MD 1.36 1.36 1.36 1.36 1.36 1.36 
Massachusetts MA 2.07 2.07 2.07 2.07 2.08 2.08 
Michigan MI 2.13 1.94 1.66 1.58 1.59 1.59 
Minnesota MN 1.63 1.57 1.46 1.37 1.33 1.33 
Missouri MO 2.23 1.99 1.67 1.52 1.47 1.40 
Nevada NV 2.78 2.76 1.88 1.00 0.46 0.15 
New Hampshire NH 3.20 3.26 3.39 3.49 3.42 3.21 
New Jersey NJ 2.36 2.36 2.36 2.37 2.38 2.39 
New Mexico NM 1.92 1.93 1.69 1.39 1.38 1.40 
New York NY 2.39 2.40 2.43 2.43 2.38 2.29 
North Carolina NC 2.08 0.87 0.69 0.69 0.69 0.69 
Ohio OH 1.85 1.84 1.66 1.53 1.52 1.52 
Oregon OR 2.25 2.28 2.17 1.82 1.70 1.65 
Pennsylvania PA 1.82 1.82 1.82 1.82 1.82 1.82 
Texas TX 2.16 2.16 1.78 1.32 1.10 0.96 
Vermont VT 2.00 2.00 2.02 2.04 2.06 2.08 
Virginia VA 1.86 1.58 1.57 1.57 1.57 1.57 
Washington WA 1.98 2.02 1.98 1.67 1.46 1.37 
Wisconsin WI 2.20 2.15 1.70 1.24 1.08 1.03 
States with Renewable 

Portfolio Goals (RPG) 
% of Net Generation Projected to be Supplied By 
WPV 
5% 10% 25% 50% 75% 100% 

Indiana IN 2.23 2.08 1.31 0.79 0.69 0.63 
Kansas KS 2.31 2.30 2.01 1.83 1.83 1.82 
North Dakota ND 1.65 1.66 1.69 1.74 1.78 1.80 
Oklahoma OK 2.39 2.24 1.49 0.92 0.66 0.54 
South Carolina SC 2.65 2.34 0.54 0.18 0.18 0.18 
South Dakota SD 2.42 2.42 2.43 2.44 2.45 2.46 
Utah UT 1.73 1.73 1.74 1.74 1.74 1.74 

Note: (i) Predicted values of SAIFI were note estimated for Montana or Rhode 
Island. Data on these two states were not provided on Survey Form EIA-861 or 
923. 

Table 6 
Predicted duration of disruptions (SAIDI) based on results from the random ef
fects IV regression.  

States with Renewable 
Portfolio Standards (RPS) 

% of Net Generation Projected to be Supplied By 
WPV 

5% 10% 25% 50% 75% 100% 

Arizona AZ 191 36 36 36 36 36 
California CA 268 267 266 189 162 139 
Colorado CO 579 436 235 212 170 157 
Connecticut CT 133 133 133 134 134 135 
Delaware DE 684 684 684 685 686 687 
Hawaii HI 303 328 387 388 298 226 
Illinois IL 339 340 343 346 345 341 
Iowa IA 624 321 91 74 74 76 
Maine ME 822 822 822 822 822 822 
Maryland MD 22 22 22 22 22 22 
Massachusetts MA 128 128 128 128 128 128 
Michigan MI 437 311 227 224 229 234 
Minnesota MN 152 129 112 86 86 88 
Missouri MO 527 309 171 156 136 110 
Nevada NV 1086 1168 700 299 47 3 
New Hampshire NH 636 680 804 948 972 876 
New Jersey NJ 595 596 601 609 617 625 
New Mexico NM 301 329 160 106 112 118 
New York NY 280 286 301 311 303 290 
North Carolina NC 482 27 26 26 26 26 
Ohio OH 252 255 186 173 176 176 
Oregon OR 513 560 512 431 431 427 
Pennsylvania PA 103 103 103 104 104 104 
Texas TX 439 487 334 180 113 70 
Vermont VT 59 60 63 67 71 74 
Virginia VA 155 133 133 134 134 134 
Washington WA 258 283 296 228 216 209 
Wisconsin WI 525 536 403 164 105 96 
States with Renewable 

Portfolio Goals (RPG) 
% of Net Generation Projected to be Supplied By 
WPV 
5% 10% 25% 50% 75% 100% 

Indiana IN 519 425 124 35 23 15 
Kansas KS 503 514 358 359 376 388 
North Dakota ND 77 80 87 98 107 115 
Oklahoma OK 540 568 419 147 45 15 
South Carolina SC 906 709 9 4 4 4 
South Dakota SD 615 617 621 627 633 640 
Utah UT 131 131 132 132 132 133 

Note: (i) Predicted values of SAIDI were note estimated for Montana or Rhode 
Island. Data on these two states were not provided on Survey Form EIA-861 or 
923. 

17 A prime mover is the engine, turbine, water wheel, or other similar machine 
responsible for driving the electric generator in a power plant; or, for reporting 
purposes, the device that converts energy to electricity directly. Including an 
indicator variable for prime mover identified as wind or solar, allows us to 
further investigate how small increases in net capacity being supplied by WPV 
might differ from large increases. It also provides some evidence that utilities 
who have one prime mover of wind or solar may have additional units of other 
resources, that could potentially be used for back-up generation (U.S. Energy 
Information Administration (EIA), 2019b). 

18 While SAIDI and SAIFI are both widely recognized metrics used to measure 
power system reliability, there are differences among the ways utilities define 
and measure interruptions using these two indices (Eto at al. 2012; Malla 
2013). For example, some follow the IEEE 1366 Standard to measure values for 
SAIDI and SAIFI, while others use their own set of criteria to measure disrup
tions using the indices. To control for the differences in criteria used to record 
and measure outages we include the indicator variable IEEE. 
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customers (measured in millions) each utility serves in Xit, labeled as 
Customersit(Fenrick and Getachew 2012; Malla 2013).19 To account for 
differences in the way reliability standards are monitored and enforced, 
we include a set of indicator variables for all but one of the ten North 
American Electrical Reliability (NERC) regions that utilities could report 
having operated in, labeled in our analysis as NERCit . To account for the 
different procedures used by different types of utilities to manage their 
operations, we also include an indicator variable for each ownership 
type excluding one, labeled as ownershipit.20 

4.4. Instrumental variables approach 

If increasing the amount of net generation supplied by WPV is known 
to lead to longer or more frequent power system disruptions, then util
ities may be less likely to install WPV to supply their electricity needs. 
Given the potential endogenous relationship between the amount of net 
generation supplied by WPV and the frequency or duration of power 
system disruptions experienced, we employed an instrumental variables 
(IV) approach to estimate Eq. (3). For our IV approach to be valid, the 
identified instruments must meet the following two conditions. One, 
identified instruments must be excludable in the sense that they have no 
direct effect on the outcome variable of interest. Two, identified in
struments must be correlated with the endogenous variable for which 
they are instrumenting (Wooldridge 2010).21 

Following Johnson and Oliver (2019), we utilize various aspects of a 
state’s policy support for generation from renewable energy resources as 
our primary choice of instrumentation. In an attempt to combat green
house gas emissions from traditional fossil fuel resources, several states 
across the U.S. have implemented economic support policies to stimu
late investment in renewable energy resources (Johnson and Oliver 

Table 7 
Estimated # of residential and non-residential customers in states with renewable energy support policies in place.  

State Average # Of Customers Proportion of Customers in Groups Estimated # of Customers in Groups 

Residential Non-Residential Residential Non-Residential 

States with Renewable Portfolio Standards (RPS) 

Arizona AZ 713,960 89% 11% 637,575 76,385 
California CA 935,728 88% 12% 822,663 113,065 
Colorado CO 588,747 85% 15% 502,696 86,050 
Connecticut CT 120,314 90% 10% 108,715 11,599 
Delaware DE 88,484 89% 11% 78,326 10,158 
Hawaii HI 128,238 87% 13% 112,121 16,117 
Iowa IA 158,573 85% 15% 134,543 24,030 
Illinois IL 28,695 89% 11% 25,676 3,019 
Massachusetts MA 15,848 87% 13% 13,763 2,085 
Maryland MD 10,587 90% 10% 9,502 1,086 
Maine ME 152,747 88% 12% 134,063 18,685 
Michigan MI 479,555 89% 11% 425,957 53,598 
Minnesota MN 105,326 89% 11% 93,555 11,771 
Missouri MO 201,657 88% 12% 176,805 24,851 
North Carolina NC 961,518 87% 13% 832,539 128,979 
New Hampshire NH 509,502 85% 15% 431,889 77,613 
New Jersey NJ 2,283,110 87% 13% 1,987,408 295,702 
New Mexico NM 140,691 85% 15% 120,019 20,671 
Nevada NV 623,802 87% 13% 545,803 77,999 
New York NY 1,040,117 87% 13% 903,796 136,321 
Ohio OH 283,247 88% 12% 250,519 32,728 
Oregon OR 377,555 87% 13% 327,802 49,753 
Pennsylvania PA 11,250 88% 12% 9,913 1,338 
Texas TX 291,659 87% 13% 253,832 37,827 
Virginia VA 519,294 89% 11% 460,082 59,212 
Vermont VT 82,049 89% 11% 72,693 9,355 
Washington WA 243,623 85% 15% 207,583 36,040 
Wisconsin WI 336,104 88% 12% 296,375 39,729 
States with Renewable Portfolio Goals (RPG) 
Indiana IN 311,437 88% 12% 275,311 36,127 
Kansas KS 149,755 83% 17% 124,291 25,464 
North Dakota ND 88,992 82% 18% 73,257 15,734 
Oklahoma OK 467,715 85% 15% 399,268 68,447 
South Carolina SC 414,662 86% 14% 355,588 59,074 
South Dakota SD 65,717 84% 16% 55,208 10,509 
Utah UT 19,496 89% 11% 17,280 2,216 

Note: Data collected from Survey Form EIA-861. 

19 According to Fenrick and Getachew (2012) and Malla (2013) utilities 
serving fewer customers can be at a disadvantage when measuring the reli
ability of service using SAIDI and SAIFI values because they have fewer cus
tomers overall.  
20 For a graphical representation of the different NERC regions see Fig. 9a 

North American Reliability Council (NERC) Regions. The NERC is a not-for- 
profit international regulatory authority whose mission is to assure the effec
tive and efficient reduction of risks to the reliability and security of the grid. 
NERC develops and enforces reliability standards and annually assesses sea
sonal and long-term reliability. NERC delegates its authority to monitor and 
enforce compliance to different regional entities. Each regional entity follows 
its own set of standards to monitor and enforce reliability. Ownership cate
gories include investor owned, publicly owned (state and political subdivision) 
and cooperatives. Investor owned utilities are large electric distributors that 
issue stock owned by shareholders. Publicly owned utilities are utilities that 
residents vote into existence that operate independently. Cooperative are not- 
for-profit utilities. For more information see (U.S. Energy Information Admin
istration (EIA), 2019c). 

21 Because the first condition involves examining the covariance between 
potential instruments and the unobserved error term, we cannot test whether or 
not it holds (Wooldridge 2010). By contrast, condition (2) can be tested by 
regressing the endogenous variable WPViton the identified instruments and all 
other exogenous variables included in the model and then examining whether 
the coefficient on the candidate instrument is non-zero. 
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2019). Perhaps the two most common include renewable portfolio 
standards (RPS) and the Renewable Electricity Production Tax Credit 
(REPTC). 

RPS, represented by the covariate RPSit are state-level regulatory 
mandates requiring a minimum amount of electricity be generated from 
renewable energy resources (Barbose 2017).22 Electric utilities can meet 
RPS requirements by operating their renewable generating unit or 
purchasing renewable generation from other facilities (Johnson and 
Oliver 2019; Wiser et al., 2005). State-level data on annual RPS re
quirements were collected from the Lawrence Berkley National Labo
ratory (Barbose 2017). Following Johnson and Oliver (2019) we expect 
the relationship between the yearly RPS requirement and WPVit to be 
positive. 

The REPTC, represented by REPTCit , is a per kilowatt-hour (kWh) tax 
credit for electricity produced using qualified energy resources, 
including WPV (Sherlock 2020). The maximum credit is set at 1.5 cents 
per kWh produced and is adjusted for inflation annually using the 
inflation adjustment factor published by the Internal Revenue Service 
(IRS). Our preferred instrumentation utilizes the amount of the 
Renewable Electricity PTC ($USD) a utility qualifies for based on the 
amount of net generation from WPV they supply in a given year. We 

expect the relationship between the qualifying Renewable Electricity 
PTC and WPVit to also be positive. 

Our first-stage estimating equation is as follows: 

WPVit = π0 + π1Zit + ηXit + ρYeart− 1 + ωi + εit, (4)  

where in Eq. (4) Zitis the vector of instrumental variables, Xitis a vector 
of exogenous variables from Eq. (3), ωirepresents individual utility-level 
effects, Yeart− 1are the year fixed effects, and εit is the idiosyncratic error 
term. We control for the potential endogeneity between WPV2

it and the 
frequency or duration of power system disruptions experienced 
following suggestions Wooldridge (2010). Instruments include RPS2

it and 
REPTC2

it . The first-stage estimating equation for WPV2
it is identical to the 

first stage estimating equation represented in Eq. (4) except the vector of 
instrumental variables now include both Zit and. Z2

it .

Table 2 presents the first-stage OLS estimates for WPVitand WPV2
it . 

Our chosen instruments explain the variation in WPVit quite 
robustly. The estimate for the coefficient on RPSitis positive and statis
tically significant. The interpretation of this coefficient estimate is that a 
one percent increase in an RPS requirement leads to a 0.16 percentage 
point increase in net generation from WPV. The estimates for the co
efficients on RPS2

it and REPTC2
it are both positive, as expected. However 

only the coefficient estimate on REPTC2
it is statistically significant. As we 

only have one endogenous variable, the rank and order conditions are 
still satisfied. 

Fig. 3. Cost per unserved kWh of electricity derived from the ICE Calculator ($2016) for states with active Renewable Portfolio Standard (RPS).  

22 For example, a RPS might require utilities to increase the amount of elec
tricity the generate from renewables by 1% a year for the next ten years, 
resulting in a cumulative 10% increase in renewable generation in that state. 
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5. Main results and discussion 

The results from the application of the F-test are presented in Table 3. 
Our findings suggest that both utility and year-specific effects are sta
tistically significant (at the 0.01% confidence level) for both the log- 
transformed and IHS transformed values of SAIDI and SAIFI. The F-test 
result implies a strong correlation between the individual characteristics 
of the utilities and the value of the reliability indices recorded. Similar 
to Eto et al. (2012), we assumed this correlation is due to differences in 
reporting and monitoring practices of the individual utilities.23 

The conventional technique used when analyzing short, unbalanced 
(Ti ∕= T for some i) panel datasets is to rely on multivariate regression 
models that account for unobserved heterogeneity (Cameron and Triv
edi 2009; Wooldridge 2010). Options include fixed or random effects, 
the choice between which depends on assumptions surrounding the 
correlation between the individual unobserved effects (heterogeneity) 
and included explanatory variables of interest and whether any 

time-invariant explanatory variables are of interest to the researcher.24 

In our specific case, time-invariant explanatory variables of interest 
include the NERC region each utility operates in and its ownership type. 
The results of the Hausman specification test indicated a violation of the 
assumption of no correlation between the unobserved, heterogeneous 
effects, and the NERC region (Wooldridge 2010). Thus, we estimated our 
empirical model Eq. (3) using a random-effects approach with standard 
errors corrected for both heteroscedasticity and autocorrelation.25 We 
estimated the model with and without controlling for the potential 
endogeneity. The results are presented in Table 4.26 

Fig. 4. Total costs of sustained power system interruptions ($2016) for states with active Renewable Portfolio Standard (RPS).  

23 It is important to take this correlation into account when examining the 
relationship between reported reliability indices and other explanatory vari
ables of interest, as the way in which utilities record values for the disruptions 
experienced by their end-consumers could be similar to other reporting and 
monitoring strategies used by the utility. Controlling for this unobserved het
erogeneity can help to eliminate the potential for bias in results. 

24 Fixed effects models are often preferred as the empirical approach when 
analyzing panel data as they allow for correlation between unobserved, het
erogeneous effects, and any included explanatory variables of interest. How
ever, if unobserved effects are not correlated with included explanatory 
variables of interest, random effects models are more appropriate.  
25 Regional reliability organizations are charged with monitoring and 

enforcing reliability standards. Being able to estimate the impact of operations 
of these organizations on reliability of service is an advantage of the random 
effects model specification as compared to the fixed effects model. 
26 Additional robustness checks can be found in Tables 1a-5a in the supple

mentary material 
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Fig. 5. Cost per unserved kWh electricity derived from the ICE Calculator ($2016) for states with active Renewable Portfolio Goal (RPG).  

Fig. 6. Total costs of sustained power system interruptions ($2016) for states with active Renewable Portfolio Goal (RPG).  
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5.1. OLS results 

OLS estimation results in Table 4 imply utilities who identified wind 
or solar as a prime mover of at least one of their power plants can, on 
average, expect to experience shorter and less frequent power system 
disruptions, all else equal. Moreover, OLS results in indicate, all else 
equal, at low levels of net generation from WPV, one additional GWh of 
net generation from WPV will have a statistically significant positive 
impact on the frequency and duration of disruptions experienced by end- 
consumers (leading to increases in the values of SAIFI and SAIDI re
ported). However, if higher levels of net generation are already being 
supplied by WPV, then one additional GWh of net generation supplied 
by WPV has a statistically significant negative impact on the frequency 
and duration of disruptions experienced (leading to decreases in the 
values of SAIFI and SAIDI reported). 

In other words, disruptions are decreasing as the net generation 
supplied by WPV is increasing. The effect of WPV on the duration of 
disruptions becomes negative when net generation exceeds 1,250 GWh 
(log-transformed value of SAIDI as the dependent variable) or exceeds 
1,285 (IHS transformed value of SAIDI as the dependent variable). The 
effect of WPV on the frequency of disruptions experienced (as measured 
by IHS converted value of SAIFI) becomes negative when net generation 
from WPV exceeds 847 GWh. 

5.2. IV results 

The utilization of an IV specification produces parameter estimates 
that are strikingly similar to the parameter estimates provided by the 

OLS approach. IV results in Table 4 indicate all else equal, at low levels 
of net generation from WPV, one additional GWh of net generation from 
WPV will have a statistically significant positive impact on the duration 
of disruptions experienced by end-consumers (as measured by the log 
and IHS transformed value of SAIDI). At higher levels of net generation 
from WPV, one additional GWh of net generation from WPV is projected 
to have a statistically significant negative impact on the duration of 
disruptions experienced. The effect of WPV on the frequency of dis
ruptions (as measured by the IHS transformed value of SAIFI) follows a 
similar pattern. 

The effect of WPV on the duration of disruptions becomes negative 
when net generation exceeds 1,260 GWh (log-transformed value of 
SAIDI as the dependent variable) or when net generation exceeds 1,300 
GWh (IHS transformed value of SAIDI as the dependent variable). Only 
six of the 276 utility companies in our sample (about 2% of the sample) 
generated more than 1,000 GWh of their annual net generation from 
WPV between 2013 and 2017. However, with current renewable sup
port policies in place, relatively significant, non-marginal increases in 
the amount of net generation supplied by renewables (including WPV) 
are expected (or in some cases mandated). 

To provide some perspective on the policy implications of our re
sults, we projected disruptions in power system reliability, for all states 
with active renewable support policies in place. Projections are used to 
showcase how meeting future targets set by renewable support policies 

Table 8 
Estimated average marginal effects for percentage increases in the net generation supplied by WPV.  

State Average Net Generation Increases in GWh of Net Generation Supplied by WPV Corresponding to % Change 

0%–5% 5%–10% 10%–25% 25%–50% 50%–75% 

States with Renewable Portfolio Standards (RPS) 

Arizona AZ 421,367 806 − 4,747 − 30,904 − 134,812 − 273,655 
California CA 311,844 1,403 − 15,420 − 96,732 − 413,575 − 834,167 
Colorado CO 147,433 663 − 3,097 − 20,572 − 90,693 − 184,703 
Connecticut CT 115 1 1 2 3 2 
Delaware DE 22 0 0 0 0 0 
Hawaii HI 25,748 116 1 − 341 − 2,288 − 5,155 
Iowa IA 191,301 861 − 5,470 − 35,404 − 153,973 − 312,251 
Illinois IL 10,951 49 29 23 − 272 − 791 
Massachusetts MA 520 2 2 7 11 9 
Maryland MD 44 0 0 1 1 1 
Maine ME 1 0 0 0 0 0 
Michigan MI 297,472 1,339 − 13,970 − 87,836 − 376,024 − 758,740 
Minnesota MN 209,540 943 − 6,653 − 42,747 − 185,183 − 375,080 
Missouri MO 303,231 1,365 − 14,543 − 91,350 − 390,857 − 788,537 
North Carolina NC 568,095 2,556 − 53,276 − 327,327 − 1,383,034 − 2,778,850 
New Hampshire NH 7109 32 23 44 − 59 − 277 
New Jersey NJ 183 1 1 2 4 4 
New Mexico NM 41,474 187 − 111 − 1,226 − 6,506 − 13,946 
Nevada NV 112,235 505 − 1,674 − 11,560 − 51,956 − 106,436 
New York NY 80,478 75 27 − 65 − 839 − 2,055 
Ohio OH 51,907 362 − 758 − 5,636 − 26,201 − 54,213 
Oregon OR 24 234 − 233 − 2,096 − 10,485 − 22,138 
Pennsylvania PA 207,491 0 0 0 1 1 
Texas TX 327,831 934 − 6,514 − 41,887 − 181,533 − 367,734 
Virginia VA 155,487 1475 − 17,118 − 107,131 − 457,445 − 922,266 
Vermont VT 220,398 15 13 33 27 − 19 
Washington WA 421,367 700 − 3,483 − 22,996 − 101,064 − 205,627 
Wisconsin WI 311,844 992 − 7,412 − 47,446 − 205,129 − 415,217 
States with Renewable Portfolio Goals (RPG) 
Indiana IN 266,408 1199 − 11,079 − 70,074 − 300,964 − 607,923 
Kansas KS 89,679 404 − 988 − 7,137 − 32,765 − 67,548 
North Dakota ND 2773 12 11 29 29 − 4 
Oklahoma OK 166,883 751 − 4,067 − 26,655 − 116,696 − 237,147 
South Carolina SC 183,227 825 − 4,983 − 32,374 − 141,077 − 286,277 
South Dakota SD 578 3 3 7 12 10 
Utah UT 650 3 3 8 13 11  
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could impact power-system reliability in these states (Barbose 2017).27 

These projections were then used to predict the potential economic costs 
associated with disruptions in power system reliability. Costs were 
estimated using the Interruption Cost Estimator (ICE) calculator (Sulli
van et al., 2018). Lastly, we evaluated the in-sample average marginal 
effect of increasing the percentage of current net generation being 
supplied by WPV for the same states. 

5.3. Simulation results 

The following section outlines the steps taken to project disruptions 
in power system reliability and estimate the associated economic costs. 
To begin, we identified states across the U.S. with active RPS or RPG in 
place (see Fig. 2). 

Of these states, California, Hawaii, and Vermont were found to have 
the most aggressive renewable policy support programs in place.28 

To forecast disruptions in power system reliability, data on the total 
annual net generation (NetGenerationit) was used to estimate the amount 
of net generation associated with a given percentage increase in net 
generation from WPV for each utility. For example, if an individual 
utility reported net generation of 100,000 GWh, then a ten percent in
crease in WPV would yield 10,000 GWh. Based on the current policies in 
place across the U.S., our forecasting procedure considered increases in 
net generation from WPV, ranging from five to 100 percent.29 

Results from the forecasting procedure are listed in Tables 5 and 6. 
Forecasted outcomes also considered other estimated model parameters. 

Results suggest if WPV represented five percent of total net genera
tion, then customers across states with active renewable support policies 
in place could expect, on average, to be without power for an additional 
405 min (about 6 h and 45 min) per year. If net generation supplied by 
WPV exceeded 50%, all else equal, customers could expect to be without 
power on average for an additional 248 min a year. This implies that as 
WPV penetration grows over time, utilities are likely becoming better 
equipped to manage power system disruptions resulting from their use. 

Utilities in Texas, a state with significant generation from wind 
installed already (~24.2 GW) and lower than average retail rates for 
electricity (~11.3 cents/kWh) (U.S. Energy Information Administration 
(EIA), 2019a; Electric Choice 2020), are not projected to experience any 
rapid increases in the duration or frequency of disruptions they expe
rience from increasing net generation from WPV further. The same holds 
for Connecticut, Illinois, Massachusetts, Maryland, Maine, Pennsylva
nia, and Utah. 

5.4. Estimating the costs of power system disruptions 

To estimate the costs associated with the projected disruptions in 
power system reliability outlined above, we utilized the ICE Calculator, 
a publicly available tool co-developed by the Lawrence Berkeley Na
tional Laboratory and Nexcant Inc. (Sullivan et al., 2018). The ICE 
Calculator enables utilities, reliability planners, government organiza
tions, and other interested parties to assess the economic benefits cus
tomers receive from improvements made to enhance the reliability of 

the power system (Sullivan et al., 2018).30 

To produce economic cost estimates, the ICE calculator relies on data 
from 34 previously published papers that conduct customer interruption 
cost surveys (Sullivan et al., 2018).31 It contains information from 105, 
000 different customer surveys collected by ten different electric utilities 
between 1989 and 2012.32 To utilize the ICE calculator, one needs to 
input information on the total number and type of customers (i.e., res
idential and non-residential) served by each utility, the state the utility 
operates in and the estimated values for disruptions in reliability of 
service (i.e., estimated values for SAIDI and SAIFI).33 

The ICE Calculator produces estimates for four key outage cost 
metrics: (1) the cost per interruption event; (2) the cost per average kW; 
(3) the cost per unserved kWh of electricity (i.e., lost load); and, (4) the 
total cost of sustained interruptions. Based on the work of Sullivan et al. 
(2009), we estimated the economic costs of power system interruptions 
using metrics (3) and (4). Estimated values for SAIDI and SAIFI are those 
offered in Tables 5 and 6. To estimate the number of residential and 
non-residential customers, we multiplied the average total number of 
customers by the proportion of residential and non-residential cus
tomers served by utilities in the same state between 2013 and 2017, as 
reported on Survey Form EIA-861 (U.S. Energy Information Adminis
tration (EIA), 2019c).34 

Table 7 outlines the results of this procedure for the states 
considered. 

The results from our application of the ICE Calculator are listed 
below in Fig. 3 through 6. 

Results suggest the average cost per unserved kWh of electricity is 
between $51-$62.35 If WPV represent 25 percent of total net generation, 
then the cost per unserved kWh of electricity (for states with active 
renewable support policies) will range between $30 to $160. The cost 
per unserved kWh of electricity is projected to be highest in South 

27 Renewable support policies include both RPS and Renewable Portfolio 
Goals (RPG) which are similar to RPS except they do not mandate utilities to 
provide a certain percentage of their generation from renewables. Instead RPG 
are voluntary. Observations for Washington, D.C. which has an active RPS in 
place were excluded from our dataset to due data availability.  
28 California’s RPS requires utilities to generate 33% of the electricity from 

renewable energy resources by the year 2020; 40% by the year 2024; 45% by 
the year 2027; and, 50% by the year 2030. Hawaii’s RPS requires 100% of 
electricity supplied by utilities to end-consumers to be sourced from renewable 
resources by 2045. Vermont’s RPS requires 55% of electricity generated to be 
supplied by renewables by 2017 and 75% by the year 2032.  
29 A detailed description of the forecasting procedure used for our analysis can 

be found in the Appendix. 

30 An economically efficient system reliability improvement is one in which 
the cost of improving the reliability of the system is less than or equal to the 
benefit customers receive from the utility making the improvement. Customer 
benefits are interpreted as the value of lost load or lost service and reported as 
the costs customers face during a disruption.  
31 The data provided was collected from individual utilities who in the interest 

of estimating the costs associated with customer interruptions, administered a 
set of surveys that described hypothetical interruptions and asked customers to 
estimate the costs they would incur if they experienced interruptions of varying 
duration, at different times of the day and during different seasons. Residential 
customers were asked to indicate the amount they would be willing to pay to 
avoid interruptions occurring under these conditions. Respondents were typi
cally asked to estimate their costs for between four and eight hypothetical in
terruptions (Sullivan et al., 2009).  
32 For a complete outline of the methods used to estimate the interruption 

costs using customer survey data see Sullivan et al. (2015; 2018).  
33 While the ICE Calculator is a useful tool, it is important to note that it does 

have some limitations. For example, because the underlying costs estimates are 
based on hypothetical interruption scenarios presented in prior surveys, the ICE 
it is not designed to predict costs associated with power system interruptions 
that last longer than 32 h (1920 min). As a result, we are not able to predict 
outage costs for forecasted interruptions in power system reliability if the value 
of SAIDI > 1920. The same holds true if the value of SAIFI ≥ 100 or if the value 
of the Custer Average Interruption Duration Index (CAIDI) ≥ 960. It is impor
tant to note that the ICE Calculator assumes CAIDI = SAIDI

SAIFI (Sullivan et al., 
2018).  
34 For example, from 2013 to 2017, on average, 88% of the customers served 

by utilities in California were residential, while 12% were non-residential 
customers. The average number of customers served by utilities in the state 
of California from our data set is 935,728 customers. Therefore, when using the 
ICE calculator to predict outage costs, we assume there are 795,368 residential 
customers and 140,360 non-residential customers.  
35 The cost per unserved kWh of electricity represents the economic value 

customers place on reliability. It is sometimes referred to as the value of service 
(VOS) (Sullivan et al., 2018). 
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Carolina, a state with only a RPG in place. The average total cost of 
sustained power system interruptions is projected to be between $1.5 
million to $2.5 trillion USD if net generation from WPV is between five 
and 100 percent of total net generation. The total cost of sustained 
power system interruptions includes the expenses that both customers 
and utilities face during prolonged periods of time without power (e.g., 
lost utility revenue). 

5.5. Estimating average marginal effects 

To estimate the marginal impact of increasing the net generation 
supplied by WPV, we consider the coefficient estimates for WPVitand 
WPV2

it from the IV estimates of the IHS transformed values for SAIDI and 
the amount of annual net generation (NetGenerationit) supplied by util
ities within a given state. Net generation (by state) were aggregated, and 
next, the corresponding percentage increases in WPV were calculated to 
estimate the corresponding average marginal effects by state. The results 
are provided in Table 8. 

Estimated marginal effects suggest, all else equal, increasing net 
generation supplied by WPV from 0 to 5%, increases the duration of 
disruptions experienced by end-consumers in all states. However, 
increasing net generation supplied by WPV has a negative impact on the 
duration of disruptions experienced for almost all states with active 
renewable support policies in place as net generation supplied by WPV 
surpasses 10% of total net generation. Marginal effects suggest that 
states whose average net generation is below the threshold of 1,285 
GWh will experience longer power system interruptions from increasing 
net generation from WPV, all else equal than states whose average net 
generation supplied by WPV is above the threshold. 

6. Conclusions and policy implications 

In this study, we examined whether increases in net generation from 
WPV affect the frequency or duration of power system disruptions 
experienced by end-consumers. Our empirical analysis relied on data 
collected from two annual surveys: Survey Form EIA-861 and Survey 
Form EIA-923. We assumed end-user interruptions, as measured by two 
indices, SAIDI and SAIFI, could be used as proxies for in-service reli
ability, such that higher values of SAIDI and SAIFI indicate less 
reliability. 

Using an unbalanced panel of 276 U.S. electric utility companies 
from 2013 to 2017, we modeled disruptions in reliability of service as a 
function of net generation supplied by WPV. We failed to reject our first 
null hypothesis that WPV does not affect the frequency with which 
power system disruptions occur (as measured by SAIFI). Our results, 
however, do suggest that net generation from WPV does affect the 
duration of disruptions experienced by end-consumers (as measured by 
SAIDI). Thus, we rejected our second null hypothesis. 

Specifically, results implied that initially, increased net generation 
from WPV had a statistically significant negative marginal effect on 
power system reliability. However, if net generation being supplied by 
WPV exceeds 1,200 GWh, the duration of disruptions is expected to 
decrease. Although our results imply that WPV may have a statistically 
significant negative marginal effect on power system reliability at low 
levels of net generation from WPV and a statistically significant positive 
impact on power system reliability at high levels of net generation, it is 
essential to note that these effects may not currently be economically 
significant. The marginal effect of WPV on power system reliability is 
small in magnitude and implies if net generation from WPV increases by 
one GWh, customers of utilities who source less than 1,200 GWh of their 
net generation from WPV can expect to experience power system out
ages lasting less than 1 min. 

To provide some perspective on the economic and policy implica
tions of our results, we forecasted disruptions in power system reli
ability, assuming different renewable energy penetration scenarios for 

states with active renewable support policies in place. Using these 
forecasts, we predicted the economic costs associated with increasing 
the percentage of net generation supplied by WPV using the ICE calcu
lator. For more than half of the states, the forecasted results suggested if 
WPV generation exceeded 25 percent of total net generation, then dis
ruptions in power system reliability will begin to decrease. The marginal 
effect of net generation from WPV, however, depends on whether or not 
the utility is currently sourcing a large amount (more than 1,000 GWh) 
of its net generation from WPV. 

Over time, as the United States continues to transition to a renewable 
energy resource economy, there will be a continual need to assess both 
the benefits and costs of increases in net generation being supplied by 
WPV. As economically viable commercial storage technologies are 
relatively rare, energy storage technology options should also continue 
to be explored for achieving emissions reductions targets using WPV. 
Furthermore, without a sustainable supply of battery storage capacity, 
back-up generation (e.g., natural gas) will continue to be necessary for 
supporting the U.S. electrical grid and meeting power demand. 

One potential limitation of this study is that the current structure of 
the U.S. electric grid is primarily based on centralized generation and 
the unidirectional flow of electrons through the system. All of our esti
mates of disruptions and total costs are based on the electric grid in its 
current form. As the system continues to evolve to distributed genera
tion and the use of microgrids, the power flows will likely become bi- 
directional within the system. Given this evolution, the grid will argu
ably become more reliable and resilient to future disruptions (Kiesling 
et al., 2019). If this evolution continues as expected, then our estimates 
may overstate these estimated disruptions. 

Another potential limitation of this study is our data on WPV are 
based entirely on “front-of-the-meter” units (i.e., utility-scale renew
ables), and does not include “behind-the-meter” units (such as privately- 
owned rooftop solar panels) since their operations are often not 
observed by the utility. Since our data does not account for all of the 
behind-the-meter renewables, then our disruption estimates may un
derstate the duration and costs in the near future. These limitations 
suggest future areas of related research on power system disruptions 
stemming from different energy sources focusing on the potential miti
gating effects of microgrids, and the potential additional costs of dis
ruptions from “behind-the-meter” renewable energy units. 

Energy policy and management in the United States, whether energy 
is generated from non-renewable or renewable resources, is a combi
nation of public and private decisions at the national, regional, state, 
and local levels. For example, power-generation corporations follow a 
private business model, but are subject to government oversight and 
regulation, particularly for pricing. Although seeking to maximize 
profits, power-generation corporations also respond to customer con
cerns regarding social issues such as environmental protection and 
sustainability. 

Currently, there is much concern in the United States and throughout 
the world about the adverse environmental effects of greenhouse gas 
emissions from the burning of fossil fuels, including for power genera
tion. Greenhouse gas emissions are considered a negative externality, so 
there is justification from an economic theory perspective for the 
implementation of public policies to “fix” the externality problem. 

Following an incentive-based policy approach, federal and state 
governments can and do provide economic subsidies to utilities to 
encourage increased power generation from wind, solar, and other re
newables (e.g., tax subsidies). Following a direct-regulation policy 
approach, state and local governments are imposing standards on util
ities, which require that the utility generate power using a mandated 
percentage of wind, solar, and other renewables (e.g., RPS). These pol
icies benefit power customers and society by reducing the harmful 
environmental effects of greenhouse gas emissions. However, as shown 
in this study, these policies also impose costs to power customers and 
society caused by power interruptions. 

The full costs of increasing generation from renewable power sources 
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along the grid, which our results show vary across states and regions, 
need to be accounted for when assessing the benefits and costs of state 
and local public policies aimed at increasing power generation from 
WPV. Failure to account for these costs can lead to inefficient policy and 
management decisions on the part of private utilities, government 
agencies, and elected officials. Recognition and quantification of these 
costs may also help utilities to discover new means for improving the 
grid’s ability to absorb additional generation from renewables, thereby 
reducing interruption costs. Reducing interruptions costs is a win-win- 
win for the “triple bottom line” as it will help the profitability of utili
ties, help to improve the environment, and improve overall social well- 
being. That is, recognition of these unintended costs can make public 
policies for promoting renewable energy more attractive from an eco
nomic perspective. 

Author’s contributions 

We confirm that the manuscript has been read and approved by all 
named authors and that there are no other persons who satisfied the 
criteria for authorship but are not listed. Each author contributed to the 
conception and design of the work. We further confirm authors have 
approved the order of authors listed in the manuscript. The authors 
would like to ackowledge the assistance of F. Bert Steele in proofreading 
the manuscript. We understand that the Corresponding Author (Amanda 
J. Harker Steele) is the sole contact for the editorial process (including 
Editorial Manager and direct communications with the office). She is 
responsible for communicating with the other authors about progress, 
submissions of revisions, and final approval of proofs. We confirm that 
we have provided a current, correct email address which is accessible by 
the Corresponding Author. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgements 

Funding support for this research was provided by the National 
Institute of Food and Agriculture/USDA through grant award 2013- 
38420-20521 entitled, "Preparing Students for Leadership in Natural 
Resources and Economics of Alternative Energy: A Cooperative 
Approach." 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.enpol.2020.111947. 

Notes: (i) Data were provided from Survey Form EIA-861, Survey 
Form EIA-923, IRS Form 8835, and Berkley National Lab’s RPS Per
centage Targets by State between 2013 and 2017. 

References 

Barbose, G., 2017. U.S. Renewable Portfolio Standards: 2017 Annual Status Report. 
Lawrence Berkley National Lab. Retrieved from. https://eta-publications.lbl.gov/s 
ites/default/files/2017-annual-rps-summary-report.pdf. 

Bergstrom, J.C., Randall, A., 2016. In: Resource Economics: an Economic Approach to 
Natural Resource and Environmental Policy, fourth ed. Edward Elgar Publishing. 

Bird, L., Milligan, M., Lew, D., 2013. Integrating Variable Renewable Energy: Challenges 
and Solutions. Golden, CO. National Renewable Energy Laboratory. Retired from. 
https://www.nrel.gov/docs/fy13osti/60451.pdf. 

Burtraw, D., Palmer, K., Paul, A., Beasley, B., Woerman, M., 2013. Reliability in the U.S. 
Electricity industry under new environmental regulations. Energy Pol. 62, 
1078–1091. 

California ISO, 2016. What the Duck Curve Tells Us about Managing a Green Grid. 
Retrieved from. https://www.caiso.com/Documents/FlexibleResourcesHelpRenew 
ables_FastFacts.pdf. 

Cameron, A.C., Trivedi, P.K., 2009. Microeconometrics Using Stata. Stata press. 
Cleary, K., Palmer, K., October 28, 2019. Planning for resilience in a renewable- 

dominated world. Resources. Resources for the Future. Retrieved from. htt 
ps://www.resourcesmag.org/common-resources/planning-resilience-renewab 
le-dominated-world/. 

Department of Energy (DOE), 2015. Energy storage. Retrieved from. https://www.en 
ergy.gov/. 

Electric Choice, 2020. Electricity Rates by State. Retrieved from. https://www.electricch 
oice.com/electricity-prices-by-state/. 

Eto, J.H., LaCommare, K.H., 2008. Tracking the Reliability of the U.S. Electric Power 
System: an Assessment of Publicly Available Information Reported to State Public 
Utility Commissions. ” Ernest Orlando Lawrence Berkeley National Laboratory. 

Eto, J.H., LaCommare, K.H., Larsen, P., Todd, A., Fisher, E., 2012. Distribution-level 
electricity reliability: temporal trends using statistical analysis. Energy Pol. 49, 
243–252. 

Federal Energy Regulatory Commission (FERC), 2018. Distributed energy resources. 
Technical considerations for the bulk power system. ” Retrieved from. https://www. 
ferc.gov/CalendarFiles/20180215112833-der-report.pdf. 

Fenrick, S.A., Getachew, L., 2012. Formulating appropriate electric reliability targets and 
performance evaluations. Electr. J. 25 (2), 44–53. 

Hausman, J.A., 1978. Specification tests in econometrics. Econometrica 46, 1251–1271. 
Henry, D., Ramirez-Marquez, J.E., 2016. “On the impacts of power outages during 

Hurricane Sandy – a resilience-based analysis. Syst. Eng. 19 (1), 59–75. 
Hines, P., Apt, J., Talukdar, S., 2009. Large blackouts in North America: historical trends 

and policy implications. Energy Pol. 37, 5249–5259. 
Imelda, M. Fripp, Roberts, M.J., 2018. Variable Pricing and the Cost of Renewable 

Energy. NBER Working Paper Series, Working Paper 24712. Retrieved from. 
https://www.nber.org/papers/w24712.pdf. 

Institute of Electrical and Electronics Engineers (IEEE), 1998. Trial Use Guide for Electric 
Power Distribution Reliability Indices, P1366/D19. Retrieved from. http://www. 
pti-us.com/pti/ieee/p1366d~3.htm. 

Johnson, N., 1949. Systems of frequency curves generated by methods of translation. 
Biometrika 36, 149–176. 

Johnson, E.P., Oliver, M.E., 2019. Renewable generation capacity and wholesale 
electricity price variance. Energy J. 40 (5), 143–168. 

Kiesling, L., Munger, M., Theisen, A., 2019. From Airbnb to Solar: toward a Transaction 
Cost Model of a Retail Electricity Distribution Platform. Social Science Research 
Network. Retrieved from. https://ssrn.com/abstract=3229960. 

Larsen, P., Hamachi-LaCommare, K., Eto, J., Sweeney, J., 2015. Assessing Changes in the 
Reliability of the U.S. Electric Power System. Lawrence Berkeley National 
Laboratory, ” Berkeley.  

Larsen, P., LaCommare, K., Eto, J., Sweeney, J., 2016. Recent trends in power system 
reliability and implications for evaluating future investments in resiliency. Energy 
117, 29–46. 

Malla, K., 2013. The Effects of Quality Standards on Electricity Service Reliability 
[Thesis]. ” Illinois State University. Retrieved from. https://irps.illinoisstate.edu. 

National Conference of State Legislatures (NCSL), 2019. State renewable portfolio 
standards and goals. ” Retrieved from. https://www.ncsl.org/research/energy/ren 
ewable-portfolio-standards.aspx. 

North American Electric Reliability Corporation (NERC), 2018. August. Bulk Electric 
System Definition Reference Documentation. Retrieved from. https://www.nerc. 
com/pa/Stand/2018%20Bulk%20Electric%20System%20Definition%20Referenc 
e/BES_Reference_Doc_08_08_2018_Clean_for_Posting.pdf. 

Nikoletatos, J., Tselepis, S., 2015. Renewable Energy Integration in Power Grids: 
Technology Brief. ” IEA-ETSAP and IRENA Technology Brief. 

Newburger, E., October 26, 2019. “More than 2 million people expected to lose power in 
PG&E blackout as California wildfires rage,” CNBC. Retrieved from. https://www.cn 
bc.com/2019/10/26/pge-will-shut-off-power-to-940000-customers-in-northern-ca 
lifornia-to-reduce-wildfire-risk.html. 

Prol, J.L., Steininger, K.W., Zilberman, D., 2020. The cannibalization effect of wind and 
solar in the California wholesale electricity market. Energy Econ. 85, 1–15. 

Sherlock, M., 2020. The renewable electricity production tax credit. Retrieved from. 
https://fas.org/sgp/crs/misc/R43453.pdf. 

Skea, J., Anderson, D., Green, T., Gross, R., Heptonstall, P., Leach, M., 2008. Intermittent 
renewable generation and the cost of maintaining power system reliability. IET 
Gener., Transm. Distrib. 2 (1), 82–89. 

Sullivan, M., Mercurio, M., Schellenberg, J., 2009. Estimated Values of Service 
Reliability for Electric Utility Customers in the United States. Lawrence Berkeley 
National Lab, ” Berkeley.  

Sullivan, M., Schellenberg, J., Blundell, M., 2015. Updated Value of Service Reliability 
Estimates for Electric Utility Customers in the United States. Lawrence Berkeley 
National Lab, ” Berkeley.  

A.J. Harker Steele et al.                                                                                                                                                                                                                       

https://doi.org/10.1016/j.enpol.2020.111947
https://doi.org/10.1016/j.enpol.2020.111947
https://eta-publications.lbl.gov/sites/default/files/2017-annual-rps-summary-report.pdf
https://eta-publications.lbl.gov/sites/default/files/2017-annual-rps-summary-report.pdf
http://refhub.elsevier.com/S0301-4215(20)30658-3/sref2
http://refhub.elsevier.com/S0301-4215(20)30658-3/sref2
https://www.nrel.gov/docs/fy13osti/60451.pdf
http://refhub.elsevier.com/S0301-4215(20)30658-3/sref4
http://refhub.elsevier.com/S0301-4215(20)30658-3/sref4
http://refhub.elsevier.com/S0301-4215(20)30658-3/sref4
https://www.caiso.com/Documents/FlexibleResourcesHelpRenewables_FastFacts.pdf
https://www.caiso.com/Documents/FlexibleResourcesHelpRenewables_FastFacts.pdf
http://refhub.elsevier.com/S0301-4215(20)30658-3/sref6
https://www.resourcesmag.org/common-resources/planning-resilience-renewable-dominated-world/
https://www.resourcesmag.org/common-resources/planning-resilience-renewable-dominated-world/
https://www.resourcesmag.org/common-resources/planning-resilience-renewable-dominated-world/
https://www.energy.gov/
https://www.energy.gov/
https://www.electricchoice.com/electricity-prices-by-state/
https://www.electricchoice.com/electricity-prices-by-state/
http://refhub.elsevier.com/S0301-4215(20)30658-3/sref10
http://refhub.elsevier.com/S0301-4215(20)30658-3/sref10
http://refhub.elsevier.com/S0301-4215(20)30658-3/sref10
http://refhub.elsevier.com/S0301-4215(20)30658-3/sref11
http://refhub.elsevier.com/S0301-4215(20)30658-3/sref11
http://refhub.elsevier.com/S0301-4215(20)30658-3/sref11
https://www.ferc.gov/CalendarFiles/20180215112833-der-report.pdf
https://www.ferc.gov/CalendarFiles/20180215112833-der-report.pdf
http://refhub.elsevier.com/S0301-4215(20)30658-3/sref13
http://refhub.elsevier.com/S0301-4215(20)30658-3/sref13
http://refhub.elsevier.com/S0301-4215(20)30658-3/sref14
http://refhub.elsevier.com/S0301-4215(20)30658-3/sref15
http://refhub.elsevier.com/S0301-4215(20)30658-3/sref15
http://refhub.elsevier.com/S0301-4215(20)30658-3/sref16
http://refhub.elsevier.com/S0301-4215(20)30658-3/sref16
https://www.nber.org/papers/w24712.pdf
http://www.pti-us.com/pti/ieee/p1366d%7E3.htm
http://www.pti-us.com/pti/ieee/p1366d%7E3.htm
http://refhub.elsevier.com/S0301-4215(20)30658-3/optv0FbHvozWh
http://refhub.elsevier.com/S0301-4215(20)30658-3/optv0FbHvozWh
http://refhub.elsevier.com/S0301-4215(20)30658-3/sref19
http://refhub.elsevier.com/S0301-4215(20)30658-3/sref19
https://ssrn.com/abstract=3229960
http://refhub.elsevier.com/S0301-4215(20)30658-3/sref21
http://refhub.elsevier.com/S0301-4215(20)30658-3/sref21
http://refhub.elsevier.com/S0301-4215(20)30658-3/sref21
http://refhub.elsevier.com/S0301-4215(20)30658-3/sref22
http://refhub.elsevier.com/S0301-4215(20)30658-3/sref22
http://refhub.elsevier.com/S0301-4215(20)30658-3/sref22
https://irps.illinoisstate.edu
https://www.ncsl.org/research/energy/renewable-portfolio-standards.aspx
https://www.ncsl.org/research/energy/renewable-portfolio-standards.aspx
https://www.nerc.com/pa/Stand/2018%20Bulk%20Electric%20System%20Definition%20Reference/BES_Reference_Doc_08_08_2018_Clean_for_Posting.pdf
https://www.nerc.com/pa/Stand/2018%20Bulk%20Electric%20System%20Definition%20Reference/BES_Reference_Doc_08_08_2018_Clean_for_Posting.pdf
https://www.nerc.com/pa/Stand/2018%20Bulk%20Electric%20System%20Definition%20Reference/BES_Reference_Doc_08_08_2018_Clean_for_Posting.pdf
http://refhub.elsevier.com/S0301-4215(20)30658-3/sref26
http://refhub.elsevier.com/S0301-4215(20)30658-3/sref26
https://www.cnbc.com/2019/10/26/pge-will-shut-off-power-to-940000-customers-in-northern-california-to-reduce-wildfire-risk.html
https://www.cnbc.com/2019/10/26/pge-will-shut-off-power-to-940000-customers-in-northern-california-to-reduce-wildfire-risk.html
https://www.cnbc.com/2019/10/26/pge-will-shut-off-power-to-940000-customers-in-northern-california-to-reduce-wildfire-risk.html
http://refhub.elsevier.com/S0301-4215(20)30658-3/sref28
http://refhub.elsevier.com/S0301-4215(20)30658-3/sref28
https://fas.org/sgp/crs/misc/R43453.pdf
http://refhub.elsevier.com/S0301-4215(20)30658-3/sref30
http://refhub.elsevier.com/S0301-4215(20)30658-3/sref30
http://refhub.elsevier.com/S0301-4215(20)30658-3/sref30
http://refhub.elsevier.com/S0301-4215(20)30658-3/sref31
http://refhub.elsevier.com/S0301-4215(20)30658-3/sref31
http://refhub.elsevier.com/S0301-4215(20)30658-3/sref31
http://refhub.elsevier.com/S0301-4215(20)30658-3/sref32
http://refhub.elsevier.com/S0301-4215(20)30658-3/sref32
http://refhub.elsevier.com/S0301-4215(20)30658-3/sref32


Energy Policy 151 (2021) 111947

17

Sullivan, M., Collins, M.T., Schellenberg, J., Larsen, P.H., 2018. Estimating Power System 
Interruption Costs: A Guidebook for Electric Utilities. Lawrence Berkeley National 
Lab. Retrieved from.  

U.S. Energy Information Administration (EIA), 2017. “What is U.S. Electricity generation 
by source?”. Retrieved from. https://www.eia.gov. 

U.S. Energy Information Administration (EIA), 2019a. Texas ranks first in U.S.- installed 
wind capacity and number of turbines. Retrieved from. https://www.eia.gov/t 
odayinenergy/detail.php?id=40252. 

U.S. Energy Information Administration (EIA), 2019b. Investor-owned utilities served 
72% of U.S. Electricity in 2017. Retrieved from. https://www.eia. 
gov/todayinenergy/detail.php?id=40913#. 

U.S. Energy Information Administration (EIA), 2019c. Detailed State Data. Retrieved 
from. https://www.eia.gov/electricity/data/state/. 

U.S. Energy Information Administration (EIA), 2020. New electric generating capacity 
will come primarily from wind and solar. Retrieved from. https://www.eia.gov/t 
odayinenergy/detail.php?id=42495. 

Wangdee, W., 2014. Reliability Impact of intermittent renewable energy source 
integration into the power system. In: Electrical Engineering Congress (iEECON), 
2014 International. IEEE, pp. 1–4. 

Wiser, R., Porter, K., Grace, R., 2005. Evaluating experience with renewable portfolio 
standards in the United States. Mitig. Adapt. Strategies Glob. Change 10 (2), 
237–263. 

Wooldridge, J.M., 2010. Econometric Analysis of Cross Sectional and Panel Data. MIT 
Press, Cambridge, MA.  

A.J. Harker Steele et al.                                                                                                                                                                                                                       

http://refhub.elsevier.com/S0301-4215(20)30658-3/sref33
http://refhub.elsevier.com/S0301-4215(20)30658-3/sref33
http://refhub.elsevier.com/S0301-4215(20)30658-3/sref33
https://www.eia.gov
https://www.eia.gov/todayinenergy/detail.php?id=40252
https://www.eia.gov/todayinenergy/detail.php?id=40252
https://www.eia.gov/todayinenergy/detail.php?id=40913#
https://www.eia.gov/todayinenergy/detail.php?id=40913#
https://www.eia.gov/electricity/data/state/
https://www.eia.gov/todayinenergy/detail.php?id=42495
https://www.eia.gov/todayinenergy/detail.php?id=42495
http://refhub.elsevier.com/S0301-4215(20)30658-3/sref41
http://refhub.elsevier.com/S0301-4215(20)30658-3/sref41
http://refhub.elsevier.com/S0301-4215(20)30658-3/sref41
http://refhub.elsevier.com/S0301-4215(20)30658-3/sref42
http://refhub.elsevier.com/S0301-4215(20)30658-3/sref42
http://refhub.elsevier.com/S0301-4215(20)30658-3/sref42
http://refhub.elsevier.com/S0301-4215(20)30658-3/sref43
http://refhub.elsevier.com/S0301-4215(20)30658-3/sref43

	The impact of variable renewable energy resources on power system reliability
	1 Introduction
	2 Literature review
	3 Background
	4 Methodology
	4.1 Data
	4.2 Measuring power system disruptions
	4.3 Empirical analysis
	4.4 Instrumental variables approach

	5 Main results and discussion
	5.1 OLS results
	5.2 IV results
	5.3 Simulation results
	5.4 Estimating the costs of power system disruptions
	5.5 Estimating average marginal effects

	6 Conclusions and policy implications
	Author’s contributions
	Declaration of competing interest
	Acknowledgements
	Appendix A Supplementary data
	References


