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A B S T R A C T

Many multinational companies operate their business in both domestic and overseas markets
with different logistics modes, namely freight transportation by truck for domestic and short-
haulage transshipment by container for overseas. To effectively optimize these operations for the
two types of logistics systems, we propose an intelligent integration of external and internal
transportation with the separation of drayage trucks and containers. The objective is to minimize
the total cost, which includes both fixed and variable costs. The fixed cost occurs when the
drayage truck is incurred in integrating transportation, and the variable cost is generated per
travel distance increment. By dividing customers into different subsets and proposing a special
penalty matrix, we provide an intelligent model that integrates the internal and external con-
tainer transportation problems. A customized genetic algorithm is proposed. Based on the in-
stances of real-life data on 888 orders, the results show that our approach can reduce the overall
cost by 16.8%.

1. Introduction

As an emerging technology caused by rapid advances in modern information technology, internet of things (IoT) is widely
concerned and applied in many areas including manufacturing and transportation. As for an important application of IoT, intelligent
logistics plays an importation role in city life. Implementing intelligent logistics can meeting business requirements and make wise
management of transportation.

In the contemporary globalized economy, an increasing number of multinational companies operate their businesses in both
domestic and overseas markets with different logistics requirements and operational standards. This presents substantial operational
challenges and tremendous opportunities to improve logistics. For the domestic market, freight transportation by truck between local
suppliers and retailers is often needed. For the overseas market, short-haulage container transshipment is a popular transportation
mode between terminals and shippers/receivers. The hybrid logistics requirements of the domestic and overseas markets increase
companies’ total operating costs. How to effectively integrate and optimize the operations of the two types of logistics systems thus
becomes an important issue, especially in the emerging research field of intelligent logistics services.

This research studies a real company with production based in China (its name is withheld pursuant to a confidentiality
agreement) that produces furniture, kitchen appliances and home accessories. This company covers both the Chinese local market
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and all major international markets. As it ships to retailers in both China and across the world, it is keen to investigate novel hybrid
models and to find the optimal solutions that would yield higher efficiency and lower costs. With several suppliers in the city of
Shanghai, for instance, the company operates freight transportation for the retailers in that city via truck and Shanghai’s seaports via
container. As the two incompatible transportation modes result in high operating costs, the company is determined to explore a novel
and intelligent integrated container transportation solution for both markets.

The transportation problem for the domestic market belongs to the classical vehicle routing problem (VRP). The freight trans-
portation for the overseas market, from hinterland shippers to container terminals, belongs to the container drayage problem (CDP).
The major challenge is to integrate VRP and CDP with container transportation. Thanks to the recent advancement of IoT and GIS
(Geographic Information System) technologies, practitioners are able to tackle this challenge by tracking and tracing the items,
containers, along with the movement of vehicles and the status of the warehouses. How to optimize the integrated container
transportation given the separation between drayage trucks and containers intelligently becomes a more important question, while
the advanced technology ensure granularized information collection at the real-time and effective information sharing.

Based on the real-time data, we propose a novel intelligent logistics approach to integrate internal and external container
transportation by adopting drayage trucks and containers during transportation. We consider the internal transportation between
suppliers and retailers in the domestic market and the external transportation from shippers to terminals for the overseas market. The
integrated container transportation system entails computational complexity and difficulty due to the routing differences between
supplier/retailer and shipper/terminal. By introducing a new penalty matrix that maps to the start point and endpoint of freight with
divisible subsets, we also make a methodological contribution by proposing a customized genetic algorithm as the solution method.

The remainder of the paper is organized as follows: we review the literature on container vehicle routing problems under the stay-
with mode and separation mode in Section 2. We then present details of the proposed problem in Section 3. In Section 4, we formulate
the mathematical model. In Section 5, we propose a heuristic algorithm to solve practical problems. A case study based on the
analysis of our corporate data is presented in Section 6. Concluding remarks are in Section 7.

2. Related work

We categorize the relevant literature in three streams: the intelligent logistics, the vehicle routing problem, the container
transportation problem under stay-with mode and the container transportation problem under separation mode.

2.1. Intelligent logistics

There is a number of studies which aim to improve logistics systems by applying intelligent methods. Some of the very early
research in the field, such as Crainic et al. (2009), found that the Intelligent Transportation Systems (ITS) developments were largely
hardware-driven and the development of the software component of ITS, models and decision-support systems was lagging behind.
They emphasized that transportation planning and management disciplines, operations research played a key role to play to solve this
challenge. He et al. (2014) presented a novel multilayered vehicular data cloud platform by using cloud computing and IoT tech-
nologies. Two innovative vehicular data cloud services, an intelligent parking cloud service and a vehicular data mining cloud
service, for vehicle warranty analysis in the IoT environment are also presented. A conceptual model for customer orientation in
intelligent logistics that focused on improving the role of the customer in logistics operations was proposed by McFarlane et al.
(2016).

The integrated planning problem for intelligent food logistics systems was studied by Li et al. (2018). They applied the intelligent
logistics to reduce food waste, improve food quality and safety. Computational results showed that the intelligent logistics methods
they proposed if of effectiveness and efficiency. Recently, Wei and Max (2018) reviewed smart-city initiatives of governments,
industry, national laboratories and academia. The results found that research opportunities have appeared when the smart-city
movement transiting from the tech-oriented stage to the decision-oriented stage, including smart buildings, smart grid, smart mo-
bility and new retail. In general, today’s existing researches in this field have focused more on the information and communication
technologies and we needed more research of business process, model, and methodology innovations. Barenji et al. (2019) in-
vestigated a intelligent E-commerce logistics platform that integrates intelligent distribution centers based on an agent technology.
The platform served for decentralization and synchronization purposes and also optimized for the transportation and logistics of the
overall system.

2.2. Vehicle routing problem

The vehicle routing problem was first proposed by Dantzig in 1959 (Dantzig and Ramser, 1959). The main task in the VRP is to
determine a set of vehicle routes to perform all (or some) transportation requests with the given vehicle fleet at the minimum cost, in
particular deciding which vehicles handle which requests in what sequence such that all vehicle routes can be feasibly executed (Toth
et al., 2014). Since the VRP was proposed, it has received considerable attention from scholars. The VRP may be studied from either a
static or dynamic perspective (Ghiani et al., 2003).

Numerous papers have been conducted to address different aspects of the static VRP. Gutierrez-Jarpa et al. (2010) considered a
VRP with deliveries, selective pickups and time windows. The numerical computational results included 100 customers. Polat et al.
(2015) studied the vehicle routing problem with simultaneous pickup and delivery with a time limit (VRPSPDTL). The problem
determined a set of vehicle routes originating and terminating at a depot, and the objective was to minimize the total travel distance.
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Salazar-Gonzalez and Santos-Hernandez (2015) introduced a new vehicle routing problem, which transferred one commodity be-
tween customers with a capacitated vehicle that was able to visit a customer more than once. Bula et al. (2017) focused on the
heterogeneous fleet vehicle routing problem (HFVRP) for hazardous materials (HazMat) transportation. The results showed that the
approach was competitive in terms of computational efficiency and quality. Qiu et al. (2018) studied a problem on practical logistics
distribution that consisted of designing a least-cost set of routes to serve a given set of customers while respecting constraints on the
vehicles’ capacities.

Static vehicle routing problems assume that all relevant information or intelligence is determinate and can be exploited in the
solution process; by contrast, the input data for a dynamic VRP are usually sourced online (Jaillet and Wagner, 2006) or in real-time
(Yang et al., 1999). Meanwhile, competitive intelligence is an important part of developing and implementing organizational strategy
(Kumar et al., 2019). So dynamic VRP is meaningful in practice. Franceschetti et al. (2013) considered the time-dependent pollution-
routing problem (TDPRP) that consisted of routing a fleet of vehicles to serve a set of customers and determined the speed on each
route. The cost function included emissions and driver costs while accounting for traffic congestion that changed vehicle speeds and
increased emissions. Dalmeijer and Spliet (2018) presented a branch-and-cut algorithm for the time window assignment vehicle
routing problem (TWAVRP), in which the problem of assigning time windows for delivery when demand volume was unknown.
Zolfagharinia and Haughton (2017) investigated the impact of potential factors on carriers’ operational efficiency in a dynamic
pickup and delivery problem with full truckload (DPDFL) for local operators. The results showed that advanced load information and
the decision interval had a marked influence on total costs. Sun et al. (2018) studied time-dependent pickup and delivery problems
with time windows to optimize the service of a transportation provider under two types of operational flexibility. Subramanyam et al.
(2018) proposed a two-stage stochastic optimization approach to assign time windows to customers in vehicle routing applications
under operational uncertainty.

The classical VRP does not provide solutions to the transportation integration problem of the separate modes of containers and
trucks. Therefore, in the next subsection, we continue reviewing the literature of container transportation problem.

2.3. Container transportation problem under the stay-with mode

The stay-with mode is an importation operational mode in container transportation. Generally, the stay-with container trans-
portation problem can be divided into static and dynamic variants. Some scholars have studies the static container transportation
problem under the stay-with mode. Wang and Regan (2002) proposed a solution method for a multiple traveling salesmen problem
with time window constraints (m-TSPTW), which provided a theoretical basis for the subsequent solution of container transportation
problems. Imai et al. (2007) addressed a vehicle routing problem that arises in picking up and delivering full container loads from/to
an intermodal terminal. The results showed that the procedure they developed can efficiently solve large-instance problems. Chung
et al. (2007) studied some practical problems involved in road container road transportation in Korean trucking. The case indicated
that the approach could be applied to operate and design container transportation systems in the real world. Caris and Janssens
(2009) formulated the container drayage problem in the service area of an intermodal terminal as a full truckload pickup and delivery
problem with time windows (FTPDPTW). Zhang et al. (2010) studied a truck scheduling problem for container transportation with
multiple depots and multiple terminals while including containers as a transportation resource. Zhang et al. (2011a) investigated the
problem faced by firms that transport containers by truck in an environment with resource constraints and developed an algorithm
based on reactive tabu search (RTS) to solve the problem. Wang and Yun (2013) studied an inland container transportation problem
using truck and train. They developed a mathematical graph model and proposed a hybrid tabu search. Nossack and Pesch (2013)
investigated a truck scheduling problem in container transportation, where containers need to be transported between customers
(shippers or receivers) and container terminals (rail or maritime) and vice versa. Lai et al. (2013) studied a drayage problem in which
container loads were shipped from a port to importers or from exporters to the port by trucks carrying one or two containers under
the stay-with mode. The metaheuristic performs a sequence of local search phases and improves the performance of carrier’s deci-
sions. Shiri and Huynh (2016) investigated a version of the drayage problem in which the intermodal terminal requires trucks to have
an appointment, and the results showed that the adoption of an efficient truck appointment system could considerably reduce
operating time for drayage firms.

The load balance for container loading problem was studied by Ramos et al. (2018). They treated load balance as a hard con-
straint and introduced vehicle specific diagrams. The multi-population biased random-key genetic algorithm (BRKGA) they proposed
showed advantage in incorporating load balance. Moreover, the allocation of empty container resources due to uneven imports and
exports in hinterland container drayage transportation has also been examined. Shintani et al. (2007) studied the design of container
liner shipping service networks by considering empty container repositioning. Zhang et al. (2009) formulated a container truck
transportation problem that involved multiple depots with time windows at both origins and destinations, including the reposition of
empty containers. Shintani et al. (2010) considered saving container fleet management costs in repositioning empty containers by
using foldable containers. The result revealed that foldable containers dramatically saved repositioning costs relative to standard
containers. Moon et al. (2013) compared the repositioning costs of foldable containers to those of standard containers. The study
demonstrated the economic feasibility of foldable containers and that their purchasing cost and transportation cost affect their use.
Sterzik and Kopfer (2013) proposed a comprehensive mathematical formulation that simultaneously considered vehicle routing and
scheduling and empty container repositioning. Numerical experiments indicated that for some data sets, the approach they proposed
had considerable potential for reducing fixed costs. Zhang et al. (2018) incorporated foldable containers into drayage services. Their
numerical experiments demonstrated that the use of four-in-one foldable containers can save approximately 10% on transportation
costs.
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By exploiting structural properties of the optimal solution, Galle et al. (2018)transformed the restricted Container Relocation
Problem (CRP) o binary integer programming problem, which reduced the number of variables and constraints compared to existing
formulations and improved efficiency significantly. Legros et al. (2019) studied a time-based policy for empty container management.
from a practical point of view, they considered detention fees and cleaning costs in practice. Results showed the policy they proposed
reduced container repositioning costs. Shintani et al. (2019) formulated a model of a minimum cost multi-commodity network flow
problem which aimed to simultaneously determine the fleet sizes of standard and combinable containers and their empty container
allocation/repositioning of combinable containers. Numerical experiments showed that mixed use of containers save cost sig-
nificantly.

Several scholars have studied this problem in the dynamic setting. Mahr et al. (2010) applied two solution approaches, online
optimization and an agent-based approach, to solve the drayage problem with time windows under two types of uncertainty, and the
results demonstrated that the agent-based system outperformed on-line optimization when service time duration was highly un-
certain. Zhang et al. (2011b) proposed approaches for incorporating informational and operational dynamics into intermodal drayage
operations with flexible tasks, which helped a drayage firm to identify high-quality plans even when many tasks were initially
unknown. Escudero et al. (2013) presented a method of using vehicle Global Positioning System(GPS) to solve this problem, which
consistently allowed the planner to reassign tasks when the problem conditions changed. The results showed that the approach can
reduce average operating costs by as much as 5%–13%. Zhang et al. (2014) introduced a determined-activities-on-vertex (DAOV)
graph to study a container drayage problem with flexible orders. The results revealed that the window partition method could
effectively solve the problem. Wong et al. (2015) derived with a yield-based container repositioning framework, followed by a
constrained linear programming optimizing the container repositioning, and incorporated changes in the destinations of empty
containers and adjustment factors to cope with surges in demand. Torkjazi et al. (2018) studied an approach for designing a truck
appointment system (TAS) to serve both maritime container terminal operators and drayage operators that proved capable for solving
problems subject to substantial uncertainty. Jeong et al. (2018) investigated an empty container management strategy in a two-way
four-echelon container supply chain for bilateral trade between two countries. They also proposed a hybrid solution procedure based
on accelerated particle swarm optimization and heuristic to solve the problem, which reduced the transshipment cost. Lee and Moon
(2020) formulated a robust mode for the empty container repositioning problem considering foldable containers under demand
uncertainty. Computational results indicated that the formulation performs well in terms of operating costs.

2.4. Container transportation problem under the separation mode

There is a small number of publications that investigated the container transportation problems under the separation mode.
Cheung and Shi (2008) studied a cross-border drayage container transportation problem from the perspective of individual resources
(e.g., driver, tractor, and chassis) and the composites of them (e.g., driver-tractor-chassis triplets) that needed to be managed si-
multaneously. The results showed that the benefit gained by relaxing regulatory policies is significant. Braekers et al. (2013) dis-
cussed a full truckload vehicle routing problem for transporting loaded and empty containers under a separation mode. The results
demonstrated the advantage of using a two-phase algorithm for vehicle routing problems with hierarchical objectives. Xue et al.
(2014) studied a local container drayage problem (LCDP) under an new operation mode in which a tractor could be detached from its
companion trailer and assigned to a new task. In numerical experiments, the new operation mode reduced the total cost by at least
15.26%. Xue et al. (2015) investigated the problem again with a max–min ant colony optimization algorithm, which outperformed
cplex in solution quality and computation time. Sterzik et al. (2015) compared the cost when trucking companies have access only to
their own containers to the situation in which empty containers were permitted to be interchanged among several owners. The results
indicated that container sharing between trucking companies leads to remarkable cost savings. Song et al. (2017) studied a new
variant of the container drayage problem under the separation mode in which a container can be separated from the truck during (un)
loading operations, while some emptied containers should be returned to the depot for maintenance. Numerical experiments showed
that the separation mode has advantages over the stay-with mode.

Although some scholars have considered the container transportation problems under the separation mode, they have focused
solely on the waiting time optimization when receivers/shippers unload or load freight. In contrast to existing related studies, our
study treats the containers as an independent resource that can be used for both internal and external transportation.

3. Problem description

We consider a scenario with truck and container depots. In the separation mode, the company uses different trucks to fulfil
transportation for local and international markets. The operation is shown in Fig. 1.

The internal transportation (transportation for the domestic market): a truck departs from the truck depot and picks up freight
from the suppliers. Then, the truck drops the freight off at retailers and ultimately returns to the truck depot. A truck is allowed to
visit several customers if the upper bound distance constraint is satisfied. In the lower part of Fig. 1, drayage trucks depart from the
truck depot, then pass the container depot and pick up empty containers. Note that an empty container must be picked up before the
truck drives to the shipper since a container is needed to load the freight destined for export. Then, each truck, after picking up a
container, will load the export freight at the shippers, and finally drops off the full containers at the terminal. In this situation, the two
types of transportation operate separately, which increases managerial complexity and transportation costs. According to Smilowitz
(2006), the efficiency of a system can be improved if more tasks are present in a single system, thus generating more opportunities
both for covering two flexible tasks with a single joint execution and eliminating trucks invalid transportation (Zhang et al., 2011b).
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Based on that, we intend to integrate internal and external transportation. As shown in Fig. 2.
Two scenarios may exist after integrating the two logistics systems. In Fig. 2, the drayage truck departs from the truck depot and

picks up an empty container at the container depot, then drives to supplier to load the freight and transport it to the retailer. After
finishing the internal transportation task, the drayage truck might drive to shipper or supplier to execute the next task if the upper
bound of the distance constraint is not exceeded. In the second scenario, the drayage truck departs from the truck depot for the
container depot. After picking up an empty container, the drayage truck drives directly to shipper and then delivers the freight to the
terminal. If the upper bound on distance permits, the drayage truck can continue to execute other tasks, driving to the container
depot to pick up another empty container for the next shipment or return to the truck depot. During the entire operation process, the
information of drayage truck will transfer to the intelligent decision center and the decision information will be returned to truck. In
the integrated situation, we use the homogeneous truck (the drayage truck) for integrated transportation, which can dramatically
reduce total costs.

Fig. 1. Current situation.

Integrated
Decisions

Container
Depot

Retailer

Sea/dry Port
Terminal

Drayage Truck
Depot

Efficiency
Evaluation

LearningKnowledge
Base

Integrated Mode

Intelligent Decision Making Module

Suppliers

Shippers

Internal Market

External Market

Fig. 2. Optimized operation process.
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4. Modelling

4.1. Assumptions and notations

(1) Transportation information such as locations and the orders of suppliers, retailers, shippers, and terminals is already known. The
number of trucks and the upper bound of the distance traveled by drayage truck is already given.

(2) The location set is divided into several subsets:0, V V V V, , ,1 2 3 4 and V5. The truck depot is denoted by 0. V1 represents the set of
container depots, V2 is the set of suppliers, V3 represents the set of retailers, V4 denotes the set of shippers, and V5 represents the set
of terminals. Furthermore, V = 0, V V V V, , ,1 2 3 4 and V5.

(3) For each internal transportation task, freight is transported from start point to the corresponding endpoint; for example, the
freight from the supplier should be transported to the corresponding retailer. We do not consider cases such as one-to-many or
many-to-one transportation.

(4) For external container transportation, each container loads the freight required by one overseas customer, regardless of whether
doing so entails an instance of less than container load (LCL).

(5) The truck departs from the truck depot and then needs to return to the truck depot after completing the transportation task or
when it reaches the upper bound on distance.

(6) The number of empty containers is infinite, and the truck picks up empty containers from container depot when needed.

The following notations are used in Table 1.

4.2. Mathematical modelling

We describe in detail our model to quantitatively characterize integrated internal and external container transportation under the
separation mode.

= +total cost c K c x d Mmin _
k i V j V

ijk ij ij1 2
I (1)

=x i V V V V1,
k j V

ijk 2 3 4 5
I (2)

=x k1,
j V

jk
{0}

0 I

(3)

=x k1,
i V

i k
{0}

0 I
(4)

Table 1
Notations.

Sets and indices

V1 set of the container depot, = …V n{1, 2, , }1 1
V2 set of suppliers, = + + … +V n n n n{ 1, 2, , }2 1 1 1 2
V3 set of retailers, = + + + + … +V n n n n n n{ 1, 2, , 2 }3 1 2 1 2 1 2
V4 set of shippers, = + + + + … + +V n n n n n n n{ 2 1, 2 2, , 2 }4 1 2 1 2 1 2 3
V5 set of terminals, = + + + + + + … + +V n n n n n n n n n{ 2 1, 2 2, , 2 2 }5 1 2 3 1 2 3 1 2 3
V set of all points, including all types of set have mentioned before,and these sets are completely separate. =V V V V V V{0, , , , , }1 2 3 4 5 , where 0

represents the truck depot
i j, nodes, i V j V,
i nodes, i V i, is not the same point as i
I set of trucks, = … K{1, 2, , }I

k truck, k I

Parameters
c1 fixed cost
c2 variable cost
L upper bound on distance
dij distance from i to j
Mij penalty matrix

Decision variable
xijk truck k travels from i to j
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=x x k j V, , {0}
i V

ijk
i V

ji k I
(5)

d x L k,
i V j V

ij ijk I
(6)

As shown in Eq. (1), the objective minimizes the overall integrated transportation costs, which include fixed and variable costs of
internal and external container transportation. c1 is the fixed cost for each drayage truck, K is the given number of trucks, both of
which are given parameters, and c K1 represents the fixed cost of integrated container transportation. Similarly, the second part of Eq.
(1) (i.e., c x d Mk i V j V ijk ij ij2 I

) represents the variable cost of this integrated transportation, where c2 is the variable cost per
unit distance, and a given parameter; I represents the truck set, = … K{1, 2, , }I ; the vertex set V includes the truck depot (denoted by
0), the set of container depots (V1), the set of suppliers (V2), the set of retailers (V3), the set of shippers (V4), and the set of terminals (V5),
i.e., =V V V V V V{0, , , , , }1 2 3 4 5 ; the independent variable xijk is a boolean variable that is equal to one if the k-th truck departs from point
i to point j (i V j V, ), zero otherwise; dij is the distance from point i to point j; and =d dij ji, because for a specific internal or
external trip, the start point may be the point i and the endpoint may be point j, but for another trip, the start point and the endpoint
are vice versa, i.e., the start point is the point j and the endpoint is point i. The above symbols in Eq. (1) are basically consistent with
the traditional vehicle routing problem, but these expressions cannot describe the difference between our proposed integrated
transportation model and the existing vehicle routing problem (VRP), such as traditional VRP or the vehicle routing problem with
simultaneous pickup and delivery (VRPSPD). Therefore, we introduce a new punishment Mij parameter to portray the directionality
of transportation. When the drayage truck is allowed to travel from point i to point j M, ij equals 1; otherwise Mij is M. This parameter
will be introduced in detail in Section 4.3.

Some constraints are basically the same as those in the traditional VRP and the VRPSPD. Eq. (2) ensures that each point, re-
presenting suppliers, retailers, shippers or terminals, is assigned to exactly one truck, i.e., for any endpoint i (i.e.,
i V V V V2 3 4 5), only one truck departs from this point, and the independent variable xijk should satisfy Eq. 2. Eq. (3) ensures
that each truck departs from the truck depot once and returns to the depot after servicing the last customer demand once; therefore,
x jk0 and xi k0 should satisfy constraint (3) and constraint (4), respectively. From constraint (3) and constraint (4), we obtain that

= =x x K .
k j V

jk
k i V

i k
{0}

0
{0}

0
I I

In Eq. (5), i and i both belong to V, but they are different points. Eq. (5) is a flow equilibrium constraint that represents every point j
has the same in-degree and out-degree. According to Eq. (6), based on firms’ actual operating needs, each truck should return to the
truck depot before its driving distance reaches the upper bound (Avella et al., 2004; Laporte et al., 1984). Therefore, the constraint
(6) should be satisfied, where L is the upper bound on the distance traveled by trucks.

4.3. Penalty matrix (Mij)

This subsection further expands on the penalty matrix (Mij). Although the distance matrix (dij) in the traditional vehicle routing
problem can reflect the directionality (one or two way roads) of roads, it cannot express two specific container trips (plans) moving in
the opposite direction, i.e., the start point of one container trip (plan) is the other’s endpoint, and vice versa. In other words, the
traditional VRP cannot describe transportation from a specific start point to an endpoint. Furthermore, the VRPSPD can reflect this
pickup and delivery problem between a given start point to the corresponding endpoint (Toth et al., 2014), such as internal trans-
portation. However, the VRPSPD cannot describe external container transportation because the truck needs to load the container at
the container depot before picking up the freight at the start point of the external container trip, and the newly added container
loading operation exceeds the scope of the VRPSPD. Therefore, the penalty matrix (Mij) is proposed to describe integrated internal
and external container transportation.

The penalty matrix (Mij) is defined as follows:

=M

i and j V
i V and j V V
i V and j V
i V and j V V
i V and j V
i V and j V

M otherwise

1, 0
1,
1,
1,
1,
1, {0}

,

ij

1

1 2 4

2 3

3 2 4

4 5

5 1

(7)

where the parameterM is penalty (a very large positive number). Case one in Eq. (7) indicates that a drayage truck departing from the
truck depot (0) must drive to the container depot (V1). In case two, a truck departing from the container depot (V1) must drive to the
supplier (V2) or the shipper (V4). In case three, a truck departing from the supplier (V2) must drive to the retailer (V3). Case four shows
that a truck departing from the retailer (V3) can drive to another supplier (V2) or the shipper (V4). In case five, a truck departing from
the shipper (V4) must drive to the terminal (V5). In case six, a truck departing from the terminal (V5) can drive to the truck depot (0) or
the container depot (V1). Other cases are not feasible or allowed, therefore penalties need to be imposed. To provide further detail, the
penalty matrix (Mij) is explained through a specific example. Suppose that the number of elements in the sets V V V V, , ,1 2 3 4 and V5 is
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one. These five points are denoted by 1 to 5 in order, and 0 represents the truck depot. Therefore, the penalty matrix (Mij) of this
sample is shown in Table 2.

The reason that the penalty matrix (Mij) is proposed to describe the directionality of the integrated internal or external trans-
portation is that (1) it simplifies the mathematical description of our established model; (2) it avoids conflicts between the non-
directionality of the road and the directionality of the trip (plan); and (3) it does not impose an additional burden on the calculation
of the objective function, because d Mij ij in Eq. (1) can be considered as a whole, which is the Hadamard product of the distance matrix
(dij) and the penalty matrix (Mij).

5. Solution method

In the previous section, we presented a customized algorithm to quantitatively solve the proposed mathematical model for
integrated internal and external container transportation. This model is a special case of the VRP, which is NP-hard (Lenstra and Kan,
1981). Therefore, our model is an NP-hard problem and requires a heuristic solution (Russell, 1995).

Lawrence and Mohammad (1996) first applied the genetic algorithm to effectively solve the traditional VRP. Introduced by
Holland in 1975 (Holland, 1975; Cheng et al., 2018), the genetic algorithm has a key characteristic to update solutions (or chro-
mosomes) through selection, crossover and mutation. The genetic algorithm with the natural number coding method is now a
mainstream solution method for the VRP (Cheng and Yu, 2013). Although it can solve the proposed mathematical model, its com-
putational efficiency is extremely poor. We will further explain the reason of such inefficiency through the example presented in
Section 4.3.

For the permutation of five different types of points, there are 120 different possibilities. However, among the 120 possibilities,
only two are feasible solutions of the proposed mathematical model, i.e., “0 1 2 3 4 5 0” and “0 1 4 5 2 3 0”(see
Fig. 3). Therefore, it is necessary to improve the coding method of the genetic algorithm according to the characteristics of the
integrated internal and external container transportation problem.

Compared with the traditional VRP, the central problem studied in this paper possesses two major characteristics. Firstly, for each
internal or external container trip, there is a unique start point and a unique endpoint. The transportation direction is one-way and
runs only from the start point to the endpoint as shown in Eq. (7). The start point and the endpoint of a trip (plan) can be considered
as a whole and represented by a natural number. Therefore, as long as the number of trips (plan) is given, the specific transportation
route can be uniquely determined. Secondly, due to the separable characteristics of containers and trucks, the drayage truck must
load the container at a container depot before the trip (plan) is implemented, i.e., a truck must visit the container depot set (V1) before
visiting the set of suppliers (V2) or shippers (V4). Based on these two characteristics, the genetic algorithm with an improved coding
method is proposed, which can be briefly summarized as follows:

Step1: Data reading. The distance matrix and all trips (plans), which include the set of suppliers, retailers, shippers and terminals of
the internal and external container transportation systems are input.

Step2: Population initialization. A population is generated based on the improved coding method. The population can be mutated
into hundreds of chromosomes, and each chromosome represents a feasible solution of the integrated internal and external
container transportation.

Step3: Fitness value calculation. According to the transportation (plan) data that have been read, each chromosome is compiled into
the transportation routes of all trucks, and then the fitness value (also called the objective function value) of the transportation
routes of all trucks is calculated according to Eq. (1).

Step4: Population update. The population evolves through selection, crossover, mutation and re-inserting.

Table 2
A specific example of the penalty matrix (Mij).

0 1 2 3 4 5

0 1 M M M M M
1 M M 1 M 1 M
2 M M M 1 M M
3 M M 1 M 1 M
4 M M M M M 1
5 1 1 M M M M

Fig. 3. All feasible solutions of the example in Section 4.3.
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Step5: If the continuously unchanged number of the minimum fitness value in the population or the total number of all iterations
reaches the given upper bound, the algorithm terminates. The latest minimum fitness value in the population and its cor-
responding chromosome are considered the outputs.

The main steps of the algorithm in our model are provided in Fig. 4.
In what follows, we will further discuss the population initialization in Step 2 and the crossover and mutation in Step 3, which are

related to the improved coding method and different from those of the genetic algorithm with the natural number coding method.

5.1. Population initialization

Due to the directionality and uniqueness of the trip (plan), the start point and endpoint of the internal or external container
transportation (plan) can be represented by an order number, which can reduce the dimensionality of solutions and simplify the
structure of solutions. Suppose that the number of trucks is K; the number of unique elements in set V1 is n1; the number of the internal
order is n2, which is equal to the number of the V2 and equal to the number of set V3; and the number of external orders is n3, which is
equal to the number of set V4 and equal to the number of set V5. Next, a truck depot is denoted by 0; a container depot is represented
by a natural number between 1 and n1; an internal order is denoted by a natural number between +n 11 and +n n1 2; and an external
order is represented by a natural number between + +n n 11 2 and + +n n n1 2 3. We use an example to illustrate the process of solving
the genetic algorithm. In the following process, the number 0 represents the truck depot, and 1 represents container depot. We have
three internal orders, coded by the numbers 2, 3, 4 and two external container orders which are recorded as the numbers 5 and 6.
There are 3 trucks available for these tasks. Generate a feasible solution (i.e., a chromosome in the population) as follows:

Step1: Order sorting. A random permutation of natural numbers from +n 11 to + +n n n1 2 3 is generated, which contains n2 internal
orders and n3 external orders, as shown in Fig. 5(a).

Step2: Truck allocation. In this random permutation of length +n n K, 12 3 locations are randomly selected from +n n 12 3 gaps.
Then, K 1 zeros are inserted into these locations, and two zeros are added to both ends of this random permutation. A vector
of length + + +n n K 12 3 is obtained, which contains +K 1 zeros. The sequence of natural numbers between any two adjacent
zeros in this vector is the order fulfilment process of a truck, as shown in Fig. 5(b).

Step3: Allocating container depots. In the vector of length + + +n n K 12 3 obtained in Step 2, insert a natural number between 1 and
n1 after the zero because both internal and external orders need to be transported in empty containers. Moreover, since a
container containing freight will be left at the terminal, if a drayage truck continues to execute another task, it needs to pick
up another empty container. Traveling in the opposite direction, a number that represents a container depot needs to be
inserted between the external order and another number except zero. Because the total number of the marked natural
numbers is n3, the number of newly inserted natural numbers is n3. Finally, a vector of length + + +n n K2 12 3 is generated, as
shown in Fig. 5(c).

The initial feasible solution generated in this section satisfies the requirements for the integrated internal and external container
transportation problem and permits a more flexible extraction of containers, as long as the transportation is container-based.
Moreover, it reflects the integration optimization of internal and external transportation, as processing the location in the form of the
order makes it easier to achieve integration optimization.

5.2. Crossover and mutation

Crossover and mutation are important operations in the genetic algorithm and can help to maintain the diversity of the population
and avoid falling into local optimums (Cuevas et al., 2002; Bajpai and Kumar, 2010). However, their designs are directly related to
the structure of the initial solution (i.e., a chromosome in the population), and existing crossover and mutation operators, such as
partially mapped crossover, order crossover and position-based crossover, cannot guarantee that each chromosome in the offspring
population is a feasible solution.

First, the steps of a specific crossover operator in our proposed algorithm are as follows:

Step1: Two chromosomes are randomly selected from the current population, and they are denoted Parent Chromosome 1 and Parent
Chromosome 2, as shown in Fig. 6(a).

Step2: A gene fragment between two adjacent zeros is randomly selected from Parent Chromosome 1, as shown in Fig. 6(b).
Step3: The genes, which are less than or equal to n1 and appear in the selected gene fragment from Step 2, 1 are removed from the

copy of Parent Chromosome 2, as shown in Fig. 6(c).
Step4: In the remaining genes in Step 3, K 2 locations are randomly selected from the gaps. Next, K 2 zeros are inserted into

these locations, and two zeros are added to both ends of these genes, as shown in Fig. 6(d).
Step5: Then, the genes (i.e., natural numbers) greater than +n n1 2 are marked. Finally, a natural number between 1 and n1 is inserted

after each zero and between any two adjacent transportation tasks, as shown in Fig. 6(e).

1 The genes that are less than or equal to n1 represent the truck and container depot.
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Fig. 4. Flowchart of the Genetic Algorithm.

Fig. 5. Population initialization.
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Step6: A new chromosome is generated by combining 0, the selected gene fragment in Step 2 and the genes obtained in Step 4, which
are denoted Offspring 1. Offspring 2 can be obtained in a similar way, as shown in Fig. 6(f).

Second, the steps of a specific mutation operator are as follows:

Step1: A certain chromosome is selected from the population with a very low probability, as shown in Fig. 7(a)
Step2: The genes that are less than or equal to n1 are removed from this selected chromosome, as shown in Fig. 7(b)
Step3: From the remaining genes from Step 2, two genes are randomly selected, and their locations are exchanged.
Step4: Step 2 and Step 3 of generating a feasible solution are performed on the genes obtained in the previous step, as shown in

Fig. 7(c)

Through the mutation operation, some genes on the chromosomes are changed, which means that the current feasible solution has
changed. Through the mutation operation, the obtained solution can emerge from the local optimal solution, and then we may find a
better global solution. By decoding the solution represented by the order number and querying the location and order matrix, we can
obtain a sequence of the optimal solution represented by location.

6. Case study

6.1. Data

The purpose of this research is to solve the integrated internal and external transportation problem for a multinational group that
designs and sells ready-to-assemble furniture. We acquired transportation information from a company in the Shanghai area, in-
cluding 444 internal transportation and 444 external container transportation tasks. Data preprocessing is performed to ensure that
the data are valid through the following calculation.

Fig. 6. Crossover.

Fig. 7. Mutation.
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6.2. Analysis of results

As mentioned above, the company separately operates the internal transportation and the external container transportation, while
our approach optimizes the transportation logistics by integrating internal and external container transportation with the separation
mode. When comparing the optimal result that we obtained with the current situation, we find that we can achieve a 16.80%
improvement. To obtain the optimal solution, we set various parameters, including the number of trucks (k), an upper bound on
distance (L) and the ratio of fixed to variable costs (w). We assume that the variable cost is equal to 1 unit. The results show that when
k is 390, L is 1320 km and w equals 0, the optimal result is 182773.11. Under the same setting of cost parameters, the company’s cost
under the status quo is 213523.9. Therefore, the result achieves 16.80% optimization when the unit cost is equal to 1. Moreover, in
reality, the unit cost is larger than the value we assumed, meaning that our method can achieve a further improvement in the real-
world case.

To further verify our approach, we apply it to optimize the current situation without integration. The results show that our
approach is also appropriate for the problem without integration, which achieves optimization results of 19.39% and 7.16% for
internal and external container transportation, respectively. It demonstrates that our proposed method can significantly reduce
transportation costs. However, integrated transportation is better than non-integrated transportation. Our results reveal that in-
tegrating internal and external transportation can save approximately 2.4% more costs than when applying our method to two types
of transportation. Fig. 8 depicts the results for the separate and integrated optimization.

As Fig. 8 shows, by using our methods, we can reduce costs when internal and external container transportation are considered
separately, while adopting the integrated approach can achieve a further total cost savings.

6.3. Sensitivity analysis

In this paper, three key parameters are involved: the number of trucks (k), the upper bound on distance (L) and the ratio of fixed
to variable costs (w). To explore the parameters’ effects on total costs, the values of the other two parameters are fixed and the
influence of the third, remaining parameter on the total cost is explored.

The relationships between w and L and totalcost are shown in Fig. 9(a), (b) when K = 440. The vertical axis represents the
totalcost. In Fig. 9(a), the horizontal axis represents the different values of w. Different lines represent different results under different
values of L. The totalcost increases in w, which means that fixed and variable costs significantly influence the totalcost because w is
equal to fixed cost over the variable cost. In fact, w has an approximately linear relationship with totalcost . According to the objective
function Eq. (1), w is a coefficient. Thus, as w increases, the total cost also increases. Therefore, it is meaningful for enterprises to
control their fixed and variable costs, especially their fixed costs. The different lines overlap, which means that L have no obvious
effect on totalcost when k is fixed. We observe the same tendency in Fig. 9(b): as L increases, the totalcost remains constant after a
slight initial drop. Regarding the different lines, which refer to different values of w, they share the same slope.

Second, we analyse the effect of w and k on totalcost when L is equal to 1320 km in Fig. 9(c), (d). In Fig. 9(c), the horizontal axis
represents k. It is clear that totalcost increases when the number of trucks (k) increases, but the trend is not obvious. In Fig. 9(d), the
horizontal axis represents the value of w, and the vertical axis represents the totalcost . The different lines reflect different values of k.
When we increase w totalcost, also increases, which is in accord with Fig. 9(a).

We explore the relation among k L, and totalcost in Fig. 9(e), (f) when w equals 0. In Fig. 9(e), we find that L affects totalcost when
k is limited. When k is small, along with an increase in L, the totalcost decreases rapidly. When L is large enough, providing more
trucks reduce the cost slightly. In Fig. 9(f), totalcost is increasing in k, so using a reasonable number of trucks is necessary.

Fig. 8. Results.
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Ultimately, our analysis reveals that the w has a negative effect on totalcost. Regarding k and L, when there are enough trucks,
increasing the upper bound on distance contributes little to cost savings, and vice versa. Thus, the company need to take more factors
into account when it selects the proper values of k and L. Increasing the duration of drivers’ trips does not necessarily reduce the total
cost.

Fig. 9. The effect of different parameters on total costs.
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6.4. Influence of different degrees of integration

Moreover, we explore the influence of different degree of integration, which means integrating different numbers of internal and
external orders. Specifically, the cases that we studied include 50 internal orders and 350 external orders, 100 internal orders and 300
external orders, 150 internal orders and 250 external orders, 200 internal orders and 100 external orders and 250 internal orders with
150 external orders, which represent integration percentages of 12.5%, 25%, 37.5%, 50% and 62.5%, respectively.

In Fig. 10, the abscissa represents different degrees of integration, while the ordinate represents the optimization percentage.
When the degree of integration increases, the optimization percentage also increases, which means that when more internal orders
involved, greater optimization can be achieved when the total number of orders is fixed. Furthermore, when the degree of integration
is high, the growth rate of the degree of optimization slows. When the numbers of internal and external orders are nearly equal, the
optimization percentage increases sharply. Thus, the company should choose a reasonable number of orders to optimize.

7. Conclusion

In this paper, we studied an intelligent logistics problem of an integrated internal and external transportation with the separation
mode. To minimize the total cost in the operations process, we developed a novel model that integrates the internal and external
container transportation problems by dividing customer points into different subsets and proposing a special penalty matrix. A
customized genetic algorithm was proposed to solve the problem. Based on the instances of real-life data on 888 orders, the proposed
method helps to reduce the overall cost by 16.8%. We also applied this method to optimize internal and external transportation,
respectively. Although considerable optimization improvement may be achieved by separately applying the approach to two
transportation situations, the results from the intelligent integrated model renders better performance. Sensitivity analysis was
conducted by comparing the impacts of the three parameters: ratio of fixed to variable costs (w), number of drayage trucks (k), and
upper bound of distance (L). The results show that the total cost increases significantly by w. Secondly, when number of trucks k is
sufficient, increasing upper bound of distance L contributes little to cost savings and vice versa, meaning that there is trade off
between k and L. We also conducted multiple rounds of calculation with different numbers of internal and external orders, to
represent varying integration levels.

The research problem that we studied in this paper could not only help the practitioners to save logistics cost but also improve
their business processes when both internal and external demands exist. To be more specific, the proposed model can help finding the
optimized number of trucks and the upper bound of distance that would jointly affect the total cost. As the result, increasing the upper
bound of distance may not lead to cost reduction. From the point of view of managing the fleet drivers’ jobs, therefore, setting a
reasonable upper bound of distance can help the company to meet its maximum work-duration policy for the drivers, and in the
meanwhile help to minimize the total cost. From the point of view of transportation system management, integrated transportation
can continuously help saving the system management costs through the self-learning adaptive decision support mechanisms.

Future research can be conducted to extend the separation mode problem, especially by considering more factors that exist in the
integrated internal and external transportation system. In general, the separation mode allows drayage trucks to travel to another
point while the container is in the process of loading/unloading, conforming to more practical scenarios. The research problem
becomes more realistic but complex when the uncertainty of traffic conditions and road network information are taken into account.
In addition, Artificial Intelligence(AI) is getting more and more importance in modern business operations (Luo et al., 2019) and
large-scale numerical computing capabilities have become available. Therefore another future research of this topic can be directed
to the continuous investigation of more enabling technologies and their data analytics mechanisms.

Fig. 10. Influence of different degrees of integration.
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