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Reliability Importance Measures for Network Based
on Failure Counting Process

Yongjun Du, Shubin Si , Senior Member, IEEE, and Tongdan Jin, Member, IEEE

Abstract—Traditional importance measures seldom consider
how the number of failed components influences the network re-
liability. This paper proposes two importance measures under the
circumstance that the failure sequence of the components follows
a counting process. The first importance measure aims to assess
the contribution of the individual component (edge) to the network
failure. The second evaluates the contribution of the individual
component to the network functionality. Both importance mea-
sures are time-dependent functions, and their values are jointly
determined by the network structure and the distribution of the
number of failed components at a particular time. We prove that
the proposed importance measures are able to generate consis-
tent rankings based on edge’s impact on the network reliability
behavior. When networks possess special structure or the number
of failed edges follows the special distribution, the rankings are
coincident with the results generated from some traditional impor-
tance measures. When component’s failure sequence follows a sat-
urated nonhomogeneous Poisson process, the proposed importance
measures are equivalent to the structural importance measure as
time approaches zero or infinite. Finally, numerical examples are
provided to demonstrate the application and performance of the
proposed measures.

Index Terms—C-spectrum, D-spectrum, dynamic importance
measure (IM), network reliability, saturated nonhomogeneous
Poisson process (SNHPP).

ABBREVIATIONS

IM Importance measure.
NHPP Nonhomogeneous Poisson process.
SNHPP Saturated nonhomogeneous Poisson

process.

NOTATION

N Graph representing a network.
n Number of edges in a network.
i Index for edge i for i = 1, 2, . . ., n.
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T Lifetime of the network.
K Terminal set of the network.
K-connected If all terminals are connected to each

other, the network is called K-connected.
cut Set of edges whose removal disconnects

the terminals in K.
path Set of consecutive edges connecting all

the terminals in K.
λ(t) Intensity function in the NHPP.
Λ(t) Mean value function in the NHPP.
N(t) Number of failed edges at time t.
Ci(Pi) Set of cuts (paths) that include edge i.
C(k)(P (k)) Set of cuts (paths) of size k.
Ci(k)(Pi(k)) Set of cuts (paths) of size k that includes

edge i.
C(i)(k)(P(i) (k)) Set of cuts (paths) of size k that does not

include edge i.
F (k)(F ′(k)) D-spectrum (C-spectrum) of the network,

it is the probability that the network is
down (up) if exactly k randomly chosen
edges are down (up).

F (k, 0i) D-spectrum of edge i, it is the probability
that the network is down if exactly k ran-
domly chosen edges, including edge i, are
down. Note that F (1, 0i) ≤ F (2, 0i) ≤
F (3, 0i) ≤ . . . ≤ F (n, 0i).

F (k, 1i) = F (k) − F (k, 0i).
F ′(k, 1i) C-spectrum of edge i, it is the probability

that the network is up if exactly k ran-
domly chosen edges, including edge i, are
up. Note that F ′(1, 1i) ≤ F ′(2, 1i) ≤
F ′(3, 1i) ≤ . . . ≤ F ′(n, 1i).

F ′(k, 0i) = F ′(k) − F ′(k, 1i).
kmin{i,j}(k′

min{i,j}) = min{k : F (k, 0i) �= F (k, 0j )}
(= min{k : F ′(n − k, 1i)
�= F ′(n − k, 1j )}).

kmax{i,j}(k′
max{i,j}) = max{k : F (k, 0i) �= F (k, 0j )}

(= max{k : F ′(n − k, 1i) �=
F ′(n − k, 1j )}).

ki(k′
i) = min{k : F (k, 0i) �= 0}(= min{k :

F ′(k, 1i) �= 0}).
a(a′) = min{k : F (k) �= 0}(= min{k :

F ′(k) �= 0}).
Ic(i, t)(Ip(i, t)) C-importance measure (p-importance

measure) of edge i at time t.
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I. INTRODUCTION

S INCE the inception of Birnbaum reliability importance
measure (IM) in 1969 [1], IMs have become an effective

method to identify the weakness of a system. They are also
used to guide the optimal reliability and redundancy alloca-
tion for complex system design. Based on Birnbaum’s method,
different variations have been developed thereafter, including
Bayesian IM [2], criticality IM [3], redundancy IM [4], [5],
Fussell–Vesely (FV) IM [6], [7], Barlow–Proschan IM [8], and
joint IM [9]–[12]. Based on the values of the IM, components
can be ranked with respect to the influence they have on the
system reliability. Furthermore, these measures can serve as a
useful tool to identify component criticality with respect to the
system reliability and operational safety.

A network can be treated as a graph comprising multiple
nodes and edges. Some particular nodes are called terminals.
Nodes can represent telecommunications switches, computer
servers, railway stations, and power plants. Edges can represent
telecommunication links, road, railways, and power lines. This
paper assumes that nodes are 100% reliable, while the edges are
prone to failures. An edge failure means that the edge is discon-
nected between two adjacent nodes. The reliability of network
is defined as the probability that all terminals are connected
among each other.

IMs for network systems can be built upon the cut or path
theory. Based on [13], c-type IMs are those that can be defined
by cuts, while p-type IMs are those that can be defined by paths.
For example, two types of FV IMs have been developed based
on cut and path sets. Given that the network is down, the c-type
FV IM [6], [7] is defined as the probability that the failure of an
edge contributes to network failure. Given that the network is
up, the p-type FV IM [14] calculates the probability that at least
one minimal path including a fixed edge is operational. Both
the c-type and the p-type FV IMs are dependent on the network
structure and edge reliability. Similarly, permutation IM [15],
domination IM [16], and H-IM [17] can be classified into c-type
or p-type as well. In general, a cut IM [18] belongs to c-type; a
path IM [13] belongs to p-type.

IMs for networks are also proposed to calculate the reliability
importance of edges. For instance, Page and Perry [19] devel-
oped a contract-delete IM and a link IM for network reliability
analysis. The former is established on the size and number of
minimum cut (path) including the target edge. The latter consid-
ers the contribution of an edge to the network reliability. Hong
and Lie [20] defined a joint IM that assesses the interactions
of two edges and their contribution to the network reliability.
Gertsbakh and Shpungin [21] extended the traditional Birnbaum
IM to network structure for exploring the edge importance.

One important concept in computing network reliability and
IM is the network spectrum that depends solely on the network
structure [22], [23]. Two types of network spectra are often used:
construction-spectrum (C-spectrum) and destruction-spectrum
(D-spectrum). The concept of spectra provides a new way to
compute the Birnbaum IM and the joint reliability IM [21].
Since the analytical solutions are intractable, Monte Carlo sim-
ulation or approximation techniques are often used to estimate
the spectra.

For most networks in real applications, the number of edge
failures at a particular time is a random variable and can be
treated as a stochastic counting process. Although various IMs
have been proposed, IMs based on counting processes are rarely
reported in the literature. That is, existing IMs are inadequate to
address how the network reliability evolves dynamically when
edges fail sequentially according to a counting process. This
paper proposes two time-dependent IMs to capture the dynamic
nature of network reliability. The first IM is built upon the cut
and is referred to as the c-importance measure or simply c-IM.
It evaluates the contribution of an edge to the network failure at
time t and is represented in the form of D-spectrum. The second
IM is built upon the path and is called p-importance measure
or simply p-IM. It quantifies the contribution of an edge to the
network functionality at time t and is represented in the form of
C-spectrum.

Recently, new attention has been paid to using a stochastic
process of component failures to model the network reliability.
Gertsbakh and Shpungin [24] proposed a probabilistic model in
which failures of components follow a renewal process. Based
on their model, Zarezadeh and Asadi [25] investigated vari-
ous properties of network reliability under different failure sce-
narios. In [26], the stochastic properties of network reliability
were investigated under random shocks that arrive in accor-
dance with a counting process. In these approaches, probabilis-
tic information such as edge reliability or lifetime distribution
is not required. This is a great advantage because probabilis-
tic information of individual edges sometimes is not easy to
obtain if the sample size or testing time is limited. In this pa-
per, the proposed IMs generate the edge ranking based on their
contribution to the network failure or functionality. These IMs
depend on the structure of the network and the distribution of
the number of failed edges at time t, instead of the probabilistic
information of individual edge. Moreover, we have proved that
the proposed IMs generate the same rankings, which are co-
incident to certain classic IMs under some conditions. Finally,
if edge failures follow an SNHPP, the proposed IMs rankings
become the structural ranking, i.e., depending only on the net-
work structure as time t approaches zero or infinite. The as-
sumptions made in the proposed methods are summarized as
follows.

1) The edges of network are subject to failure, while the
nodes are always reliable. Hence, the term “components”
are used to refer to the edges of network.

2) This paper deals with binary network. That is, the network
and edges are either down or up.

3) The failures of the edges are independent and identically
distributed.

4) Failures of edges arrive according to a counting process.
The remainder of the paper is structured as follows. In

Section II, some basic concepts and two new IMs are intro-
duced. Moreover, the relationships among some IMs are dis-
cussed. Section III focuses on a failure process in which the
numbers of failed edges follow an SNHPP. Section IV presents
two examples to demonstrate how the newly proposed IMs can
effectively assist in obtaining the criticality of edges regarding
the reliability of the network. Finally, conclusions are provided
in Section V. All proofs can be found in the Appendix.
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II. IMPORTANCE MEASURES UNDER A FAILURE

COUNTING PROCESS

Traditional network IMs depend on the structure of the net-
work or the probabilistic information of individual edge. How-
ever, the probabilistic information is not easy to obtain, es-
pecially for small component sample or limited testing time.
In this section, we propose two new IMs for the network in
which failures of edges occur according to a counting process
{N(t), t � 0}, where N(t) denotes the number of failed edges in
interval [0, t].

A. Basic Notions and Definitions

Network N is a triplet N = (V, E, K), where V is a set of nodes,
E is a set of edges with |E| = n, and K is a set of special nodes
called terminals, K ⊆ V . Assume that all nodes are failure-free,
whereas all edges are prone to stochastic failure. When an edge
fails, it is disconnected from two adjacent nodes. If there is at
least one path connecting any pair of nodes in K, the network is
called K-connected. This paper deals with K-connected terminal
reliability criterion. That is, the network is defined as up state if
the network is K-connected. Otherwise, it is in down state. For
example, K = {s, t} means the network only has two terminals s
and t. The network is up if and only if there is a set of operational
edges connecting s and t. If K = V, the network is up if and only
if there is a set of operational edges connecting any pair nodes of
V. The network reliability R is the probability that the network
is in the up state.

Many IMs are proposed based on the cut theory. A cut is a
subset of edges whose removal disconnects at least one pair of
terminals in K. A cut is down means that all edges belonging to
the cut are not operational. With respect to the terminal set K,
let Ci denote the set of cuts including edge i, and C(d) denote
the set of cuts of cardinality d. In addition, Ci(d) and C(i)(d)
are, respectively, the set of cuts of size d that include and that
do not include edge i. Moreover, a path is a subset of edges
that ensure K-connectedness of the network. A path is up means
that all edges belonging to the path are functional. Similarly,
Pi, P (d), Pi(d), and P(i)(d) can be defined according to the
definition of Ci, C(d), Ci(d), and C(i)(d).

Spectra play a critical role in the assessment of network re-
liability and IMs. The value of a spectrum depends only on
the network structure. Hence, they are called structural invari-
ants. The definitions of D-spectrum and C-spectrum are given
as follows.

Definition 1: Given a network comprises n edges. The col-
lection of {F (k) = |C(k)|(n

k )−1}, k = 1, . . . , n is called the
destruction spectrum (D-spectrum). Furthermore, the collection
of {F (k, 0i) = |Ci(k)|(n

k )−1}, i = 1, . . . , n, k = 1, . . . , n is
called the D-spectrum of edge i.

According to [23], F(k) can be interpreted as the probability
that the network is down if exactly k randomly chosen edges
are down. Since |C(k)| = |Ci(k)| + |C(i)(k)|, the probabil-
ity F(k) can be written as F (k) = F (k, 0i) + F (k, 1i), where
F (k, 0i) (F (k, 1i)) is the probability that the network is down
if exactly k randomly chosen edges are down, and edges i is
down (up).

Definition 2: Given a network comprises n edges. The col-
lection of {F ′(k) = |P (k)|(n

k )−1}, k = 1, . . . , n is called
the construction spectrum (C-spectrum). Furthermore, the
collection of {F ′(k, 1i) = |Pi(k)|(n

k )−1}, i = 1, . . . , n, k =
1, . . . , n is called the C-spectrum of edge i.

Similarly, F ′(k) represents the probability that the net-
work is up if exactly k randomly chosen edges are up [23].
By realizing that |P (k)| = |Pi(k)| + |P(i)(k)|, the probability
F ′(k) can be written as F ′(k) = F ′(k, 0i) + F ′(k, 1i), where
F ′(k, 0i) (F ′(k, 1i)) is the probability that the network is up
if exactly k randomly chosen edges are up, and edges i is
down (up).

Suppose T is the lifetime of the network, and the num-
ber of failed edges increases according to a counting process
{N(t), t ≥ 0}. By combining the law of total probability with
the definition of F(k), the probability that the network is down
at time t can be expressed as

P (T ≤ t) =
n∑

k=0

P (N(t) = k)F (k). (1)

Furthermore

P (a cut C ∈ Ci is down at t) =
n∑

k=0

P (N(t) = k)

× F (k, 0i) (2)

where a cut C ∈ Ci is down means that all edges in C have
failed.

Similarly, by combining the law of total probability with the
definition of C-spectrum, the probability of the network is up at
time t can be represented as

P (T > t) =
n∑

k=0

P (N(t) = k)F ′(n − k). (3)

Furthermore

P (a path P ∈Pi is up at t)=
n∑

k=0

P (N(t) = k)F ′(n − k, 1i)

(4)

where a path P ∈ Pi is up means that all edges in P are good or
functional.

When a network fails, it is interesting to address two ques-
tions. First, how to identify the cut actually that brings the net-
work in the down state. Second, what is the contribution of edge
i to the down state of the network. To answer both questions,
we propose the following definition.

Definition 3: Consider a network with n edges. Suppose the
occurrence of edge failures follow a counting process {N(t),
t � 0}. The c-IM of edge i, denoted by Ic(i, t), is the conditional
probability that a cut including edge i is down at time t, given
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Fig. 1. Simple network.

that the network is down at time t. Mathematically, we have

Ic(i, t) = P (a cut C ∈ Ci is down at t |the network is

down at t)

=
P (a cut C ∈ Ci is down at t)

P (the network down at t)

=
∑n

k=0 P (N(t) = k)F (k, 0i)∑n
k=0 F (k)P (N(t) = k)

. (5)

Analogous to the definition of c-IM, when a network is up,
it is of interest to identify which path makes the network in the
up state, and what is the contribution of edge i to the up state of
the network. This motivates us to develop a new network IM as
follows.

Definition 4: Consider a network with n edges. Let the oc-
currence of edge failures follow a counting process {N(t), t �
0}. The p-IM of edge i, denoted by Ip(i, t), is the conditional
probability that a path including edge i is up at time t, given that
the network is up at time t. Mathematically, we have

Ip(i, t) = P (a path P ∈ Pi is up at t |the network is up at t )

=
P (a path P ∈ Pi is up at t)
P (the network is up at t)

=
∑n

k=0 P (N(t) = k)F ′(n − k, 1i)∑n
k=0 F ′(n − k)P (N(t) = k)

. (6)

Remark 1: When the edge failures follow a counting process
{N(t), t � 0}, the c-IM estimates the contribution of individual
edges to network failure. However, the p-IM evaluates the con-
tribution of individual edges to network functionality. Both IMs
can indicate which edge has the greatest impact on network re-
liability. In addition, both c-IM and p-IM do not require specific
probabilistic information of individual edge, yet they depend on
the distribution of N(t) and the spectra of the network.

In the following, a simple example is given to illustrate basic
notations.

Example 1: Consider a simple network shown in Fig. 1.
There are two terminals {s, t} and four edges. First, the fol-
lowing results are derived for edge 3, k = 2 and n = 4.

1) C3 = {{3, 1}, {3, 2}, {3, 1, 4}, {3, 2, 4}, {3, 1, 2}, {3, 1,
2, 4}}, P3 = {{3, 2, 4}, {3, 1, 2}, {3, 1, 2, 4}}.

2) C(2)={{2, 1}, {4, 2}, {3, 2}, {3, 1}, {1, 4}},
P (2)={{2, 1}}.

3) C3(2) = {{3, 2}, {3, 1}}, P3(2) = φ.
4) C(3)(2) = {{1, 2}, {2, 4}, {1, 4}}, P(3)(2) = {{2, 1}}.

5) F (2) = |C(2)|( 4
2 )−1 = 5

6 , F ′(2) = |P (2)|( 4
2 )−1 = 1

6 .

6) F (2, 03)= |C3(2)|( 4
2 )−1 = 1

3 , F (2, 13)= |C(3)(2)|( 4
2 )−1

= 1
2 .

7) F ′(2, 03) = |P(3)(2)|( 4
2 )−1 = 1

6 , F ′(2, 13) = |P3(2)|
( 4

2 )−1 = 0.
Moreover, we can verify that the D-spectrum and C-spectrum

of the network are {1/4, 5/6, 1, 1} and {0, 1/6, 3/4, 1}, respec-
tively. Based on (1) and (3), we obtain

P (T ≤ t) =
1
4
P (N(t) = 1) +

5
6
P (N(t) = 2)

+ P (N(t) = 3) + P (N(t) = 4)

and

P (T > t)=P (N(t)=0) +
3
4
P (N(t)=1) +

1
6
P (N(t)=2).

Finally, it is easy to verify that the D-spectrum and C-
spectrum of edge 3 are {0, 1/3, 3/4, 1} and {0, 0, 1/2, 1},
respectively. Thus, from (5) and (6), the c-IM and p-IM of edge
3 are given as

Ic(3, t) =
1
3 P (N(t)=2)+ 3

4 P (N(t)=3)+P (N(t)=4)
1
4 P (N(t)=1)+ 5

6 P (N(t)=2)+P (N(t)=3)+P (N(t)=4)

and

Ip(3, t) =
P (N(t) = 0) + 1

2 P (N(t) = 1)
P (N(t) = 0) + 3

4 P (N(t) = 1) + 1
6 P (N(t) = 2)

respectively.

B. Relation to Other Importance Measures

Hwang [17] proposed the H-IM to compare the structural
importance of edges. That is, i ≥h j if |Ci(k)| ≥ |Cj (k)| for all
k, where i ≥h j means that edge i is more important than edge j.
The relation between H-IM and c-IM is given by the following
theorem.

Theorem 1: Consider a network composed of n edges, and
edge failures occur according to a counting process {N(t),
t � 0}. If i >h j, then Ic(i, t) > Ic(j, t) for all t.

The Birnbaum structural IM is a special case of the Birnbaum
IM with common edge reliability p = 0.5. The study in [13]
shows that i >b j is equivalent to |Ci | > |Cj |, where i >b j
implies that edge i is more important than edge j. The following
theorem connects the c-IM and the Birnbaum structural IM.

Theorem 2: Consider a network with n edges, and edge
failures occur according to a counting process {N(t), t � 0}.
If P (N(t) = k) = (n

k )A−1 , k = 1, 2, . . . , n − 1, where A >
(n

1 ) + (n
2 ) + · · · + ( n

n−1 ), then Ic(i, t) > Ic(j, t) if and only if
i >b j.

Remark 2: The H-IM assumes that |Ci(k)| ≥ |Cj (k)| holds
for all k. This assumption is too rigorous and only satisfied in a
certain network structure. In reality, |Ci(k)| ≥ |Cj (k)|may hold
only for certain k, but not all k. Hence, H-IM indeed represents
a partial ranking because some edges may not be compared.
However, the proposed c-IM is a complete ranking of all edges
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relative to their contribution to network failure. Moreover,
Theorem 2 shows that c-IM is equivalent to the Birnbaum
structural IM when N(t) follows a special distribution. In
fact, N(t) may have arbitrary distribution. Then, the Birnbaum
structural IM fails to identify the importance of edges, whereas
the c-IM can.

In order to relate the c-IM to p-IM, the following lemma is
presented.

Lemma 1: F (k, 0i) − F (k, 0j ) = F ′(n − k, 1i) − F ′(n −
k, 1j ).

Now, the following theorem shows that c-IM is equivalent to
p-IM.

Theorem 3: Ic(i, t) > Ic(j, t) if and only if Ip(i, t) >
Ip(j, t).

III. IMPORTANCE MEASURES UNDER AN SNHPP

This section discusses a special case where the failures of
edges follow an SNHPP. Recall that a counting process {N(t),
t � 0} is a standard NHPP with intensity function λ(t), if

1) N(0) = 0,
2) N(t) has independent increment, namely, the numbers of

failures in two disjoint time intervals are independent,
3) P{N(t + h) − N(t) ≥ 2} = o(h), and
4) P{N(t + h) − N(t) = 1} = λ(t)h + o(h).
It can be shown that

P (N(t) = k) =
(Λ(t))k

k!
e−Λ(t) , k = 0, 1, 2, . . .

where Λ(t) = E(N(t)) =
∫ t

0 λ(t)dt. The function Λ(t) is called
the mean value function.

Note: since λ(t) > 0, limt→0
∫ t

0 λ(t)dt = limt→0 Λ(t) = 0,
and limt→+∞

∫ t

0 λ(t)dt = limt→+∞ Λ(t) = +∞.
In fact, when λ(t) is a constant number λ, the NHPP becomes

a homogeneous Poisson process (HPP). For more details about
the NHPP, one may refer to [27] and [28].

Note that in theory N(t) can approach infinity as t increases.
Since the maximum number of failed edges for a network is n,
the counting process N(t) indeed is an SNHPP. It is the same
as NHPP with intensity function λ(t), except that the process
terminates when all n edges are down. The probability mass
function for an SNHPP is given by

P (N(t) = k)

=

⎧
⎨

⎩

(Λ(t))k

k ! e−Λ(t) , k = 0, 1, . . . , n − 1,

1 −∑n−1
k=0

(Λ(t))k

k ! e−Λ(t) , k = n.

(7)

By combining (7) with the law of total probability, the fol-
lowing result holds:

P (T > t) =
n−1∑

k=0

(Λ(t))k

k!
e−Λ(t)F (k) (8)

where F (k) = 1 − F (k), which is the probability that the net-
work is up if k randomly chosen edges are down.

Fig. 2. Network with seven edges and two terminals.

Hence

P (T < t) = 1 − P (T > t) = 1 −
n−1∑

k=0

(Λ(t))k

k!
e−Λ(t)F (k).

(9)

Next, based on (7) and F (n, 0i) = 1, the following results
are obtained:

Ic(i, t) =
∑n−1

k=1
(Λ(t))k

k ! e−Λ(t)F (k, 0i) + 1 −∑n−1
k=0

(Λ(t))k

k ! e−Λ(t)

1 −∑n−1
k=0

(Λ(t))k

k ! e−Λ(t)F (k)
(10)

and

Ip(i, t) =
∑n−1

k=0
(Λ(t))k

k ! e−Λ(t)F ′(n − k, 1i)
∑n−1

k=0
(Λ(t))k

k ! e−Λ(t)F (k)
. (11)

A. C-Importance Measure Under the SNHPP

Let kmin{i,j}=min{k : F (k, 0i) �= F (k, 0j )} and kmax{i,j}
= max{k : F (k, 0i) �= F (k, 0j )}. The following theorem
characterizes the c-IM ranking when t is either sufficiently large
or small.

Theorem 4: Consider a network consisting of n edges. As-
sume edge failures occur according to the SNHPP with intensity
function λ(t). Thus

i) Suppose that F (kmin{i,j}, 0i) > F (kmin{i,j}, 0j ). Then
there exist t0 such that for all t ≤ t0 , the inequality
Ic(i, t) ≥ Ic(j, t) holds.

ii) Suppose that F (kmax{i,j}, 0i) > F (kmax{i,j}, 0j ). Then,
there exist t0 such that for all t ≥ t0 , the inequality
Ic(i, t) ≥ Ic(j, t) holds.

Generally, the inequality Ic(i, t) ≥ Ic(j, t) depends on the
network structure and time t. However, for large or small t,
Theorem 4 shows the inequality Ic(i, λ) ≥ Ic(j, λ) depends
only on the network structure through the D-spectrum of corre-
sponding edge. The following example is used to illustrate the
application of Theorem 4.

Example 2: Consider the network in Fig. 2. It has 7 edges, 6
nodes, and 2 terminals. All edges are subject to failure, and the
network is up if and only if terminals s and t are connected by
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TABLE I
D-SPECTRUM FOR NETWORK (INCLUDE EDGES 5 AND 7) IN FIG. 2

operational edges. Table I presents the D-spectra of edges 5, 7
and the whole network for comparing the two edges based on the
c-IM. Suppose the edge failures follow an SNHPP with intensity
function αtα−1 , where 0 < α < 1. Note that the SNHPP has a
decreasing intensity function.

Now, from (10), and
∫ t

0 αtα−1dt = Λ(t) = tα , we have

Ic(5, t) =

2
21

t2 α

2! + 9
35

t3 α

3! + 16
35

t4 α

4! + 2
3

t5 α

5! + 6
7

t6 α

6! + etα −∑6
k=0

tk α

k !

etα − 1 − tα − 19
21

t2 α

2! − 18
35

t3 α

3! − 1
5

t4 α

4! − 1
21

t5 α

5!

and

Ic(7, t) =

1
21

t2 α

2! + 9
35

t3 α

3! + 18
35

t4 α

4! + 5
7

t5 α

5! + 6
7

t6 α

6! + etα −∑6
k=0

tk α

k !

etα − 1 − tα − 19
21

t2 α

2! − 18
35

t3 α

3! − 1
5

t4 α

4! − 1
21

t5 α

5!

.

According to Table I, we observe that kmin{5,7} = min{k :
F (k, 05) �= F (k, 07)} = 2, and F (2, 05) = 2

21 > F (2, 07) =
1
21 . Thus, we obtain Ic(5, t) > Ic(7, t) for small enough t using
Theorem 4(i).

Similarly, using Theorem 4(ii), we obtain Ic(5, t) <
Ic(7, t) for sufficiently large t followed from the fact
that kmax{5,7} = max{k : F (k, 05) �= F (k, 07)} = 5, and
F (5, 05) = 2

3 < F (5, 07) = 5
7 , which can be observed in

Table I.
Let ki = min{k : F (k, 0i) �= 0} and kj = min{k :

F (k, 0j ) �= 0}. When t is small enough, the following theorem
shows that edges can be compared by only determining the
quantities ki and F (ki, 0i).

Theorem 5: Consider a network that consists of n edges.
Assume that the edge failures occur in an SNHPP with a intensity
function λ(t). Thus

i) If ki > kj , then there exists t0 such that for all t ≤ t0 ,
the inequality Ic(i, t) < Ic(j, t) holds.

ii) If ki = kj and F (ki, 0i) > F (kj , 0j ), then there exists t0
such that for all t ≤ t0 , the inequality Ic(i, t) > Ic(j, t)
holds.

Let a = min{k: F(k) � 0}, then the following theorem shows
edges can be compared by determining F (a, 0i) when t is small
enough.

Theorem 6: Assume that the failures of edges occur in an
SNHPP with intensity function λ(t) for a network with n edges.
If F (a, 0i) > F (a, 0j ), there exist t0 such that for all t ≤ t0 ,
the inequality Ic(i, t) > Ic(j, t) holds.

Fig. 3. Network with eight edges and two terminals.

Remark 3: Noting that F (a, i) = |Ci(a)|(n
a )−1 , i =

1, 2, . . . , n, F (a, 0i) > F (a, 0j ) is equivalent to
|Ci(a)| > |Cj (a)|. Recall that the first-term IM of edge i
is defined as |Ci(a)| [29]. Theorem 6 shows that the c-IM
ranking agrees with the first-term ranking in the case where t is
small enough. However, in the case for general t, the first-term
IM fails to identify the importance of edge, whereas the c-IM
can be applicable to this case.

Theorems 5 and 6 can be interpreted by the following
example.

Example 3: Consider the network with 8 edges, 6 nodes, and
2 terminals shown in Fig. 3. Edges are subject to failure, and the
network is down whenever two terminal are disconnected. As-
sume edge failures follow an SNHPP with a decreasing intensity
function αtα−1 for 0 < α < 1.

It can be seen that the smallest cut size is 2. Thus, a = 2 =
min{k : F (k) �= 0}. In addition, C3(2) = {{3, 7}}, C7(2) =
{{3, 7}, {6, 7}}. Hence

F (2, 03) = |C3(2)|
(

8
2

)−1

< F (2, 07) = |C7(2)|
(

8
2

)−1

.

Using Theorem 6, if t is small enough, we conclude that
Ic(3, t) < Ic(7, t) from the fact F (2, 03) < F (2, 07).

Moreover, from Fig. 3, the size of the smallest cut includ-
ing edge 4 is 3. Hence, k4 = 3 = min{k : F (k, 04) �= 0}.
However, k3 = 2 = min{k : F (k, 03) �= 0}. Thus, using
Theorem 5, we obtain Ic(3, t) > Ic(4, t) for small enough t
followed from the fact k4 > k3 .

From limt→+∞
∫ t

0 λ(t)dt = limt→+∞ Λ(t) = +∞, we have

limt→∞
(Λ(t))m

eΛ ( t ) = 0 for all m ≥ 0. Thus, by the definition
of Ic(i, t), it can be seen that limt→∞ Ic(i, t) = 1. Hence,
limt→∞

I c (i,t)
I c (j,t) = 1. Therefore, Ic(i, t) and Ic(j, t) have nearly
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TABLE II
C-SPECTRUM FOR NETWORK (INCLUDE EDGES 2 AND 5) IN FIG. 2

equal values when t is large enough. However, the inequality
Ic(i, t) > Ic(j, t) can be tested on the condition of part (ii) of
Theorem 4 when time t is large enough.

B. P-Importance Measure Under the SNHPP

In this subsection, the p-IM of the network edges is investi-
gated when the failures of edges follow an SNHPP. Since the
results here are similar to those of the preceding subsection, the
detailed proofs are omitted.

Let k′
min{i,j}=min{k : F ′(n − k, 1i) �= F ′(n − k, 1j )},

k′
max{i,j} = max{k : F ′(n − k, 1i) �= F ′(n − k, 1j )}, then

the following theorem is established, which is similar to
Theorem 4.

Theorem 7: Consider a network with n edges. Assume that
the failures of edges follow an SNHPP with a intensity function
λ(t). Thus

i) Suppose that F ′(n − k ′
min{i,j}, 1i) > F ′(n − k ′

min{i,j},
1j ). Then there exists t0 , such that for all t ≤ t0 , the
inequality Ip(i, t) ≥ Ip(j, t) holds.

ii) Suppose that F ′(n − k ′
max{i,j}, 1i) > F ′(n − k ′

max{i,j},
1j ). Then there exists t0 such that for all t ≥ t0 , the
inequality Ip(i, t) ≥ Ip(j, t) holds.

Similar to c-IM, the inequity Ip(i, t) ≥ Ip(j, t) depends on
the structure of the network and time t. However, Theorem 7
shows that p-IM ranking depends only on the structure of the
network through the C-spectrum of corresponding edge in the
case where t is either sufficiently large or small.

The following example demonstrates the application of
Theorem 7.

Example 4: Consider the network in example 2. Suppose
the failures of edges follow an SNHPP with intensity function
αtα−1 , where 0 < α < 1. The C-spectra of edges 2, 5 and the
entire network are shown in Table II for comparing the two
edges based on the p-IM.

Using (11), we obtained that

Ip(2, t) =
1 + 6

7 tα + 2
3

t2 α

2! + 12
35

t3 α

3! + 1
7

t4 α

4! + 1
21

t5 α

5!

1 + tα + 19
21

t2 α

2! + 18
35

t3 α

3! + 1
5

t4 α

4! + 1
21

t5 α

5!

and

Ip(5, t) =
1 + 6

7 tα + 5
7

t2 α

2! + 12
35

t3 α

3! + 3
35

t4 α

4!

1 + tα + 19
21

t2 α

2! + 18
35

t3 α

3! + 1
5

t4 α

4! + 1
21

t5 α

5!

.

In Table II, we observe that k′
min{2,5} = min{k :

F ′(7 − k, 12) �= F ′(7 − k, 15)} = 2, and k′
max{2,5} =

max{k : F ′(7 − k, 12) �= F ′(7 − k, 15)} = 5. Thus, using
Theorem 7, we obtain that Ip(2, t) > Ip(5, t) for sufficiently
large t from the fact F ′(7 − 5, 15) = 0 < F ′(7 − 5, 12) = 1

21 .
However, for sufficiently small t, Ip(2, t) < Ip(5, t) from the
fact F ′(7 − 2, 15) = 5

7 > F ′(7 − 2, 12) = 2
3 .

Let k′
i = min{k : F ′(k, 1i) �= 0} and k′

j = min{k :
F ′(k, 1i) �= 0}. Similar to Theorem 5, the following theorem
is presented to characterize the p-IM ranking.

Theorem 8: Consider a network with n edges. Assume that
the edge failures occur in an SNHPP with a intensity function
λ(t). Thus

i) If k′
i < k′

j , then there exists t0 such that for all t ≥ t0 ,
the inequality Ip(i, t) > Ip(j, t) holds.

ii) If k′
i = k′

j and F ′(ki
′, 1i) > F ′(kj

′, 1j ), then there ex-
ists t0 such that for all t ≥ t0 , the inequality Ip(i, t) >
Ip(j, t) holds.

Let a′ = min{k : F ′(k) �= 0}. Similar to Theorem 6, the
following theorem can be established in the case of where the
time t is large enough.

Theorem 9: Assume that the failures of edges occur in an
SNHPP with intensity function λ(t) for a network with n edges.
Thus

If F ′(a′, 1i) > F ′(a′, 1j ), then there exists t0 such that for all
t ≥ t0 , the inequality Ip(i, t) > Ip(j, t) holds.

Remark 4: Note that F ′(a′, 1i) = |Pi(a′)|( n
a ′ )−1 , i =

1, 2, . . . , n, the condition in Theorem 9 is equivalent to
|Pi(a′)| > |Pj (a′)|. Let us recall the definition of the rare-event
IM of edge i, which is defined as |Pi(a′)| [29]. Based on the
rare-event IMs, edge i is more important than edge j if and
only if |Pi(a′)| > |Pj (a′)|. Analogous to the first-term IMs,
Theorem 9 shows that the p-IM ranking agrees with the ranking
induced by the rare-event IM in the case that t is large enough.
However, in the case for general t, the rare-event IM fails
to identify the importance of edge, whereas the p-IM can be
applicable to this case.

Theorems 8 and 9 can be explained by the following example.
Example 5: Consider the network in example 3. Suppose

the failures of edges follow an SNHPP with intensity function
αtα−1 , where 0 < α < 1. Fig. 3 reveals that the size of the small-
est path is 3. Thus, a′ = 3 = min{k : F ′(k) �= 0}. In addition,
Fig. 3 indicates that P1(3) = {{1, 3, 6}, {1, 4, 7}}, P2(3) =
{{2, 8, 7}}. Thus

F ′(3, 11) = |P1(3)|
(

8
2

)−1

> F ′(3, 12) = |P2(3)|
(

8
2

)−1

.
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TABLE III
D-SPECTRUM FOR EDGE OF THE SIMPLE NETWORK

TABLE IV
C-SPECTRUM FOR EDGE OF THE SIMPLE NETWORK

From Theorem 9, Ip(1, t) > Ip(2, t) for sufficiently large t.
Moreover, from Fig. 3, the size of the smallest

path including edge 5 is 4. Hence, k5 = 4 = min{k :
F ′(′(k, 15) �= 0}. However, from P2(3) = {{2, 8, 7}}, k2 =
3 = min{k : F ′(k, 12) �= 0}. Thus, using Theorem 8, we ob-
tain Ip(2, t) > Ip(5, t) for sufficiently large t followed from the
fact k5 > k2 .

From the continuity of Ip(i, t) at zero, we have
limt→0 Ip(i, t) = 1. Hence, limt→0

I p (i,t)
I p (j,t) = 1. Therefore,

Ip(i, t) and Ip(j, t) have nearly equal values in the case
where the time t is small enough. However, the inequality
Ip(i, t) > Ip(j, t) should be verified in terms of the condition
in part (i) of Theorem 7.

IV. NUMERICAL EXAMPLES

In this section, two numerical examples are provided to illus-
trate how the proposed IMs can effectively assist in identifying
the critical edges with respect to the reliability of the network.
Assume that the failures of edges occur according to an SNHPP
with intensity function λ(t).

A. Simple Network

Example 6: Consider the simple network in Fig. 1. The D-
spectrum and C-spectrum for the edges are shown in Tables III
and IV, respectively. To obtain an accurate result, the calcula-
tions are performed using the definition of the spectra.

From the results shown in Table III, we find that
F (k, 02) ≥ F (k, 01) ≥ F (k, 03) = F (k, 04) for all k = 1,
2, 3, 4. By the definition of D-spectrum of edge, that
is, F (k, 0i) = |Ci(k)|(n

k )−1 , we have |C2(k)| ≥ |C1(k)| ≥
|C3(k)| = |C4(k)| for all k = 1, 2, 3, 4. Hence, 2 ≥h 1 ≥h 3 =h

4 are obtained from the definition of H-IM [17]. Furthermore,

Fig. 4. Transportation network with 25 nodes, 34 edges, and 4 terminals.

using Theorem 1, Ic(2, t) > Ic(1, t) > Ic(3, t) = Ic(4, t) for
all t. As for p-IM, similar observations can be made from
Table IV.

For two arbitrary fixed edges i and j, this simple network
reveals that F (k, 0i) ≥ F (k, 0j ) or F (k, 0i) ≤ F (k, 0j ) for
all k. However, this result is not always true. In the following
transportation network, we will see that there exists edges i
and j, F (k, 0i) ≥ F (k, 0j ) for some k, whereas F (k, 0i) ≤
F (k, 0j ) for other k.

B. Transportation Network

Example 7: Fig. 4 shows a four-terminal transportation net-
work with 25 nodes and 34 edges. This network is originally in
[24, Section 2.3]. Indeed exact calculation of the spectrum is an
NP-hard issue. It is thus intractable for medium and large size
network. Therefore, a feasible approach is to use Monte Carlo
(MC) simulation to approximate the spectrum.

Gertsbakh and Shpungin [22] proposed the MC algorithm to
obtain the estimates for the C-spectrum. The algorithm works as
follows. To estimate F ′(k) and F ′(k, 1i), we simulate M random
permutations of edge number. For each permutation, we start a
sequential construction process of edges along the permutation
from left to right, until the network enters the up state. Here, we
count the number ak of such permutations that the network is
up when the exactly first k edges are up, and the number bk,i of
such permutations that the network is up when the exactly first k
edges are up, and edge i is among these k edges. Finally, we take
the quantity F̂ ′(k) = ak

M and F̂ ′(k, 1i) = bk , i

M as the estimate
of F ′(k) and F ′(k, 1i), respectively. Note that there exist 34!
permutations in theory. However, it is impossible to generate
all the permutations from the computation standpoint. Thus, we
take value M = 1 000 000. In the following, the algorithmic is
described in details.

1) Set all ak and bk,i to be 0, k = 1, . . ., n; i = 1, . . ., n.
2) Randomly generate a permutation π ∈ ΠE . (ΠE is the

set of all edge permutations.)
3) Find the minimum index of the edge r = r(π) such that

the first r edges in π ensure network up state.
4) Set ar = ar + 1.
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TABLE V
RANKINGS OBTAINED WITH THE c-IM FOR t = 0.015, 7, AND 30

TABLE VI
RANKINGS OBTAINED WITH THE p-IM FOR t = 0.015, 7, AND 30

5) Look for all i such that ei resides in one of the first r
positions in π, and for each i, set br,i = br,i + 1.

6) Set r = r + 1. If r � n, go to step 4.
7) Repeat steps 2–6 M times.
8) Estimate F ′(k) and F ′(k, 1i) through F̂ ′(k) = ak

M and
F̂ ′(k, 1i) = bk , i

M , respectively.
Once the estimates for F ′(k) and F ′(k, 1i) are available, we

can obtain the estimates for c-IM and p-IM from (10) and (11).
The above-mentioned algorithm can be modified to obtain the
estimates of the D-spectrum [24].

Suppose the failures of edges follow an SNHPP with intensity
function λ(t) = βαtα−1 for α > 0 and β > 0. The intensity
function λ(t) decreases in time t for 0 < α < 1, remains constant
in t for α = 1, and increases in t for 1 < α < �. In our practical
case, when all edges are up, λ(t) should be higher with respect
to a situation where k edges are already down. Thus, we assume
that intensity function λ(t) decreases in t, i.e., 0 < α < 1.

Let Λ(t) =
∫ t

0 βαtα−1dt = βtα = 3t0.8(β = 3, α = 0.8).
Based on (10) and (11), the evaluations of c-IM and p-IM
are performed with the MC simulation method described
in Gertsbakh and Shpungin [22], [24]. In order to present a
measure of statistical robustness with respect to the estimated
values of the c-IM and p-IM, ten independent simulations have
been performed. Based on one million randomly generated
network edge permutations, each simulation run is able to

obtain an estimate for each new IM at three different time
instants. It turns out that the top eight edges are almost
consistent with each other, i.e., there exist at most two different
edges comparing two different simulation results based on the
same measure and time t. Hence, the MC approximations are
robust in terms of the importance ranking.

From (10) and (11), the evaluations of the c-IM and p-
IM come down to the estimations of the C-spectrum and D-
spectrum, respectively. For the network (see Fig. 4) with 34
edges, we obtained the estimations of C-spectra (or D-spectra)
using a microcomputer in less than one hour when taking
M = 1 000 000 for each simulation. Recall that the spectra are
structure invariants, which depend only on the network struc-
ture. Thus, for any given network, they are estimated once and
for all. Therefore, the computational time for the spectra using
the above-mentioned MC method is not an important issue. This
fact illustrates that the practicality of the proposed measures as
decisions often needs to be made in real time when network
edges are failing.

Tables V and VI present the edge rankings according to c-
IM and p-IM under t = 0.015, 7, and 30. For all cases, only
eight most important edges are reported. Moreover, the results
of edge rankings according to first-term IM and rare-event IM
are included in Tables V and VI, respectively. In fact, for the
transportation network, the smallest cardinality of minimal paths
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Fig. 5. Comparison of c-IM Ic (i, t) between edges 13 and 21.

and cuts is 9 and 3, respectively. Thus, from Fig. 4, the first-
term IMs of the eight most important edges are |C19(3)| =
9, |Ci(3)| = 3 (i = 31, 20, 26, 30, 21, 27), and |C12(3)| = 2.
Moreover, a path P = {7, 2, 3, 29, 33, 10, 20, 26, 27} is the
unique minimal path of size 9. Hence, according to the rare-event
IM, |Pi(9)| = 1, i ∈ P and |Pi(9)| = 0, i /∈ P . Therefore,
based on rare-event IM, these nine edges, which belong to the
minimal path P, are the most important ones.

In Tables V and VI, the importance rankings of edges for
different times do not agree based on c-IM (p-IM). Moreover,
from the first and seventh columns in Table V, the c-IM ranking
for small t (t = 0.015) is in agreement with the first-term IM
ranking. This result accords with Theorem 6. Similarly, from
the fifth and seventh columns in Table VI, the rare-event IM
ranking is quite consistent with the p-IM ranking for large t (t
= 30). This observation is consistent with Theorem 9.

From Theorem 3, the ranking provided by c-IM and p-IM
should be consistent given the same time t. However, except
for t = 7, the ranking provided by these two measures is not
consistent at the same time (t = 0.015 and 30) by comparing
Tables V and VI. The reasons are interpreted as follows. From
the sixth column in Table V, the c-IM of all edges at t = 30 is
very close to each other, and all almost equals 1. Hence, it is
difficult to identify which edges are more important based on
c-IM. However, if one looks at the sixth column in Table VI,
significant differences are observed for the p-IM values at t =
30. Thus, it is easier to identify the most important edges based
on the p-IM. Therefore, as t becomes large, p-IM is more useful
than c-IM. Similarly, comparing the second column in Tables V
and VI, the p-IM at t = 0.015 is almost equal and close to 1,
whereas the c-IM values differ significantly. Hence, if t is small,
c-IM is more useful than p-IM to identity the most important
edges.

Let us investigate the dependence of Ic(i, t) and Ip(i, t) on t.
We choose edges 13, 21, and Λ(t) = 3t0.8 . The corresponding
curves, shown in Figs. 5 and 6, are obtained based on (10) and
(11), respectively.

Fig. 5 shows that for t close to 0, the c-IM of edges 13
and 21 tends toward 0 and 0.23, respectively. Moreover, as t
approaches infinity, the c-IM of edges 13 and 21 all approach
one. It is interesting to observe that for t � [0, 6], edge 21 is
more important than edge 13, but for t � (6, 30], edges 21 and
13 become almost equally important. However, in Fig. 6, based
on p-IM, edge 13 is more important than edge 21 for t � [6, 30],

Fig. 6. Comparison of p-IM Ip (i, t) between edges 13 and 21.

whereas for t � (0, 6], edges 21 and 13 become almost equally
important. In summary, using Theorem 3, Ic(21, t) > Ic(13, t)
for t � (0, 6], whereas Ic(21, t) < Ic(13, t) for t � [6, 30]. The
comparisons in Figs. 5 and 6 further confirm that for small t, the
c-IM has a better capability to identify which edges are more
important to the network failure. However, as t becomes large,
the p-IM becomes more powerful to determine which edges are
more important to the network operation.

V. CONCLUSION

In this paper, c-IM and p-IM are proposed to estimate the
criticality of edges for multiterminal networks where failures of
edges follow a counting process. The value of both IMs depends
on the network structure and the distribution of the number of
failed edges at a particular time, not on the lifetime distribution
of the edges. Numerical experiments show that the c-IM can
provide better ranking than the p-IM when t is relatively small.
However, when t becomes large, the p-IM can lead to a better
ranking than the c-IM. We also proved that both types of IMs
provide consistent rankings regardless of their different defini-
tions. When networks have special structures or the number of
the failed edge follows certain special distributions, their rank-
ings also agree with the results generated by existing IMs. In
particular, when edges fail according to an SNHPP, the impor-
tance rankings depend only on the network structure as time
becomes sufficiently large or small. The ranking results can be
potentially used to prioritize the resource allocation in network
design and maintenance. As one limitation, the proposed IMs
rely on the distribution of the number of failed edges at a particu-
lar time, yet the lifetime of the individual edge is not considered.
Our future research will incorporate the lifetime distribution at
individual edge level for constructing more comprehensive IMs.

APPENDIX

Proof of Theorem 1: By Definition 1, and noting that
F (k, 0i) = |Ci(k)|(n

k )−1

Ic(i, t) − Ic(j, t) =

∑n
k=1

(
n
k

)−1

P (N(t) = k) (|Ci(k)| − |Cj (k)|)
P (the network is down at t)

.
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Hence, Ic(i, t) > Ic(j, t) if and only if
∑n

k=1(
n
k )−1

P (N(t) = k)(|Ci(k)| − |Cj (k)|) > 0. This is clearly implied
by the condition |Ci(k)| ≥ |Cj (k)| for all k. From the definition
of H-IM, the theorem follows.

Proof: of Theorem 2: By the definition of Ic(i, t) and
F (n, 0i) = F (n, 0j ) = 1

Ic(i, t)−Ic(j, t) =
∑n

k=1 P (N(t) = k) (F (k, 0i)−F (k, 0j ))
P (the network is down at t)

=

∑n−1
k=1

(
n
k

)
A−1 (|Ci(k)| − |Cj (k)|)

(
n
k

)−1

P (the network is down at t)

=
∑n−1

k=1 A−1 (|Ci(k)| − |Cj (k)|)
P (the network is down at t)

=
A−1 (|Ci | − |Cj |)

P (the network is down at t)

where the last equality is obtained from the fact that

|Ci | = |Ci(1)| + |Ci(2)| + · · · + |Ci(n)| and |Ci(n)|
= |Cj (n)| = 1, i = 1, 2, . . . , n.

Thus, Ic(i, t) > Ic(j, t) is equivalent to |Ci | > |Cj |. In addi-
tion, i >b j is equivalent to |Ci | > |Cj | [13]. Hence, the theorem
is proved.

Proof: of Lemma 1: the following result is given due to [13],
that is

|Ci(k)| + ∣∣P(i)(n − k)
∣∣ =

(
n − 1
k − 1

)
.

Thus

F (k, 0i) − F (k, 0j ) = |Ci(k)|
(

n

k

)−1

− |Cj (k)|
(

n

k

)−1

=

(
n

k

)−1 [((
n − 1
k−1

)
−∣∣P(i)(n−k)

∣∣
)

−
((

n − 1
k − 1

)
− ∣∣P(j )(n − k)

∣∣
)]

=

(
n

k

)−1[∣∣P(j )(n − k)
∣∣−∣∣P(i)(n − k)

∣∣]

=

(
n

k

)−1

[(|P (n − k)| − |Pj (n − k)|)

− (|P (n − k)| − |Pi(n − k)|)]

=

(
n

n − k

)−1

[|Pi(n−k)|−|Pj (n−k)|]

= F ′(n − k, 1i) − F ′(n − k, 1j ).

Hence, the lemma follows.

Proof: of Theorem 3: By Definition 1

Ic(i, t)−Ic(j, t)=
∑n

k=1 P (N(t) = k)(F (k, 0i)−F (k, 0j ))
P (the network is down at t)

.

On the other hand, by Definition 2

Ip(i, t) − Ip(j, t) =
∑n

k=1 P (N(t) = k)(F ′(n − k, 1i) − F ′(n − k, 1j ))∑n
k=1 F ′(n − k)P (N(t) = k)

.

Thus, from Lemma 1, the theorem follows.
Proof of Theorem 4: By definition of Ic(i, λ)

Ic(i, t)−Ic(j, t)=
∑n

k=1 P (N(t) = k) (F (k, 0i) − F (k, 0j ))
P (the network is down at t)

=
∑n−1

k=1
Λ(t)k

k ! e−Λ(t) (F (k, 0i) − F (k, 0j ))
P (the network is down at t)

where Λ(t) = E(N(t)) =
∫ t

0 λ(t)dt and the second equality is
established from the fact that F (n, 0i) = F (n, 0j ) = 1. Then
Ic(i, t) ≥ Ic(j, t) if and only if

n−1∑

k=1

Λ(t)k

k!
(F (k, 0i) − F (k, 0j )) ≥ 0. (12)

Thus, we have the following two cases.
1) From the definition of kmin{i,j} and (12), we ob-

tain that Ic(i, t) ≥ Ic(j, t) is equivalent to
∑n−1

k=km in {i , j }
Λ(t)k

k ! (F (k, 0i) − F (k, 0j )) ≥ 0. From limt→0
∫ t

0 λ(t)dt

= limt→0 Λ(t) = 0, we have Λ(t)k

k ! (F (k, 0i) − F (k, 0j ))
tend to 0 as t → 0, and more large the k is,

more quickly it tends to zero. Hence, Λ(t)k m in {i , j }
km in {i , j }!

(F (kmin{i,j}, 0i) − F (kmin{i,j}, 0j )) is the dominant

term in the
∑n−1

k=km in {i , j }
Λ(t)k

k ! (F (k, 0i) − F (k, 0j )).
Therefore, Ic(i, t) ≥ Ic(j, t) follows from the fact
F (kmin{i,j}, 0i) > F (kmin{i,j}, 0j ).

2) From the definition of kmax{i,j} and (12), we obtain

that Ic(i, t) ≥ Ic(j, t) is equivalent to
∑km a x {i , j }

k=1
Λ(t)k

k ! (F (k, 0i) − F (k, 0j )) ≥ 0. From limt→∞
∫ t

0 λ(t)dt

= limt→∞ Λ(t)=∞, we have Λ(t)k

k ! (F (k, 0i)−F (k, 0j ))
tend to � as t → �, and more large the k is,

more quickly it tends to �. Hence, Λ(t)k m a x {i , j }
km a x {i , j }!

(F (kmax{i,j}, 0i) − F (kmax{i,j}, 0j )) is the dominant

term in the
∑km a x {i , j }

k=1
Λ(t)k

k ! (F (k, 0i) − F (k, 0j )).
Therefore, Ic(i, t) ≥ Ic(j, t) follows from the fact
F (kmax{i,j}, 0i) > F (kmax{i,j}, 0j ).

Proof of Theorem 5: By the fact that F (1, 0i) ≤
F (2, 0i) ≤ · · · ≤ F (n, 0i) = 1, i = 1, 2, . . . ,n, and from
the definition of ki, F (k, 0i) = 0 for all k < ki . Similarly,
F (k, 0j ) = 0 for all k < kj . Thus, based on (10), it can be seen
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lim
t→0

Ic(i, t)
Ic(j, t)

= lim
t→0

eΛ(t) − 1 − Λ(t) − Λ(t)2

2! − · · · − Λ(t)k i −1

(ki −1)! − Λ(t)k i

ki !
(1 − F (ki, 0i))

eΛ(t) − 1 − Λ(t) − Λ(t)2

2! − · · · − Λ(t)k j −1

(kj −1)! − Λ(t)k j

kj ! (1 − F (kj , 0j ))
(14)

limt→0
Ic(i, t)
Ic(j, t)

= limt→0

eΛ(t) − 1 − Λ(t) − · · · − Λ(t)k i −k j + 1

(ki −kj +1)! − Λ(t)k i −k j

(ki −kj )! (1 − F (ki, 0i))

eΛ(t) − 1 + F (kj , 0j ))
= 0 < 1

that

Ic(i, t)
Ic(j, t)

=

∑n−1
k=ki

Λ(t)k

k ! F (k, 0i) + eΛ(t) −∑n−1
m=0

Λ(t)m

m !
∑n−1

k=kj

Λ(t)k

k ! F (k, 0j ) + eΛ(t) −∑n−1
m=0

Λ(t)m

m !

.

For arbitrary positive integer m, from limt→0
∫ t

0 λ(t)dt =
limt→0 Λ(t) = 0

lim
t→0

eΛ(t) − 1 − Λ(t) − Λ(t)2

2! − · · · − Λ(t)k −1

(k−1)!

Λ(t)m

=

⎧
⎪⎨

⎪⎩

0 m < k;
1
k ! m = k;
+∞ m > k.

(13)

Hence, we have (14) shown at the top of this page.
Repeatedly applying the L’Hospitol rule to (14), the following

results are obtained.
1) If ki > kj , then, see the unnumbered equation at the top

of this page.
Thus, the theorem follows.
2) If ki = kj , then limt→0

I c (i,t)
I c (j,t) =limt→0

eΛ ( t )−1+F (ki ,0i )
eΛ ( t )−1+F (kj ,0j ))

= F (ki ,0i )
F (kj ,0j )) since F(ki, 0i) > F(kj , 0j ), then limt→0

I c (i,t)
I c (j,t) > 1. Thus, the theorem follows.

Proof of Theorem 6: Based on the fact
F (1) ≤F (2) ≤ · · · ≤F (n) = 1, F (k, 0i) ≤ F (k), and
by the definition of a, it can be seen that F (k, 0i) = F (k) = 0,
and F (k) = 1 − F (k) = 1 for all k < a.

Thus, from (10), we have

Ic(i, t) =
∑n−1

k=a
Λ(t)k

k ! F (k, 0i) + eΛ(t) −∑n−1
k=0

Λ(t)k

k !

eΛ(t) −∑a−1
k=0

Λ(t)k

k ! −∑n−1
k=a

Λ(t)k

k ! F (k)
.

Due to (13), it can be concluded that

lim
t→0

Ic(i, t) = lim
t→0

eΛ(t)−1−Λ(t)− Λ(t)2

2! − · · · − Λ(t)a −1

(a−1)! − Λ(t)a

a ! (1 − F (a, 0i))

eΛ(t) − 1 − Λ(t) − Λ(t)2

2! − · · · − Λ(t)a −1

(a−1)! − Λ(t)a

a ! F (a)

=
F (a, 0i)
1 − F (a)

=
F (a, 0i)
F (a)

where the last equality follows from the repeated use of the
L’Hospitol rule.

Since F (a, 0i) > F (a, 0j ), then limt→0(Ic(i, t) − Ic(j, t))
= F (a,0i )−F (a,0j )

F (a) > 0. Hence, the theorem follows.

Proof of Theorem 7: The proof is similar to Theorem 4, and
is therefore omitted.

Proof of Theorem 8: Similar to Theorem 5 and the proof is
therefore omitted.

Proof of Theorem 9: Similar to Theorem 6 and the proof is
therefore omitted.
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