
TEACHING DIGITAL SIGNAL PROCESSING WITH STANFORD’S LAB-IN-A-BOX

Fernando A. Mujica, William J. Esposito, Alex Gonzalez, Charles R. Qi,
Chris Vassos, Maisy Wieman, Reggie Wilcox, Gregory T. A. Kovacs, and Ronald W. Schafer

Department of Electrical Engineering

Stanford University
Stanford, CA 94305-9505

ABSTRACT

This paper describes our efforts to include a hands-on
component in the teaching of core concepts of digital signal
processing. The basis of our approach was the low-cost and
open-source “Stanford Lab in a Box.” This system, with its
easy to use Arduino-like programming interface allowed
students to see how fundamental DSP concepts such as
digital filters, FFT, and multi-rate processing can be
implemented in real time on a fixed-point processor. The
paper describes how the Lab in a Box was used to provide a
new dimension to the teaching of DSP.

Index Terms—real-time DSP, filters, FFT, C++

1. INTRODUCTION

Traditional DSP courses at both the undergraduate and
graduate levels often focus on the basic theory and the
mathematical representation of algorithms based on that
theory. This is not surprising, since actual computational
implementation of the algorithms can involve an additional
layer of knowledge of programming languages and arcane
debugging systems. For this reason, most DSP courses
today rely on MATLAB1 or other high level programming
languages to provide a taste of practical application of the
theory. While this approach resembles the prototyping
phase of real DSP system implementations, the final
implementations often use heterogeneous compute elements
including programmable processors, configurable hardware
accelerators (HWA) and/or hardcoded hardware blocks.
The idea behind the Lab in a Box DSP Shield is to take
students one step closer to real-time applications with a
minimum of overhead for learning new programming
systems. As described in Esposito, et al. [1], the Lab in a
Box DSP Shield is based on a Texas Instruments
TMS320C5535 processor and an AIC3204 audio codec. It
is designed to stand alone or to operate as a “shield”
connected to an Arduino board. The programming language
is C++, which is known by most engineering graduate
students, and the interface to the board is through an

1 MATLAB is a registered trademark of Mathworks, Inc.

Arduino-like open source interface called Energia [2]. The
Energia/Arduino application programming interface (API)
paradigm offers easy to use function calls to access the
various hardware components. In addition, the Energia
environment includes TI’s C55 DSP library of functions for
common signal processing operations [3]. Our hypothesis
was that this simplified programming paradigm would make
it relatively easy for most students to experience the
satisfaction of seeing mathematical concepts turn into real
experiences. A key feature of the approach based on the
DSP Shield is that no physical laboratory facilities are
required. Students’ laptop computers are all that are needed
to program and control the DSP Shield.

2. CLASS CONTENT

The Stanford course, EE 264, “Digital Signal Processing” is
aimed at mature undergraduates and first-year graduate
students. It assumes a previous undergraduate introduction
to the basic concepts of DSP, including discrete
convolution, difference equations, sampling and the
discrete-time Fourier transform. This class digs deeper into
many of the important details that are useful knowledge for
applications of DSP technology. Table 1 shows the topical
outline of the 10-week-long course.

Table 1: Class outline

Label Topic classes
a Introduction and review 1
b Discrete-time random signals 2
c Sampling, reconstruction, D-T filtering of

C-T signals, and multi-rate systems
3

d Quantization and oversampling in A-to-D
conversion

1

e Properties of LTI systems 1
f Quantization in fixed-point

implementations of filters
3

g Digital filter design 1
h Discrete Fourier Transform and FFT 1
i Spectrum analysis using the DFT 3
j Parametric signal modeling 2

2015 IEEE Signal Processing and Signal Processing Education Workshop (SP/SPE)

978-1-4673-9169-6/15/$31.00 ©2015 IEEE 307

These are all topics that arise in practical applications and
are therefore prime targets for enhanced learning with an
associated lab based on a fixed-point embedded processor.
In particular, topics c, d, f, g, h and i can be supported by the
addition of a hands-on lab/project component.

3. DSP IMPLEMENTATIONS

A canonical DSP System for processing analog signals is
shown in Figure 1. It comprises an Analog-to-Digital
converter, a DSP System and a Digital-to-Analog converter.

Figure 1: Canonical DSP system.

In most DSP courses the generic DSP System block above is
typically expanded with a functional block diagram of the
particular algorithm at hand, but rarely are implementation
details exposed. In most practical systems however, the
actual implementation might include programmable
processors, configurable HWA, and even parameterized
analog components. In this paper we describe a set of
laboratory exercises using the DSP Shield that expose
students to HWAs, programmable processors and such
related concepts as flow control background processing, and
interrupt service routines. The hardware partitioning is as
depicted in Figure 2.

Figure 2: DSP System partitioning.

Figure 3: DSP Shield components.

The audio codec in the DSP Shield offers not only stereo A-
to-D and D-to-A converters but also a set of configurable
HWA that implement various types of FIR and IIR filters.
The programmable processor also includes an FFT HWA.
The mapping between the various implementation

components and the integrated circuits in the DSP Shield is
illustrated in Figure 3. This figure also shows the serial
interface between the DSP Shield and the host computer that
is used for programming, debugging and as input/output
(I/O). It is noted that this interface is optional and that both
the Arduino and the DSP Shield, once programmed, can
operate untethered from a computer.

4. LAB STRUCTURE

We piloted the lab part of the class as an optional one extra
credit hour to the regular Stanford Digital Signal Processing
class in the Winter 2015 academic term. The lab structure
comprised 6 pre-defined labs, which were assigned one per
week, and a 4-week long open-ended project. In the
following subsections we describe the objective of each of
the labs and the project.

4.0. Lab 0: Introduction and HW/SW Setup

Instructions to install the Energia integrated development
environment (IDE) were released a few days before classes
started to allow students to work on the SW setup on their
computers. The DSP Shield was distributed on the first day
of class and with the help of this lab write-up, the students
were able to:
• Verify that the DSP Shield was working properly with

their computer.
• Run simple Energia examples

4.1. Lab 1: Getting to know your DSP Shield

The goal of this lab was to get students familiar with
programming the DSP Shield and specifically to learn about
the various input/output capabilities of the DSP Shield.
By completing this lab the students learned how to:

• Control the LEDs
• Display messages on the OLED display
• Print and scan from console
• Read the DIP switch
• Read and write audio from the microSD card
• Send and receive data from the DSP shield to MATLAB

and vice versa

4.1.1. Serial (MATLAB) Interface

To facilitate co-development with host-based development
environments like MATLAB, we developed a generic serial
interface to send and receive data between the DSP Shield
and the host. This capability is offered in the form of an
Energia library and has a simple API:
• serial_connect(baudRate): establishes a serial

connection at the specified baud rate.

2015 IEEE Signal Processing and Signal Processing Education Workshop (SP/SPE)

308

• serial_recv_array(data, length): receives a data
array of length elements.

• serial_send_array(data, length): sends a data
array of length elements.

These functions are implemented in both the host and the
DSP Shield and are run in complementary pairs. The send
and receive functions are overloaded for 8, 16 and 32 bit
integers.
The serial interface in the host is implemented in MATLAB
but it can be ported to other high level languages such as
Python.
In addition, a serial command class is provided to facilitate
the implementation of interfaces where the host issues
commands to be executed on the DSP Shield.

4.2. Lab 2: Software Flow Control

The goal of this lab was to introduce real-time
implementation issues associated with embedded
processors. After completing this lab the students should
understand the basics of:

• Real-time embedded flow control
• Interrupt service routines (ISR)
• Buffer management

The software flow control template uses the following
functions:
• setup(): executes once at program entry. This function

is used to initialize variables, establish serial connection
and other tasks that need to execute only once.

• loop(): executes in an infinite loop. This function is
used for background tasks.

• ISR(): executes once per interrupt event. A single
interrupt is triggered by the direct memory access engine
on completion of a block of data transfer to the DAC.

Figure 4: Flow control timing diagram.

The timing relationship between the flow control functions
is illustrated in Figure 4. This figure also illustrates the
advantages of block-based processing by amortizing the ISR
overhead.

The students were introduced to buffer management
concepts in this lab. The ping-pong scheme used throughout
the labs is illustrated in Figure 5.

Figure 5: Buffer management.

4.3. Lab 3: Fixed-point Arithmetic

The goal of this lab was to introduce fixed-point
implementation issues in embedded processors. After
completing this lab the students should understand the
basics of:

• Fixed-point arithmetic and modeling
• Using the C55x DSP Lib

This lab complements the class discussion on analysis of
round-off quantization errors and prevention of overflow.
The focus is on understanding implementation issues that
arise in fixed-point implementations using two’s
complement arithmetic. We covered the rounding and
truncation quantization and saturation and wrap overflow
handling.

4.4. Lab 4: Sampling Rate Conversion

The goal of this lab was to explore practical implementation
of rate conversion, complementing the course material on
interpolation, decimation and non-integer re-sampling.
After completing this lab the students should understand
how to implement:

• Rate conversion systems
• A basic rate converting Karaoke application

The audio codec in the DSP Shield offers very flexible
sampling options and even allows independent sampling
rates for the ADC and DAC. However, because of a
limitation in the HW and to simplify the SW flow control,
we constrain the ADC and DAC sampling rate by a rational
ratio.
With the ultimate goal of developing a simple Karaoke
machine, the students were guided step by step to implement
the following rate conversion systems:

2015 IEEE Signal Processing and Signal Processing Education Workshop (SP/SPE)

309

• Increase the sampling rate of the singing voice ADC by a
factor of 3 from 16 KHz to 48 KHz.

• Increase the sampling rate of music recorded at 32 KHz to
48 KHz.

• Mix singing voice sampled at 16 KHz with the music
recorded at 48 KHz and playback the result at the DAC
output rate of 48 KHz.

4.5. Lab 5: Codec Hardware Accelerators

The goal of this lab was to explore the use of hardware
accelerators (HWA) filters for the ADC and DAC. After
completing this lab the students should understand how to:

• Develop a framework for block-based adaptation of the

HWA filter coefficients from the DSP shield directly or
via the host using the serial interface.

The AIC3204 audio codec offers various HWA filter
configurations for the ADC and DAC [4]. Two of the
configurations offered for the ADC are shown in Figures
Figure 6 and Figure 7.

Figure 6: ADC 25-tap and 1st order IIR HWA option.

Figure 7: ADC 5 biquad and 1st order IIR HWA option.

All the HWA filters offer a 24-bit data path and double
buffered filter coefficients that simplify the implementation
of adaptive filtering applications.

4.6. Lab 6: DSP Lib FFT functions

The goal of this lab is to explore the use of the DSP Lib FFT
functions [3]. After completing this lab, the students should
understand how to:

• Use the DSP Lib FFT and inverse FFT functions
• Implement periodic convolution using the FFT and

inverse FFT
• Perform basic spectral analysis

• Optionally, implement linear convolution using the FFT
and inverse FFT

Although, not implemented in this version of the course, in
the future we plan to incorporate a lab describing the use of
the tightly coupled FFT HWA in the C5535 [5].

4.7. Project

The open-ended project allowed students to utilize concepts
from the class and the lab to develop an application of their
choice. The project duration was 4 weeks and the students
submitted project proposals for staff approval 2 weeks
before the project start date. They were given a list of
project ideas that the staff considered tractable in the time
allotted and by the capabilities of the DSP Shield:

• DTMF (touch tone telephone) decoder
• OFDM digital communication receiver
• Adaptive filtering demonstration
• Phase vocoder (aka, a pitch shifter)
• Heart rate detector
• Programmable audio equalizer
• Tree-structured sub-band coding of audio
• Time/frequency analyzer (spectrogram)
• Digital FM/AM communications
• Acoustic noise suppression
• Active echo cancellation

Since we did not have a dedicated lab time or facilities, we
covered in lecture a typical development schedule to help
the students stay on track with their projects:

• Plan / rough timeline
• Literature search
o Key kernels / algorithms

• Reference model
o MATLAB (or C/C++)
o Individual module test bench
o System test bench

• Embedded processor implementation
o C/C++
o Module test bench
o System level test

• Documentation

The students were expected to have completed the reference
model of their application by the end of the second week
and were required to have a mid-point check with one of the
staff members at this point. This would allow them to
budget two weeks for the embedded implementation part of
the project.

5. LESSONS LEARNED

2015 IEEE Signal Processing and Signal Processing Education Workshop (SP/SPE)

310

There were a total of 45 students enrolled in the class. 15
students took the 4 credit hour option of the class, which
included the lab component. Two of the lab students were
remote students taking the class via the Stanford Center for
Professional Development. They received the lab-in-a-box
by mail.
The grading policy for the lab and non-lab students is shown
in Table 2.

Table 2: Grading policy.

Activity No lab (3 credit) Lab (4 credit)
Mid-term exam 30% 20%
Final exam 40% 25%
Homework 25% 25%
Labs 1-6 10%
Lab project 15%
Participation 5% 5%

In the following subsections we describe the key lessons
learned.

5.1. Lab every where / any where

We successfully demonstrated that it is possible to
incorporate a hands-on lab component involving an
embedded processing board without the need for dedicated
lab hours or a physical lab space. This can be attributed to
the easy to use Energia IDE. The students were able to
perform all the labs using their own computers and the
provided hardware. Only one out of the 15 lab students
required access to an on-campus computer for the first few
weeks as this student is a Linux user and the Energia
environment for the C55 is not yet supported on this
platform. The student was able to find a compatible Mac
OS or Windows computer after few weeks.

5.2. Hardware limitations

The main limitation of the hardware reported by the students
is limited memory. The current version of the DSP Shield is
limited by the on-chip memory of the C5535 processor of
320KB of combined program and data memory. This
prevented the implementation of some of the projects that
required large amount of memory. For real-time
implementations involving the host, I/O throughput was also
limiting.

5.3 Software limitations

The primary limitation of the Energia IDE is limited debug
capabilities. There is no single step debug or ability to put
breakpoints in the code to analyze processor memory and
intermediate results. Instead, users must rely on commands
printed to the serial console or to use the MATLAB
interface to debug their code. Overall, the simplicity and
ease of use of the Energia environment outweighs the

disadvantages of limited debug capabilities when compared
to a professional environment like Code Composer Studio
(CCS)®. It would be interesting to explore the possibility of
opening Energia projects in CCS to enable students ready
for the next level in sophistication in DSP systems and IDE
to transition seamlessly.

5.4. Lab effort

We designed each of the labs to take approximately three
hours of effort per week of work for the average student.
Unfortunately, many of the lab students reported that the lab
portion of the class took considerable more effort than what
they expected from one extra credit hour. Based on some of
the questions asked during office hours, we believe the wide
range of programming experience and the lack of a
dedicated lab time with instructor support, contributed to
students taking significant time addressing common
programming pitfalls.

5.5. Project examples

The second half of the class comprised of an open-ended
project. The students were given a list of project ideas to
choose from or could propose one on their own, subject to
instructor approval. Many of the students commented in the
class survey that the open-ended aspect of the project added
significant amount of time to the class.
In the rest of this section will briefly describe some of the
projects that the students implemented. We gave the option
to work individually or in groups of 2-3. We had a total of
13 projects, including two teams of 2 students.

5.2.1. Guitar effects
Two students implemented “guitar effects” systems, to
simulate popular musical distortion systems used with
electric guitars.
One student implemented a stand-alone fuzz box system,
which emulates the “soft” clipping of the type seen in
classic vacuum-tube amplifiers. To implement soft
clipping, the student developed a nonlinear “sigmoid” signal
block [7]. This nonlinear wave shaping function creates
high frequency harmonics, necessitating that the student
implement up- and down-sampling techniques taught in
class. By using these techniques, the student ensured that
the output signal did not contain these undesired harmonics.
A second student implemented a multi-effect system that
included several chained effects blocks. The first of these
blocks was a pair of high- and low-pass “shelving” filters,
with a 2nd order Butterworth response. A “wah-wah” effect,
was implemented as a state variable filter with a sinusoidal
time variant cutoff frequency. The project also included a
flanger effect block, implemented as a Finite Impulse
Response (FIR) comb filter. Finally, the dynamic range
compression block used the hardware in the audio codec.
Each of these effects could be switched in real-time using a

2015 IEEE Signal Processing and Signal Processing Education Workshop (SP/SPE)

311

MATLAB command line interface to instruct the DSP to
enable or disable the requested functionality. The student
validated his work by developing a robust MATLAB model
and streaming sample data back from the DSP Shield via the
serial interface.

5.2.2. Heart Rate Estimation
Two students implemented a wavelet-based algorithm [8] to
detect the R peaks of a QRS complex. Through MATLAB
prototyping and DSP Shield implementation, the students
reinforced decimation, filtering, and fixed point arithmetic
concepts. The students then used the MATLAB interface
described before to send data blocks to the DSP shield for
processing. One student displayed the detected heart rate on
the Shield’s display screen, while the other sent back the
detected R-peaks to MATLAB to quantify performance.

5.2.3. Pitch Estimation and Modification
Two students pursued pitch estimation. One student used the
peaks of the cepstrum to determine pitch, requiring the use
of the FFT, as well as knowledge of fixed-point arithmetic
and windowing. Another student used the Fast Lifting
Wavelet Transform, which used concepts similar to those
used in the heart rate estimation algorithm, namely,
decimation, filtering, and fixed-point arithmetic. These
algorithms used audio captured by the ADC, and estimated
pitch in real time.
Two students also pursued pitch modification via the Time-
Domain Pitch Synchronous Overlap and Add (TD-PSOLA)
method [9]. They chose this algorithm because it achieved
pitch modification in a relatively simply time-domain
operation, rather than through complex and time-consuming
frequency-domain operations. In addition to learning about
hardware constraints and efficiency, the students
implementing TD-PSOLA used concepts of fixed-point
arithmetic and windowing.

5.2.4. Key word recognizer pre-processor
One student implemented a filter bank pre-processor to a
machine learning based keyword recognizer. The student
used the DSP Shield to capture a segment of audio from the
on-board converter, implement a filter bank to compute
signal energy over various frequency regions and passed the
heavily sub-sampled outputs of the filter bank to a keyword
recognizer implemented in MATLAB.

6. CONCLUSIONS

The DSP Shield proved to be an effective means of
conveying implementation concepts for DSP algorithms.
Though students came from a wide range of backgrounds,
the Energia interface proved to be an accessible way for
students to delve into practical applications. The DSP
Shield also afforded students an opportunity to learn about
challenges in implementing signal processing algorithms in
hardware, such as addressing memory and time

constraints—many students were forced to make design
choices based on the trade-off between real-time speed and
algorithmic complexity.

Analysis of the students’ grades in this small data set
suggests that the lab option did not affect the students’
ability to perform well on the theoretical part of the class.

The feedback from the students was generally positive.
Most of the students agreed that the lab component
enhanced their learning of the theoretical concepts. In
future offerings of the class, we will consider adding
dedicated lab time to offer instant feedback to students to
avoid lengthy debugging on their own. We might also give
2 or 3 pre-defined project options to avoid the time
consuming aspects associated with open-ended projects.

7. ACKNOWLEDGEMENTS

We would like to thank Texas Instruments and Cathy Wicks
for donating the DSP Shields; the Stanford EE department
for supporting the development of the lab component of the
course; and the Stanford office of the Vice Provost of
Teaching and Learning for providing valuable feedback
from their in-class focus group and course evaluation.

8. REFERENCES

[1] W. Esposito, “The Stanford Lab in a Box”, submitted to 2015
DSP/SPE Workshop, Snowbird Utah, 2015.
[2] Energia home page: www.energia.nu
[3] “TMS320C55x DSP Library Programmer’s Reference,” Texas
Instruments, 2013. [link]
[4] “TLV320AIC3204 Application Reference Guide,” Texas
Instruments, 2012 [link]
[5] “TMS320C55x Data Sheet,” Texas Instruments, 2014. [link]
[6] Code Composer Studio®, Texas Instruments, [link]
[7] David Te-Mao Yeh, “Digital Implementation Of Musical
Distortion Circuits By Analysis And Simulation”, Dissertation,
Stanford University, 2009.[link]
[8] J.P. Martinez, R. Almeida, S. Olmos, A.P. Rocha, and P.
Laguna, “A wavelet-based ECG delineator: evaluation on standard
databases,” IEEE Transactions on Biomedical Engineering,
Volume 51, Issue 4, 2004.
[9] Valbret, H. ; Moulines, E. ; Tubach, J.P. , “Voice
transformation using PSOLA technique,” 1992 IEEE International
Conference on Acoustics, Speech, and Signal Processing, 1992.

2015 IEEE Signal Processing and Signal Processing Education Workshop (SP/SPE)

312

