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A B S T R A C T

Low-rate Denial of Service (LDoS) attacks use the low-rate requests to achieve the occupation of the network
resources and have strong concealment. The traditional signal analysis based detection methods are challenging
to detect LDoS attacks in the fluctuating legitimate traffic. In this paper, an LDoS attack detection method
based on hybrid deep neural networks is proposed using one-dimensional convolutional neural network and
gated recurrent unit. In order to evaluate the proposed detection method in the real scenarios, we captured
real legitimate traffic from a website in the datacenter, and carried out a variety of real LDoS attacks on the
mirror of the website in the laboratory environment to obtain real attack traffic. The detection results on
the real traffic show that the proposed detection method does not need to extract features manually and can
effectively detect LDoS attacks in fluctuating HTTP traffic with an average detection rate of 98.68%, which is
more advantageous than MF-DFA or power spectral density based detection methods.
. Introduction

The Denial of Service (DoS) attack is one of the oldest attacks on the
nternet that can date back to 1983 [1], and it is a kind of attack that
revents legitimate users from accessing services by over-occupying
etwork bandwidth or computer resources [2]. Nowadays, DoS attacks
re still one of the main cybersecurity threats. The traditional DoS
ttackers send network packets to the target servers at a very high
ate, causing the target’s network to be congested, so that the requests
rom legitimate users’ requests are rejected. For example, the well-
nown Distributed Denial of Service (DDoS) attack causes great harm
s the attackers usually control a large number of computers to attack
he same target at the same time [3]. The theory of DDoS attack is
imple, but it requires a large amount of computer resources, so that
he cost is relatively high, and the high-rate traffic is easy to detect with
nadequate concealment. In contrast, the Low-rate Denial of Service
LDoS) attacks can achieve the occupation of resources by constructing
egal and low-rate requests on the application layer. It needs much
ess traffic to achieve the purpose of the attacks compared to the
raditional DoS attacks [4]. LDoS attacks are low-cost and have strong
oncealment. The attack traffic is often overwhelmed by legitimate
etwork traffic. As a result, the detection of LDoS attacks is more
ifficult and poses new challenges to cybersecurity.

The research on LDoS detection is not perfect at present. Most
etection methods focus on signal analysis techniques and are verified
n simulators rather than real network traffic. As LDoS attacks can be
egarded as intricate patterns, deep learning technology can be used to
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automatically mine features from LDoS attacks and achieve end-to-end
detection. In order to overcome the shortcomings of traditional signal
analysis methods in detecting LDoS attacks, an LDoS attack detection
method based on hybrid deep neural networks is proposed based on
one-dimensional convolutional neural network (CNN) and gated recur-
rent unit (GRU). We obtain network traffic from real scenarios and
conduct a detailed evaluation. We collect the real user traffic from
the website of a university and select the part that does not contain
DoS attacks as the legitimate traffic. Then an infiltration and forensics
system is used to capture a variety types of LDoS attacks on the isolated
website mirror and get the traffic containing the LDoS attacks. By
analyzing the captured traffic, we can evaluate the proposed detection
method.

This paper is organized as follows. Section 1 introduces the research
background. Section 2 reviews the related works on LDoS attack de-
tection and analyzes the pros and cons of them. Section 3 presents
preliminaries including LDoS attacks and network traffic capture. Sec-
tion 4 presents the proposed LDoS attack detection method based on
hybrid deep neural networks in details. Section 5 presents the evalu-
ation metrics and experiment results. Section 6 provides discussion of
comparisons of two state-of-the-art detection methods and future work.
Section 7 concludes the paper.

2. Related works

In order to detect LDoS attacks, several detection methods have pro-
posed. Wu et al. proposed a method called MSABMS, which can detect
vailable online 1 June 2021
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LDoS attacks with only 30 to 60 s network traffic through small signal
analysis, and the simulations were performed on the Network Simulator
2 (NS2) [5]. Wu et al. also proposed a method to estimate the Round-
Trip Time (RTT) by spectrum analysis, and digital filters were used to
complete the detection, and the simulation results on the NS2 showed
that the detection rate could reach 81.36% [6]. Simsek et al. proposed
a metric called Mean Internet Protocol Packet Delay Variation (MIPDV)
to detect LDoS attacks, and simulations on the NS2 showed that the pro-
posed detection method can achieve a high detection rate in a relatively
short time [7]. Chen et al. introduced Fourier Power Spectrum Entropy
(FPSE) and Wavelet Power Spectrum Entropy (WPSE) to detect LDoS
attacks. The effectiveness of these two information metrics in detecting
LDoS attacks were verified by both NS3 and real network traffic [8].
Besides, Chen et al. pointed out that due to the lack of public attack
traffic, the real network traffic experiments only used legitimate traffic
to detect, and evaluated the proposed method by calculating false
alarm rate, which made the results unconvincing. Wu et al. utilized the
multi-fractal characteristics of the network traffic, proposed a detection
method based on Multi-Fractal Detrended Fluctuation Analysis (MF-
DFA), and the attacks were detected by estimating the Holder exponent.
The experiments on NS2 and laboratory environment showed that the
Holder exponent changed when an attack occurred [9]. In the labora-
tory environment experiment, an FTP server was used as the target to
be attacked. When the attacks occurred, the FTP server was performing
stable data transmission, which is different from the real attack scenario
with fluctuating traffic. Agrawal et al. used Power Spectral Density
(PSD) to detect LDoS attacks and the detection of Slowloris attack was
evaluated in a controlled environment, and the results showed that the
PSD of attack traffic is different from legitimate traffic, which can be
used as a detection criterion. The false positive rate was 3.7%, and
the false negative rate was 4.9% [10]. Yue et al. proposed a detection
method using a wavelet energy spectrum to extract network traffic
features and an artificial neural network was used to classify network
traffic, while the detection experiments were also performed on an
FTP server [11]. Xiang et al. proposed a detection method based on
the generalized entropy metric and the information distance metric.
By analyzing the public network traffic, they artificially delineate the
low-rate DoS attack traffic according to the packet rate. It is found
that in the real attack scenario, the LDoS attack traffic is mixed with
legitimate network traffic, which is very different from the high-rate
DoS traffic [12]. Pratomo et al. proposed an unsupervised detection
approach using an autoencoder to identify outliers in the network
traffic. Experiments show that it can detect most of the low rate attack
traffic [13]. It shows that deep learning techniques are feasible for
detecting low-rate attacks.

The aforementioned work mainly used the signal analysis tech-
niques to deal with network traffic, demonstrates the feasibility of
detecting LDoS attacks, but has the following shortcomings. Firstly, it
is not appropriate to use a network simulator (NS2 or NS3) to simulate
LDoS attack traffic, while the real LDoS attack traffic is generated
dynamically by the attack program, which is time-varying and more
complex than the simulated traffic. Secondly, the types of real LDoS
attacks are diverse. Currently, several open-source attack programs can
be downloaded on the Internet, and the attack methods of different
programs are very different. The LDoS attack is not one type of attack,
but a general term for a class of attacks. For example, in order to detect
an HTTP service LDoS attack, it is unreasonable to take FTP traffic as
legitimate traffic. These two shortcomings will bring systematic errors
to the evaluation of detection methods. For example, in the experiment
in literature [9], whether in network simulator or laboratory simulation
environment, legitimate traffic and attack traffic can be directly dis-
tinguished by packet rate in the time domain, without calculating the
Holder exponent. This is because the simulated legitimate traffic is the
data transmission process of an FTP server, which is almost unchanged
in the time domain, while the attack traffic is simulated by periodic
2

signals, which also deviates from the real scenarios. In addition, the
Fig. 1. The theoretical model of low-rate DoS attack.

above work relies on the feature extraction method carefully designed
by security experts. If there are new types of attacks in the real
environment, it is necessary to adjust the feature extraction parameters
manually, so that the adaptability of the detection methods needs to be
improved.

3. Preliminaries

3.1. Low-rate denial of service attack

3.1.1. Theoretical model
The network traffic of LDoS attack can be described by a theoretical

model as a triplet (𝑇 ,𝐷,𝑅). As shown in Fig. 1, 𝑇 represents the attack
period, 𝐷 represents the attack duration, and 𝑅 represents the attack
power [14]. In fact, the theoretical model can describe any network
traffic with periodicity, and only the attack period 𝑇 can be measured
accurately. The attack duration 𝐷 is designed to describe the duration
of a burst transmission of attack traffic, but the LDoS attack program
usually stays connected with the target for a long time until the target
disconnects it. Therefore, the start and end times of the attack are
difficult to measure accurately, and 𝐷 cannot be measured accurately.
Attack power 𝑅 is usually expressed by the packet transmission rate,
but the packet rate of an LDoS attack is low and does not fill the
network bandwidth. Once an attack is started, the target server can
still generate legitimate traffic before the target server completely dead.
Therefore, in a real LDoS attack scenario, network traffic is superposed
by legitimate traffic and attack traffic. To obtain the true attack power,
the measured attack power 𝑅 needs to be subtracted from the legitimate
traffic. In summary, the triplet describes a theoretical model of an LDoS
attack, which is an abstract depiction of attack traffic, and should not
generate attack traffic based on this model in the network simulators.

3.1.2. Real attacks
In order to get real attack traffic, we collected several LDoS attack

programs such as Slowloris, Slowhttptest, Pwnloris, Torshammer, and
Httpbog that are available on the Internet. Then we construct an
isolated LAN environment in the laboratory so that attack traffic can
be obtained by running the attack programs. Each attack program runs
for 60 s and traffic information was recorded at a statistical interval of 1
millisecond. According to the existing detection methods, the running
time of 60 s and statistical interval of 1 millisecond is considered to
be sufficiently long and sufficiently accurate [5]. Considering the time-
varying and self-similarity of network traffic [15], the time domain
is not enough to fully exhibit the features of the attack traffic, so we
introduce the short-time Fourier transform method in time–frequency
domain analysis [16], and the time–frequency domain is exhibited, too.
Since the statistical interval is 1 millisecond, the sampling rate of the
signal can be considered as 1000 Hz. According to the Nyquist sampling
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Fig. 2. Time domain and time–frequency domain diagram of the Slowloris attack traffic.
theorem, the frequency range of the time–frequency domain is 0 to
500 Hz.
(1) Slowloris

The Slowloris program was first published in Perl, and we use a
Python rewritten and widely spread version in this paper [17]. The
Slowloris can send a large number of HTTP headers and try to stay
connected unless the target server disconnected actively. During the
connecting time, Slowloris sends incomplete HTTP requests to make the
server spend a lot of time waiting for the request to finish. The network
bandwidth occupied by establishing and maintaining the connections is
small, but it will occupy the target server resources for a long time, thus
keeping the target server busying.
(2) Slow POST and Slow Read

Slow POST and Slow Read attacks are implemented by the
Slowhttptest program [18], which is written in C++ and can conduct
a variety of LDoS attacks.

The principle of Slow POST attack is similar to that of Slowloris.
The attacker sends POST requests slowly to force the server to keep
the connections. Since POST requests are typically used to submit data
to the target server, the server usually sets a longer connection timeout
value. The limitation is that there is an area on the web page provided
by the target server that can submit data. Due to the increasing number
of interactive elements on modern web pages, basically every website
has areas where data can be entered, so POST requests are ubiquitous.

The Slow Read attack is exactly the opposite of the Slow POST
attack. The attack program actively reduces the client’s TCP window
size, so that the target server’s response data can only be received at a
slow speed, then extending the connection time. When the Slowhttptest
initiates the Slow Read attack, the TCP window size is set to 1, so
each packet can only carry one byte, and a simple web page response
data requires a large number of packets to be transmitted. The rate of
packets will increase to some extent when the Slow Read attack occurs,
but each packet is small and the occupied network bandwidth is still
small.
(3) Pwnloris

The Pwnloris program is an improvement to the Slowloris program,
first appeared in 2018, written in Python [19]. Pwnloris supports the
use of TOR to enhance anonymity, while the traffic changes become
more complex [20].
(4) Torshammer

The Torshammer is an improved Slow POST attack program written
in Python [21]. Although in principle it is consistent with the Slow
POST attack, the Torshammer program has abandoned the implemen-
tation of periodically generating network traffic, so no significant peri-
odic features are found in both the time domain and the time–frequency
domain.
3

(5) Httpbog
The Httpbog is an attack program that runs on Windows operating

systems and is written in C# [22]. The principle of Httpbog attack
is similar to the Slow Read, which implements the attack by slowly
receiving the response data of the target server. Due to the widespread
use of Windows operating systems, more clients can be used to launch
attacks. Httpbog weakens the feature of attack power and attack period,
so that it stays more concealed.

Figs. 2 and 3 are the time domain and time–frequency domain
diagrams of the Slowloris attack and the Torshammer attack, respec-
tively. The Slowloris attack did not exhibit periodicity as the theoretical
model, but in the time–frequency domain diagram, the mid-high fre-
quencies exhibited significant periodic peaks. The Torshammer attack
did not have periodic features in both the time and time–frequency
domains. Therefore, a simple theoretical model cannot fully describe
the real attacks, and using periodic signals to simulate LDoS attacks is
not appropriate.

3.2. Network traffic capture

Due to the limitations of the network simulator, we need to design
a network capture system to get real network traffic, and then build
a dataset to evaluate the proposed detection method. In order to
capture legitimate traffic from a university website in the datacenter
and capture attack traffic generated by the attack programs in the
laboratory environment, we built a high-performance network traffic
capture system consisting of a capture program, RAM buffers, a transfer
program, and a disk array. As shown in Fig. 4, the capture program
utilizes the dumpcap program to read the traffic data on the network
interface card into the RAM buffers. Dumpcap program is also the
capture program used by Wireshark, which is a widely used open-
source network packet analyzer [23]. The whole RAM buffer is divided
into four blocks, each of which is 2 GB, which is used to absorb the
large instantaneous traffic that may occur and ensure the integrity of
the captured data. The transfer program monitors the RAM buffers
in real-time and transfers the data to the disk array. The disk array
is used to persist the captured data for later analysis. The capture
system uses a ping-pong-like operation to form four RAM buffers into a
circular queue, which avoids the occurrence of any capture interruption
accident caused by the storage system bottleneck. Fig. 4 shows that
the capture program is writing data to RAM buffer C, and the transfer
program is transferring data to the disk array after RAM buffer B
has been filled. The stress test shows that the traffic capture system
can stably capture the network traffic of a Gigabit Ethernet full-rate

transmission without any packet loss.
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Fig. 3. Time domain and time–frequency domain diagram of the Torshammer attack traffic.
Fig. 4. The architecture of network traffic capture system.
There are two types of network traffic need to be collected: legiti-
mate traffic and attack traffic. As it is difficult to simulate the traffic
generated by a large number of legitimate users in the laboratory
network environment, we chose a real website of a university as the
source of legitimate traffic. A simplified network topology for capturing
legitimate traffic is shown in Fig. 5. The Web server is connected to
the Internet through a firewall, a switch, and an Internet access device.
We connect the network traffic capture system to the Web server via
the switch by port mirroring. In order to ensure the security of the
datacenter, the capture of attack traffic cannot be carried out in the
datacenter. Thus, we have built a LAN in the laboratory, and the
network topology is shown in Fig. 6. A self-built Web server is deployed
with a mirror of the website, which constitutes the same website as
the Web server in the datacenter. Traditional firewalls currently have
a weak defense against LDoS attacks, so the firewall will not interfere
with the attack experiments. The network traffic capture system is still
connected to the self-built Web server via the switch by port mirroring.
An attacker can access the self-built Web server through the router and
initiates attacks. Most LDoS attack programs run on the Linux operating
system, and we used a computer running Kali Linux distribution [24]
as the Attacker 1. The Pwnloris program needs to run on Windows, and
we used a computer running the Windows 10 operating system as the
Attacker 2.

A variety of LDoS attack programs are used to launch attacks on the
self-built Web server, and the network traffic capture system captured
all traffic during the attacks. It should be noted that the traffic captured
in this way only contains the traffic generated by the attack program,
while the LDoS attack does not completely occupy the network band-
width, and in most cases, only a small portion of the bandwidth is
4

Fig. 5. Network topology for capturing legitimate traffic.

occupied. In a real scenario, before the target server is completely dead,
the traffic we captured will be a superposition of attack traffic and
legitimate traffic, which is different from the scenario of high-rate DoS
attacks. Therefore, the best realistic scenario that can be achieved is
that the ‘‘real’’ attack traffic should be the superposition of the attack
traffic captured in the laboratory and the legitimate traffic captured in
the datacenter. In this case, the features of the attack traffic may also
be covered over by the features of legitimate traffic, which increased
the detection difficulty. Besides, we use the traffic captured from the
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Fig. 6. Network topology for capturing attack traffic.

datacenter as legitimate traffic because it has excluded denial of service
attacks manually. Although there may be other types of attacks, the
traffic generated by those attacks is very small, which can be ignored
when detecting DoS attacks.

The dataset we used for evaluation is built in the following way.
First, capture the six types of attack traffic generated by the attack
program introduced in Section 3.1.2. In our experiments, each attack
program runs 1000 times, and each run time is 60 s. It has been
confirmed that all attack programs will start attacking after startup as
soon as possible, so 60 s is long enough. In this way, 16 h and 40 min
of pure attack traffic is captured for each attack program. Then, 120 s
of legitimate traffic is randomly selected from the traffic captured from
datacenter as a segment, and a total of 2000 segments are selected. In
this way, 66 h and 40 min of legitimate traffic is selected for each attack
program. 1000 segments are superimposed with pure attack traffic,
marked as attack traffic samples; the other 1000 segments remains
unchanged and are marked as legitimate traffic samples. In the real
scenarios, the moment when an attack initiated is random. Therefore,
in each attack traffic sample, the position of 60 s of pure attack traffic
superimposed to 120 s of legitimate traffic is also randomly specified.
In this way, we build a dataset that includes a total of 100 h of attack
traffic and 400 h of legitimate traffic. We randomly select 60% of the
samples for training and 40% of the samples for testing.

In addition, we should also consider that in the real scenarios,
the type of attack is unknown before detection. Our detection method
should have the ability to detect all the six types of attacks at the same
time through one detection process. Therefore, from the aforemen-
tioned six types of attack samples, we randomly choose 800 samples
for each type of attacks, and compose an ‘‘overall’’ dataset with 4800
samples. Ten ‘‘overall’’ datasets are generated randomly, so that ten
parallel experiments can be performed to get the average metrics that
are closer to real scenarios. Since the ‘‘overall’’ datasets contain multi-
ple attack types, they are further increased the difficulty of detection.
The overview of the created dataset is shown in Table 1.

4. Proposed detection method

4.1. Network traffic sampling

To convert network traffic to time series, the network traffic needs
to be sampled. In terms of simplicity and efficiency, it is more con-
venient to count the packets than calculate the accurate data size. Let
𝑠(𝑡1, 𝑡2) be the number of packets that go through a network node in the
time interval 𝑡 ∈ (𝑡1, 𝑡2], and take a sampling interval 𝑇 ∈ R+, a time
series 𝑥(𝑛) is obtained:

𝑥(𝑛) = 𝑠((𝑛 − 1)𝑇 , 𝑛𝑇 ), 𝑛 ∈ N+, 𝑥(𝑛) ∈ N (1)
5

Fig. 7. Time domain of network traffic sampled with different sampling intervals.

The sampling process for network traffic is similar to the sampling
process for analog signals. If the sampling interval 𝑇 is smaller, we can
get a better time resolution. As shown in Fig. 7, a segment of network
traffic is sampled with three different sampling intervals: 𝑇 = 100 ms,
10 ms, and 1 ms, and is converted to three time series with different time
resolutions. Since the minimum delay of the network is generally on the
order of a millisecond, the sampling interval of less than 1 ms does not
have the practical significance of improving the detection capability.
The direct observation of the 100 ms sampling interval can reveal that
most details have been lost. Therefore, when detecting an LDoS attack,
a sampling interval of the order of 1 ms or 10 ms is suitable. Subsequent
detections are based on the time series sampled with 10 ms sampling
interval, and satisfactory detection results can be obtained. In the real
scenario, the attack traffic will be submerged in the legitimate traffic,
and our goal is to take attack traffic as target signal to be detected and
legitimated traffic as noise. The proposed detection method needs to be
able to recover target signal from noise.

4.2. Convolution filtering

Considering a manual feature extraction process for LDoS attack
detection, Slowloris is taken as an example. Firstly, by observing the
time domain representation of the signal, weak periodic peaks can be
found, but not very significant. Then by observing the time–frequency
domain representation of the signal, obvious periodic peaks can be
found, that is, the intensity of fixed interval changes in the high
frequency part. Therefore, the feature extraction of the traffic should
start from the time domain and frequency domain.

Lots of successful applications of deep neural networks in computer
vision indicate that the convolutional neural network (CNN) is a type
of self-learning filter [25]. The one-dimensional convolutional neural
network (1D-CNN) can extract short-term frequency domain features
on time-domain signals [26]. A one-dimensional convolution operation
is as follows:

𝑓𝑜𝑢𝑡 = 𝜎(
∑

𝑤𝑑,𝑐◦𝑋𝑑,𝑐 + 𝑏) (2)

In Eq. (2), 𝑑 is the size of the convolution kernel, 𝑐 is the number
of the filters, 𝑋 is the tensor input to the convolution kernel, 𝜎 is a
nonlinear activation function, ◦ is the Hadamard product, 𝑤 and 𝑏 are
the weight and bias of the convolution kernel.

As the signal length is much longer than the convolution kernel,
1D-CNN performs convolution operation by sliding convolution kernel.
As shown in Fig. 8, a convolution kernel of size 𝑑 slide over a signal of
10 s. In order to clarify the figure, the convolution kernel and step in
Fig. 8 are set larger, and the number of channels is set to 1.

The convolution operation has translation invariance. If the target
signal shifts back or forth in time, the output of the convolution is
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Table 1
Overview of the created dataset.

Sample type Number Dimension Duration Attack duration
of samples of each samplea of each sample of each sample

Legitimate traffic 6000 12,000 120 s 0 s
Attack 1 (Slowloris) 1000 12,000 120 s 60 s
Attack 2 (Slow POST) 1000 12,000 120 s 60 s
Attack 3 (Slow Read) 1000 12,000 120 s 60 s
Attack 4 (Pwnloris) 1000 12,000 120 s 60 s
Attack 5 (Torshammer) 1000 12,000 120 s 60 s
Attack 6 (Httpbog) 1000 12,000 120 s 60 s
‘‘Overall’’b 4800 12,000 120 s 60 s

aTaking sampling interval 𝑇 = 10 ms as an example.
bSampled from attacks 1 to 6.
Fig. 8. One-dimensional convolution on network traffic.

only the movement in the corresponding direction, while the value
does not change. This is very useful for detecting LDoS attack traffic,
as in real scenarios, attack traffic may occur at any time. Even if the
network traffic is segmented manually, the attack traffic may appear
anywhere in a segment. CNN extracts all the features of all locations
of the signal, while only part of the features is useful. For example, for
the detection of the Slowloris attack, the mid-high frequency features
of the signal are most significant, while the low frequency part is less
important. Therefore, pooling operations need to be added after the
convolution operations, taking the max pooling as an example, in the
adjacent convolution output, the maximum value is selected as the
pooling output.

The size of the receptive field should be considered when taking
convolutional neural networks as signal filters. Taking a convolution
kernel of size 𝑑1 as an example, a non-overlapping convolution opera-
tion is considered here, that is, the size of step and convolution kernel
are the same, and the pooling operation is not considered at this time.
In this case, the receptive field for the signal is 𝑑1. Then, consider a two-
layer convolutional neural network with the sizes of the convolution
kernels 𝑑1 and 𝑑2, respectively. After the first layer of convolution, a
segment of length 𝑑1 from the input signal is mapped to a point. In
the second layer convolution operation, a segment of length 𝑑1 × 𝑑2
from the input signal is involved in the convolution operation, so the
receptive field of the second layer of convolution operation is 𝑑1×𝑑2. It
can be seen that one-dimensional CNN can achieve hierarchical feature
extraction by cascading multiple CNN layers, and the receptive field
increases layer by layer.

In summary, the convolutional neural network used as filters to
extract features of LDoS attacks is cascaded by multiple convolution
layers and max pooling layers.

In this paper, we cascaded 6 CNN layers with a convolution kernel
size of 3, and the receptive field reached 36 = 729. If the sampling
interval is 10 ms, the maximum time span of feature extraction is
7.29 s, which can meet the feature extraction requirements of the LDoS
Attacks.

4.3. Time series modeling

The features extracted by the convolutional neural network from
network traffic are still time series, that is, the sequence of features
6

in feature vectors remains strictly in the order of time. We can use
the recurrent neural network (RNN) to model the time series and
extract the features of time series for classification. Traditional RNNs
encounter gradient vanishing or explosion problems, and some specific
RNN structures are proposed to alleviate these problems. According to
the literature [27], the experimental results on the network intrusion
detection datasets KDD 99 and NSL-KDD showed that bidirectional
gated recurrent unit (BGRU) is the most suitable structure to model
time series for network traffic classification. KDD 99 and NSL-KDD
datasets contain network traffic features that are extracted by fixed
rules from raw network traffic. To detect LDoS attacks, we use CNN to
extract the features of sampled network traffic. The features extracted
from the sampled network traffic are essentially similar to the samples
in the datasets. Therefore, BGRU is selected as the memory unit of the
RNN for time series modeling of LDoS attack traffic features.

4.4. End-to-end detection

Combining CNN and RNN with BGRUs, we proposed hybrid deep
neural networks for end-to-end detection of LDoS attacks. The structure
of the proposed neural networks is shown in Fig. 9. The input of the
hybrid deep neural networks is a sample of network traffic 𝑥(𝑛) to be
detected, and the output is a label, which is the estimated probability
of LDoS attack for the input sample.

Before input to the hybrid deep neural networks, the network traffic
needs to be normalized. As 𝑥(𝑛) ∈ N, it only needs to be linearly scaled
to [0, 1], which can be achieved by dividing each point in the signal by
a fixed maximum value. This maximum value is related to the sampling
interval and can be denoted as 𝑀𝑎𝑥. The exact value of 𝑀𝑎𝑥 is not hard
to determine from the captured dataset. However, in the real scenarios,
it cannot be guaranteed that the sampled network traffic value will not
exceed 𝑀𝑎𝑥. In order to prevent overflow, 𝑀𝑎𝑥 can be set larger, and
the normalized preprocessing should be implemented as a truncated
maximum:

𝑥∗(𝑛) =

{

𝑥(𝑛)∕𝑀𝑎𝑥, 𝑥(𝑛)∕𝑀𝑎𝑥 ≤ 1

1 , 𝑥(𝑛)∕𝑀𝑎𝑥 > 1
(3)

In Eq. (3), 𝑥(𝑛) is a signal to be normalized, 𝑥∗(𝑛) is the normalized
signal. Preprocessed signals are input into the proposed neural network.
In Fig. 9, six convolution modules are used to extract features hierarchi-
cally, which are denoted as Conv 1 to Conv 6. Since the preprocessed
signal is directly input to Conv 1, the number of filters of Conv 1 is set
larger to extract the primary features as comprehensively as possible.
Conv 2–6 modules extract the features of different scales layer by layer.
‘‘Conv1D, 3, 64’’ represents a one-dimensional convolution operation,
the size of the convolution kernel is 3, the number of filters is 64;
‘‘ReLU’’ indicates that the activation function is the rectified linear
unit [28]; ‘‘MaxPooling 1D, 3’’ represents a max pooling operation, the
size is 3. ‘‘BGRU’’ denotes an RNN module with BGRUs as its memory
units; ‘‘Flatten’’ is the connection layer, which flattens the output of
the RNN into a one-dimensional vector; ‘‘FC’’ is a fully connected
module, which is used for classifying operation. The output module
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Fig. 9. The structure of the proposed hybrid deep neural networks for end-to-end detection of LDoS attacks.
uses Softmax regression to get the normalized estimated probability of
LDoS attack. Before the ‘‘BGRU’’ and ‘‘FC’’ modules, the Dropout [29]
modules are inserted to prevent the network from over-fitting, and the
dropout probabilities are 0.25 and 0.5, respectively.

The proposed hybrid deep neural networks can be trained by
the adam algorithm [30] and the loss function is defined by cross-
entropy [31]:

𝐿(𝜃) = − 1
𝑚

𝑚
∑

𝑖=1
[𝑦(𝑖) log(ℎ𝜃(𝑥(𝑖))) + (1 − 𝑦(𝑖)) log(1 − ℎ𝜃(𝑥(𝑖)))] (4)

In Eq. (4), 𝜃 is the undetermined parameter, 𝑚 is the batch size,
(𝑥(𝑖), 𝑦(𝑖)) is the training data of the 𝑖-𝑡ℎ pair input, ℎ𝜃 is the model
function defined by the parameter 𝜃. The significance of end-to-end
training is that only the input and output data need to be defined,
and the network parameters need not be adjusted manually, which is
equivalent to adaptive filtering of the input signal.

5. Evaluation

5.1. Metrics

Detecting LDoS attacks in legitimate network traffic can be consid-
ered as an object detection task. However, as described in Section 3.1.1,
in the real scenarios, it is difficult to determine the start and end
times of LDoS attacks accurately, and it is not necessary to determine
them accurately. The samples in our dataset is consistent with the
real scenarios, that is, given a network traffic segment, we need to
determine whether there is LDoS attack traffic in it. In this way, the
object detection task can be transformed into a classification task. For
binary classification tasks, the results of classification can be correct
or incorrect. All possible results can be divided into the following four
outcomes:

1. True Positive (TP): attack samples are classified as attack ones;
2. True Negative (TN): legitimate samples are classified as legiti-

mate ones;
3. False Positive (FP): legitimate samples are classified as attack

ones (false alarms);
4. False Negative (FN): attack samples are classified as legitimate

ones (missed detections).

For simplicity, TP, TN, FP, FN are used to represent the numbers of the
four outcomes. On this basis, the precision, detection rate, accuracy,
false positive rate, false negative rate, and F-measure can be defined as
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shown in Eq. (5) [32].

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 (𝐷𝑅) = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝐴𝐶𝐶) = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑁 + 𝐹𝑃

𝐹𝑎𝑙𝑠𝑒 𝑃 𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (𝐹𝑃𝑅) = 𝐹𝑃
𝐹𝑃 + 𝑇𝑁

𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (𝐹𝑁𝑅) = 𝐹𝑁
𝑇𝑃 + 𝐹𝑁

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝐷𝑅
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +𝐷𝑅

(5)

5.2. Detection results

The experiments were performed under the following hardware
and software platforms: Intel Xeon E5-2660 v3 @2.6 GHz, 128 GB
RAM, NVIDIA TESLA K40; Ubuntu 16.04 LTS, CUDA 9.0, cuDNN 7.0,
TensorFlow 1.7.

We used Tshark (the command-line version of Wireshark) to imple-
ment network traffic sampling and statistics. As shown in Fig. 7 and the
related description, the sampling interval should be between 1 ms and
100 ms. In order to determine the appropriate order of magnitude, we
performed experiments on the datasets obtained at the sampling inter-
vals of 10 ms and 1 ms. The results show that the sampling interval of
1 ms does not help improve the detection results, so 10 ms is sufficient.
The following detection experiments use the sampling interval of 10 ms
as the benchmark.

First of all, the convergence of the model needs to be confirmed,
that is, check the value of the loss function after each epoch. As shown
in Fig. 10, for the first 10 iterations, the value of the loss function drops
rapidly. After 10 to 30 iterations, the value of the loss function tends
to be stable. Therefore, the epoch value is set to 30 to conduct the
following experiments. The values of the hyperparameters in the model
are shown in Table 2. The distribution of parameter numbers of the
proposed hybrid deep neural networks is shown in Table 3. Using the
above configuration, it takes about 350 s to train a model and about
2 s to test one.

We did ‘‘1 vs. 1’’ detection firstly, which meant detecting one type
of LDoS attacks at a time. Then we did ‘‘all vs. 1’’ detection that meant
all six types of LDoS attacks in the dataset are mixed as an ‘‘overall’’
type. Detection results are shown in Table 4.

In Table 4, the ‘‘average’’ line refers to the average of the detection
results of six types of LDoS attacks, while the ‘‘overall’’ line refers to the
average detection results of the ‘‘overall’’ datasets to detect all the six
types of LDoS attacks at the same time. Table 4 shows that the proposed
LDoS attack detection method based on hybrid deep neural networks
can effectively detect all the six LDoS attacks, with an average detection
rate of 98.68% and an average F-measure of 0.9771. The type with the
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Fig. 10. The relationship between the loss and the epochs during training.

Table 2
Hyper-parameter configuration.

Hyper-parameter Value

Max 1000
BGRU nodes 64
FC nodes 48
Batch size 32
Epoch 30
Learning rate 0.002
𝛽1 0.9
𝛽2 0.999
𝜀 10−8

Table 3
Distribution of parameter numbers of the proposed hybrid deep
neural networks.

Layer Number of parameters

Conv 1 512
Conv 2 24,640
Conv 3 12,352
Conv 4 12,352
Conv 5 12,352
Conv 6 12,352
Dropout 0.25 0
BGRU 49,536
Flatten 0
Dropout 0.5 0
FC 295,058
Softmax 0
(Total) 419,154

Table 4
Detection results of six types of LDoS attacks.

Type Accuracy DR FPR FNR Precision F-measure
(%) (%) (%) (%) (%)

Slowloris 98.25 98.99 2.49 1.01 97.52 0.9825
Slow POST 99.00 99.49 1.48 0.51 98.49 0.9899
Slow Read 97.75 99.48 3.83 0.52 95.96 0.9769
Pwnloris 97.25 98.48 3.94 1.52 96.04 0.9724
Torshammer 97.50 99.43 4.02 0.57 95.11 0.9722
Httpbog 96.75 96.19 2.63 3.81 97.58 0.9688
(Average) 97.75 98.68 3.06 1.32 96.78 0.9771
(Overall)a 96.74 96.82 3.20 3.18 96.71 0.9673

aThe average results of ten experiments on ten ‘‘overall’’ datasets.

highest detection rate is Slow POST (99.49%) and the type with the
lowest detection rate is Httpbog (96.19%). This is consistent with the
observation in the time–frequency domain: Slow POST has significant
periodic features in the time–frequency domain, so it is easy to be
detected, while Httpbog features are not significant, so the detection
is difficult. The average detection rate of ‘‘overall’’ is 96.82%, which
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is not far from the ‘‘1 vs. 1’’ detection. It can be concluded that the
proposed detection method can effectively extract the features of LDoS
attacks and has universality in detecting different types of LDoS attacks.

Since the 120-second sample contains only 60 s of the LDoS attack,
we need to confirm whether the attack has been accurately detected.
The output of the RNN is too abstract to interpret. However, the output
of the CNN keeps the time series and can be compared with the input
signal. So, we choose the output of Conv 6 module, the last layer of the
convolutional neural network, as the target object. Here, we introduce
the concept of class activation mapping (CAM) in the field of computer
vision [33]. When classifying a specific sample, the proposed hybrid
deep neural networks will output the classification result, but we also
want to know which locations in the sample are the basis for decision
making, that is, which locations activate the neurons in the neural
network to classify a specific class. Due to the complex structure of the
deep neural network and numerous parameters, it is not operability by
manual derivation. Therefore, an algorithm named Grad-CAM is used
to obtain Conv 6 class activation mapping [33]. Grad-CAM algorithm
is used to visualize the basis of decision making, that is, by calculat-
ing the weighted average gradient of the specific predicted value to
the target layer, the class activation mapping of the two-dimensional
convolution neural network is obtained. For image classification, the
class activation mapping of two-dimensional convolution can be plotted
as the position of the image given by 𝑥-axis and 𝑦-axis coordinates. In
this paper, Grad-CAM algorithm is used to obtain the activation of one-
dimensional convolution neural network. One-dimensional activation
value is obtained to plot the one-dimensional activation map. Here, the
target layer is Conv 6, the target class is the class labeled as attack.

As shown in Figs. 11 and 12, we selected two representative samples
for in-depth analysis. For each sample, the activation of the last layer
of CNN is plotted, and it is compared with the time domain and time–
frequency domain representations. The insertion location of attack
traffic in the two samples starts at 30 s and ends at 90 s, and is marked
with a red rectangle. The fixed attack start time is only used to facilitate
plotting, in the actual scenario, the location of attack traffic insertion
is random.

In Fig. 11, there is a strong legitimate traffic interference between
90 and 100 s, but it does not cause excessive activation of Conv 6.
Conv 6 is specifically activated at the time period that contains only
attacks. From the time–frequency domain representation, Conv 6 may
be activated by some features of the high frequency part. In Fig. 12,
Slow POST attacks are almost completely concealed due to the high
intensity of legitimate traffic as background, and the distinguishing
attack features cannot be directly found from time domain and time–
frequency domain representations. However, the activation of Conv 6
showed that our proposed detection method can accurately find the
attack location as the higher activation locations of Conv 6 correspond
to the attack location. By using grad-CAM algorithm, we further verify
that the proposed detection method can eliminate the interference of
legitimate traffic and detect the location of LDoS attacks accurately.

6. Discussion

In order to compare with the existing methods, we randomly se-
lected two segments of network traffic including LDoS attacks as the
detection sample. As shown in Figs. 13 and 14, each segment of
network traffic lasts 120 s. LDoS attacks start at 61 s and end at 120 s,
and are marked with red rectangles. The activation of Conv 6 of the
proposed detection method is still used to confirm whether the attacks
are accurately detected. From the activations of Conv 6, it can be seen
that for the two traffic segments, when attacks started, Conv 6 has obvi-
ous periodic fluctuations, and their higher activation areas correspond
to the attack location, while in the legitimate part, the activations are
lower. It can be concluded that the proposed detection method can
accurately detect the LDoS attacks in the two traffic segments.

Due to the use of real traffic, the experimental results of proposed
method cannot be directly compared with the results in the related
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Fig. 11. Time domain, time–frequency domain, and activation of Conv 6 for a traffic sample containing a Pwnloris attack. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
Fig. 12. Time domain, time–frequency domain, and activation of Conv 6 for a traffic sample containing a Slow POST attack. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
literature. Therefore, we implemented two of the state-of-the-art de-
tection algorithms [9,10] and applied them to the real traffic that we
captured, and the detection results show that the two algorithms both
failed to detect LDoS attacks in the real traffic with a detection rate
of 0%.

The first algorithm to be compared is the MF-DFA detection method
proposed by Wu et al. [9], which used the multifractal characteris-
tics of network traffic, and the wavelet-based Holder exponents were
calculated. According to [9], when LDoS attacks started, the Holder
exponents will be significantly decreased, and the threshold can be
set to determine whether the attacks occurred. However, MF-DFA
method is failed to detect the two traffic segments. When LDoS attacks
started, the Holder exponents does not decrease significantly, and it
is impossible to distinguish whether attacks occurred by setting the
threshold. This is because the traffic we captured contains real HTTP
traffic, which fluctuates greatly, rather than the smooth FTP traffic in
literature [9]. Considering that the main target of LDoS attack is the
HTTP server, it is more appropriate to use HTTP traffic than FTP traffic.
Therefore, we think that in real scenarios, simply calculating Holder
exponent is not enough to detect LDoS attacks effectively.
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The second algorithm to be compared is the power spectral density
(PSD) based detection method proposed by Agrawal et al. [10], and
the power spectral densities of legitimate traffic and attack traffic were
calculated, respectively. In literature [10], the basis of detecting LDoS
attacks is that the power spectral density of attack traffic is higher in the
low frequency part, while the legitimate traffic distributes more evenly.
The detection results of the two traffic segments showed that there is no
significant difference in power spectral density between attack traffic
and legitimate traffic, and it is impossible to distinguish whether an
attack occurs or not directly. This is because traffic intensity of LDoS
attacks is very low, and the attack traffic is almost submerged in the
legitimate traffic. The differences of power spectral density between the
two parts of traffic in Figs. 13 and 14 are mainly due to the change of
legitimate traffic in the two segments, not to the LDoS attacks.

Similar experiments are carried out on more different network traf-
fic samples containing LDoS attacks. The results are similar to those in
Figs. 13 and 14, and only the proposed method can detect LDoS attacks
effectively. It can be concluded that the proposed LDoS attack detection
method based on hybrid deep neural networks can effectively detect
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Fig. 13. Comparison with the Holder exponent and power spectral density based detection methods (sample 1).
Fig. 14. Comparison with the Holder exponent and power spectral density based detection methods (sample 2).
DoS attacks in fluctuating HTTP traffic, which is more advantageous
han MF-DFA or power spectral density based detection methods.

In addition, as we converted LDoS attack detection as a time series
lassification problem, we also compared several time series classifica-
ion methods, including traditional algorithms and deep learning-based
OTA methods. We implemented these methods and compared them on
he ‘‘overall’’ dataset. The comparison results are shown in Table 5. It
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can be found from Table 5 that the proposed method stands out among
all the compared methods.

Future work mainly includes the following points. First, deep neural
networks are vulnerable to adversarial samples [40]. The detection
method proposed in this paper is based on a hybrid deep neural
network, so it is necessary to analyze the adversarial samples and take

appropriate precautionary measures. Secondly, although the scale of
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Table 5
Comparison with time series classification methods on the ‘‘overall’’ dataset.

Method Accuracy DR FPR FNR Precision F-measure
(%) (%) (%) (%) (%)

KNN (K=1) [34] 76.35 69.05 6.60 30.95 96.07 0.8035
BOSSVS [35] 60.10 63.23 41.92 36.77 49.48 0.5552
ConvLSTM [36] 87.71 81.42 2.17 18.58 98.37 0.8909
CNTC [37] 83.23 83.69 17.13 16.31 78.96 0.8126
DTWCNN [38] 90.10 84.47 1.55 15.53 98.78 0.9106
MACNN [39] 89.48 84.55 3.53 15.45 97.14 0.9041
Proposed method 96.74 96.82 3.20 3.18 96.71 0.9673

our proposed hybrid deep neural network is not very large in the
field of deep learning, it is still difficult to meet the needs of online
detection of network traffic. The network traffic is bursty, so the
neural network model needs to be compressed to reduce the time and
space complexity and calculation delay, and meet the requirements of
real-time detection. Also note that, due to the inherent limitations of
supervised learning, the detection method we proposed is not a ‘‘silver
bullet’’. For unknown types of attacks, since the model has not seen
them, they cannot be detected. Future work can be carried out by
studying semi-supervised and unsupervised learning algorithms.

The materials we used are available at https://ieis.ac.cn/ldos for
academic use.

7. Conclusions

Low-rate Denial of Service (LDoS) attacks have strong concealment.
Although traditional signal analysis methods can detect LDoS attacks
in the simulation environment, the detection results in real scenarios
are unsatisfying. In this paper, an LDoS attack detection method based
on hybrid deep neural networks is proposed using one-dimensional
convolutional neural network and gated recurrent unit. The proposed
method only needs time statistics of network traffic to detect LDoS
attacks. In order to truly and effectively evaluate the proposed method,
we captured real legitimate traffic from a website in the datacenter, and
carried out a variety of real LDoS attacks on the mirror of the website in
the laboratory environment to capture attack traffic. Evaluation on the
real dataset showed that the proposed LDoS attack detection method
could effectively detect LDoS attacks in fluctuating HTTP traffic with an
average detection rate of 98.68%, which is significantly outperformed
the state-of-the-art detection methods.
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