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Summary

The gradual sprawl of power system toward smart grid and enhanced integra-

tion of distributed energy resources at the distribution end is transforming the

conventional distribution system and is eventually making it self-sustained.

The distribution system is thus continuously evolving to prepare itself for any

unforeseen natural, man-made, and complex events. These events may impact

the distribution system as high-impact low-frequency (HILF) scenarios. The

high intensity and widespread damage of the power system due to HILF sce-

narios necessitate resilience. Resilience analysis aims to identify these region-

specific vulnerabilities of the electricity network and implement appropriate

methods to quickly restore the system to its predisturbance state. Further to

enhance the network visibility and situational awareness, integration of syn-

chrophasor to resilience is significant. Therefore, synchrophasor technology

integrated with resilience provides online wide area visibility of the distribu-

tion system. Using synchrophasor for resilience assessment propels an agile

network for coordinating accurate and timely analysis of the system parame-

ters. Therefore, understanding the concept of resilience, its evolution, detailed

overview, synchrophasor-based resilience (SBR) methods as well as its applica-

tions are necessary. This article outlines the key points of the synchrophasor

technology based resilience technique, its significance, and lays a foundation

for continuing research in this area. It offers detailed insight into the compre-

hensive review of this evolving concept. The article majorly focuses on all the

aspects of SBR, its necessity in performance evaluation, synchrophasor
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measurement based resilience enhancement methods, and application of dif-

ferent SBR techniques in the distribution system. A detailed comparative anal-

ysis of SBR features, sample efficiency, result accuracy, merits, and demerits

based on available literature is provided. Finally, future perspectives are dis-

cussed for implementing resilience assessment using synchrophasor technol-

ogy in the distribution system.
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1 | INTRODUCTION

The power system being outdoor is vulnerable to high-impact low-frequency (HILF) events such as earthquakes, storms,
regional floods, physical attacks, and so on. These different vulnerabilities make both the transmission and distribution
systems susceptible to damage due to HILF events. Resilience is the ability of a system to adapt and timely react to such
HILF events. It is an evolving framework to address extreme events.1 With the increase in awareness of these events, resil-
ience has become important worldwide.2 The intensity, severity, and exposure of the network to extreme conditions deter-
mine the resilience measures to be adopted. These resilience measures are broadly classified into short-term and long-
term strategies.3 The most appropriate resilience strategy depends on the source of HILF interruptions, their severity, and
the extent of damage assessment to the network.4,5 The analysis of these experiences is vital in determining the resilience
measures. Table 1 highlights the power interruptions and severity details due to HILF events worldwide.

Table 1 Power system severity details due to HILF events worldwide (2010-2020).4,27 The sprawl of conventional dis-
tribution system with huge integration of DERs has increased its self sustenancy and also made it more complex. Thus,
for the distribution system, the topographic attributes and presence of different DERs aggravate the chances of impact
due to HILF events. Keeping in view both the aspects, resilience in distribution system is essential so that self sus-
tenancy of the network can be maintained. With the increase in HILF events, resilience is becoming increasingly
important for the gradually maturing distribution system. Risk based resilience metrics can lead to life-cycle enhance-
ment of the aging distribution system.6 As many as 90% interruptions experienced by the customer are due to weather
phenomena. In7 distribution system resilience under different weather scenarios using time-to-event models is assessed.
Matrix based approach and probabilistic metrics quantify the operational resilience due to HILF events. It identifies the
potential risks and finds possible routes of recovery after the impact.8,9 Linear programming optimization is suggested
for resilience driven energy storage system planning.10 For wind powered system, an ordered curtailment strategy
ensures grid resilience during cyclone Typhoon.11 Many a time, lack of information such as uncertain HILF characteris-
tics make it difficult to evaluate distribution system resilience.12 This necessitates effective SA and improved observabil-
ity at all times. The growing significance of DERs has led to a new level of uncertainty. The challenges of power system
resilience due to high DER penetration are discussed in.13 In14 a comprehensive study of all types of resilience metrics
is presented. This conceptual framework considers physical, cyber, cyber-physical components, as well as personnel
involved in extreme conditions. Most of the previous works have focused more on resilience quantification. A compre-
hensive analysis of effective mitigation perspectives of distribution system using synchrophasor application is not pres-
ented. Also, the lack of SA in the distribution side delays the timely response and poses a challenge to the distribution
system resilience. Deploying synchrophasor technology provides insight into the distribution system conditions at all
times. Distribution side operators can use this information for better visibility of grid events and its performance during
HILF events. It increases the accuracy and usefulness of resilience analysis.

This article presents a detailed overview of distribution system resilience based on synchrophasor measurement. It
includes the evolution of synchrophasor-based resilience (SBR) in the distribution system, its overview, related frame-
work, and recent developments. The prime focus is on SBR implementation methods, and synchrophasor based applica-
tion in distribution system resilience assessment. Finally, a comparative assessment of the existing SBR analysis
techniques applied in the distribution system is provided and new research perspectives for synchrophasor based grid
resilience monitoring and control is proposed.
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The remaining manuscript is organized as follows: Section 2 deals with the evolution of SBR in the distribution sys-
tem, Section 3 enlists the HILF exposure and causes, and Section 4 discusses the significance of SBR and its implemen-
tation. Methodologies for SBR implementations are detailed in Section 5, and Section 6 analyzes the synchrophasor
based application in distribution system resilience assessment. Section 7 compares the different SBR analysis tech-
niques, followed by future research perspectives in Section 8. Section 9 concludes the survey.

2 | EVOLUTION OF RESILIENCE IN DISTRIBUTION SYSTEM BASED ON
SYNCHROPHASOR TECHNOLOGY

The term “resilience” was first coined in 1973 by a notable researcher C.S Holling.2 He was the prime person behind
the foundational interpretation of resilience. Researchers made several attempts to generalize this concept in diverse
fields.

The United Nations proposed a general multidisciplinary definition of resilience. It defines resilience as the capabil-
ity to suitably resist and subsume flexibly.15 This means increasing the system's capacity to manage the impact of HILF
events and recovering rapidly from the implications caused by it. The framework for timely recovery against adverse
scenario outlines these basic functionalities and related operating criteria of network.

The concept of resilience goes beyond quality, flexibility, and robustness. These fundamental terms just express the
technical and physical aspects of infrastructure. Stability is an important aspect of the power system related to resil-
ience. Stability refers to the ability of a system to perform its intended function. It points out how long the system can
hold its performance intact before getting disrupted. The more perturbations it can handle, it is said to be more stable.
Being stable prevents the system to proceed into any state of disturbance, while resilience is the capability of the system

TABLE 1 Power system severity details of HILF events worldwide (2010-2020)4,27

Origin Category Type Region Year
Mean customers
affected (thousand)

Mean outage
duration

Natural Metrological Windstorm U.S.A 2010-17 750 000 2.5 days

Europe 2010-17 1 900 000 409 min

Australia 2010-15 1700 4 days

Philippines 2014 64 900 2-5 days

India 2014 277 36-48 h

Puerto Rico 2017 1750 1 month

England 2017 1800 5-6 days

Ice storm U.S.A 2010 200 0.5- days

Ireland 2010 30 Several days

Poland 2013 100 3–4 days

Canada 2015 710 72 h

Lightning U.S.A 2017 70 Few hours

Heat wave South Korea 2011 9000 2 h

Geological Earthquake New Zealand 2010-17 160 5 days

India 2017 93 000 1-2 days

Japan 2018 2950 2-3 days

Unintentional/Technical/
External

Accidental Fire/
explosion

Cyprus 2011 30 0.5 week

Australia 2019 76 2 days

Crimea 2015 1200 Few hours

Venezuela 2018 17 18 h

Human Intentional Malicious acts Intentional attack USA 2014 24 Few hours

Ukraine 2016 230 1-6 h
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to quickly recover to its predisturbance state due to the impact of HILF events. Resilience highlights the preparedness to
handle disruptions, sudden network interruptions, and abnormal scenarios that might push the system to an unstable
state affecting its normal operation. It reflects the potential to deal with the changes in the system till it becomes irrevoca-
ble.15 It shows how well the system can cope up with the consequences of catastrophic failure. More the coping ability,
the system is said to be more resilient. The HILF events have uncertainties associated with them due to changing climate,
technology, and aging of systems. Therefore, withstanding the effect of all such changing conditions is an aspect of resil-
ience.16 Many researchers have outlined resilience against HILF conditions as the potential to alleviate the desired out-
come. The National Infrastructure Advisory Council (NIAC) has incorporated some main features of the resilience
framework, as shown in Figure 1. These key features form the essential underlying criteria of the resilience concept.5,17-22

The power system resilience concept has taken shape in and around the last decade.23 For the security and ade-
quacy aspect, reliability analysis is considered. But in the face of catastrophe, it was inadequate in capturing the system
performance. This void in power system performance measurement required a different approach.24 Also, the aging of
the network made it difficult to handle the impact of extreme events. Enhancing resilience is a better option instead
of replacing the whole network.25,26 Thus, the integration of resilience with SBR is the key to better network restoration
and monitoring. The gradual sprawl of conventional power system towards smart grid has led to the deployment of
phasor measurement units (PMUs). PMUs can measure the change in power, voltage, phase angle, frequency and, rate
of change of frequency (ROCOF) all in real-time. It monitors significant deviations in real-time synchrophasor mea-
surement and records it with high accuracy. This high-speed monitoring avoids data reporting lag and enables overall
better visibility to record grid events.7 Application of synchrophasor in enhancing power system resilience enables easy
and fast transfer of vital data that falls into three major categories (1) real-time monitoring, (2) disruption mitigation,
and (3) non-network centric framework.27,28 Resilience framework combined with synchrophasor detects mismatch of
network parameters. It enhances SA and protects the system from any unpredictable condition.

Figure 2 represents the generic block scheme of SBR for distribution system. When HILF event hits the distribution
system, the PMUs collect data pertaining to system states. These relatively smaller but significant deviations of real-time
synchrophasor measurements are recorded with high accuracy. Further, the local phasor data concentrator (PDC) col-
lects these distribution level information. PMUs and PDCs are connected via communication lines as illustrated in
Figure 2. These synchrophasor data from several local PDCs are collected and shared with the regional PDCs to the
control center. Historical data associated with similar events are compared with the synchrophasor data acquired to
form a resilience goal. The grid parameters are thus effectively quantified. These are processed and analyzed to prepare
the network for restoration activities.

Thus, SBR enhances SA and protects the system from any unpredictable condition. This type of real-time analysis
helps in resilience based planning and implementation of network in a specific region.

Flexibility

Adaptability

RESILIENCE
FEATURES

DEFINITION

Robustness

The ability of a network to easily modified according

to the external changes in the system behaviour

The property of a system to adjust or fit the new
systemic changes in the advent of HILF events

The quality of a system to withstand or overcome
adverse conditions with a satisfactory measure of
performance

Redundancy

Capacity

Longevity

The behaviour of a system by which it can absorb
maximum unexpected disturbances

It is a concept related to long retaining functionality
or service by the system and satisfactorily provides
load demands of customers

A feature of a system to have options for inclusion in
the advent of stressful scenarios faced by it

The quality of a system to exchange and make use of
data sharing to access and use information in a
coordinated manner within the system

   Interoperability

    Rapid Recovery
The property of a system to quickly recover back to
its pre-disturbance state with timely and easy
reorganization itself

FIGURE 1 Generic features of resilience and its definition
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3 | HILF EVENT AND CAUSES

Resilience based on synchrophasor technology aims at achieving a desired level of performance. It majorly focuses on
real-time system information, event-detection, and recovery task. This type of framework is necessary for decision mak-
ing and understanding the dynamics behind resilience implementation. There exists a wide gap in the practical imple-
mentation status of SBR applications in the existing power sectors around the world. Table 2 lists the most common
HILF events and related resilience level requirements for better performance.

It shows the most affected nations and their estimated exposed capacity due to windstorms, earthquakes,
floods, and cyber-attacks. The consequences on both the transmission and distribution sides are mentioned. These
disruptions may have a medium impact on the exposed capacity for nations like Sudan, India, Fiji, Indonesia, and
so on. whereas Bangladesh, El Salvador, and Mozambique have almost 90% exposed capacity. Most of the exposed
capacity value falls within cent percent. A value more than 100% means that it is subjected to multi-hazards at the
same time. As in Table 2, it is found that owing to the geographic location of Honduras, it is under the threat of
both floods and hurricanes. The simultaneous exposure to one or more hazard, forces the system to exceed the crit-
ical threshold of installed capacity. The exposed capacity may face losses due to generator inundation, substation
flooding, and heavy damage to equipment. Since 80% population resides in hilly terrains, these conditions get
aggravated.

Distribution system 

PMU

DG

PMU
1 2 3 4 5PMU

DG

PMU
1 2 3 4 5

PMU

DG

PMU
1 2 3 4 5PMU

DG

PMU
1 2 3 4 5

Adverse scenario
Natural disaster

Intentional attack

Sudden extensive failure

Network

Network

Network

Network

Regional PDC

Local PDC Local PDC

Distribution system
data generation

Synchrophasor based Resilience Implementation

Disruption level
data acquisition

Data gathering

Real-time 
monitoring of 

network resilience

Synchrophasor based Resilience Planning

Data Communication

Data processing
to quantify

 resilience metrics

Analysis of network
restoration  activities

(support service)

Historical data gathering

Distribution
system data
gathering

Resilience goal defined

Consequences framed

Timely-decision making

FIGURE 2 Scheme of generic synchrophasor based resilience for distribution system

SONAL AND GHOSH 5 of 38



Figure 3 shows that almost every possible adverse condition is likely to impact the distribution system. It substanti-
ates that resilience is vital for the distribution side. The last 10 years data show that the weather related and physical
attacks account for the maximum number of interruptions. Weather related interruptions are 54.85%, physical attacks
account for 40%, and cyber-attacks 5%. Earthquakes occur in few seismic zones, so these account for 0.15%.

The percentage of disruptions due to these extreme events makes the system vulnerable to failures. SBR aids in
adaptation, and protection against further system degradation. Based on the effect and causes of disruption due to
HILF events, SBR is classified. Figure 4 represents the classification of SBR based on these parameters. The classifi-
cation considers damage expense, recovery time, and network flexibility. Any HILF event that is not properly han-
dled usually leads to the partial or large expense of network damage. The goal of SBR is to address such events
efficiently. While it is difficult to completely eradicate the possibility of damage, remedial actions help to minimize
its effects. For this purpose, a response plan is prepared beforehand to handle the risks of future HILF incidents.
These are collectively known as response-centred (RC) resilience actions. Under RC actions, threat

TABLE 2 Effect of HILF events and related resilience level requirements16,23,29,30

HILF event

HILF Exposure Effect of HILF Event on

Most
dominant
region

Exposed
capacity
(approx.) Transmission side Distribution side

Wind-storm Bangladesh 90% Toppling of transmission lines Damage to poles and lines

Japan 40%

Taiwan 70%

India 61.8%

Earth-quake Japan 70% Inadequate anchorage likely to
destroy lines

Ground shaking damages UG/OH
lines, polesMozambique 85%

El Salvador 90%

India 90%

Flood Honduras 150% Damage to sub-station and
transformers due to inundation

Underground lines impairment due to
seepageFiji 60%

Sudan 40%

India 47%

Cyber-attack USA 20% Overloading of transmission lines
due to excess false data

Disrupting security and reliability by
gaining access to substationRussia 46%

Indonesia 38%

China 30%

FIGURE 3 Distribution system interruption causes15,31
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characterization and vulnerability assessment outlines the resilience level recommended for network components.
To manage the aftermath of a HILF incident, quick decision along with timely restoration is needed, which falls in
the category of event-centered (EC) resilience actions. These comprise operational actions, load prioritization, and
DER control actions.

Table 3 represents the comparative assessment of RC and EC resilience. It contrasts the features of RC with EC
based on corrective actions, resilience goals, adaptability, grid operators capabilities, and related measures to be
followed. The preventive actions for RC include infrastructural assessment, weather information, connectivity
analysis, and robustness enhancement. RC is preparedness to face unexpected abnormal scenarios in the future.
EC measures are based on distribution system recovery ability during the HILF event. It includes support service,
back-up facility, load management, and active warning system. Load management action comprises activities to
reduce electricity consumption at critical times. It is not directly a storage technique but it can serve some storage
functions, so at times it comes under response based mitigation of HILF event. But, more appropriately, it can be
applied for event-centered actions because it can lead to improvement in critical demand characteristics during
HILF incidents.

Based on the type of the distribution system resilience, identification, and mitigation measures for SBR are pres-
ented in Figure 5. These identification and mitigation requirements for RC and EC resilience types aim at system sur-
vivability and to efficiently adapt to the HILF disturbances.32

FIGURE 4 SBR classification

TABLE 3 Distribution system resilience type based on HILF events32

Response-centered resilience Event-centered resilience

Corrective actions taken in advance to handle the impact of HILF
events

Corrective actions taken aftermath of HILF to quickly minimize
loss, mitigate the network from damage, and restore it

It consists of a set of best practices or response plan to reduce the
risks before it causes damage

It consists of mitigative actions for quick decision to provide a
timely system restoration

Proper planning and region-specific impact analysis framework
results in fewer extensive damage to the system

It is associated with real-time quantification of network
performance by applying lessons from similar past extreme
conditions

Usually deals with grid planners and system analytics Experienced personnel/ crew members handle such situations in a
better way

Example: infrastructural assessment, weather intensity prior
assessment, network connectivity analysis, robustness
enhancement techniques etc.

Example: enhanced service support and back-up resource
allocation, load-management activities, activation of warning
system, etc.
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4 | SIGNIFICANCE OF SBR AND ITS IMPLEMENTATION

Synchrophasor technology based resilience emerged when the US Department of Energy presented reports on blackouts
and sudden consequences of power system interruption. It involves precise intrusion detection, accurate external threat
monitoring, and perceiving the dangers of prolonged recovery activities.33,34 The short and long-term power system
resilience is addressed in ref. [35] In ref. [3,36] the benefits of incorporating the SBR approach to sustain the
predisturbance state of distribution system are discussed.

Table 4 presents an organized walkthrough of advantages provided by SBR incorporated in the distribution system.
SBR provides benefits like fewer outages, less emergency, less number of customers affected, faster restoration, and fast
event analysis. Enhanced SA due to SBR enables greater observability to identify potential issues leading to fewer dis-
ruptions. Early detection and continuous monitoring helps to implement quick remedial measures. It leads to lesser
emergency scenarios.38,39 For fast preevent outage analysis, a sub-space of different HILF events established offline is
compared with real-time PMU measurements. Combining PMU measurements with numerical sub-space of past HILF
events identifies similar events encountered by the system. This data-driven outage identification reduces the computa-
tional time of the event analysis. It reduces the likelihood of longer outage duration during abnormal conditions.40

FIGURE 5 Identification and mitigation measures for response-centred (RC) and event-centered (EC) resilience

TABLE 4 Synchrophasor based

resilient distribution system benefits for

HILF events

Resilience Benefits Related Synchrophasor Parameters Ref.

Fewer HILF outages Improved situational awareness 20

Less HILF emergencies Early detection and continuous
monitoring

21,22

Lesser outage duration Fast PMU preevent outage analysis 10,33,37

Fewer customers affected Fast identification of disturbances 34

Faster restoration Reduced equipment outage minutes
and severity

35

Faster HILF event analysis Real-time, accurate data reference from
past lessons

3,36
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The significance of SBR justifies its popularity and implementation in the distribution network. PMU allows resil-
ient grid operation by efficient SA, state estimation, oscillation detection, instability analysis, and synchrophasor mea-
surements condition-based validation.41 Table 5 maps some practically implemented synchrophasor based resilient
distribution network features.

The feature of small data latency leads to faster monitoring of system disruption. As a result, detecting and manag-
ing the impact of HILF events becomes easy. Also, a fast data reporting rate removes any lag between event analysis
and related control actions. These SBR features improve the ability to visualize system dynamics, identify potential
issues, and assess timely remedial measures.

5 | METHODS USED IN SBR EVALUATION

This section describes the SBR methodologies used for the distribution system. These methods are the SBR model
approach, SBR data-driven approach, SBR machine learning approach, SBR quantification approach, and SBR miscella-
neous approach. Table 6 portrays a detailed classification of these methods.

5.1 | SBR model approach

The detection of damage due to HILF event is based on well-suited algorithms to ensure a resilient and hassle-free
operation of the distribution system. When the system encounters any abnormal event, the quality and quantity of
power delivered to the customers get affected due to the operational degradation of the components. Addressing
these system degradation using synchrophasor measurements on a suitable platform forms the basis of SBR model
approach.

5.1.1 | Robust principal component analysis (PCA) framework

A malicious data corruption resilience framework based on PCA of synchrophasor data, is proposed in ref. [45] The
PCA algorithm preprocesses the synchrophasor measurements based on detected malicious data in cyber-attacks.
The first step is l2 norm-fitting of the synchrophasor data x(t) from the set of measurements at time instant t, as in Equa-
tion (9). The steepest descent method followed by the convex optimization technique for preprocessing is performed by
comparing the lp-norm at p = 0.5 and l1-norm approach, as in Equations (1)–(3).

minx tð Þ ¼ x tð Þk k2 ð1Þ

TABLE 5 SBR implemented in practical scenarios

Synchrophasor
Application Resilience Features

Data
Reporting
Rate (Hz) Data Latency Practical Network Ref.

Situational
awareness

System behavior under HILF > 1 5 seconds Netherlands
Distribution Grid

38

State estimation Real-time network degraded state
estimation

< 1 1–5 seconds EPFL, Switzerland 39

Synchro-check Estimation of network elements
unavailability in HILF scenarios

> 4 100 m seconds
(ms)

Distribution feeder in
Tehran

40

Oscillation
detection

Preevent reconfiguration based on data
anomaly

> 10 200 ms-
1 second

Idaho falls, U.S.A 41

Voltage instability Withstanding sudden voltage dip/swell
in extreme weather

> 1 1–30 seconds Portuguese Distribution
System

42
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minxi xi� zi
�� ��2

2 such that, ϕtx� ytk k22 ≤ εt ð2Þ

di ¼� xi
�� ��p�2

xi ð3Þ

where, z is the intermediate variable, εt is the error at instant t with ϕt as the orthogonal component for non-convex
problem yt affected by a malicious attack. di is the direction of search for ith iteration for the current value of syn-
chrophasor data x. The simulation results show a higher reconstruction error when the corruption of synchrophasor
data is more than 40% in the sample.

In ref. [46] a signature-based PCA is used to examine the malicious synchrophasor measurements. The defined met-
rics use distinct key features to analyze regular and sub-station data frames. It also summarizes the strength, weak-
nesses, and interdependencies of this method.

5.1.2 | Denial-of-service (DoS) resilient WAMS framework

In ref. [43] DoS resilient framework manages data unavailability due to cyber-attack based on WAMS. Synchrophasor
measurements are a series of time-aligned data that avoid delay in assessing cyber-attack conditions and assists in post-
event disturbance analysis. The proposed DoS resilient WAMS algorithm uses three modules which are (1) data
unavailability detector module (DUDM), (2) root cause analyzer module (RCAM), and (3) DoS mitigation module
(DMM) using the k-nearest neighbors (KNNs) approach. The warning mechanism follows counter updation for any
new data receipt as shown in Equation (4).

TABLE 6 Methods used in the implementation of SBR

Type User Method Ref.

SBR model approach Denial-of-service resilient WAMS framework 43

Distribution system state estimation framework 44

Robust principal component analysis (PCA) framework 45
46

Similarity search-principal component analysis (SS-PCA) framework 47

Augmented Lagrangian multiplier-based (ALM) algorithm 48

SBR data-driven approach Network compensation theorem based method 49

Hybrid state estimation based method 50
51

Improved robust-PCA based method 52

Behavioral systems theory-based method 53

SBR machine learning approach Bayesian classifier (BC) based method 54

Stacked de-noising auto encoder (SDNAE) based method 55

Ensemble learning-based method 56

SBR quantification approach Cyber-physical resilience (CPR) index 57
58
59

Data-analytic resilience metric 60
61

Differential-phasor variance index 62

SBR miscellaneous approach Weighted mean subsequence reduced-secondary control (WMSR-SC) method 63

Maximum likelihood estimation method 29
64
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FR¼ fps�δ sec,counter update

else,warning

�
ð4Þ

FR is the frame rate, fps is the frame per second, and δ is the small deviation. The counter updates upon the receipt
of the data stream within the set interval of fps± δ seconds. Figure 6 represents a resilience framework for syn-
chrophasor based on wide-area monitoring against the DoS attacks. The data flaw encountered during a cyber-attack is
first accurately identified to estimate its incompleteness. The assessment of the rest available data estimates its closest
centroid value. Therefore, DoS attacks are managed effectively. It is a synchrophasor based mitigation strategy without
affecting the existing infrastructure.

5.1.3 | Distribution system state estimation (SE) framework

A cyber-attack framework using synchrophasor measurement and its SE, is discussed in ref. [44] Existing cyber-attack
SE for transmission cannot be effectively extended to the distribution system. So, a distribution system SE framework is
required. The relationship between synchrophasor measurements in a general state estimator is represented by
Figure 7. Equation (5) expresses the relationship between the estimates and state variables in a classical state estimator.
The voltage synchrophasor is the state variable. Considering these parameters, the generic SE formulation takes the
form as in Equations (5)–(8).

FIGURE 6 Scheme of DoS resilient WAMS framework
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z¼ h xð Þþ enoise ð5Þ

hVir xð Þ¼ zVir , i�ΨV

hVim xð Þ¼ zVim , i�ΨV

�
ð6Þ

hIbr xð Þ¼ zIbr , i�ΨI

hIbm xð Þ¼ zIbm , i�ΨI

�
ð7Þ

hPi xð Þ¼ zPi , i�ΨS

hQi
xð Þ¼ zQi

, i�ΨS

�
ð8Þ

Where, z is the measurement vector consisting of PMU data, h(x) is the measurement function corresponding to
x state vector, the error vector due to noise is represented by enoise. zVir and zVim are the real and imaginary parts of volt-
age measurement, respectively, zIbr and zIbm are the real and imaginary parts of current measurements, zPi and zQi

are
the active and reactive power values. The corresponding measurement functions are given by hVir xð Þ, hVim xð Þ, hIbr xð Þ,
hIbm xð Þ, hPi xð Þ, and hQi

xð Þ, respectively.
The index of the bus is represented by i and branches by b. ΨV, Ψ I, and ΨS refer to the set of buses with voltage, cur-

rent, and power respectively. Location identification of the spoofed cyber-attack on the network is evaluated by the
phase angle θ of voltages at bus i and branch b, as in Equation (9). Optimization of phase angle narrows the search
intervals, as given by Equation (10. The root mean square errors are evaluated at each node to validate the performance,
as in Equations (11.a) and (11.b).

θspfi,b ≠ 0 ð9Þ

min:argJcorr ¼ θspf1 ,θspf2 , ::θspfPMUn

� �
, such that,P1¼ n θspfn ¼ π

�� �
,P2¼ n θspfn � 0,πð Þ�� �

,P3¼ n θspf1 � �π,0ð Þ
��� onnn

ð10Þ

δφV ,i
� 	2 ¼E

~Vφ
i �V

φ

i
~VP
i

 !
ð11aÞ
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FIGURE 7 Scheme of generic distribution state estimation process
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δφθ,i

� �2
¼E ~θφi �θ

φ

i

� �
ð11bÞ

P1, P2, and P3 are the PMU sets. These are predetermined for searching scale purpose forming the argument of the
Jacobian matrix for correlation. E is the expected value of measurements, ~Vφ

i and ~θφi represents the true values of
voltage measurement and phase angles at the ith bus, Vφ

i and θφi are the measured values of voltage and phase magni-
tudes for phase φ. The simulation results show that this hierarchical algorithm is robust against coordinated attacks
and multiple spoofing cyber-attacks. Though there is still scope of placing micro-PMUs which can provide a higher
degree of accuracy for phase angle error estimation, this resilience-based framework gives good results against
spoofing.

5.1.4 | Similarity search-principal component analysis (SS-PCA) framework

In ref. [47] illustration of the use of reduced synchrophasor data mechanism to detect HILF events is proposed.
For this purpose, an algorithm consisting of SS and local outlier factor (LOF) concept is applied. SS detects
inconsistency in synchrophasor data. LOF uses these fewer synchrophasor data to locate buses affected due to
such events. Simulation results show better feasibility of event detection and precise location of impacted
buses.Figure 8 represents the step-wise SS and LOF flow diagram. Equal and unequal time frame manages the
transmission of reconstructed synchrophasor data and event-oriented algorithm, respectively. PCA removes any
chance of multivariate time-series synchrophasor data, followed by SS, and LOF. This real-time application
operates every second with a 10 second time window. The overlapped time window (0~10 sec, 1~11 sec, 2~12
sec, 3~13 sec, etc.) increases accuracy. Thus, SA at all times, especially during cyber threat conditions gets
enhanced.

FIGURE 8 SS-PCA framework
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5.1.5 | Augmented Lagrangian multiplier-based (ALM) algorithm

In,48 resilient wide-area monitoring architecture for malicious data corruption is proposed. It considers three types of
cyber-attacks, (1) synchrophasor-data repetition attack, (2) data missing attack, and (3) malicious data injection attack.
The augmented Lagrangian function is used to solve the unconstrained optimization problem, as in Equation (12).

minimizelg S,L,Yð Þ¼ Lk kþα Sk k1 Y ,M�L�Sh iþβ

2
M�L�Sk k2F ð12Þ

Where, data matrix M represents the summation of low-rank and sparse matrix, α is a parameter for regularizing
smoothness L and sparseness S. k.k denotes norm, β is the single regularization parameter, L is the low-rank matrix,
and Y is the Lagrangian multiplier.

Initialization : S0 ¼Y 0 ¼ 0,β>0 ð13Þ

Lkþ1 ¼Dβ�1 M�Skþβ�1Yk
� 	 ð14Þ

Skþ1 ¼ Sαβ�1 M�Skþβ�1Yk
� 	 ð15Þ

Ykþ1 ¼Ykþβ M�Lkþ1�Skþ1ð Þ ð16Þ

Figure 9 represents malicious corruption-resilient framework capable of accurately detecting and timely
reconstructing the partially damaged signals. In turn, it leads to an improvement of network resilience.

The matrices Lk+ 1 and Sk+ 1 represent reconstructed data and corruption content at (k+ 1)th instant, respectively.
Both the low-rank and sparse matrices contain information pointing to the presence of any synchrophasor data incon-
sistency. The system response vectors are present in the low-rank matrix, while fallacious intrusions are in the sparse
matrix. The usefulness of ALM- based algorithm lies in wide-range applicability, less iteration, and hassle-free parame-
ter tuning. Equations (13)–(16) show the initialization and convergence of the algorithm.

FIGURE 9 Malicious corruption-resilient framework
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5.2 | SBR data-driven approach

The data-driven approach provides information from a large set of synchrophasor data streams. Analyzing the data pat-
terns precisely reduces the chance of a massive prolonged impact on the power system. The following sub-sections pre-
sent a comprehensive discussion of various SBR data-driven techniques used at the distribution level.

5.2.1 | Network compensation theorem-based method

In ref. [49] the compensation theorem is adopted to represent the equivalent circuit impacted by abnormal events. It
uses the synchrophasor data captured by the micro-PMUs. The current phasors estimate the amount of injection in the
network. Bus admittance and voltage at the nodes evaluate the minimization function. Equation (17) represents this
minimization function. The phase angle of post-event and preevent voltage phasors make a 0�, or 180� difference. For
event induced equivalent circuit analysis, the phase angle concept is used, as in Equation (18).

℮i ¼
Xn�1

k¼1

Xn
p¼kþ1

ΔVk
i � ΔVp

i

�� �� ð17Þ

;¼∠Zeqvþ∠Δ Ius ð18Þ

Where, us is upstream synchrophasor data, ℮i is the power factor, V and I are voltage and current, index k is for
1,2….,n number of micro-PMUs, the index i is associated with 1,2,….m number of buses.The compensation theorem in
circuit theory identifies the events and enhances SA in distribution systems, thereby extracting only the useful HILF
related information.

5.2.2 | Hybrid State Estimation (SE) based Method

In ref.[50] the real-time distribution system SE at different time scales is proposed. The data-driven SE comprises deep
neural networks (DNNs) and weighted least absolute value (WLAV). It helps in quick tracking of the states of the distri-
bution system. The DNN and WLAV method for estimation uses gradient and topology-based mathematical expression,
as in Equations (19)–(21).

n¼n�ηrQi nð Þ ð19Þ

minimizewvT rvj j ð20Þ

such that,rv¼ z�h xð Þ ð21Þ

Where, n stands for the network parameters, η represents the learning rate of DNN, rQi(n) is the gradient of sub-
training set i, wv is weight vector, rv is the residual vector of WLAV, h(.) represents the measurement function and z is
the hybrid synchrophasor measurement. The WLAV identifies incorrect synchrophasor data, while DNN estimates the
topology based state of the system. Therefore, the real-time distribution system monitoring and control improves SA
and as a result, improves the resilience of a distribution system against bad data scenarios.

In ref. [51] the sudden undesirable disturbances posing a challenge to the network resilience, using synchrophasor
based dynamic SE is addressed. It comprises of three main steps, (1) constant monitoring of the network's most indicative
feature, (2) prediction of failures based on constant monitoring, and (3) mitigation of network to prevent further damage.

Figure 10 represents the block diagram of the synchrophasor based dynamic SE. There are three phases, first phase
concentrates on model formulation, the second stage uses a prediction algorithm for preliminary data selection and its
conditioning that determines system states. The detected error reporting forms the final step. Therefore, the sudden dis-
turbances are systematically handled.
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5.2.3 | Improved robust-PCA based method

In ref. [52] a stochastic based composite approach for synchrophasor measurement anomaly correction is presented. Applica-
tion of WAMS aids to accurately recover the transients. Bayesian framework selects the appropriate subspace for post-event
synchrophasor measurement recovery. Equation (22) represents the outlier for missing data attacks on the system.

xr ¼ I� IΩI
T
Ω

� 	
lrþ IΩI

T
Ωx

r�1 ¼ lrþδr ð22Þ

where the signal corruption is represented as, δr ¼ IΩITΩ xr�1� lrð Þ
xr is the synchrophasor measurement vector for sample r, lr is uncorrupted synchrophasor values for sample r, δr is

corrupted vector for sample r, the index of missing data channels is represented by Ω, and the sub-matrix of identity
matrix I is represented by IΩ. The output where the probability is one is then chosen for synchrophasor signal recovery.
Therefore, this modern composite technique of stochastic sub-space selection and corruption-resilient deviation estima-
tion considers topology changes to extract missing synchrophasors.

5.2.4 | Behavioral systems theory-based method

In ref. [53] a behavioral systems theory framework to identify the flaws in data quality due to injected attacks is pro-
posed. It uses synchrophasor voltage, current estimates to capture the inconsistency between past and present measure-
ments. Equations (23)–(25) represents the parametric input, output, and event detection function, respectively.

P uð Þ¼
input : u¼Vd

Vnode ≔ col Vl1,Vl2,…Vlnð Þ
Inode ≔ col Il1,Il2,…Ilnð Þ

8><
>: ð23Þ

output : y≔ col Id, Inode,Vnodeð Þ ð24Þ

ED tð Þ¼ if Mt�Mtþ1k k2 > ξ,obtain p,mð Þ�matrix

else,no event detected

�
ð25Þ

FIGURE 10 Synchrophasor-based dynamic SE
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P(u) is the parametric input for input variable u. Vd, Vln, and Vnode are the feeder voltage, load voltage at nth node
and nodal voltage, respectively. Id, Iln, and Inode are the feeder current, load current at nth node, and the nodal current,
respectively. Modal matrix at t and t+1 time instants are represented by Mt, and Mt+ 1, respectively. ED(t) is an event
detection function with a threshold as ξ. p and m are the nodal indicators of event detection. A possible challenge for
this data-driven approach is tuning the threshold with appropriate sensitivity.

5.3 | SBR machine-learning (ML) approach

Many of the HILF events cause leads to change in power flow direction. It also causes dips/swells in electric current or
voltage measurements. Thus, deploying micro-PMUs aid in the detection and classification capabilities of computer sys-
tem operators. The advantage lies in the diagnostic capabilities by building consistent synchrophasor data predictions,
without much human intervention.

5.3.1 | Bayesian classifier (BC) based method

In ref. [54] the ML method, based on flexible online BC for the detection of cyber-attacks is applied. Laplacian general-
ized graph matrix (GGL) analyzes the synchrophasor measurements representing the spatiotemporal network patterns.
Equation (26) shows the flexible BC objective function, and Equation (27) represents the error.

argmaxPca � ΛðA¼ a ℘s
1,℘

s
2,℘

s
3…℘s

m…℘s
ns|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

spatial estimation

,℘t
1,℘

t
2,℘

t
3…℘t

n…℘t
nt|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

temporal estimation

�������
������� ð26Þ

e hð Þ¼E
ð

P̂h ðX AÞ�j PðX AÞj� 	2
dx

� �
ð27Þ

Where, ℘s
m and ℘t

n are the spatial and temporal pattern estimations for a total number of ns and nt synchrophasor
measurements. Λ is the number of cyber-attack templates considered, Bayesian condition probability associated with
A variable of cyber-attack instance is represented by P and denotes as P(�), a represents attack template corresponding
to prior-probability, e(h) stands for mean integrated square error for h range, X is the observed vector of spatiotemporal
synchrophasor measurements. Simulation results confirm the ML technique's effectiveness to detect false data injection
(FDI) attacks by quantitatively studying these slow changing patterns.

5.3.2 | Stacked de-noising auto encoder (SDNAE) based method

In ref. [55] an ensemble ML and SDNAE method for robust feature extraction and classification of both natural as well as
cyber-physical attack is proposed. Feature extraction is a widely-used technique for obtaining attack signatures and dimen-
sion reduction. The process consists of SDNAE that acts as a robust feature extraction method and XG Boost algorithm as an
ensemble learning-based classifier for the intrusion-detection system, as in Equations (28)–(29).

Hi ¼ f wiHi�1þΒið Þ, i¼ 1,2,3,…:2l�2 ð28Þ

where,

w¼ w1,w2,w3,…wl�1½ �
Β¼ Β1,Β2,Β3,…Βl�1½ �

i¼ 1,2,3,…2l�2

8><
>: ð29Þ

Where, w is the weight and B is the bias for ith layer, H is the hidden layer, f(.) is the activation function, and net-
work output is determined at 2l-2. The simulation results show that the XG Boost based on the SDNAE can distinguish
the regular network functioning from attack-events with higher accuracy.
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5.3.3 | Ensemble Learning based method

In ref. [56] the detection of FDI attacks and its analysis for stable cyber-physical operation is explored. During such an
attack, the distribution system stability gets hampered. The ensemble classifier constructs the FDI attack affected syn-
chrophasor data automatically and accurately. Equations (30)–(33) represents the FDI attack detection model. It clas-
sifies the input synchrophasor data and the related detection results.

Yi ¼
1,FDI�attack

0,else

�
ð30Þ

D¼
D11 � � � D1n

..

. . .
. ..

.

Dj1 � � � Djn

0
BB@

1
CCA ð31Þ

Yj ¼

0,noattack detected

1,normal system fault

2, type 1FDI�attack : synchrophasor� tampering

3, type 2FDI�attack : synchrophasor� tampering

4, type 3FDI�attack :PMUsettings� tampering

8>>>>>><
>>>>>>:

ð32Þ

Y ¼ Y 1,Y 2,…Yj
 �

, for inumber of samples in the synchrophasor data ð33Þ

D represents the original synchrophasor data set for jth samples, with dimension n. The simulation results show that
it can detect different FDI attacks, even on small data.

5.4 | SBR quantification approach

The synchrophasor data of voltage/current changes, failure distribution, reliability, and stability can be measured to
estimate the degree of performance losses. Based on these parameters, performance during normal condition and net-
work loss under hazardous scenarios are quantified. This section explores the different quantification techniques
of SBR.

5.4.1 | Cyber-physical resilience (CPR) Index

In ref. [57] metrics for cyber and physical domain in response to abnormalities in the cyber-physical system are defined.
Equations (34)–(35) represents the CPR index and related cost constraints.

CPRs ¼Vop
s ð34Þ

U ¼max
ð∞
0
f tð ÞTH f tð Þþu tð ÞGu tð Þdt ð35Þ

Where, s is the number of states, and Vop
s is the optimal value corresponding to state s, U is the cost of recovery, u(t) is

the input, f(T) is the set of states that are reachable by the adversary within time T. H and G represent matrices describing
the cost of deviating from the zero state and the cost of control, respectively. The states can be evaluated by the modified
Viterbi method to assess data uncertainties to quantify mismatch.57 This SSL approach is an information-assessment
technique to determine potential adverse events that can affect the system.58
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5.4.2 | Data-analytic metric using resilience curve

In ref. [60] a series of not so common disturbances that tend to disrupt the normal functioning of the distribution sys-
tem are addressed using resilience curve.

Figure 11 represents data-analytic metrics based on the resilience curve. The different phases such as event progress,
post-event, restoration, and recovery corresponds to phase-wise transition of distribution system. It helps to analyze the
resilience requirements and aims at attaining specific performance level, that ultimately prevents total system collapse.
The simulation results show that DERs have the inherent capability to enhance resilience by compensating for a loss of
1,800 kWh for a 13-bus distribution system.

In this graph, R represents the generic-resilience metric, R3 is the operation mode for ideal scenarios and R is the post-
event operation mode, t1 and t4 represent the ideal restoration time and post-event restoration time horizon, respec-
tively. Equation (36) represents a generic resilience framework considering the predisturbance phase to the post-
restoration stage.

R¼
ðt4
t1

R3 tð Þ�R tð Þ½ �dt ð36Þ

In ref. [61] a weighted mean approach for secure mitigation against intrusion attack is proposed. The error in
micro-PMU data is quantified using the intrusion index. Equations (37)–(38) represents voltage synchrophasor esti-
mates and the percentage of corruption in data.

Mt ¼UtþSt ð37Þ

C%¼
0, Stk k0 ¼ 0
� 	

20, Stk k0 ¼ 2St
� 	

100, Stk k0 ¼ 1
� 	

8><
>: ð38Þ

Where, Mt is the time-sequence measurement vector consisting of voltage synchrophasors, St is the sparse vector, Ut

is the uncorrupted past measurements vector, C% represents the percentage of corruption in data. Evaluation of corrup-
tion percentage mitigates the intrusion by deploying the required amount of measures to recover the corrupted PMU
measurements.

FIGURE 11 Resilience graph for distribution system
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5.4.3 | Differential-phasor variance Index

In ref. [62] the evaluation of synchrophasor data inconsistency using statistical measure is explained. Variance of volt-
age synchrophasors at the impacted bus to rest buses is ΔV. The identification of the buses based on the voltage mea-
surement values S (it's cardinality s) using j number of PMUs, is as in Equation (39). As an alternative, the cyber-attack
can also be detected by checking the variance compared to the threshold value ∂, as in Equation (40).

var ΔVj
� 	

S¼
1
s

Xs
i¼1

ΔVs
j

� �2
� 1

s

Xs
i¼1

ΔVs
j

 !2

ð39Þ

Y
var ΔVj
 �� 	

> ∂ ð40Þ

The exact location of impacted micro-PMUs can be determined by this method. The added advantage is that prior
knowledge about PMU numbers and site information is not required.

5.5 | SBR miscellaneous approach

This section addresses resilience, along with integrity, availability, and security functionalities of the distribution net-
work. It is a combination of network behavior, boundary conditions, protective actions, and DER-related decisions.

5.5.1 | Weighted mean subsequence reduced-secondary control (WMSR-SC) method

In ref. [63] security against cyber-attacks using secondary control process by deploying PMU and its communication
link is detailed. The PMU based communication link quality with respect to the power angles δ between bus i and j for
power angle thresholds P1 and P2 is represented as in Equation (41).

Cij ¼
Cmax , δi�δj

�� ��< P1

0, δi�δj
�� ��≥P2

Cmax e
α δi�δj�P1j jð Þ

P2�p1

� �
,else

8>>><
>>>: ð41Þ

Where, α is the design parameter. The system's health monitoring is estimated from the closeness of power angles.
A less power angle gap threshold P1 denotes stable system frequency. Cmax represents the maximum value of data
packet transmission rate within the network.

5.5.2 | Maximum likelihood estimation method

The technique for maximum likelihood node for anomaly detection, framed in ref. [29] is a proactive method. It uses
processed data to figure out a satisfactory response. The main principle is that the synchrophasor located at/near the
adverse event experiences vast variation in measurement than the farther ones. Equation (42) represents the simplified
2-node instantaneous power flow.

PAB ¼ VAj j2þ VBj j2
Zj j ∠α� 2

VAj j VBj j
Zj j

� �2

cos 2δþ1ð Þ
" #1=2

∠α ð42Þ

Equation (43) classifies impacted feeders based on bus angle change.
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Δ δ

Δ t
¼ δwþ1�δw

360� �w
ð43Þ

δ represents the resultant angle due to the two voltage vectors, Z∠α is sectional impedance, jVAj and jVBj are
the voltage of buses as obtained from D-PMUs. This method of anomaly classification based on the bus angle helps
to identify the critical nodes. It reconfigures the network in a manner that the angle difference becomes a near-zero
value. Thus, the resilience of a distribution system improves by timely shifting the critical loads during unfavorable
events.

In ref. [64] a comprehensive assessment of synchrophasor measurement uncertainties and related operating condi-
tions are analyzed. Equations (44)–(45) represents the magnitude and phase of random noise added to N sets of mea-
surement. Its total vector error is as in Equations (46)–(47).

ΔmN 0,errm=3ð Þ,XM
m ¼XT

mþ Δm ð44Þ

Δ pN 0,errp=3
� 	

,XM
p ¼XT

p þ Δ p ð45Þ

errm ¼ f TVEð Þjerrp¼0
ð46Þ

errp ¼ f TVEð Þjerrm¼0
ð47Þ

Where, the magnitude and phase for noise are Δm and Δp respectively. X is a generic quantity and T is for true
quantity. Magnitude and phase errors are represented by errm and errp respectively.

Figure 12 provides a percentage-wise categorization of various methods that are used for SBR applications. It can be
deduced that the SBR model based and SBR quantification approach can precisely estimate the change in performance
due to HILF disturbances, and are widely implemented. The uncertainty based operating conditions during HILF
events is estimated using errors of synchrophasor measurements to accurately predict the restorative actions to be con-
sidered for SBR.

6 | SBR APPLICATIONS

This section outlines various applications of SBR considering the available literature. It classifies the application to
obtain the most suitable SBR, under a given set of available resources. These applications are voltage stability and oscil-
lation monitoring; disruption detection and mitigation; combined infrastructural and operational control; and other
abnormal conditions.65-68 Figure 13 represents SBR applications responsible for protecting the distribution system deg-
radation due to the HILF events. Table 7 enlists the details of SBR applications in the distribution system for different
HILF scenarios.

Figure 14 shows the percentage of previous research works for SBR applications.

FIGURE 12 Percentage-wise details of methods used for SBR implementation
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6.1 | Voltage stability and oscillation applications

This sub-section deals with the SBR application-related literature that predicts system oscillation and enhances voltage
stability. Comparison of past and present voltage and current synchrophasor datasets can identify such abnormalities.44

The variance of time sequence voltage synchrophasor from its threshold value gives the micro-PMU data inconsis-
tency.49,53 The synchrophasors near to the HILF location experience a larger deviation in measurements. It checks
anomalies to estimate the percentage of corrupted data.29,61-63 High probability of information distortion is monitored
by oscillation detection at each node. It helps in the supervision of network hijacking scenarios.65 The real-time voltage
measurement is integral to all types of resilience enhancement against cyber-physical, cyber, and network

FIGURE 13 Representation of distribution system degradation and related SBR applications

TABLE 7 Applications of SBR in

distribution system for HILF events
SBR applications References SBR applications References

Voltage instability 43,65,69,70 Oscillation issues 65,71,72,73

Disruption detection 74,50,51,53,75 Operational malfunctioning 50,55,57,24,76

Mitigation issues 42,44,46,47,55,77 Load restoration failure 69,29

Infrastructural failure 45,74,78,79,21,80 Anomaly identification 49,53,29,79

Frequency deviation 60,59,66 Restorative vulnerability 68,81,75,78
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malfunction.66 To dynamically track cyber anomalies, nonlinear SE is commonly deployed.67 Distributed generation
(DG) aids in a stable and reliable benefit for intermittent voltage and frequency control. For windspeed disturbance, the
kinetic energy of a rotating mass determines the maximum operating point. Beyond this, resilience measures are
applied because the network reaches its maximum controlled efficiency.76,82

In ref. [72] a recursive method calculates and updates the threshold settings for deviations in synchrophasor data.
This leads to a reduction in the false alarm rate during abnormal situations. It uses a fast local synchrophasor informa-
tion recording and processing method. The raw synchrophasor data are represented in the form of a matrix, with
a number of samples, b variables, and m number of principal components. Equation (48) shows this matrix representa-
tion, and Equation (49) gives its score by the Hotelling's formula. Figure 15 represents a robust PCA framework to mon-
itor the synchrophasor based data-driven approach applied for resilience enhancement by islanding.

Q¼ SLT þR ð48Þ

S2i ¼QiℓΥ�1 ℓTQT
i ð49Þ

Here, Q and R are the observation and residual matrix, S and L are the score and load vectors, respectively.
Where, S2i is the i

th row of the Hotelling's principal component analysis statistic, Υ is the diagonal matrix containing
k eigenvalues. ℓ is the score corresponding to ith row.

In ref. [84] voltage and frequency synchrophasors are correlated, with the network's active and reactive power con-
sumed by the load. Equations (50)–(51) represents the basic formulations for threshold Th estimation in these types of
detectors. The ZIP-static load model, with constant impedance (Z), current (I), and power (P), is as in Equation (52).

Lineregression ¼ β yþα ð50Þ

Th¼ Thhigh ¼ β yþαþp�dev
Thlow ¼ β yþα�p�dev

�
ð51Þ

Ƥ¼ZpV
2þ IpV þƤp ð52Þ

Where, β represents the slope of the regression line, the value of intercept is given by α and the closest point on the
line from the actual data is shown by y in the equation, p is the count of standard deviations and dev represents root-
mean-square of y-distance from the given regression line. Ƥ and V are the active power and voltage in per unit with
sub-script p denoting the positive component.

In ref. [73] the synchrophasor data for oscillation detection, SE, and other remedial actions are explored. For a fast
extreme event diagnosis, ensemble based learning technique is used. Figure 16 represents the anomaly detection pro-
cess based on outlier identification and ensemble technique. It provides a trigger for further classification into bad data
or events. The anomaly score of synchrophasor data is based on the aggregate score computed by the detector.

Figure 17 is a graphical statistic of previous research works on voltage stability and oscillation applications for SBR.
The increase in frequency poses a challenge to the system's voltage and oscillation margin. An integrated solution based
on grid modernization is used to achieve satisfactory results and SA improvement, and a greater chance of survivability
from system damage.

FIGURE 14 Percentage wise details of research work in SBR

applications for the distribution system
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6.2 | Disruption detection and mitigation issues

This sub-section outlines applied work regarding the improvement of distribution system disruption detection and its
appropriate mitigation measures. The wide-area resilience framework focuses on synchrophasor data based mitigation
strategies with less impact on the existing infrastructure.42,44 Accurate detection and recovery of synchrophasor data
from the corrupted measurements prevent further degradation.47,48 Monitoring its most indicative feature aids mitiga-
tion during intrusion and adverse weather.51,52 The classification of HILF events into natural and cyber-oriented events
help in robust feature extraction.54,56 The micro-PMU provides exactness in the estimation of restoration and thereby
improves SA for post-HILF condition.68

In ref. [81] an integrated resilience framework for preventive and emergency response is proposed. The SA
based resilience corresponds to response strategies based on outage prediction and load shedding of the distribu-
tion system. Equation (53) represents an objective function for power optimization using this integrated frame-
work. Equations (54)–(55) is the uncertainty modeling of distribution lines due to stormy weather. Equation (56) is
the power optimization function during an emergency. Figure 18 represents the decomposition strategy based on
an integrated response framework for resilience based on preventive measures, emergency response, and above
all SA.

max:
X
dϵℵ

℘em
d,shed ð53Þ

Estimating statistical

errors at filtering

process

Obtaining new samples

Updating PCA model

recursively

Triggering of alarm and

related action

ONLINE TRAINING OFFLINE MONITORING

SYNCHROPHASOR

DATA

PCA MODELING

1 2 3 4 5

DISTRIBUTION SYSTEM

FIGURE 15 Scheme of PCA approach83

FIGURE 16 Anomaly detection process
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X
m,nð Þ � ℓ

1�ℕb
m,n

� 	
≤Lb ð54Þ

ℕb
m,n ¼ 0, line damaged

ℕb
m,n ¼ 1, line not�damaged

(
ð55Þ

min:
X
dϵℵ

℘em
d,shed ð56Þ

℘em
d,shed is emergency state power drop of a load, ℵ is total load. The maximum number of lines damaged is represented

by Lb. ℕb
m,n shows that line (m,n) out of total ℓ lines may be damaged under windstorm.In ref. [69] a two-stage decision

for optimal load restoration, using the mixed-integer method is determined. Equations (57)–(63) represents objective
functions to satisfy the voltage, current, power, restored loads based on operational constraints, respectively.

max f Lð Þ¼
X
jϵL

wjLj, with, Ljϵ 0,1f g, 8j�L ð57Þ

aj,k,bj,k,bk,jϵ 0,1f g, for j,kð Þϵγ0,Vφ
k ϵ∁,p

φ
j ,q

φ
j ϵR

þfor jϵℕ,φϵαj and I
φ
k ϵ∁, for j,kð Þϵ γ,φϵαj ð58Þ

Such that

pφj þ j qφj ¼Vφ
k

P
mϵσj

Iφk,j
H

Iφk,j ¼
P
rϵγj

Yφ
k,j

r Vφ
j �Vφ

k

� �
8>><
>>: ð59Þ

FIGURE 17 Graphical representation of % of SBR explicit/

implicit researches on voltage stability and oscillation applications

FIGURE 18 Decomposition of integrated response framework for resilience
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0≤
P

φ:φϵαj
ðpφj þLjp

φ
load,j ≤Prate,j

0≤
P

φ:φϵαj
ðqφj þLjq

φ
load,j ≤Qrate,j

8><
>: ð60Þ

pφj ¼�Ljp
φ
load,j

qφj ¼�Ljq
φ
load,j

(
ð61Þ

Vφ
k,min ¼ ≤ Vφ

k

�� ��≤Vφ
k,max for jϵℕ,φϵαj ð62Þ

Iφk,j

��� ���≤ Iφk,j,max , for j,kð Þϵ γ,φϵαj ð63Þ

Where, ∁ is the complex number set and Rþ is the set of positive real numbers. For load j, Lj is the critical load res-
toration solution, for the jth load wj is the weight factor, and for lines (j,k), aj, k,bj, k,bk, j are the selected line status to be
energized. Vφ

k and Iφk are the voltage and current synchrophasors for phase φ at bus j, σj represents the adjacent buses
with phase αj, Y

φ
k,j is the admittance between buses k and j with a phase difference φ. The total real and reactive power

of load at bus j is represented by pφj and qφj , respectively. The objective of these equations is to maximize the restored
loads based on operational constraints, as in Equation (57). The unbalanced three-phase power flow applying
Kirchhoff's law is indicated by Equation (58). The objective function also considers Ohm's law. The bus injection based
on power constraints is indicated by Equations (59)-(63). At times, if the intensity of system damage is large, then the
load recovery is postponed to satisfy the network's minimum operational constraints.85

Building small scenarios of wind energy farm output using synchrophasor measurements at each instant is detailed
in ref. [75] Equation (64) gives a discrete solution for the wind farm restoration scenarios. The value of 1 means that
the wind farm is restored safely at the opportune time t.

f ¼F Pwind farm, t
� 	 ð64Þ

Pwind farm represents output power of the wind farm, and time t denotes the mitigation time.
SBR enhances the detection of HILF events and prevents further degradation. WAMS based on data synchroniza-

tion handles the real-time monitoring and incident analysis for emergency control.77,86 A sectionalisation method also
accelerates network mitigation. Small integer linear programming (SILP) model with an improved PMU placement
algorithm is used for this.78,80

All the above-discussed SBR applications improve distribution system resilience. It coordinates real-time measure-
ments with the different optimization strategies. Therefore, detection and analysis of abnormal events at exact instance
enhances SA.

6.3 | Combined infrastructural, operational, and other applications

SBR reinforces the infrastructural strength and operational performance of a system. The combined monitoring of both
these aspects gives a complete picture of the network.46,50 Quantifying these interdependent synchrophasor data gives
possible disruption causes due to HILF events.55,57 Also, intelligent restoration with the help of new technologies
increases observability.59,60 Other applications of SBR includes improved emergency response due to better communica-
tion channels and topology monitoring at all time scales.

In ref. [71] WAMS monitors the distribution system operational parameters to check the restored system till it
becomes stable. The method proposed in ref. [71] is extended to estimate resilience in ref. [24] Coordinated resilience
improvement technique monitors and controls the time dependent service interruptions. In ref.[74] a resilience oriented
look ahead method is proposed. The disturbance due to HILF impact is divided into a sequence of periods. It comprises
of three steps that are feeder selection, optimal usage of DERs, and operational efficiency. The objective function of this
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proposed method aims at minimizing the mismatch between node voltages and the real power of DGs. Equations (65)–
(66) represents the optimization function for obtaining a target resilience.

min
XG
g¼1

wg �Pg�Pg,k
� 	2þXU

u¼1

wu vsetu � vu
� 	2 ð65Þ

max
XD
d¼1

XK
t¼k

cdxd,tTint ð66Þ

Where, �Pg represents real power of the DGs, the predecision variable on real power is Pg, k, k is the first length of
time considered, wg and wu are weighted coefficients, vu and vsetu are the node voltage and their target values respec-
tively, the sum of priorities of d loads in service are cd,D is total loads in service, the status of load is xd, t in each time
duration Tint. By appropriate control techniques, the adverse impact of DGs on the resilience based operation after a
major disaster can be determined.

WAMS captures the operational status of the system.78 This information is capable of maintaining the active power
balance and related operational constraints. Classifying events based on mismatch of operational parameters are dis-
cussed in ref. [79] In ref. [21] the benefits of quantification of synchrophasor based resilience are discussed. The overall
topological resilience metric RΤ , in terms of its voltage, under a certain type of reconfiguration ℧(k, i)

0
for the distribu-

tion system is given by Equation (67).

RΤ ¼
XΝ
i¼1

Vi℧ k, ið Þ0 ð67Þ

The metric as discussed effectively captures the distribution system's preparedness to handle the impact of extreme
events. Therefore, a multivariate analysis of resilience yields better results for future distribution systems.80 Equa-
tion (68) quantifies this multi-criteria analysis, that is evaluated using graph theory and the Choquet integral.

CIρ fð Þ¼
ð
f dρ¼

Xn
i¼1

f yið Þ� f yi�1ð Þð Þ ρ Λið Þ ð68Þ

ρ is the measure on which Choquet integral (CI) is defined on a set of criteria Y = [y1, y2,…yn], the CI of a function
f: Y ! R+, Λi represents nonempty sets for different alternatives.

Switching operation reduces the probability of more failures in the network. During service restoration process, it
minimizes the disruption time of loads. In ref. [70] improving SA is recognized as a catalyst for providing information
about switching tasks and related grid operations during event propagation. Figure 19 represents the sequence-wise
phases of resilience.

In ref. [29] proactive measures of resilience using D-PMUs are analyzed. In ref. [29] recursive principal component
analysis (RPCA) dealing with the event-based transients is proposed. It detects any islanding in the system. ALDC algo-
rithm is implemented across the PMUs to segregate all data whose error exceeds a predefined threshold level.

FIGURE 19 Evolution of need for operational and infrastructural resilience
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Thus, the application of SBR enables infrastructure, operational, and its combined benefits on the system's perfor-
mance. Its quantification based on control, monitoring, reconfiguration, and proactive techniques averts any impending
HILF conditions.

7 | COMPARATIVE ASSESSMENT OF SBR

This section presents an elaborate comparison of SBR literature proposed by numerous researchers. It contrasts the
attributes of SBR, its type i.e. response-based (post-incident planning) or event-based (incident-focussed), its features,
network parameters, attack type, limitations, and HILF event stage. The applications of SBR, methods used for its
implementation, and details of the SBR approaches are also examined for correlation. Table 8 presents a comprehensive
comparison of the various SBR approaches based on the above points. From Table 8, it is evident that a major portion
of the SBR assessment methods are event-centered. It means that the synchrophasor data will be used mainly for after-
math resilience analysis of the distribution system according to the HILF intensity. The network parameters are contra-
sted based on the impact on DGs, network configuration, and topology identification. The SBR model based approach
is used to analyze almost all types of attacks such as DoS, spoofing, data corruption, and substation attack. Topology
identification addresses malfunction of location due to voltage instability and oscillation issues. It examines post-
mortem analysis for disruption detection and mitigation difficulty. Template/data set formation is probed using topol-
ogy for combined infrastructure, operational and other anomaly issues. Most of the SBR methods are tested on the nor-
mal configuration of the network. The utilization of SBR methods depends on issues encountered by the network and
SBR type suitable under HILF scenarios.

Thus, based on available literature, the following deductions may be drawn:
Figure 20 illustrates percentage-wise different issues of SBR pertaining to existing literature. It can be deduced from

the pie chart that the SBR approach is mainly implemented for disruption detection and mitigation difficulties in the
system.

Table 9 distinguishes the SBR methods based on accuracy, data sample efficiency, simulation results, merits, and
demerits. Based on accuracy, it is found that the SBR data-driven and SBR machine learning approach captures fast sys-
tem variations for resilience estimation. It is observed that the machine learning approach shows greater efficiency for
results related to detection and classification, as in ref. [56] However, this approach is dependent on datasets and simu-
lated test-beds may not always be available or at times there may be a lack of expert knowledge. The sample efficiency
of the SBR data-driven method is high but also sensitive to bad data. In ref. [54] the synchrophasor bad data related to
spatial and temporal characteristics are estimated as a nonlinear function of its multivariate resilience nature. SBR mis-
cellaneous method is dependent on a control and communication system for a reliable simulation result. Very few
attempts to apply the machine learning approach for SBR can be seen in the literatures. In refs. [55,56] the classification
of HILF events majorly focuses on system resilience by analyzing diversified synchrophasor measurements separately.
It can sometimes lead to lengthy procedures for evaluating resilience using the SBR machine learning method due to a
large number of synchrophasor data required for preprocessing. Based on SBR merits, the SBR quantification method
does not require data modeling techniques. The knowledge of features based on data accuracy, sample efficiency, simu-
lation results, merits, and demerits enables appropriate selection of methods. It addresses some of the challenges that
can arise during the practical application of SBR methods to the distribution system for HILF scenarios.

8 | FUTURE RESEARCH PERSPECTIVES

As per the survey, the various implementation techniques, framework, classification, and impact of SBR on the power
system are presented. It is evident from the existing literature that no universally accepted parameter is available for a
holistic SBR framework.92-94 The modern power system has shown signs of technological advancements along with
greater inclusion of DERs that may lead to technical and economic challenges for the aging distribution system.95-97 In
this section, few perspectives for applying SBR in future are as follows:

i. The distribution system is evolving in nature. The conventional distribution system may have difficulty in handling
the changing customer demands and increase in extreme events. So, in the future, a set of practical guidelines to
overcome the geographical limitations to track distribution line status using unmanned aerial vehicle is needed.98
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Hence, fault diagnoses can be performed efficiently using synchrophasor data in preevent condition and using
UAV for difficult to reach areas. It will enhance overall system resilience.99 Figure 21 represents the distribution
line status monitoring method.

FIGURE 20 Percentage-wise details of issues solved using SBR

TABLE 9 Comparative assessment of SBR methods based on its features

SBR Methods Data Accuracy Sample Efficiency Simulation Results Merits Demerits

SBR
model based

Depends on
operational data
and tuning of
system data to
ensure
accuracy,43,4490

Moderate due to
dynamic
characteristics of
system and heavy
burden of
synchrophasors47

The error in the
reconstructed
synchrophasor data is
higher at the beginning
of the window, but is
acceptable for most of
the time span43-48

Aptly shows
system
interdependency
due to HILF
without making
changes in
existing
infrastructure48

At times good
pretraining
data for
implementing
in proactive
resilience
strategy43-46

SBR data driven Accurately captures
the maximum
deviation level for
coarse system
changes due to
HILF50,51,53

The sample
efficiency is high
but at times are
vulnerable to bad
data53

Data corruption-resilience
tested successfully for
anomaly ranging from
20% to 50%.49-53

Tracks fast system
variations of
operational
states against
malicious data52

Requires
availability
and the use of
synchrophasor
data from
larger
numbers of
PMUs50,51

SBR machine
learning

Results have
dependency on
synchrophasor
sample data
quality54

60 extracted
features is
recommended for
the best sample
efficiency of
90.48%59

The simulation results
shows efficiency in
terms of total accuracy
(95.46%), average
precision (95.23%), and
average recall (95.97%)
values54-56

Focuses on input–
output
relationship of
system to reflect
network
condition54,56

Might require
good training
data to reduce
calculation
time and
decision-
making55

SBR
quantification

Accurate resilience
results with a
clear
interpretation of
network
characteristics57-59

Throughout value,
q = 0.1 estimates
correct
classification of
the corrupted
data for an
efficient
sampling58,62

Results show successful
reconstruction of
original data from 20%
of total number
corrupted signals at any
instant.57-61

Mostly does not
require any
physical model
description for
evaluating
resilience60-62

At times high
computation
complexity if
many integer
variables are
involved10,60

SBR
miscellaneous

Accuracy mostly
depends on
system
observability29

Data augmentation
may increase
efficiency64

The results show
dependency on control
and communication
system for
resilience29,63,64,91

Resilience can be
captured from
different system
aspects29,64

SBR estimation
at different
time horizons
is mostly not
possible64
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ii. The synchrophasor measurements experience inconsistency during data injection and other related cyber-
attacks.100,101 Sometimes negligible data injection impacts system operation. A method will be imperative to ana-
lyze these minute levels of imbalances in distribution systems to increase the accuracy.

iii. The existing methods of weather-dependent SBR are mainly based on fast detection strategies, identification of grid
disturbances, its classification, and its corrective actions.102-105 A sensitivity analysis of real-time noise, correlation
with location dependent parameters and their impact on the performance of different modeling techniques is nec-
essary before deciding the most suitable enhancement strategy.
Figure 22 represents the modeling of synchrophasor data for an improved resilience analysis.

iv. Proactive resilience analysis consists of three main steps, which are continuous online monitoring, prediction of
failures, and timely mitigation.106-109 There is a requirement of multi-HILF event resilience enhancement strategy
so that resilience measures for a particular event may not interfere with the approach of another such adverse
event.

The above discussed future aspects can be availed to study and analyze the SBR of the distribution system with a focus
on a holistic, temporal, and variable HILF risk assessment framework for choosing the best strategy to be executed.

9 | CONCLUSION

SBR is incorporated for a fairly improved real-time visualization, monitoring, control, and analysis of system parame-
ters against HILF events. These attributes contribute to better understanding of the system's vulnerabilities and
enhances SA, which makes it less likely to succumb to the adverse events. SBR improvement methods offer a novel
solution enabling quick diagnosis as well as timely restoration by adding value to the decision-making process and also
an insightful post-event forensic study. This review represents an attempt to seek an overview of synchrophasor
technology-oriented distribution system resilience. It provides insight into the resilience framework concept using
micro-PMU, discusses the issues encountered by the distribution system in response to which synchrophasor based
resilience concept is beneficial, and synchrophasor based methods for distribution system resilience enhancement.
From the analysis, it may be deduced that the SBR model based as well as the SBR quantification approach seems to be
the two dominant areas where most of the synchrophasor based resilience techniques are applied. To impose SBR, dif-
ferent methods are considered in literature such as the SBR model approach, SBR data-driven approach, SBR machine
learning approach, SBR quantification methods, and SBR miscellaneous approach. Appropriate mathematical

FIGURE 21 Enhancement of weather-dependent SBR for an evolving distribution system

FIGURE 22 Resilience enhancement model using

combinatorial analysis
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formulations are provided to support the different suggested methods. A detailed comparison covering issues due to
HILF events in the distribution system, methods used to implement SBR, along with attributes of SBR methods are
specified. The review further suggests possible prospects that can be used to realize distribution system resilience using
synchrophasor technology along with unmanned aerial systems and improved real-world modeling techniques for more
accurate and detailed analysis under incident based extreme weather scenarios, cyber-attacks, and many such complex
cyber-physical conditions.
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