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A B S T R A C T   

Generation of electricity comes with the emission of toxic gases into the atmosphere by the fossil fueled gen
erators. Along with the promotion in the utilization of renewable energy sources (RES), it is also the duty of the 
power engineers to arrive at a compromised solution such that less emission of toxic gases occurs with economic 
generation of electricity. This paper proposes a balanced trade-off method for solving environment constrained 
economic dispatch (ECED) problems. A novel comparative analysis is performed among proposed ECED method 
with existing price-penalty-factor (PPF) and fractional programming (FP) methods for solving combined eco
nomic emission dispatch (CEED) problems on a 3-unit dynamic test system to sort out the method, which yields a 
better trade off solution between generation cost and pollutants emitted. An algorithm, following the hunting 
strategy of wolves, is improvised by incorporating strategies from population-based sine-cosine algorithm along 
with position updating methods of crows to form a robust hybrid algorithm, which was used as the optimization 
tool for the study. Involvement of RES diminished the generation cost to 5.5% for both economic dispatch and 
PPF based CEED, and 6.5% decrease in emission of pollutants was observed due to the same. The generation cost 
and amount of emitted pollutants, evaluated using proposed ECED approach, were much closer to the economic 
dispatch and emission dispatch values respectively compared to PPF based and FP based CEED solution. 
Furthermore, statistical analysis endorses the superiority of the proposed hybrid optimizer over other algorithms 
presented in the state-of-art literature.   

1. Introduction 

In the field of electricity industries, the efficacious and optimal 
operation and planning of electric power generating systems is of utmost 
importance. Problems based on cost efficient load dispatch (Economic 
Load Dispatch, ELD) are the most concerning issues in the field of control 
and operation of power system. Power system optimization problems 
employing ELD helps us determine the most appropriate, flawless and 
cost-effective operation by regulating the output of various generating 
units supplying the load demand. The sole ambition of ELD is reduction 
of the overall cost related to generation of power without violating any 
constraint. 

On the basis of the power demand, generally referred as load, eco
nomic dispatch problems are broadly categorized into two parts: Static 
ELD, where the load demand is fixed for large intervals of time, which 
results in the fixed generator outputs for the duration in case of static 
load economic dispatch. The sole purpose is to obtain the minimum cost 

of generation and transmission, for every epoch of time, such that the 
total power generated can be exactly equal to the power required 
without violation of any constraint; Dynamic ELD, where the demand of 
the power system is consistently varying due to which the generators 
need to correspondingly adapt. In other words, with the increase in the 
load demand, the generator output needs to be increased and vice-versa. 
Thus, in dynamic load dispatch, the scheduling of generators committed 
to the grid is done as per the varying load at regular intervals of time 
with the intention of least cost of generation. 

However, emission problems corresponding to the fossil fuels-based 
power plants cannot be neglected. With increasing environmental 
concern, it is our duty to not just optimize the operation of these power 
plants for our economic benefits but also, tackle the increasing emission 
problems as well. The major portion of the pollution is governed by the 
operation of thermal power plants which utilize fossil fuels for power 
generation. To deal with these serious environmental problems, 
Distributed Generation (DG) methodology is also adopted. DGs are 
combination of small power plants along with various other small scale 
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renewable energy sources which include wind turbine (WT), photovol
taic (PV) systems, Diesel engine, etc., which are installed at location near 
to user end. These help in reducing transmission losses due to reduction 
in the distance between the user and the plant and reduce environmental 
degradation as the load is now shared among various generating units, 
including renewable sources of energy. Despite of the aforementioned 
benefits of the DGs, issues like reliability and stability due to their large- 
scale incorporation cannot be neglected. To eliminate the issues related 
to DGs, the concept of microgrid was coined which provides the ad
vantages of DGs and reduces their negative impact. 

Every utility tries to fulfill the load demand with least cost of gen
eration as well least value of emission. Being contradictory to each 
other, it is not possible to obtain, at the same time, the least value of both 
generation as well as emission. This heads to the concept of Combined 
Economic and Emission Dispatch (CEED). Unlike ELD, where the sole 
target is to minimize the cost of generation, the objective of CEED in
cludes the concerns regarding pollution and emission along with the aim 
to minimize the overall cost. These calls, for certain rules and regula
tions, that need to be followed by both private and government firms, e. 
g., to reduce the various toxic effluents. 

Ma et al. (2017) propose load dispatch model for charging plug-in 
electric vehicles to obtain the reduced cost of generation and environ
mental emissions. Research was carried on three case studies: 6-unit 
without PEV; 6-unit with PEV, and; 10-unit with PEV. Levenbergh 

Marquardt Back-Propagation Algorithm (LMBP) based Artificial Neural 
Network (ANN) was used by Daniel et al. to solve Dynamic Economic 
Load Dispatch (DELD) problems (Daniel et al., 2018). Tests were carried 
on 9 generating unit considering ramp rate limit constraints (RRL). 
Hybridized algorithm constituted with the amalgamation of Artificial 
Algae Algorithm (AAA) and classical Simplex Search method (SSM) 
having dynamically tuned parameters was proposed by Kumar and 
Dhillon (2018), where AAA executes overall optimization while SSM 
searches locally. The proposed algorithm was applied on various test 
systems, considering 13 generating units, 40 generating units and 80 
generating units and the effects of Valve Point Effects (VPE), 140 
generating units and the prohibited operating zones (POZs) and VPE and 
40 generating units with VPE and transmission losses. Lokeshgupta and 
Sivasubramani (2018) propose Demand Side Management (DSM) tech
nique to solve optimization problems considering time varying emission 
dispatch (MODEED). The DSM approach is based on day ahead load 
shifting and tested on 6 units considering, ramp rate limits, coefficients 
related to fuel and emission and 24 h forecasted demand considering 
different cases using DSM. DELD problems considering VPE is solved 
using improved PSO (IPSO), proposed by Yuan et al. (2009). The 
inequality constraints are handled using feasibility-based selection 
technique, and power balance constraint using heuristic strategies 
without use of penalty factors. Tests were performed on 10- generator 
system with cases of inclusion and exclusion of transmission losses and 

List of abbreviations 

AAA Artificial Algae Algorithm 
ANN Artificial Neural Network 
BBO Biogeography Based Optimization 
CCSA Chaotic Crow Search Algorithm 
CEED Combined Economic Emission Dispatch 
CHP Combined Heat and Power 
CSA Crow Search Algorithm 
DE Differential Evolution 
DELD Dynamic Economic Load Dispatch 
DG Distributed Generation 
DP Dynamic Programming 
DSG Diesel Generator 
DSM Demand Side Management 
ECED Environmental Constrained Economic Dispatch 
ELD Economic Load Dispatch 
ESS Energy Storage System 
EV/PEV Electric Vehicle/Plug-in Electric Vehicle 
FC Fuel Cell 
FP Fractional Programming 
GA Genetic Algorithm 
GWO Grey Wolf Optimizer 
HMGWO Modified Grey Wolf Optimizer Sine Cosine Algorithm 

Crow Search Algorithm 
HSA Harmony Search Algorithm 
IFWA Improved Fireworks Algorithm 
ISA Interior Search Algorithm 
KHA Krill Herd Algorithm 
LMBP Levenbergh Marquardt Back-Propagation 
LV Low Voltage 
MG Microgrid 
MO-DE Multi-Objective Differential Evolution 
MODEED Multi-Objective Dynamic Economic Emission Dispatch 
MO-NN Multi-Objective Neural Network 
MT Micro turbine 
POZ Prohibited Operating Zone 
PPF Price penalty factor 

PSO Particle Swarm Optimization 
PV Photo Voltaic System 
RES Renewable Energy Sources 
RRL Ramp rate Limits 
SCA Sine Cosine Algorithm 
SSM Simplex Search Method 
VPE Valve Point Effect 
WOA Whale Optimization Algorithm 

List of symbols 
ECD Economic dispatch 
EMD Emission dispatch 
j, n Index representing generators 
t Index representing time period 
a, b, c Cost coefficients 
x, y, z Emission coefficients 
G Generators 
ECED Environmental constrained Economic Dispatch 
max, min Maximum, minimum values 
μ Weightage coefficient 
CPI Cost Performance Index 
EPI Emission Performance Index 
D Load Demand 
UP Utilization Percentage 
un Uncertainty 
fc Forecasted 
PV Power output from photo voltaic system 
W Power output from Wind system 
n1, n2 Normally distributed random numbers 
α, β, δ, Ω Types of Grey Wolves 
P Distance among wolves 
Y Position of Wolves 
R, Q, a GWO coefficients 
iter, max_iter Iteration, maximum number of iterations 
fl Flight Length 
AP Awareness Probability 
S Solution Set  
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tripled ten-unit system to obtain 30 units data. Xu et al. (2014) 
compared Genetic Algorithm (GA) and Dynamic Programming (DP) for 
ELD of 26 hydro units of the three Gorges Reservoir. Hybridized Bac
terial Foraging (BF) algorithm with simplified swarm optimization 
combined with opposition-based initialization and new mutation oper
ator is proposed by Azizipanah-Abarghooee (2013), and tested on test 
systems comprising different generators sets: 5 units, 10 units, 30 units 
and 100 units, considering POZs as well as VPE. Modified group search 
algorithm is presented by Daryani and Zare (2018) for solving problem 
based on the combination of economic and emission dispatch on IEEE 30 
bus system with cases of inclusion and exclusion of system loss along 
with the other constraints. Solution to stochastic DELD system incor
porating WT and PV based generation systems by Improved FireWorks 
Algorithm (IFWA) is presented by Jadoun et al. (2018). Table 1 shows a 
summarized of the state of the art in economic emission dispatch for 
dynamic systems. The Table is dissected with respect to the optimization 
algorithms used, dimension of the test system, and type of RES imple
mented and year of publication. 

1.1. Research gap and objective of the paper 

A detailed in-depth literature review performed above highlights the 
innovative research going on with respect to CEED problems on dynamic 
system considering various test systems and entities. However, it was 
also noticed that every research article emphasized on a particular 
multi-objective optimization algorithm to perform a fixed type of CEED 
on dynamic test systems. Most of the papers are based on the pareto- 
front using multi-objective technique of performing CEED. The litera
ture review shows that there is a gap in a fair comparative analysis 
among two or more methods of CEED, and the reason of choosing the 
multi-objective type over the others is not studied enough. 

The main objective of the paper is the production of electricity power 

in a way such that the generation cost is minimized and the atmosphere 
remains clean, i.e., least possible amount of toxic gases is emitted from 
the combustion of fossil fuels by the generators. Three methods of 
combined economic emission dispatch are compared and contrasted 
among themselves to sort out the way, which delivers the better 
compromised solution between minimized generation cost and pollut
ants emission. All the methods are theoretically defined and mathe
matically formulated in the succeeding sections of the paper. 

Recent literature considers algorithms such as Grey Wolf Optimizer 
(GWO), Sine Cosine Algorithm (SCA) and Crow Search Algorithm (CSA) 
in tackling multi-modal and complex optimization problems. The ad
vantages of GWO in a large search space is its outstanding facet, it avoids 
premature convergence, it has lesser number of control parameters and 
gives the same accurate result consistently even after many trials. SCA 
presents the advantage of extraordinary exploration potential, and its 
toggling between sine and cosine functions generates an adequate trade- 
off between diversification and intensification process. While CSA has 
the prominent feature of exploitation potential, which ensures handling 
enormous population size with ease and results in rapid convergence. 
This paper proposed a hybrid of these three algorithms as GWOSCACSA, 
which would ensure adaptation of the best attributes of all the three 
thereby delivering optimal solutions. 

1.2. Contributions 

The main contributions of this paper to the state of the art on CEED 
studied above are listed as follows:  

i. Three different types of CEED methods are studied on a 3-unit 
RES integrated low voltage microgrid systems. 

Table 1 
Recent studies based on economic emission dispatch for dynamic systems.  

Optimization tools used System Description RES Year Ref 

MO-DE with self-adaptive 
parameter 

10 units with EV WT 2020 Qiao and Liu (2020) 

Two stage compensation algorithm IEEE-118 bus test system & provincial power grid WT 2017 Xie et al. (2017) 
Gradient based JAYA Multi-area with 6, 10, 16, 40 & 120 units NA 2016 Azizipanah-Abarghooee et al. (2016) 
Tent-Map DE 6 units and microgrid with ESS WT, 

PV 
2020 Mandal and Mandal (2020) 

BBO 6, 13 & 40 units with TL NA 2012 Rajasomashekar and Aravindhababu 
(2012) 

CSA with PPF 3, 5 units WT, 
PV 

2020 Dey et al. (2020a) 

ISA with PPF 3 units WT, 
PV 

2018 Trivedi et al. (2018) 

Modified HSA with PPF 3 units WT, 
PV 

2018 Elattar (2018) 

WOA with PPF 3 units WT PV 2019 Dey et al. (2019) 
CCSA 6 units NA 2018 Rizk-Allah et al. (2018) 
Dinkebach’s Algorithm 6 units with TL NA 2016 Chen et al. (2016) 
Hybrid GWO-PSO 10 unit- three areas 

40-unit-four areas 
NA 2020 Azizivahed et al. (2020) 

PSO with clone selection 5-unit, 10-unit, 15-unit NA 2020 Qian et al. (2020) 
WOA 5-unit, 10-unit, 30-unit PV, 

WT 
2020 Padhi et al. (2020) 

MO-NN based DE 5, 10, 15 units NA 2018 Mason et al. (2018) 
Ɵ-modified KHA Grid-connected MG with MT, FC, ESS PV, 

WT 
2020 Yin et al. (2020) 

Modified ISA Grid-connected MG with MT, FC, ESS and DSG PV, 
WT 

2018 Rabiee et al. (2018) 

Improved PSO Grid-connected MG with MT, FC, DSG and 3 EVs PV, 
WT 

2018 Lu et al. (2017) 

Improved PSO Grid-connected MG with MT, FC, DSG, EV and Load Variance as third 
objective 

PV, 
WT 

2018 Lu et al. (2018) 

Ɛ-constrained method Grid-connected MG with MT, CHP EV and frequency deviation as third 
objective 

PV, 
WT 

2018 Tabar et al. (2018)  
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ii. A comparative analysis among the three is performed to sort out 
the method that yields the best compromised solution between 
the generation cost and pollutants emitted.  

iii. HMGWO is proposed for the first as the optimization tool for this 
problem, the efficiency and robustness of which is measured and 
compared with original GWO. 

The rest of the paper is presented as follows; Section 2 defines the 
problem formulation; Section 3 highlights the implementation of the 
proposed hybrid algorithm in the current problem; Section 4 gives a 
detail account of simulation results, with the work being concluded in 
Section 5. 

2. Objective function formulation 

2.1. Cost function for DG units 

Fuel comes with a price. Generation cost refers to the cost of the fuel 
utilized (or combusted) by the fossil fueled generator to produce per unit 
of power. The equation of the generation cost function in case of DG 
units is not a linear equation. It is a quadratic equation (Dey et al., 
2020a; Trivedi et al., 2018; Elattar, 2018) represented by equation (1). 

ECD=
∑24

t

∑n

j=1

(
ajGj,t

2 + bjGj,t + cj
)

(1)  

where aj, bj and cj are the cost coefficients, Gj is the power output of jth 
DG unit. Hence, the total cost is ECD, while n is the total number of 
involved DG units. In the case of dynamic economic load dispatch, the 
total cost for 24 h is calculated, where t is indication of hour. 

2.2. Emission dispatch for DG units 

The non-conventional fossil fueled generators emits toxic gases into 
the atmosphere while generating electricity. These toxic gases are usu
ally oxides of carbon, sulphur and nitrogen which are released into the 
atmosphere as dark and dense smoke. Emission dispatch (EMD) is the 
scheduling of the generators in such a way so as to minimize the release 
of this harmful toxic gases. The objective function of emission dispatch 
can be calculated by equation (2) depending on the availability of the 
emission coefficients, 

EMD=
∑24

t=1

∑n

j=1

(
xjGj,t

2 + yjGj,t + zj
)

(2)  

where xj, yj and zj are the emission coefficients, and EMD is the total 
emission (Dey et al., 2019, 2020a; Trivedi et al., 2018; Elattar, 2018). 

2.3. Combined economic emission dispatch using PPF method 

ECD deals with the minimization of the fuel costs, while EMD deals 
with the minimization of the emission of harmful pollutants from the 
conventional fossil fueled generators to the atmosphere. Hence, a 
compromised solution must arrive at that can achieve both reduced fuel 
costs releasing fewer pollutants in the atmosphere. This is achieved by 
formulating a CEED by combining equations (1) and (2) and also the 
Price Penalty Factor (PPF), a parameter used to get a mixed objective 
function involving both ECD and EMD as mentioned in equation (3) 
(Dey et al., 2020a; Trivedi et al., 2018; Elattar, 2018). 

CEEDppf =
∑24

t

∑n

j=1

[(
ajGj,t

2 + bjGj,t + cj
)
+ ppfj *

(
xjGj,t

2 + yjGj,t + zj
)]

(3) 

Various types of price penalty factors (PPF) are given in equations 
(4)–(9) according to references (Dey et al., 2020a) and (Dey et al., 
2019). Here Pmax/min denotes the maximum and minimum values of the 

jth generator. 

ppfj,max,max =
ECD

(
Pmax

j

)

EMD
(

Pmax
j

) (4)  

ppfj,min− min =
ECD

(
Pmin

j

)

EMD
(

Pmin
j

) (5)  

ppfj,max− min =
ECD

(
Pmax

j

)

EMD
(

Pmin
j

) (6)  

ppfj,min− max =
ECD

(
Pmin

j

)

EMD
(

Pmax
j

) (7)  

ppfj,avg =
pfmax,max + pfj,min− min + pfj,max− min + pfj,min− max

4
(8)  

ppfj,com =
pfj,avg

no. of DGs
(9)  

2.4. Combined economic emission dispatch using FP method 

This method considers two different competing and conflicting 
objective functions, comprising of the same decision and control vari
ables and are solved as a ratio of each other. For instance, ECD is 
considered as the economic dispatch equation mathematically expressed 
by equation (1), and EMD is the emission function given by equation (2). 
Then, a compromised solution can be obtained by FP method by mini
mizing the ratio EMD: ECD. This is mathematically expressed by equa
tion (10) (Rizk-Allah et al., 2018; Chen et al., 2016). 

CEEDFP =

∑24

t=1

∑n

j=1

(
xjGj

2 + yjGj + zj
)

∑24

t=1

∑n

j=1

(
ajGj

2 + bjGj + cj
)

(10)  

2.5. Environment constrained economic dispatch (ECED) 

The above two methods of CEED focused on reducing the emission of 
harmful pollutants to the atmosphere. In the process the generation cost 
of the system rises much more than the best value obtained during 
economic dispatch. Rajasomashekar and Aravindhababu (2012) pre
sented a simple equation to bring together two differently aimed 
objective functions and attain a better-quality compromised solution, 
given by equation (11). It depends, whether unimodal or multimodal, 
upon the nature of the economic dispatch and emission dispatch equa
tions expressed in (1) and (2) respectively. 

ECED= μ*
[

ECD − ECDmin

ECDmax − ECDmin

]

+ (1 − μ)*
[

EMD − EMDmin

EMDmax − EMDmin

]

(11)  

where μ lies in the range of 0 and 1, ECDmin is the best value of gener
ation cost obtained by minimizing (1), EMDmin is the best value of pol
lutants emitted obtained by minimizing equation (2), ECDmax is the 
generation cost obtained by substituting the optimal parameters of 
EMDmin in equation (1), EMDmax is the amount of pollutants emitted 
obtained by substituting the optimal parameters of ECDmin in equation 
(2). Results obtained in (Rajasomashekar and Aravindhababu, 2012) 
also points toward three important steps and assumptions as follows: 
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i. It is to be noted that the swift and successful steps to obtain the best 
compromised solution can be attained by setting the value of μ as 0.5, 
i.e., giving equal emphasis to both the objective functions.  

ii. A better quality compromised solution will have the least value of 
absolute difference between cost performance index (CPI) and 
emission performance index (EPI). Equations (12) and (13) expresses 
the formulae of CPI and EPI respectively. 

CPI =
[

ECD − ECDmin

ECDmax − ECDmin

]

*100% (12)  

EPI =
[

EMD − EMDmin

EMDmax − EMDmin

]

*100% (13)    

iii. The better-quality compromised solution will have the value of 
generation cost nearer to ECDmin and amount of pollutants 
emitted nearer to EMDmin. 

2.6. Equality and inequality constraints 

Equations (14) and (15) are the equality constraints for without 
including RES and including RES problems respectively. Equation (16) is 
the inequality constraint restricting the DERs within their limits. 

∑n

j=1
Gj,t =Dt (14)  

∑n

j=1
Gj,t + PRES,t =Dt (15)  

Gj,min ≤Gj ≤ Gj,max (16)  

where Dt is the demand of tth hour, PRES,t is RES output in terms of 
power. 

2.7. Utilization percentage 

The utilization percentage, UP, is given by equation (17) (Kumar and 
Saravanan, 2019; Dey et al., 2020b). 

UP=

∑

t
Gt

j

24*Gmax
j

(17) 

UP is normally used when it is an unclear and confusing attempt to 
represent the hourly outputs of test systems which have larger number of 
DERs. 

2.8. Uncertainty modelling 

Due to the stochastic nature of RES, the day ahead forecasted values 
of the RES are modelled to evaluate the uncertainty in them using 
equations (18) and (19) (Dey et al., 2020b; Jamshidi and Askarzadeh, 
2019; Li et al., 2008): 

PVt
un = dPVun*n1 + PVt

fc

dPVun = 0.7*
̅̅̅̅̅̅̅̅̅
PVt

fc

√ (18)  

Wt
un = dPw*n2 + Wt

fc

dPw = 0.8*
̅̅̅̅̅̅̅
Wt

fc

√ (19)  

where dPVun is the standard deviation of the PV output, PVt
un is the is PV 

output considering the uncertainty, and PVt
fc is the day ahead forecasted 

PV output. Similarly, Wt
un is uncertainty of wind, dPw is standard devi

ation of wind power and Wt
fc is the day ahead forecasted wind output. n1 

and n2 are randomly evaluated normal distribution function with mean 

1 and standard deviation 0. 

3. Hybrid grey wolf optimizers 

The proposed optimization tool for this study is a robust and 
powerful hybrid of modified version of GWO (Mirjalili et al., 2014), SCA 
(Mirjalili, 2016) and CSA (Askarzadeh, 2016). Proposed hybrid, called 
HMGWO, has already outperformed other hybrids and modifications of 
GWO when realised on benchmark functions (Dey and Bhattachar
yyaRamesh, 2021) and have been useful in solving energy management 
and electricity market pricing problems on microgrid systems (Dey 
et al., 2020b; Dey and BhattacharyyaRamesh, 2021; Dey et al., 2020c). 
The mathematical formulation of GWO and HMGWO are detailed below: 

3.1. Grey Wolf Optimizer (GWO) 

GWO is a recently developed optimization algorithm based on the 
hunting behaviour of the wolves. Wolves hunts in packs of 10 or 12. The 
leader wolf is known as alpha (α), and is the most nearer to the prey. 
Alpha is followed by its successor beta (β), responsible for maintaining 
harmony in the group. Then, in hierarchy, comes the delta (δ) wolves, 
which acts as scapegoat. Rest of the wolves are termed as omega (Ω). 
GWO algorithm mainly involves the top three class of wolves for 
searching the best possible solution to an optimization problem. Equa
tion (20) formulates the Manhattan distance between the wolves during 
the hunting strategy. 

P→α =

⃒
⃒
⃒
⃒Q→1.Y

→
α − Y→

⃒
⃒
⃒
⃒

P→β =

⃒
⃒
⃒
⃒Q→2.Y

→
β − Y→

⃒
⃒
⃒
⃒

P→δ =

⃒
⃒
⃒
⃒Q→3.Y

→
δ − Y→

⃒
⃒
⃒
⃒

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(20) 

Equation (21) shows the positing updating formulation of the GWO 
algorithm, 

Y→1 = Y→α − R→1.
(

P→α

)

Y→2 = Y→β − R→2.
(

P→β

)

Y→3 = Y→δ − R→3.
(

P→δ

)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(21)  

Y→(iter+1) =
Y→1 + Y→2 + Y→3

3
(22) 

The value of vectors R and Q can be calculated by equation (Qian 
et al., 2020), 

R→= 2. a→. r→1 − a→

Q→= 2. r→2
(23) 

Mathematically, the value of R converges or diverges the wolves 
towards or away from its prey. The vector ‘a’ changes with respect to 
iteration as mentioned in equation (24) and, thereby, controls the value 
of ‘R’ throughout the search. 

a→= 2*
(

1 −
iter

Max iter

)

(24)  

3.2. HMGWO 

The three major modifications in GWO to formulate HMGWO are 
listed as follows:  

a Involvement of omega set of wolves (Khandelwal et al., 2018).  
b. Tossing the Manhattan distance calculation between wolves with 

sine and cosine functions (Dey and Bhattacharyya, 2019; Dey and 
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Das, 2019; Devarapalli et al., 2020; Devarapalli and Bhattacharyya, 
2020).  

c. Using the CSA strategy of position updating procedure (Dey and 
Bhattacharyya, 2019; Dey and Das, 2019; Devarapalli et al., 2020; 
Devarapalli and Bhattacharyya, 2020). 

The mathematical formulation of MGOWSCACSA are as follows: 

P→α = rand*sin(rand)*
⃒
⃒
⃒
⃒Q→α.Y

→
α − Y→

⃒
⃒
⃒
⃒ if rand > 0.5

P→α = rand*cos(rand)*
⃒
⃒
⃒
⃒Q→α.Y

→
α − Y→

⃒
⃒
⃒
⃒ otherwise

⎫
⎬

⎭
(25)  

P→β = rand*sin(rand)*
⃒
⃒
⃒
⃒Q→β.Y

→
β − Y→

⃒
⃒
⃒
⃒ if rand > 0.5

P→β = rand*cos(rand)*
⃒
⃒
⃒
⃒Q→β.Y

→
β − Y→

⃒
⃒
⃒
⃒ otherwise

⎫
⎬

⎭
(26)  

P→δ = rand*sin(rand)*
⃒
⃒
⃒
⃒Q→δ.Y

→
δ − Y→

⃒
⃒
⃒
⃒ if rand > 0.5

P→δ = rand*cos(rand)*
⃒
⃒
⃒
⃒Q→δ.Y

→
δ − Y→

⃒
⃒
⃒
⃒ otherwise

⎫
⎬

⎭
(27)  

P→Ω = rand*sin(rand)*
⃒
⃒
⃒
⃒Q→Ω.Y

→
Ω − Y→

⃒
⃒
⃒
⃒ if rand > 0.5

P→Ω = rand*cos(rand)*
⃒
⃒
⃒
⃒Q→Ω.Y

→
Ω − Y→

⃒
⃒
⃒
⃒ otherwise

⎫
⎬

⎭
(28) 

Thereafter Y1, Y2, Y3 and Y4 are calculated as shown in equation (29). 

Y→1 = Y→α − R→1.
(

P→α

)

Y→2 = Y→β − R→2.
(

P→β

)

Y→3 = Y→δ − R→3.
(

P→δ

)

Y→4 = Y→Ω − R→4.
(

P→Ω

)

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(29) 

The position updating step of HMGWO is:  

where fl is the flight length of the crows. 

Y→3 =
Y→3 + Y→4

2
(31) 

Awareness probability (AP) acts as a decisive variable to judge the 
involvement of wolves in hunting the prey and obtain the best possible 
solution. AP changes with iterations as mentioned in equation (32).  

AP= 1 −

(
1.01*iter3

Max iter3

)

(32)  

3.3. Analogy relating HMGWO with the dynamic CEED problem 

If T is the time period for optimal scheduling, D is the number of 
DERs involved in powering the microgrid system on which the energy 
management is to be performed, and N is the number of search agents of 
the population, then the matrix depicting the population is given by 
equation (33), wherein every search agent of the population follows the 
system constraints mentioned in equations (2)–(14).   

The position of the wolves is depicted by particles in the population 
matrix which acts the control variables. The distance of wolves from the 
prey is taken as the fitness value for the objective function. Considering 
the proposed work as a constrained minimization approach, the position 
of search agent with least fitness function value is the best solution 
among all search agents in the search space and is termed as χα. 

4. Case studies 

4.1. Overview of the subject test system 

A dynamic test system of 3 fossil fueled generating units are 
considered on which CEED is performed using PPF, FP and proposed 
ECED methods. It is to be noted that the cost and emission equation of 3- 
units contains only quadratic terms and are unimodal in nature. The cost 
coefficients, emission coefficients and the maximum and minimum 
limits of operation of the DERs are shown in Table 2. 

Table 3 shows the load demand of the test system and highlights the 
forecasted values of RES contribution for the system. Uncertainty eval
uations have been done based on these forecasted values based on the 

equations mentioned in Section 2. The cost of the RES were not 
considered for the test system. The optimization was coded and executed 
in a laptop configured with Intel Core i5 8th Gen processor 8 GB RAM on 
a MATLAB R2013a software. The population size of the optimization 

S=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

S1
1,DER1, S2

1,DER1, ... ST
1,DER1, S1

1,DER2, S2
1,DER2, ... ST

1,DER2...S
1
1,DER D, S2

1,DER D, ... ST
1,DER D

S1
2,DER1, S2

2,DER1, ... ST
2,DER1, S1

2,DER2, S2
2,DER2, ... ST

2,DER2...S
1
2,DER D, S2

2,DER D, ... ST
2,DER D

S1
3,DER1, S2

3,DER1, ... ST
3,DER1, S1

3,DER2, S2
3,DER2, ... ST

3,DER2...S
1
3,DER D, S2

3,DER D, ... ST
3,DER D

.............

.............

S1
N,DER1, S2

N,DER1, ... ST
N,DER1, S1

N,DER2, S2
N,DER2, ... ST

N,DER2...S
1
N,DER D, S2

N,DER D, ... ST
N,DER D

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(33)   

Y→(iter+1) = Y→+ fl*rand*
{(

Y→1 − Y→
)
+
(

Y→2 − Y→
)
+

(

Y→3 − Y→
)}/

3 if AP > rand

Y→(iter+1) = Y→+ fl*rand*
(

Y→1 − Y→
)

otherwise

⎫
⎬

⎭
(30)   
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algorithms was fixed at 80 and maximum number of iterations was 
considered as 500. A parameter fl was set as 2. 

4.2. Descriptive analysis on the results obtained 

The detailed analysis of the CEED based study on the test system are 

listed below:  

a. Initially ECD was conducted on the test system with and without 
considering the RES using proposed HMGWO as the optimization 
tool. Table 4 shows that the generation cost of the system was 
176165 USD without RES and 166792 USD considering the RES. This 
marked a savings of 5.5% if RES was considered for the generation of 
power to suffice the load demand. It can also seen from Table 4 that 
proposed HMGWO outperformed a long list of population-based 
swarm intelligence metaheuristic optimization algorithms to yield 
the minimum value of ELD.  

b. When EMD was evaluated for the test system with and without RES, 
there was a 6.5% decrease in the emission of harmful pollutants in 
the atmosphere when the power output from RES was utilized. 
Table 5 shows that 2282 kg of toxic pollutants was released in the 
atmosphere when RES was not considered whereas this amount 
reduced to 2142 kg after considering the involvement of RES in 
delivering power to the system. The superiority of the proposed 
optimization tool can be noticed in this case too.  

c. It was evident from (Dey et al., 2020a) and (Dey et al., 2019) that 
min-max price penalty factor was the best and least for this test 
system. As per the records mentioned in the aforementioned articles, 
the PPF values for G1, G2 and G3 are 25.1597 USD/kg, 11.9948 
USD/kg and 4.6750 USD/kg respectively. Thereafter, PPF based 
CEED was conducted on the test system and the generation cost was 
recorded for the same. It can be seen from Table 4 that generation 
cost without RES was 202780 USD. This cost reduced to 192179 USD 
when RES was considered thus saving 5.6% in the generation cost. 
The amounts of pollutants emitted using PPF based CEED method 
were 2453 kg and 2243 kg without and with RES respectively. 
Similar to ELD, proposed HMGWO delivered the best possible results 
and proved superior to many other optimization tools as listed in 
Table 4.  

d. FP based CEED was evaluated using equation (10) for the test system 
with and without considering RES. The generation cost when eval
uated based on the optimal variables obtained after minimizing 
equation (10) was 177011 USD without considering RES and 167398 

Table 2 
Generator parameters of the 3 unit system (Dey et al., 2019, 2020a; Trivedi et al., 2018; Elattar, 2018).  

Generators Operating limits Fuel cost coefficients Emission coefficients 

min max a b c x y z 

MW MW USD/MW2h USD/MWh USD/h kg/MW2h kg/MWh kg/h 

G1 37 150 0.0024 21 1530 0.0105 − 1.355 60 
G2 40 160 0.0029 20.16 992 0.008 − 0.6 45 
G3 50 190 0.021 20.4 600 0.012 − 0.555 90  

Table 3 
Day ahead forecasted hourly output of PV and wind and hourly load demand. 
(Dey et al., 2019, 2020a; Trivedi et al., 2018; Elattar, 2018).  

Hour Load (MW) PV (MW) WT (MW) 

1 140 0 1.7 
2 150 0 8.5 
3 155 0 9.27 
4 160 0 16.66 
5 165 0 7.22 
6 170 0.03 4.91 
7 175 6.27 14.66 
8 180 16.18 25.56 
9 210 24.05 20.58 
10 230 39.37 17.85 
11 240 7.41 12.8 
12 250 3.65 18.65 
13 240 31.94 14.35 
14 220 26.81 10.35 
15 200 10.08 8.26 
16 180 5.3 13.71 
17 170 9.57 3.44 
18 185 2.31 1.87 
19 200 0 0.75 
20 240 0 0.17 
21 225 0 0.15 
22 190 0 0.31 
23 160 0 1.07 
24 145 0 0.58  

Table 4 
Generation cost (in USD) of ELD and CEED for microgrid 3 unit system.  

Algorithms ELD PPF based CEED 

With RES Without RES With RES Without RES 

RGM (Trivedi 
et al., 2018) 

183520 177291 232053 240780 

ACO (Trivedi 
et al., 2018) 

173343 176212 217655 229887 

CSA* (Trivedi 
et al., 2018) 

167044 176370 192309 202867 

ISA (Trivedi 
et al., 2018) 

167012 176320 192250 202799 

DE (Dey et al., 
2020a) 

166815.8024 176226.8178 192438.3157 203244.7612 

SOS (Dey et al., 
2020a) 

166793.2985 176166.5832 192543.2341 202868.7606 

JAYA (Dey 
et al., 2020a) 

166794.9367 176166.0276 192254.6732 202871.3677 

CSA ** (Dey 
et al., 2020a) 

166792.8781 176165.789 192169.3625 202782.7539 

HMGWO 166792 176165 192179 202780 

CSA* cuckoo search algorithm; CSA** crow search algorithm; – results not 
reported. 

Table 5 
Microgrid emission dispatch (in kg) using optimization techniques.  

Algorithms With RES Without RES 

PSO (Dey et al., 2019) 2189.6784 2385.7962 
DE (Dey et al., 2019) 2187.4739 2383.2908 
SOS (Dey et al., 2019) 2185.2421 2381.9505 
GWO (Dey et al., 2019) 2184.7448 2380.519 
WOA (Dey et al., 2019) 2183.9629 2379.4554 
HMGWO 2142 2282  

Table 6 
FP and ECED value (with RES).  

Algorithms FP ECED (μ = 0.5) 

GWO 0.12792 0.26445 
HMGWO 0.12769 0.26146  
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USD when RES outputs were involved. The amount of toxic emissions 
in this case was 2136 kg and 2263 kg with and without RES 
respectively. FP was evaluated using GWO and HMGWO and the best 
value of fitness function is displayed in Table 6.  

e. From the aforementioned points (a) and (b) and from the steps 
mentioned in Section 2, the following data to conduct ECED were 
obtained.   

Parameters Without RES With RES 

ECDmin (USD) 176165 166792 
ECDmax (USD) 176900 167382 
EMDmin (kg) 2282 2142 
EMDmax (kg) 2805 2602  

Thereafter, ECED was performed with and without considering RES 

for different values of μ ranging from 0.1 to 0.9. The generation cost and 
amount of toxic emissions were noted down for every value of μ and 2D 
graph was plotted for the values when ECED was evaluated without 
considering RES. The graph is shown in Fig. 1. It can be seen that the best 
compromised solution obtained at μ = 0.5 without RES is (176356 USD, 
2418 kg). 

Likewise, a 3D graph was plotted when ECED was evaluated using 
proposed HMGWO with RES for different values of μ. The value of μ was 
in the X axis, generation cost was plotted in the Y-axis and emission 
value in the Z axis. It can be seen from Fig. 2 that the best compromised 
value in this case was (0.5, 166944 USD, 2136 kg). GWO was also 
implemented as the optimization tool to evaluate ECED and the results 
are recorded in Table 6. 

Fig. 3 shows a graph of the value of ECED fitness function and the 
absolute difference between CPI and EPI for various values of μ. It can be 
seen that the least difference was obtained at μ = 0.5. 

Fig. 1. Cost vs. Emission using HMGWO (without RES).  

Fig. 2. Cost vs. Emission for different μ values using HMGWO (with RES).  

B. Dey et al.                                                                                                                                                                                                                                      



Journal of Cleaner Production 307 (2021) 127196

9

Further an attempt was made to assemble the absolute difference 
between CPI and EPI for all the three aforementioned methods of eval
uating CEED, and the same is shown in Fig. 4. It can be seen that among 
the PPF based CEED, FP based CEED and ECED methods, the least dif
ference was obtained for proposed ECED method. The above study 
proves the discussion in Section 2 that the best compromised solution is 
obtained when the absolute difference between CPI and EPI is the least 
and when the value of μ is 0.5. 

Table 7 shows the best values of generation cost and amount of 
pollutants emitted throughout the study using proposed hybrid HMGWO 
algorithm. 

Fig. 5 shows the utilization of the three fossil fueled generators when 
RES was considered for evaluating all the fitness functions mentioned in 
Section 2 using proposed HMGWO algorithm. Generator unit G1 was 
utilized the least when ELD was performed as G1 have the maximum 
values of cost coefficients. Generator unit G3 was utilized least when 
EMD was evaluated as it has the highest value of emission coefficients. A 
reasonable balance between the utilization of all the three generators 
can be seen in ECED method when compared to all the other fitness 
functions evaluated. 

Fig. 6 shows the convergence curve when proposed HMGWO yielded 
the best quality results for various objective functions evaluated 
considering the involvement of RES. The convergence curves shows the 
value of the objective function attained by the algorithm during each 
iteration until the maximum number of iteration is reached. 

Since the objective of the paper was to evaluate ECED, GWO along 
with proposed HMGWO was used as the optimization tool to evaluate 
ECED on the test system with and without RES for 30 individual trials 
and the results and execution time was recorded for every trial. Table 8 
shows the statistical analysis data when ECED was evaluated for 30 
different individual trials with μ = 0.5 using both GWO and HMGWO 
algorithms. The least value of standard deviation claims the robustness 
of proposed HMGWO algorithm. The decrease in the value of algorithm 
execution time to attain 500 iterations can also be seen from Table 8 
compared to original GWO algorithm. 

Based on the values mentioned in Table 8, the box plot figure was 
formed and is shown in Fig. 7. The boxplot is a summary of 30 sets of 
results obtained by each algorithm while evaluating ECED for the 
considered test system. The median is the line dividing the box, the 
upper and lower quartiles of the data define the ends of the box. The 
minimum and maximum data points are drawn as points at the ends of 
the lines (whiskers) extending from the box. These box-plots show the 
distribution of quantitative data in a way that facilitates comparisons 
between ECED between GWO and HMGWO. From these plots, it is seen 
that the chances of getting minimum ECED is very high as the median 
from HMGWO is nearer to the lower quartile. 

5. Conclusions 

This paper proposed a unique and novel approach of performing a 
comparative analysis among three different methods of evaluating CEED 
on a 3-unit dynamic test system configured with RES. Uncertainty 
calculation of the forecasted values of RES was employed to attend the 

Fig. 3. Change in value of ECED fitness function and |CPI ~ EPI| with μ  

Fig. 4. |CPI ~ EPI| for various methods of CEED evaluation.  

Table 7 
Cost and Emission for various fitness functions using HMGWO.    

ECD EMD PPF FP ECED 

With RES Cost 
(USD) 

a166792 b167382 192179 167398 166944 

Emission 
(kg) 

d2602 c2142 2243 2136 2264 

Without 
RES 

Cost 
(USD) 

a176165 b176900 202790 177011 176356 

Emission 
(kg) 

d2805 c2282 2453 2263 2418  

a ECDmin. 
b ECDmax. 
c EMDmin. 
d EMDmax. 
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Fig. 5. Utilization Percentage of G1, G2 and G3 for various objectives (with RES).  

Fig. 6. Convergence curve characteristics obtained for various objective functions using HMGWO.  
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stochastic behavior of the same. The major distinct findings of the paper 
are listed below:  

a. There was a decrease in the generation cost while economic dispatch 
and PPF based CEED was evaluated by approximately 5.5% each due 
to the involvement of the RES. Also, the emission of toxic pollutants 
in the atmosphere diminished by 6.5% for the same reason.  

b. The difference between the values of EPI and CPI was least for the 
proposed ECED method amongst the three, which indicates that the 
proposed approach yields a better compromised solution than the 
other two. The fact that the generation cost and amount of emitted 
pollutants, evaluated using proposed ECED approach, were much 
closer to the economic dispatch and emission dispatch values 
respectively compared to PPF based and FP based CEED solution also 
verifies the same.  

c. HMGWO outperformed a number of optimization algorithms in 
providing better quality solutions throughout the study. This is a 
satisfactory reason of choosing the hybrid optimization algorithm for 
further solving large dimensioned complex optimization problems. 

The values of ECD and EMD are needed to be calculated before 
evaluating ECED. This might be a disadvantage of the proposed 
approach compared to FP based CEED and PPF based CEED, but the 
satisfactory results in delivering a compromised solution with the least 
possible value of generation cost and toxic emissions make up for the 
aforementioned disadvantage. The proposed hybrid optimization tech
nique might be somewhat cumbersome while coding given the number 
of equations, but the algorithm is robust enough in yielding consistently 
better and superior quality solutions for any number of trials. 

As a scope of future work, the horizon of the study based on ECED 
approach can be expanded by solving large dynamic and multimodal 
test systems including MG energy management problems given the 
availability of cost and emission coefficients. 
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Appendix  

Table A1 
Hourly outputs of generators (in MW) when best value of ECD was obtained using 
HMGWO  

Hours G1 G2 G3 

1 37.0000 44.9389 56.3611 
2 37.9433 45.8979 57.6588 
3 39.3849 47.0612 59.2839 
4 38.6000 46.3854 58.3546 
5 43.4237 50.4334 63.9229 
6 45.8783 52.4586 66.7231 
7 42.1955 49.3881 62.4865 
8 37.0000 44.5125 55.7475 
9 45.9855 52.5414 66.8432 
10 48.4851 54.6023 69.6926 
11 64.3082 67.7035 87.7783 
12 66.9686 69.9059 90.8255 
13 57.2526 61.8676 79.7198 
14 50.1389 55.9825 71.5886 

(continued on next page) 

Table 8 
ECED evaluated for 30 trials with μ = 0.5   

Algorithms Min Max Mean STD Time (s) 

With RES GWO 0.26393 0.26442 0.26410 0.00024 210.95 
HMGWO 0.26146 0.26152 0.261464 1.52e-05 180.36 

Without RES GWO 0.26202 0.26280 0.262254 0.000364 223.52 
HMGWO 0.25984 0.26001 0.25986 6.44e-05 202.68  

Fig. 7. Box plot evaluation for ECED calculations a) Without RES b) With RES.  
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Table A1 (continued ) 

Hours G1 G2 G3 

15 51.4657 57.0821 73.1122 
16 44.5121 51.3204 65.1575 
17 43.1638 50.2039 63.6223 
18 51.1867 56.8485 72.7848 
19 57.3902 61.9835 79.8763 
20 71.0561 73.2856 95.4882 
21 66.0113 69.1096 89.7291 
22 54.1766 59.3134 76.2000 
23 43.8131 50.7505 64.3664 
24 38.9384 46.7010 58.7807   

Table A2 
Hourly outputs of generators (in MW) when best value of EMD was obtained using 
HMGWO  

Hours G1 G2 G3 

1 48.2955 40.0000 50.0045 
2 48.3209 42.6476 50.5315 
3 53.4013 42.1053 50.2233 
4 52.7740 40.2442 50.3218 
5 67.3749 40.3534 50.0517 
6 68.0801 46.7422 50.2377 
7 63.1215 40.8447 50.1039 
8 45.7068 41.2861 50.2671 
9 69.3990 45.9613 50.0097 
10 70.9331 51.6635 50.1834 
11 95.0519 73.7666 50.9714 
12 94.2403 79.9026 53.5571 
13 90.4377 56.7981 51.6042 
14 80.2214 46.7596 50.7290 
15 79.6775 51.7999 50.1825 
16 65.3710 45.3587 50.2603 
17 65.2901 41.2797 50.4202 
18 74.1806 55.9488 50.6907 
19 84.0169 64.9413 50.2918 
20 98.7570 85.5441 55.5289 
21 97.8798 74.1834 52.7868 
22 78.0132 61.2699 50.4070 
23 67.8189 40.5823 50.5288 
24 52.3253 42.0431 50.0516   

Table A3 
Hourly outputs of generators (in MW) when best value of PPF based CEED was obtained 
using HMGWO  

Hours G1 G2 G3 

1 48.2991 40.0004 50.0005 
2 51.4998 40.0001 50.0001 
3 55.7287 40.0011 50.0002 
4 53.3390 40.0001 50.0009 
5 64.9868 42.7319 50.0613 
6 65.8771 49.0278 50.1551 
7 62.5719 41.4906 50.0076 
8 47.2591 40.0005 50.0004 
9 66.6405 48.0352 50.6942 
10 67.8585 51.3637 53.5579 
11 74.2552 66.4967 79.0381 
12 74.9518 70.0631 82.6851 
13 71.8914 60.1474 66.8012 
14 68.4856 53.1018 56.1226 
15 69.1135 55.6661 56.8804 
16 65.9934 44.9680 50.0286 
17 64.5816 42.4068 50.0015 
18 68.6636 55.5676 56.5889 
19 71.2575 61.0768 66.9157 
20 77.3478 73.2830 89.1992 
21 74.4825 69.9037 80.4638 
22 70.0646 57.8047 61.8207 
23 65.2457 43.6549 50.0294 
24 54.4187 40.0012 50.0001 
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Table A4 
Hourly outputs of generators (in MW) when best value of FP based CEED was obtained 
using HMGWO  

Hours G1 G2 G3 

1 47.5521 40.6998 50.0481 
2 50.9773 40.4611 50.0616 
3 55.5774 40.1023 50.0503 
4 51.4409 41.8709 50.0282 
5 67.2639 40.4378 50.0783 
6 68.3415 46.6678 50.0506 
7 63.7018 40.3464 50.0218 
8 47.0286 40.1835 50.0479 
9 69.6940 45.6220 50.0540 
10 74.1663 48.5451 50.0686 
11 95.7270 70.5146 53.5484 
12 94.6521 82.3143 50.7335 
13 84.2946 64.3950 50.1504 
14 73.7501 53.4926 50.4673 
15 72.9463 58.5748 50.1389 
16 69.0407 41.8626 50.0867 
17 65.8635 41.0119 50.1146 
18 82.0755 48.6933 50.0512 
19 84.7533 64.4092 50.0874 
20 100.4495 83.8613 55.5192 
21 98.1673 74.5988 52.0839 
22 77.8654 61.5551 50.2695 
23 68.1709 40.6490 50.1101 
24 54.1873 40.2232 50.0095   

Table A5 
Hourly outputs of generators (in MW) when best value of ECED was obtained using 
HMGWO  

Hours G1 G2 G3 

1 45.6568 42.6407 50.0025 
2 47.4941 44.0055 50.0004 
3 49.8204 45.9063 50.0033 
4 48.5576 44.7806 50.0018 
5 54.2826 51.9885 51.5089 
6 57.1287 53.5692 54.3621 
7 53.7327 50.1723 50.1651 
8 45.4166 41.8399 50.0035 
9 57.9916 53.5397 53.8387 
10 60.0026 55.9600 56.8174 
11 76.2781 70.7248 72.7871 
12 78.4809 73.6212 75.5979 
13 69.0228 64.1749 65.6423 
14 62.0349 57.4882 58.1868 
15 63.1637 58.4556 60.0407 
16 56.0277 52.0910 52.8714 
17 54.8036 51.0521 51.1343 
18 62.6443 58.6812 59.4945 
19 69.0372 64.3516 65.8611 
20 82.9531 77.0748 79.8021 
21 77.6485 72.5340 74.6674 
22 66.2958 60.9224 62.4719 
23 55.4805 51.4703 51.9791 
24 48.7232 45.6928 50.0040  
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