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A B S T R A C T

The goal of Lennard-Jones (LJ) clusters optimization is to find the minimum value of the potential function of a
cluster and thereby determine the stable configuration of the cluster. It is essentially a completely inseparable
multimodal global optimization problem, and using the traditional particle swarm algorithm to solve it often
results in local convergence, which means that the solution accuracy of the algorithm is not high. Thus, in this
study, we develop a LJ algorithm using a particle swarm optimization (PSO) method and a physical approach to
improve the solution accuracy. In this quasi-physical strategy (QPS), the particle swarm algorithm is used to
simulate the real atomic structure and incorporates the interatomic force to construct a convergence model so that
the algorithm performs well in both global and local space. The potential energy functions of a variety of LJ
cluster systems are selected as test functions, and the improved PSO algorithm (QPS-PSO) is analyzed and
compared with a competitive swarm optimizer, cooperative coevolution PSO, and differential-group cooperative
coevolution, variable-length PSO for feature selection, heterogeneous comprehensive learning PSO, ensemble PSO
and cooperative coevolution with differential optimization. The results show that the PSO algorithm for LJ
clusters using the proposed QPS has noticeably superior solution accuracy, especially in high-dimensional spaces.
1. Introduction

Clusters are relatively stable aggregates of a few to several thousand
atoms that are formed by physical and chemical bonding and thus
constitute a distinct form of substance. Unlike monomers, the physical or
chemical properties of clusters often change with the number of atoms or
molecules contained in the cluster. These characteristics give clusters an
important role in the development of new materials such as energy
storage, superconductivity, photocatalytic water-cracking and high-
pressure structures [1].

At present, there are many methods of studying cluster theory, most
of which use empirical potential to describe the interactions between
atoms or molecules. For example, the Lennard-Jones (LJ) clusters [2]
model is a very precise cluster model for inert gases, and it has been
widely studied. As the minimum value of the cluster potential energy
usually corresponds to the stable structure of the ground state of the
).
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cluster, the optimization of the cluster structure also serves as a predic-
tion of the minimum-energy structure of the cluster [3]. However, the
number of local minima of the potential function increases exponentially
with the increasing cluster size, and therefore, optimizing the cluster
structure has been proven to be a NP-Hard problem [4]. For such prob-
lems, it is impossible to find an effective algorithm with polynomial-time
complexity [5]. In addition, as a large-scale global optimization problem,
the potential function is completely inseparable. Therefore, our research
goal is to design an effective optimization algorithm to solve the problem
of cluster optimization.

To date, many methods have been proposed to optimize the cluster
structure [6]. These can be classified as biased and unbiased methods.
Most of the methods used to solve atomic structure optimization have
deviations; that is, the basic configuration of the cluster needs to be
preset, such as by a static lattice search [7], configuration seed algo-
rithms and similar techniques. These can reduce the difficulty of cluster
20
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Fig. 1. The fitness function landscape above two dimensions of 38 atoms
(114 dimensions).

Table 1
LJ clusters and the corresponding number of local minima (approxi-
mately equal).

Number of Atoms Number of Local Minimum

6 2
7 4
8 8
9 21
10 57
11 145
12 366
13 988
15 104

25 106

55 1010

100 1040

147 1060
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optimization, but they are only applicable to specific clusters and are
difficult to be applied to the same feature optimization problems, which
significantly limits their utility.

Unbiased methods such as genetic algorithm (GA) [8], particle swarm
optimization (PSO) [9,10], simulated annealing algorithm (SA) [11,12]
and immune optimization algorithm (IOA) [13] have been increasingly
applied in cluster structure optimization. These methods do not require a
preset initial configuration, but the objective function and gradient need
to be solved; these methods are commonly used to optimize clusters with
different numbers of atoms and in optimization problems with the same
characteristics. At the same time, as cluster optimization is a global
optimization problem with large-scale and multimodal characteristics,
the use of heuristic algorithms to solve the same cluster structure opti-
mization problems is of great interest.

In recent years, PSO has been successfully applied in many research
fields, such as structural prediction. PSO was proposed by Kennedy and
Eberhart in the mid-1990s [14]; it is a stochastic global optimization
algorithm with simple rules, few adjustable parameters, easy imple-
mentation, and fast convergence [15]. However, as the number of local
minima of LJ clusters functions increases exponentially with cluster size
and the different dimensions of LJ clusters functions are completely
inseparable, PSO often struggles to adopt cooperative coevolution with
differential grouping (CC) [16] and the divide-and-conquer (DC) [17,18]
strategy, and thus it falls into a local optimum. Recently, Binh Tran
proposed a length-variation mechanism that sorted the characteristic
attributes of a particle swarm and focused the search on a smaller and
more useful area, which improved the performance of the algorithm to
some extent. However, in the mechanism of length variation, some phase
information for high dimensions is inevitably lost, which is affecting the
performance of the algorithm to some extent [19].

To prevent above, a quasi-physical strategy (QPS) is embedded in
PSO, creating a QPS-PSO approach to solving the optimization problem
of LJ clusters. To simulate the interaction between atoms in PSO, the QPS
is designed to drive particle motion, and an approach that uses physical
properties to construct the two convergence operation modes of the QPS
is adopted as the local search method. In this QPS framework, the
attraction operation helps the particle swarm find the local minimum,
and the repulsion operation helps the particle swarm exit the local
minimum, thus improving the performance of the PSO algorithm in
solving the LJ clusters optimization problem. To test the performance of
the proposed QPS-PSO algorithm for LJ clusters structure optimization
with multimode and large-scale characteristics, the seven most advanced
existing algorithms are compared with it.

This paper is organized as follows: Section 2 describes the LJ clusters
optimization problem. Section 3 proposes the details of the proposed
evolutionary algorithm. Section 4 describes the experimental analysis
and results by comparing the proposed algorithm with other approaches
in the literature. Section 5 concludes the paper.

2. The LJ clusters optimization problem

The LJ clusters optimization problem can be summarized as the
problem of finding one of the most stable structures of a cluster in three-
dimensional Euclidean space, where the number N of atoms of a cluster
and the type of each atom are known. Based on theoretical predictions,
chemists generally accept that the global minimum solution on a po-
tential surface of the cluster corresponds to the geometry of the cluster
[6]. Therefore, the aim of converting the problem of cluster structure
prediction into a mathematical global optimization problem is to obtain
the lowest potential energy of the cluster.

The LJ potential function is at the core of LJ clusters optimization and
is widely used to model the behavior of noble gases in theoretical
chemistry [20]. The LJ potential function is simple in form, relying only
on the distance between atoms related by a 12-6 pair potential. The
relevant equations are given below, beginning with Equation (1):
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where vij denotes the potential energy between the i-th and j-th atoms
andrij is the Euclidean distance between the coordinates of vectors xi and
xj, where xi is the coordinate of the i-th particle. The potential energy ELJ
of the cluster is given by Equation (2) as follows:
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where N is the number of atoms, such that ε and σ are the pair well depth
and equilibrium pair separation. The LJ clusters in this study were
selected with the simple form ε ¼ σ ¼ 1 [21]. According to Equation (3),
the optimization of the LJ clusters structure is essentially an uncon-
strained continuous optimization problem.

Although the surface form of the potential function of LJ is simple, the
potential surface of LJ is rough [22]. As shown in Fig. 1, the fitness
function image of more than 38 atoms in two dimensions is a
double-funnel type and has many local minima; it is easy to fall into one
of these, leading to local optimal or premature convergence [23].
Moreover, as a large-scale global optimization problem, the function of
LJ clusters is fully non-separable. The number of local minima with
respect to a cluster’s potential energy tends to grow exponentially with



Fig. 2. Algorithm 1 flow chart for QPS-PSO.
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cluster size. Thus, Hoare supposed that for an LJ clusters of N particles,
the number of minima is ΟðeN2 Þ [24]. As shown in Table 1, when N¼ 13,
the LJ problem has 988 local minimum points, and when N ¼ 100, it has
1040 local minimum points. More details of these data are listed in
Table 1 [25]. In addition, the position of each atom is represented by a
three-dimensional coordinate. When the number of atoms becomes large,
the structure prediction becomes a large-scale optimization problem, and
each dimension is completely independent.

Above all, the optimization of the LJ clusters problem is an uncon-
strained large-scale multimodal optimization problem. When the number
of atoms is large, the problem is very difficult to solve.

3. The proposed optimization algorithm

3.1. Particle swarm optimization

PSO is a global random search algorithm based on swarm intelli-
gence. In the n-dimensional solution space, PSO first initializes a particle
swarm batch containing m particles, where m is the particle swarm size.
The coordinates of each particle represent a possible solution, and the
particle coordinates play a role in determining the fitness value calcu-
lated by the objective function. In each iteration, a particle can find its
own optimal solution (individual extreme value Pbest) and the optimal
solution of the entire particle swarm (global extreme value Gbest)
through the adaptive value to update its speed and position.

The mathematical descriptions of the PSO algorithm are as follows:
Xi ¼ ðXi1;Xi2;…;XinÞT is the coordinate of the i-th particle in the n-

dimensional solution space.
Vi ¼ ðvi1;vi2;…;vinÞT is the velocity of the i-th particle in the n-dimen-

sional solution space.
The optimal position searched for the i-th particle is Pi ¼

ðPi1;Pi2;…;PinÞT .
The optimal position searched by the whole particle swarm is Gi ¼

ðGi1;Gi2;…;GinÞT .
Furthermore, the particles update their speed and position according

to Equations (4) and (5).
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where i ¼ 1, 2, 3..., n is the number of particles; k ¼ 1, 2, ..., n is the
number of independent variables; d is the dimensional component of the
solution space; w is the inertia weight coefficient; and c1, c2, r1, and r2 are
random numbers in (0,1) respectively. In addition, pkid is an individual
extreme position in the d dimension of particle i and gkid is the global
extreme position of the particle swarm in the d dimension.

Then, the updated Xi ¼ ðXi1;Xi2;…;XinÞT is decomposed into the
atoms of a single LJ clusters xi ¼ ðxi1; xi2;…; xihÞT ,where xij represents an
LJ clusters atom and h represents the number of cluster atoms. The
relationship between Xi ¼ ðXi1;Xi2;…;XinÞT and xi ¼ ðxi1; xi2;…; xihÞT is
shown in Equations (6) and (7):

Xi ¼
�
xTi1; x

T
i2;…; xTih

�T (6)

xij ¼
�
Xi;ðlðj�1Þþ1Þ;Xi;ðlðj�1Þþ2Þ;…;Xi;ðljÞ

�T (7)

where l is the dimension of a single atom xij and n ¼ hl. Using these
relationships, a particle in the PSO is associated with an atomic structure,
which means that a particle in the algorithm contains all the position
information of an atomic structure.
3

3.2. Particle swarm optimization with a quasi-physical convergence
strategy (QPS-PSO)

Although the PSO algorithmwith local search can afford better search
results than the PSO algorithm alone, it greatly reduces the search per-
formance when solving high-dimensional structures. The reason for this
is described in Section 2. In brief, the number of local minimum values of
the cluster potential energy increases exponentially with the increase in
the number of atoms in the cluster, which makes the PSO algorithm
converge prematurely and fall into a local optimum. Therefore, a QPS
strategy is adopted to make the particle swarm effectively converge to the
global optimum.
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The QPS is an algorithmic strategy with two basic operation modes,
the attraction operation and repulsion operation, and two trigger con-
ditions, denoted I and II. In this study, the algorithm embedded in QPS is
designed to find the global minimum value of a LJ clusters effectively.

In this algorithm, the QPS involves iterating the PSO algorithm to
verify the convergence performance of the algorithm. Using the QPS, we
have two different operations to perform: the attraction operation, which
helps the particle swarm to find the local minimum, and the repulsion
operation, which helps the particle swarm to exit the local optimum and
restart the convergence-seeking process again. The process of QPS-PSO is
also shown as Algorithm 1 and the flow chart for QPS-PSO see Fig. 2.

jgbestt � gbestt�1j < jgbestt � gbest0j
t

(8)

Trigger condition I is calculated by Equation (8) and determines
whether the quasi-physical policy is satisfied, that is, whether the change
Algorithm 1
QPS-PSO.

Fig. 3. The attraction operation is applied of a case which the trigger condition
II is met.
in Gbest in the last two iterations is less than the average change in Gbest
over all iterations; it thereby determines whether the results converge. If
condition I is met, then the iteration results converge, and the next step is
carried out. If trigger condition I is not met, then the iterative process
continues. Trigger condition I guarantees that the result of the algo-
rithm’s iteration is convergent [26].

Δr¼
Pn

i¼1ðpbesti � pbestÞ
n0

< k (9)

Trigger condition II is calculated by Equation (9), where Δr repre-
sents the mean variance in each particle in the particle swarm above each
dimension, k is a constant threshold and n0is the number of particles in
the swarm. Trigger condition II is used to determine the degree of particle
swarm aggregation. Thus, in the last iteration, the results for each par-
ticle are calculated to determine whether the variance is< k. If condition
II is met, indicating that most particle search results are similar, the
4

algorithm proceeds to the next step; otherwise, the iteration continues.
Trigger condition II ensures the stability of the iterative results.

Trigger condition II is a judgment condition used to decide whether to
perform the attraction and repulsion operations or initialize the particle
swarm. If trigger condition II is met, the majority of the particles
converge to a region, and in this case, the attraction operation is adopted
first to help the particle swarm find the local minimum value. When the
algorithm converges to a potential energy value, the result is not always
global optimal, so the repulsion operation must be performed to create a
large disturbance in the order, thereby slowing local convergence and
enabling the particles to escape from the local optimum. If trigger con-
dition II is not met, most particles fail to converge to a certain region
within a specified number of steps, and then the particle swarm is
initialized so that it exits the current convergence region and begins the
convergence process again. Figs. 3 and 4 demonstrate the two cases of
trigger condition II.



Fig. 4. Initialize particle swarm is applied of a case which the trigger condition
II is not met.
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3.3. The interatomic attraction operation and the interatomic repulsion
operation

Structure prediction is a practical problem in physics, so we can use
physical properties to define two kinds of convergence. The proposed
QPS-PSO adopts a quasi-physical strategy as a local search method for the
attraction operation and repulsion operation [27]. The primary utility of
a quasi-physical algorithm lies in its ability to transform abstract prob-
lems into real problems, thereby enhancing their natural solubility. This
approach is therefore applied to the LJ clusters optimization problem.

In a cluster, each atom is subject to a force from the other atoms,
under the influence of which the atom will move. When two atoms are
very close, they will repel each other; but when they are far apart, they
will attract each other. In this sense, a QPS is essentially a minimization
approach that makes abstract problems more concrete.

Algorithm 2
Attraction Operation.

For any configuration ðX1;⋯;XNÞ ε R3N , the potential energy function
of the LJ clusters is shown in Equations (1)–(3) and can also be written as
Equation (10) below:

v
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1
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�12

�
�
1
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�6

(10)

The potential energy function between atom i and atom j is given by
Equation (11):
5

E rij ¼ 4� v rij (11)
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Therefore, the force exerted on atom i by atom j is given by Equation

(12):
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where dðEðrijÞÞ
dðrijÞ represents the derivative function ofEðrijÞ.

Consequently, ð48r�14
ij �24r�8

ij Þ represents the size of the force, and
ðXi �XjÞ represents the direction of the force.

The total force experienced by atom i is thus given by Equation (13):

Fi ¼
XN
j¼1;j6¼i

Gji (13)

The total force experienced by the whole cluster is given by Equation
(14):

Ftotal ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1F2

N

s
(14)

The purpose of the attraction operation is to set the total force of the
whole cluster to zero. Thus, after the calculation of the force experienced
by each atom, each atommoves a given step length in the direction of the
force according to the magnitude of the force. The next step is to calculate
the force experienced by each atom and to move every atom iteratively
until the total force meets the termination condition. This strategy is
substantially equivalent to the steepest descent method without linear
steps. The details of the algorithm are shown in Algorithm 2.

To prevent the PSO from falling into a local optimum, we simulate a
situation in which every atom in a randomly generated structure is
subjected to an atomic force corresponding to that of the repulsion
operation. The atomic force received in the repulsion operation is
calculated by Equation (15), and the repulsion operation obeys Equation
(16) below:

Hi’ ¼Gi’ i (15)

xnew i ¼ xi’ þ step*Hi’ (16)

where xnewi is the newly generated structure of the repulsion operation
andxi’ ¼ ðxi1’ ; xi2’ ;…; xih’ ÞT is a randomly generated structure of the LJ
clusters. i’ represents the atom corresponding to i in the randomly
generated structure; the step length is set to 0.5, and each atom moves in
the direction of Hi’ . For each particle in the particle swarm, a new cluster
structure is generated to optimize the probability that the whole particle
swarm will move from the bottom of the current potential energy funnel
to another funnel after the repulsion operation.



Table 2
Comparison the proposed QPS-PSO, CSO [29–31], CCPSO2 [32,33], CCDE [34,35], VLPSO-FS [19,36], HCLPSO [37], EPSO [38] and DECC-DG [39].

NAME QPS-PSO OTHER ALGORITHMS

LOWEST AVERAGE STD ALGORITHM LOWEST AVERAGE STD Wilcoxon signed-rank p SIG

LJ 7 CCDE �1.59Eþ01 �1.56Eþ01 2.44E-01 2.E�06 *
CCPSO2 �1.59Eþ01 �1.56Eþ01 1.68E-01 2.E�06 *
CSO ¡1.65Eþ01 �1.55Eþ01 4.52E-01 2.E�06 *

¡1.65Eþ01 ¡1.65Eþ01 1.70E-08 DECC-DG ¡1.65Eþ01 ¡1.65Eþ01 4.32E-02 2.E�06 *
EPSO ¡1.65Eþ01 �1.64Eþ01 2.76E-01 1.E�01
HCLPSO ¡1.65Eþ01 ¡1.65Eþ01 1.33E-02 2.E�02 *
VLPSO-FS �1.54Eþ01 �1.39Eþ01 1.41Eþ00 2.E�06 *

LJ 13 CCDE �3.94Eþ01 �3.65Eþ01 2.79Eþ00 2.E�06 *
CCPSO2 �4.11Eþ01 �3.87Eþ01 9.34E-01 2.E�06 *
CSO ¡4.43Eþ01 �4.21Eþ01 1.98Eþ00 2.E�06 *

¡4.43Eþ01 ¡4.42Eþ01 5.21E-01 DECC-DG �3.43Eþ01 �3.16Eþ01 8.98E-01 2.E�06 *
EPSO ¡4.43Eþ01 �3.99Eþ01 1.75Eþ00 2.E�06 *
HCLPSO ¡4.43Eþ01 �3.99Eþ01 1.18Eþ00 2.E�06 *
VLPSO-FS �3.77Eþ01 �3.31Eþ01 2.25Eþ00 2.E�06 *

LJ 18 CCDE �6.36Eþ01 �4.92Eþ01 1.37Eþ01 2.E�06 *
CCPSO2 �6.42Eþ01 �6.17Eþ01 1.10Eþ00 2.E�06 *
CSO �6.43Eþ01 �6.17Eþ01 1.38Eþ00 2.E�06 *

¡6.65Eþ01 ¡6.62Eþ01 2.74E-01 DECC-DG �4.16Eþ01 �3.67Eþ01 2.13Eþ00 2.E�06 *
EPSO �6.62Eþ01 �6.13Eþ01 3.00Eþ00 2.E�06 *
HCLPSO �6.55Eþ01 �6.06Eþ01 2.10Eþ00 2.E�06 *
VLPSO-FS �4.80Eþ01 �4.44Eþ01 2.35Eþ00 2.E�06 *

LJ 24 CCDE �9.33Eþ01 �8.66Eþ01 3.66Eþ00 2.E�06 *
CCPSO2 �9.27Eþ01 �8.91Eþ01 1.89Eþ00 2.E�06 *
CSO �8.91Eþ01 �8.68Eþ01 1.94Eþ00 2.E�06 *

¡9.73Eþ01 ¡9.63Eþ01 8.16E-01 DECC-DG �4.97Eþ01 �4.33Eþ01 3.41Eþ00 2.E�06 *
EPSO �9.25Eþ01 �8.37Eþ01 3.72Eþ00 2.E�06 *
HCLPSO �9.08Eþ01 �8.37Eþ01 2.75Eþ00 2.E�06 *
VLPSO-FS �7.46Eþ01 �6.74Eþ01 3.39Eþ00 2.E�06 *

LJ 27 CCDE �1.03Eþ02 �9.75Eþ01 2.91Eþ00 2.E�06 *
CCPSO2 �1.09Eþ02 �1.04Eþ02 1.83Eþ00 2.E�06 *
CSO �1.05Eþ02 �1.01Eþ02 1.83Eþ00 2.E�06 *

¡1.13Eþ02 ¡1.12Eþ02 9.54E-01 DECC-DG �5.14Eþ01 �4.74Eþ01 2.23Eþ00 2.E�06 *
EPSO �1.04Eþ02 �9.31Eþ01 3.74Eþ00 2.E�06 *
HCLPSO �9.79Eþ01 �9.44Eþ01 2.20Eþ00 2.E�06 *
VLPSO-FS �9.42Eþ01 �8.62Eþ01 3.31Eþ00 2.E�06 *

LJ 30 CCDE �1.18Eþ02 �1.12Eþ02 3.53Eþ00 2.E�06 *
CCPSO2 �1.23Eþ02 �1.19Eþ02 2.24Eþ00 2.E�06 *
CSO �1.18Eþ02 �1.15Eþ02 1.83Eþ00 2.E�06 *

¡1.28Eþ02 ¡1.27Eþ02 6.67E-01 DECC-DG �5.30Eþ01 �4.76Eþ01 2.15Eþ00 2.E�06 *
EPSO �1.09Eþ02 �1.03Eþ02 4.35Eþ00 2.E�06 *
HCLPSO �1.18Eþ02 �1.08Eþ02 5.05Eþ00 2.E�06 *
VLPSO-FS �1.15Eþ02 �1.10Eþ02 3.06Eþ00 2.E�06 *

LJ 38 CCDE �1.63Eþ02 �1.57Eþ02 3.82Eþ00 2.E�06 *
CCPSO2 �1.62Eþ02 �1.57Eþ02 2.82Eþ00 2.E�06 *
CSO �1.58Eþ02 �1.52Eþ02 3.37Eþ00 2.E�06 *

¡1.72Eþ02 ¡1.70Eþ02 7.97E-01 DECC-DG �5.90Eþ01 �5.13Eþ01 2.45Eþ00 2.E�06 *
EPSO �1.45Eþ02 �1.36Eþ02 5.90Eþ00 2.E�06 *
HCLPSO �1.46Eþ02 �1.39Eþ02 4.21Eþ00 2.E�06 *
VLPSO-FS �1.57Eþ02 �1.45Eþ02 4.19Eþ00 2.E�06 *

LJ 44 CCDE �1.92Eþ02 �1.77Eþ02 1.13Eþ01 2.E�06 *
CCPSO2 �1.89Eþ02 �1.81Eþ02 3.62Eþ00 2.E�06 *
CSO �1.92Eþ02 �1.81Eþ02 5.08Eþ00 2.E�06 *

¡2.08Eþ02 ¡2.04Eþ02 1.82Eþ00 DECC-DG �6.12Eþ01 �5.77Eþ01 2.03Eþ00 2.E�06 *
EPSO �1.79Eþ02 �1.62Eþ02 7.59Eþ00 2.E�06 *
HCLPSO �1.71Eþ02 �1.60Eþ02 5.23Eþ00 2.E�06 *
VLPSO-FS �1.74Eþ02 �1.65Eþ02 5.63Eþ00 2.E�06 *

LJ 45 CCDE �1.96Eþ02 �1.76Eþ02 2.56Eþ01 2.E�06 *
CCPSO2 �1.94Eþ02 �1.85Eþ02 5.60Eþ00 2.E�06 *
CSO �1.93Eþ02 �1.84Eþ02 5.15Eþ00 2.E�06 *

¡2.14Eþ02 ¡2.09Eþ02 1.61Eþ00 DECC-DG �6.35Eþ01 �5.97Eþ01 2.04Eþ00 2.E�06 *
EPSO �1.70Eþ02 �1.64Eþ02 2.80Eþ00 2.E�06 *
HCLPSO �1.72Eþ02 �1.64Eþ02 5.65Eþ00 2.E�06 *
VLPSO-FS �1.88Eþ02 �1.77Eþ02 5.64Eþ00 2.E�06 *

LJ 50 CCDE �2.24Eþ02 �2.07Eþ02 1.85Eþ01 2.E�06 *
CCPSO2 �2.07Eþ02 �1.92Eþ02 8.82Eþ00 2.E�06 *
CSO �2.21Eþ02 �2.08Eþ02 5.39Eþ00 2.E�06 *

¡2.45Eþ02 ¡2.38Eþ02 2.41Eþ00 DECC-DG �6.67Eþ01 �6.16Eþ01 2.21Eþ00 2.E�06 *
EPSO �2.13Eþ02 �1.92Eþ02 1.11Eþ01 2.E�06 *
HCLPSO �1.96Eþ02 �1.85Eþ02 4.73Eþ00 2.E�06 *
VLPSO-FS �2.23Eþ02 �2.06Eþ02 7.52Eþ00 2.E�06 *

LJ 57 CCDE �2.60Eþ02 5.00Eþ02 2.95Eþ03 2.E�06 *
CCPSO2 �2.53Eþ02 �2.44Eþ02 4.40Eþ00 2.E�06 *
CSO �2.53Eþ02 �2.40Eþ02 7.33Eþ00 2.E�06 *

(continued on next page)
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Table 2 (continued )

NAME QPS-PSO OTHER ALGORITHMS

LOWEST AVERAGE STD ALGORITHM LOWEST AVERAGE STD Wilcoxon signed-rank p SIG

¡2.83Eþ02 ¡2.77Eþ02 2.19Eþ00 DECC-DG �7.23Eþ01 �6.78Eþ01 2.00Eþ00 2.E�06 *
EPSO �2.47Eþ02 �2.28Eþ02 1.44Eþ01 2.E�06 *
HCLPSO �2.20Eþ02 �2.14Eþ02 3.19Eþ00 2.E�06 *
VLPSO-FS �2.49Eþ02 �2.36Eþ02 5.97Eþ00 2.E�06 *

LJ 66 CCDE �3.10Eþ02 8.93Eþ02 6.20Eþ03 2.E�06 *
CCPSO2 3.45Eþ01 1.62Eþ02 6.99Eþ01 2.E�06 *
CSO �2.88Eþ02 �2.76Eþ02 8.70Eþ00 2.E�06 *

¡3.36Eþ02 ¡3.32Eþ02 2.63Eþ00 DECC-DG �8.14Eþ01 �7.60Eþ01 2.39Eþ00 2.E�06 *
EPSO �2.88Eþ02 �2.69Eþ02 1.48Eþ01 2.E�06 *
HCLPSO �2.76Eþ02 �2.53Eþ02 9.63Eþ00 2.E�06 *
VLPSO-FS �3.24Eþ02 �3.02Eþ02 1.23Eþ01 2.E�06 *

LJ 69 CCDE �3.23Eþ02 1.18Eþ04 3.69Eþ04 2.E�06 *
CCPSO2 1.68Eþ02 3.20Eþ02 8.49Eþ01 2.E�06 *
CSO �3.05Eþ02 �2.90Eþ02 1.01Eþ01 2.E�06 *

¡3.55Eþ02 ¡3.49Eþ02 2.77Eþ00 DECC-DG �8.71Eþ01 �7.86Eþ01 3.29Eþ00 2.E�06 *
EPSO �2.97Eþ02 �2.80Eþ02 1.38Eþ01 2.E�06 *
HCLPSO �2.79Eþ02 �2.64Eþ02 8.46Eþ00 2.E�06 *
VLPSO-FS �3.46Eþ02 �3.14Eþ02 1.67Eþ01 2.E�06 *

LJ 72 CCDE �3.36Eþ02 1.65Eþ04 4.56Eþ04 2.E�06 *
CCPSO2 4.45Eþ02 5.81Eþ02 8.21Eþ01 2.E�06 *
CSO �3.16Eþ02 �2.95Eþ02 1.67Eþ01 2.E�06 *

�3.71Eþ02 ¡3.67Eþ02 2.33Eþ00 DECC-DG �8.76Eþ01 �8.07Eþ01 2.96Eþ00 2.E�06 *
EPSO �3.29Eþ02 �2.97Eþ02 1.57Eþ01 2.E�06 *
HCLPSO �2.80Eþ02 �2.72Eþ02 4.36Eþ00 2.E�06 *
VLPSO-FS ¡3.75Eþ02 �3.40Eþ02 1.43Eþ01 2.E�06 *

LJ 75 CCDE �3.54Eþ02 3.11Eþ04 7.93Eþ04 2.E�06 *
CCPSO2 6.70Eþ02 9.78Eþ02 1.58Eþ02 2.E�06 *
CSO �3.29Eþ02 �3.04Eþ02 2.32Eþ01 2.E�06 *

�3.91Eþ02 ¡3.84Eþ02 2.92Eþ00 DECC-DG �9.63Eþ01 �8.45Eþ01 4.56Eþ00 2.E�06 *
EPSO �3.39Eþ02 �3.10Eþ02 1.80Eþ01 2.E�06 *
HCLPSO �3.28Eþ02 �2.90Eþ02 1.60Eþ01 2.E�06 *
VLPSO-FS ¡4.13Eþ02 �3.74Eþ02 1.65Eþ01 6.E�03 *

LJ 78 CCDE �3.62Eþ02 8.39Eþ04 1.34Eþ05 2.E�06 *
CCPSO2 1.07Eþ03 1.44Eþ03 1.85Eþ02 2.E�06 *
CSO �3.51Eþ02 �3.02Eþ02 5.70Eþ01 2.E�06 *

¡4.08Eþ02 ¡4.03Eþ02 2.77Eþ00 DECC-DG �8.90Eþ01 �8.61Eþ01 2.30Eþ00 2.E�06 *
EPSO �3.58Eþ02 �3.35Eþ02 1.60Eþ01 2.E�06 *
HCLPSO �3.30Eþ02 �2.99Eþ02 1.41Eþ01 2.E�06 *
VLPSO-FS �4.01Eþ02 �3.74Eþ02 1.42Eþ01 2.E�06 *

LJ 83 CCDE �3.88Eþ02 1.53Eþ05 2.55Eþ05 2.E�06 *
CCPSO2 2.18Eþ03 2.67Eþ03 2.69Eþ02 2.E�06 *
CSO �3.65Eþ02 �3.18Eþ02 5.32Eþ01 2.E�06 *

¡4.41Eþ02 ¡4.33Eþ02 4.00Eþ00 DECC-DG �8.66Eþ01 �8.40Eþ01 1.43Eþ00 2.E�06 *
EPSO �3.75Eþ02 �3.51Eþ02 1.90Eþ01 2.E�06 *
HCLPSO �3.23Eþ02 �3.15Eþ02 5.59Eþ00 2.E�06 *
VLPSO-FS ¡4.41Eþ02 �4.11Eþ02 1.73Eþ01 5.E�06 *

LJ 85 CCDE �4.01Eþ02 3.15Eþ04 1.23Eþ05 2.E�06 *
CCPSO2 2.62Eþ03 3.36Eþ03 4.75Eþ02 2.E�06 *
CSO �3.74Eþ02 �2.81Eþ02 8.21Eþ01 2.E�06 *

�4.53Eþ02 ¡4.45Eþ02 4.51Eþ00 DECC-DG �9.97Eþ01 �8.91Eþ01 4.72Eþ00 2.E�06 *
EPSO �3.97Eþ02 �3.71Eþ02 1.46Eþ01 2.E�06 *
HCLPSO �3.38Eþ02 �3.24Eþ02 6.43Eþ00 2.E�06 *
VLPSO-FS ¡4.73Eþ02 �4.42Eþ02 2.11Eþ01 6.E�01

LJ 91 CCDE �4.22Eþ02 3.47Eþ05 5.64Eþ05 2.E�06 *
CCPSO2 4.77Eþ03 5.71Eþ03 5.85Eþ02 2.E�06 *
CSO �3.89Eþ02 4.02Eþ02 3.63Eþ03 2.E�06 *

�4.89Eþ02 ¡4.82Eþ02 3.89Eþ00 DECC-DG �9.42Eþ01 �8.79Eþ01 3.21Eþ00 2.E�06 *
EPSO �4.35Eþ02 �3.98Eþ02 1.98Eþ01 2.E�06 *
HCLPSO �3.84Eþ02 �3.58Eþ02 1.37Eþ01 2.E�06 *
VLPSO-FS ¡5.16Eþ02 �4.78Eþ02 2.11Eþ01 3.E�01

LJ 98 CCDE �4.47Eþ02 9.05Eþ05 1.15Eþ06 2.E�06 *
CCPSO2 8.79Eþ03 1.06Eþ04 8.60Eþ02 2.E�06 *
CSO �4.27Eþ02 1.03Eþ04 3.42Eþ04 2.E�06 *

�5.36Eþ02 ¡5.24Eþ02 4.62Eþ00 DECC-DG �1.04Eþ02 �9.40Eþ01 5.60Eþ00 2.E�06 *
EPSO �4.61Eþ02 �4.31Eþ02 1.59Eþ01 2.E�06 *
HCLPSO �3.99Eþ02 �3.84Eþ02 1.02Eþ01 2.E�06 *
VLPSO-FS ¡5.43Eþ02 �5.05Eþ02 1.37Eþ01 2.E�05 *

The statistical comparison is performed using a Wilcoxon signed-rank test with α ¼ 0.05.
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Fig. 5. The cluster structure of LJ13 obtained by QPS-PSO.

Fig. 6. The cluster structure of LJ13 obtained by CCPSO2.
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4. Experiment and results

4.1. Experimental setting

We present numerical results to support our claim that QPS-PSO, in
targeting the key characteristic of LJ clusters optimization, is effective at
solving the LJ clusters optimization problem. For different LJ clusters, it
is determined whether the zero-total force on the cluster of the attraction
operation improves the location of a potential energy point. Then, it is
determined whether the dispersion process of the repulsion operation
plays a role in preventing descent into a local optimum as well as how
great an influence the dispersion process has on the stability of the
experimental results. To provide a comparison with other typical algo-
rithms for multimodal and large-scale optimization problems, the results
are compared with the latest results in terms of their numerical values
Table 3
Comparison average Friedman Rank of 8 algorithms in 20 cluster systems.

NAME QPS-PSO CCDE CCPSO2 CSO

LJ7 2.07 5.68 6.02 6.20
LJ13 1.00 5.90 4.67 2.57
LJ18 1.00 6.00 3.30 3.60
LJ24 1.00 3.77 2.57 3.63
LJ27 1.00 4.13 2.27 3.03
LJ30 1.00 4.43 2.17 3.37
LJ38 1.00 2.77 2.63 3.80
LJ44 1.00 3.53 2.87 3.20
LJ45 1.00 3.80 3.17 3.27
LJ50 1.00 2.90 5.43 3.30
LJ57 1.00 4.10 3.03 3.87
LJ66 1.00 3.90 7.90 4.10
LJ69 1.00 3.97 7.83 3.93
LJ72 1.07 4.83 7.73 4.13
LJ75 1.23 4.70 7.80 4.17
LJ78 1.00 5.57 7.60 4.57
LJ83 1.07 5.33 7.63 4.33
LJ85 1.43 4.20 7.93 5.27
LJ91 1.37 5.87 7.53 5.43
LJ98 1.10 6.50 7.27 5.50
Average 1.12 4.59 5.37 4.06

8

and standard deviation.
In our experiment, 20 cluster systems are used for testing, including

LJ7, LJ13, LJ18, LJ24, LJ27, LJ38, LJ44, LJ45, LJ50, LJ57, LJ66, LJ69,
LJ72, LJ78, LJ83, LJ91 and LJ98. LJ7, LJ13, LJ18, LJ24, and LJ30 are
simple systems, while LJ38 has a nontrivial double-funnel energy field
[28], which is difficult to optimize. LJ83, LJ85, LJ91, and LJ98 (di-
mensions 230–300) are examples of large systems at high dimensions.

We compare the performance of the proposed algorithm with that of
seven existing state-of-the-art algorithms: the competitive swarm opti-
mizer (CSO) [29–31], the cooperatively coevolving particle swarm
optimizer (CCPSO2) [32,33], cooperative coevolution with differential
grouping (CCDE) [34,35], variable-length particle swarm optimization
for feature selection (VLPSO-FS) [19,36], heterogeneous comprehensive
learning particle swarm optimization (HCLPSO) [37], ensemble particle
swarm optimization (EPSO) [38] and cooperative coevolution with dif-
ferential optimization (DECC-DG) [39]. The maximum number of eval-
uations for all algorithms is set at 106 to ensure that there are enough for
the particle swarm of each algorithm to be convergent. The particle
swarm sizes are all set to NP¼ 30. The running cycle τ of the QPS is set to
100, and the threshold constant k in condition II is 0.1 [40,41].
Furthermore, the results were analyzed by the Wilcoxon signed-rank test
and average Friedman Rank test [42].
4.2. Experimental results

As shown in Table 2, each algorithm runs 30 times on different
numbers of atoms, and the lowest potential energies obtained in each
execution are investigated. The results are analyzed using a Wilcoxon
signed-rank test with α ¼ 0:05 [32]. They indicate that the proposed
QPS-PSO performs much better than the other seven algorithms. Table 2
shows data from the statistical analysis of the experiment. The measures
used in Table 2 are as follows:

(1) - LOWEST: The potential energy over 30 executions.
(2) -AVERAGE: The average potential energy over 30 executions.
(3) -STD: The standard deviation over 30 executions.
(4) -SIG: If there is a significant difference from QPS-PSO in the al-

gorithm, then Sig is “*”; otherwise, Sig is empty.

The experimental results are presented in Table 2, which shows the
lowest and mean of potential energy, and the standard deviation ob-
tained by QPS-PSO and by CCPSO2, CCDE, CSO, VLPSO-FS, EPSO,
HCPSO and DECC-DG during 30 executions. In Table 2, the best results in
DECC-DG EPSO HCLPSO VLPSO-FS

3.20 2.48 2.42 7.93
7.70 3.60 3.57 7.00
7.80 3.57 3.97 6.77
8.00 5.00 5.03 7.00
8.00 5.47 5.17 6.93
8.00 6.53 5.50 5.00
8.00 6.67 6.23 4.90
8.00 5.83 6.33 5.23
8.00 6.27 6.17 4.33
8.00 5.43 6.33 3.60
7.87 5.20 6.53 4.40
6.90 4.43 5.53 2.23
6.83 4.57 5.47 2.40
6.70 4.10 5.50 1.93
6.80 4.33 5.13 1.83
6.60 3.57 5.10 2.00
6.60 3.80 5.27 1.97
6.90 3.53 5.17 1.57
6.43 3.27 4.47 1.63
6.07 3.13 4.53 1.90
7.12 4.54 5.17 4.03



Fig. 7. Box plots of the results from 30 runs for LJ systems (1)–(20). The bars in black are the median results.
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Fig. 7. (continued).
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each instance are highlighted. It shows that the solutions obtained by
QPS-PSO for all test systems are superior to those obtained by the other
seven algorithms; the average potential energy and standard deviation
obtained by QPS-PSO are lower than those obtained by the other seven
algorithms. In terms of the lowest value, only LJ72, LJ75, LJ85, LJ91 and
LJ98 are slightly higher than in VLPSO-FS, but the average value and
standard deviation are lower than those of VLPSO-FS, CSO, VLPSO-FS,
EPSO and HCLPSO perform relatively well in high dimensions, while
the CCPSO2, CCDE and DECC-DG lose their effectiveness in LJ69 and
larger systems and in LJ72 and larger systems, respectively.

To more intuitively reveal the minimum potential energy value cor-
responding to the LJ clusters. The LJ13 cluster is chosen for analysis and
compare with other LJ clusters with different atomic numbers. This
cluster has a low atomic number and yields a local minimum of relatively
moderate size, while LJ clusters with higher atomic numbers cannot
necessarily locate the global optimum because the number of local
minimum-value points increases exponentially.
10
Thus, if the atomic number is smaller than that of the atoms in the
LJ13 cluster, too few local minimum points are present, meaning that the
results of each algorithm are too similar to show an algorithm contrast
effect. Images of the clusters structure obtained by QPS-PSO and CCPSO2
for LJ13 are shown in Figs. 5 and 6. The results obtained by QPS-PSO,
CSO, HCLPSO and EPSO are all �44.3268, which is currently the mini-
mum known potential energy value for LJ13. The best result of CCPSO2
is �41.0804, which is a local minimum of LJ13. The cluster structure in
Figs. 5 and 6 show that even though the difference in potential energy
between the two clusters is small, the difference in structure is large. This
clustering structure increases the possibility of the algorithm producing a
local optimum.

Table 3 shows the average Friedman Rank of the eight algorithms
over all 20 cluster systems by using the Friedman test [42]. When we
calculate the average Friedman Rank, the same accuracy values for these
methods are considered, and in the case of a tie, both are assigned the
average value. The results of each row in Table 3 indicate that QPS-PSO



Fig. 7. (continued).
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has the best rank.
Fig. 7 shows a box plot of the steady performance of the proposed

QPS-PSO compared with that of the CCPSO2, CCDE, CSO, VLPSO-FS,
EPSO, HCLPSO and DECC-DG. QPS-PSO is the most effective among all
of the systems, which is verified by the mean, maximum, minimum and
median of potential energy obtained in 30 executions. Because the
minimum potential value obtained by some algorithms is too large
compared with the minimum potential value obtained by other algo-
rithms, the comparison in the box plot is not intuitive. Therefore, we
discard the potential value obtained by CCDE and CCPSO2 after the LJ72
cluster and the potential value obtained by the CSO at the LJ98 cluster in
the box plot.

4.3. Analysis of the results

Three conclusions can be drawn from the results above.
First, the data in Table 2 shows that the lowest potential energy of
11
QPS-PSO is lower than those of the CCPSO2, CCDE, CSO, VLPSO-FS,
EPSO, HCLPSO and DECC-DG in most cases. When the cluster atom is
below LJ13, the results of each algorithm are similar. And QPS-PSO, CSO,
EPSO, HCLPSO can obtain similar minimum values. This is related to the
dispersion process of the repulsion operation. When the clustering is
small, the clustering structure is relatively simple, and each algorithm
can obtain reliable results. The effect of the attraction operation and
repulsion operation is not obvious, and the continuous dispersion of the
particle swarm has little effect on the stability of the algorithm.

However, as the number of atoms of cluster continues to increase, the
cluster structure becomes increasingly complex, the attraction and
repulsion operations become increasingly obvious, and the effect of
scattering particles gradually weakens. Between LJ18 and LJ75, the re-
sults of QPS-PSO are the best of all the algorithms. In the middle and high
dimension clusters after LJ78, the QPS-PSO, VLPSO-FS, EPSO and
HCLPSO algorithms have considerable advantages over the traditional
algorithms. Although the lowest potential energy value of VLPSO in



Table 4
Wilcoxon signed-rank test based statistical comparison of the 8 algorithms.

QPS-PSO

W-D-L Statistical results

CCDE 20-0-0 þ
CCPSO2 20-0-0 þ
CSO 20-0-0 þ
EPSO 19-1-0 þ
DECC-DG 20-0-0 þ
HCLPSO 20-0-0 þ
VLPSO-FS 18-2-0 þ

Table 5
Scoring rules of “W-D-L”.

Mean value Standard deviation Wilcoxon signed-rank p W-D-L

A ¼ B A > B L
A < B p<0.05 W

p>0.05 D
A < B A<B W

A>B p<0.05 W
p>0.05 D

A > B A < B p<0.05 D
p>0.05 L

A > B L

A and B represent the corresponding values obtained by two different algorithms,
and p represents the value of the Wilcoxon signed-rank p between A and B.
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LJ78, LJ85 and LJ91 is slightly better than that of QPS-PSO, the differ-
ence between the two is not large. The reason may be that when dealing
with large-scale complex problems, the attraction operation may not be
able to find the point where the total force is 0 within the specified time
but can only find a structure close to 0, and this affects the result.
However, when combining the average potential energy value and the
variance of each algorithm in a high-dimensional field, this effect is
slight. For larger LJ98 cluster, the QPS-PSO algorithm can still obtain the
best result by searching for structures with a total force close to 0. The
comprehensive performance of QPS-PSO in higher dimensions is still the
best, so it has an absolute advantage in dealing with large-scale problems.
Compared with other algorithms, QPS-PSO has better stability and search
capability. The above analysis shows that when the LJ clusters optimi-
zation problem is multimodal, a stable local optimal solution can be
found with the attraction operation.

It is worth mentioning that LJ38 is difficult to optimize because it has
a non-trivial double funnel field. As shown in Fig. 7, the box plot of the
QPS-PSO algorithm is obviously superior to that of the other algorithms.
Table 2 shows that the standard deviation of the CSO increased suddenly,
but the standard deviation of QPS-PSO increased slightly when applied to
LJ38, which indicates the stable performance of QPS-PSO.

The Wilcoxon signed-rank test is carried out for QPS-PSO and seven
other algorithms. A total of 140 comparative tests were conducted in 20
clusters, and the Wilcoxon signed-rank test p values were less than sig-
nificant index to 0.05. Only 3 times were higher than 0.05. This illus-
trates that the QPS-PSO algorithm results and those of the other seven
algorithms show significant differences in most cases. Through further
comparison of the median and average, supporting QPS-PSO in most
cases, the results are seen to be significantly better than those of the other
algorithms.

Additionally, as shown in Table 3, the average Friedman Rank of QPS-
PSO is lower than that of the other algorithms in 20 cluster systems, and
the total average of 20 systems is only one-quarter that of the second-
place algorithm. It is proved again that the performance of the QPS-
PSO algorithm is better than that of the other algorithms in each system.

The results of the QPS-PSO, CCPSO2, CCDE, CSO, VLPSO-FS, EPSO,
HCLPSO and DECC-DG algorithms are compared in Fig. 7. In most cases,
the maximum, minimum, median, one quarter and three quarters values
12
in the box plot of QPS-PSO are generally closer than those of the other
algorithms, indicating that the QPS-PSO algorithm has strong stability.
The mean value and standard deviation of the results of the QPS-PSO
algorithm in medium and high dimensions are generally better than
those of the other algorithms, which indicate that the QPS-PSO algorithm
is very effective. During the attraction operation, the local minimum
value of the selected target point is determined by judging whether the
resultant force of the cluster is zero, so that the local minimum output of
the QPS-PSO algorithm is smaller than that of the other algorithms in
each iteration. The algorithm prevents the particle swarm from falling
into a local optimum through multiple scatterings and secondary
searches of the particle swarm.

Thus, the proposed QPS framework and approach can enhance the
performance of the algorithm on a large scale and with a multimodal
problem. Moreover, the proposed algorithm is more efficient than the
CCPSO2, CCDE, CSO, VLPSO-FS, EPSO, HCLPSO and DECC-DG for LJ
clusters optimization.

4.4. Overall comparisons among the eight algorithms

In this section, we compare the overall performance of the QPS
introduced in this paper with that of the seven algorithms on 20 cluster
systems [42]. For brevity, we present the overall performance results of
the eight algorithms in Table 4.

“þ” indicates that the method in the corresponding row is statistically
better than the method in the corresponding column. In contrast, “-”
indicates that the method in the corresponding row is statistically worse
than the method in the corresponding column. “W-D-L” indicates the
“win-draw-lose” numbers for QPS-PSO versus the other algorithms.

We use a Wilcoxon signed-rank test to determine the significance
among each pair chosen from the eight algorithms, as suggested in
Ref. [42]. Moreover, the “W-D-L” indexes in Table 4 are obtained with
reference to the mean value, standard deviation and Wilcoxon
signed-rank p value and according to the rules in Table 5. We follow a
similar procedure as in Refs. [42] and report the comparison in Table 3.
One can see from the tables that QPS-PSO is statistically better than all
other seven algorithms.

5. Conclusion

In this study, an algorithm combining PSOwith a QPS is introduced to
solve the LJ cluster optimization problem; the QPS is used to enhance the
performance of PSO. The operations of interatomic attraction and
interatomic repulsion are designed to help the particle swarm find and
escape from local minima. The experimental results show that the pro-
posed algorithm is able to find a lower potential energy than the CCPSO2,
CCDE, CSO, VLPSO-FS, EPSO, HCLPSO and DECC-DG, especially in high
dimensions.

In addition, there is a low standard deviation of the runs in QPS-PSO,
which means that the repulsion operation is effective at forcing the result
out of local minima and thereby yields results closer to the global mini-
mum. Our statistical comparison of various algorithms shows that QPS-
PSO outperforms the CCPSO2, CCDE, CSO, VLPSO-FS, EPSO, HCLPSO
and DECC-DG in the LJ cluster optimization problem. Hence, we can
conclude that the QPS-PSO deals effectively with the key characteristics
of LJ clusters optimization in which includes multimodality and large
scale. Thus, the QPS-PSO is an effective algorithm for solving the LJ
cluster optimization problem.
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