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CORDIC-Based Architecture for Computing
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Abstract— This paper presents a COordinate Rotation Digital
Computer (CORDIC)-based architecture for the computation of
Nth root and proves its feasibility by hardware implementation.
The proposed architecture performs the task of Nth root simply
by shift-add operations and enables easy tradeoff between the
speed (or precision) and the area. Technically, we divide the
Nth root computation into three different subtasks, and map
them onto three different classes of the CORDIC accordingly.
To overcome the drawback of narrow convergence range of the
CORDIC algorithm, we adopt several innovative methods to yield
a much improved convergence range. Subsequently, in terms
of convergence range and precision, a flexible architecture is
developed. The architecture is validated using MATLAB with
extensive vector matching. Finally, using a pipelined structure
with fixed-point input data, we implement the example circuits
of the proposed architecture with radicand ranging from zero
to one million, and achieve an average mean of approximately
10−7 for the relative error. The design is modeled using Verilog
HDL and synthesized under the TSMC 40-nm CMOS technology.
The report shows a maximum frequency of 2.083 GHz with
197421.00 µm2 area. The area decreases to 169689.98 µm2 when
the frequency lowers to 1.00 GHz.

Index Terms— Nth root, CORDIC, convergence range,
fixed-point, pipelined structure, high speed.

I. INTRODUCTION

IN VLSI domain, the design of the computation of the
Nth root is a challenging task. The Nth root computation

includes some frequently used operations, such as square root
and cube root. Therefore, loads of algorithms and implemen-
tations for square root and cube root have been proposed.
The most famous method to calculate these two roots might
have been Newton-Raphson(NR) method. Literatures [1]–[5]
perform the square root extraction by NR method. Meanwhile,
they also perform the division with square root together
because these two tasks can share some common circuits.
A floating point cube root has been implemented on FPGA
using NR method in paper [6]. Its highest frequency is up
to 149 MHz on Virtex5. The merit of NR method is that its
quadratic convergence leads to less iterations. The drawback
of NR method is that it requires an initial guess. Random
guesses result in different precision of the outputs. Meanwhile,
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it requires lots of multiplication operations. In addition to
NR method, some other linear convergence and digit-by-digit
algorithms for square and cube roots have also been proposed.
Shift-add-multiply based square root finding algorithms have
been presented in [7] and [8]. Other two multiplications-
required cube root algorithms were implemented on FPGA
in [9] and [10]. Those multiplication-based algorithms can-
not achieve high processing speed. Besides, a CORDIC
based algorithm for square root extraction deserves mention-
ing [11]–[14]. By applying the simple shift-add operations,
this method can obtain high processing speed. Due to its
distinct advantages, it’s widely deployed in many digital signal
processing systems. Overall, square root and cube root attract
most of the attentions. However, other higher order roots are
also needed in some special areas such as volume shading
for computer graphics, atmospheric models, radiance and
luminance and so forth [15]. Hence, this paper aims at a
general architecture and fixed circuits to compute arbitrary Nth
root. This work is very complex because square and cube roots
finding algorithms are hard to merge into an integrated one.
Theoretically, NR method can compute any root. However,
the complexity of the circuits rapidly increases along with the
augment of the N and a fixed implementation cannot be used
to calculate other roots.

Some researchers have been putting their efforts into the
computation of general Nth root. A general digit-recurrence
algorithm for the calculation of the Nth root is presented
in [16]. Like NR method, the implementation of this algorithm
depends on N, i.e., the larger N the larger the complexity.
A fixed implementation is targeted at a given N so that this
method cannot be considered as a general method for the
computation of any Nth root. In paper [17], based on NR
method, a high-level synthesis and verification tool for specific
Nth root processing engine is proposed. The design can be
used for modeling different architectures based on an assigned
N value, such as square root for N=2, cube root for N=3 and
so on. Again, it is not a general approach for the calculation
of Nth root. In paper [18], according to the equation R

1
N =

2( 1
N )logR

2 , a top-level architecture comprised a reciprocal-
logarithm-multiplication-exponential chain to calculate Nth
root is presented. Neither detailed architectures of sub-modules
nor experiment results were provided in paper [18]. We are
not sure about the exact performance of the proposed design.
Thus, we try to derive a fixed architecture to calculate arbitrary
Nth root using the idea of task dividing to overcome all the
above-mentioned shortcomings in the existing works.
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In this paper, a CORDIC-based architecture for the calcu-
lation of the Nth root is proposed and implemented. CORDIC
was first invented by Volder [19], [20] in 1959 for the evalua-
tion of trigonometric functions, multiplication and division.
Then, John Walter extended its computation capacities by
changing a few parameters to calculate logarithms, exponen-
tials and square roots [21], [22]. Up till now, a number of
attempts have been made to design different algorithms using
CORDIC in pursuit of high performance and low hardware
cost. It is summarized in [14] that CORDIC has been used
for applications which include complex multiplication, eigen-
value computation, matrix inversion and so on. In addition,
CORDIC is also used for complex division and square root
in [23] and [24]. Some architectures of mathematical transfor-
mation including discrete Fourier transform [25] and discrete
Mellin transform [26] are also modeled using CORDIC. It has
even been used for simulating the Fire Neuron [27]. Overall,
CORDIC is a powerful iterative algorithm which can be
assembled to complete lots of tasks. Inspired by the idea of
task dividing [18] and the functionalities of CORDIC [14],
we separate the Nth root computation into three different
subtasks according to the equation R

1
N = ex p( ln(R)

N ). The first
step is to calculate ln(R) using the Hyperbolic CORDIC of
Vectoring mode(HV). The second step is a division operation
for the computation of ln(R)

N via the Linear CORDIC of
Vectoring mode(LV). The final step is to complete the expo-
nential operation of ex p(·) through the Hyperbolic CORDIC
of Rotation mode(HR). Unfortunately, it is shown that with
the standard CORDIC, the proposed architecture only has the
flexibility in precision. The convergence range of radicand R
is too narrow to satisfy various requirements. Thus, we make
efforts to expand the convergence range of the CORDIC. Sev-
eral effective methods are presented to realize this requirement
in [28]. By using these innovative methods, we make the
proposed architecture have the flexibility in both precision
and convergence range. We verify the architecture on the
platform of MATLAB. Software test shows that the proposed
architecture is correct and efficient, and it demonstrates the
flexibility of precision and convergence range as well. Finally,
we implement the example circuits in hardware to further
prove the feasibility of our architecture. The circuits are
modeled by Verilog HDL and synthesized under the TSMC
40-nm CMOS technology. We verify the outputs of the circuits
by comparing with the MATLAB’s simulated results. And it
shows that the order of magnitude of error keeps consistent
with that of software test. The highest frequency is up to
2.083 GHz with area 197421.00 µm2. The area decreases to
169689.98 µm2 when the frequency is only 1.00 GHz.

The rest of this paper is organized as follows. Section II
presents the proposed architecture with standard CORDIC
and analyzes its weakness of narrow range of radicand R.
Section III introduces the methods to expand the convergence
range and consummates the proposed architecture by enabling
the flexibility in convergence range. The software test is per-
formed using MATLAB with extensive vector matching in this
part. Section IV implements the example circuits in hardware
and compares it with a Vedic multiplier [29]–[31]. The timing,
transistor count and error analyses are also carried out in

this part. Section V discusses the prior attempts and proposes
a second version of the proposed architecture. Section VI
concludes our work with a thorough discussion of the merit
and weakness of the proposed architecture as well as its
implementation.

II. ARCHITECTURE CONSISTING

OF THE STANDARD CORDIC

In this section, we will briefly introduce the standard
CORDIC and elaborate on the architecture for computing Nth
root. The convergence range will be analyzed to show the
shortcomings of this primitive architecture.

A. Introduction to the Standard CORDIC

Since we only use the Hyperbolic CODIC and the Linear
CORDIC in this paper, the introduction to the Circular
CORDIC is omitted. In the following, the iterative formulas
of HV, HR and LV classes of CORDIC will be presented.

The iterative formulas of HV:

xi+1 = xi − sign(yi)(2−i yi ), (1a)

yi+1 = yi − sign(yi)(2−i x i ), (1b)

zi+1 = zi + sign(yi )tanh−1(2−i ), (1c)

where i starts with 1 and is an integer.
The iterative formulas of HR:

xi+1 = xi + sign(zi )(2−i yi), (2a)

yi+1 = yi + sign(zi )(2−i x i), (2b)

zi+1 = zi − sign(zi )tanh−1(2−i ), (2c)

where i starts with 1 and is an integer.
The iterative formulas of LV:

xi+1 = xi , (3a)

yi+1 = yi − sign(yi )(2−i x i ), (3b)

zi+1 = zi + sign(yi )(2−i ), (3c)

where i starts with 0 and is an integer.
For the Hyperbolic CORDIC, when the iterative sequence

number i equals (3n+1), i.e., when i = 4, 7, 10, 13 . . .,
one more iteration is needed, otherwise, the CORDIC will
not converge [28]. After several iterations, the outputs of
the above-mentioned CORDIC will converge to some special
functions shown as Table I [14]. The scale-factor Kh of
Hyperbolic CORDIC is given by

Kh = �n
i=1

(√
1 − 2−2i

)
. (4)

Actually, the scale-factor brings no trouble to our architecture
of the Nth root computation because we can avoid it by the
special inputs, which will be seen in the next section. Table I
indicates that the CORDIC is capable of calculating inverse
hyperbolic tangent, hyperbolic sine, hyperbolic cosine, and
division. These lay the foundation for the realization of the
Nth root evaluation.
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TABLE I

OUTPUTS OF THE CORDIC

B. Top-Level Architecture for Computing Nth Root

Consider two positive real numbers R and N. The essence of
our architecture is the fact that the following equation always
holds true.

R
1
N = ex p(

ln (R)

N
). (5)

The proposed architecture has been divided into three steps.
The first step is the calculation of the logarithm ln (R)
using the CORDIC of HV class. In order to complete this
task, the inputs of the HV should be initialized as follows,

x0 = R + 1; y0 = R − 1; z0 = 0. (6)

Thus, the output of zn can be formulated as

zn = tanh−1
(

R − 1

R + 1

)
= 1

2
ln(R). (7)

Then, the zn is left shifted by 1 bit to get the actual value of
ln(R).

The next step in the proposed architecture is the division
operation via the CORDIC of LV class. The inputs to LV are
making x0 = N , y0 = ln(R) and z0 = 0 so that the output zn

can converge to ln(R)/N .
The final step is the calculation of exponential ex p(·).

This can be done by considering x0 = 1/Kh , y0 = 0 and
z0 = ln(R)/N , and operating the CORDIC of HR class. The
outputs of this step can be expressed as

xn = cosh

(
ln(R)

N

)
, yn = sinh(

ln(R)

N
).

So the arbitrary real root can be computed by an identical
equation

ex p(x) = cosh(x) + sinh(x).

An add operation is needed subsequently to complete the
whole task which can be expressed as

R
1
N = exp

(
ln(R)

N

)
= cosh

(
ln(R)

N

)
+ sinh

(
ln(R)

N

)
.

Fig. 1 illustrates the entire computing flow.

Fig. 1. The computing flow of the Nth root.

TABLE II

CONVERGENCE RANGE OF THE STANDARD CODRIC

C. Convergence Range Analysis for Primitive Architecture

After the construction of the primitive Nth root architec-
ture, we need to analyze the range of the inputs R and N.
This can be done by extensive analyses for each CORDIC
comprised in our top-level architecture shown as Fig. 1. For
the standard CORDIC, the convergence range is summarized
in Table II [28]. Now, we apply those constraints to the
proposed architecture based on the standard CORDIC.

First, for the CORDIC of HV class, because

| tanh−1
(

y0

x0

)
| ≤ 1.1182,

we can derive that
∣∣∣∣

y0

x0

∣∣∣∣ ≤ tanh(1.1182) = 0.807.

Considering (6), (7) and above expression, the following
inequality can be obtained.

| R − 1

R + 1
| ≤ 0.807. (8)

From Table II, the input x0 of HV should be positive. Accord-
ing to (6), we can get that

R + 1 > 0. (9)
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Combining (8) and (9), the range of R can be figured out as

R ∈ [ 1

9.36
, 9.36]. (10)

Next, consider the CORDIC of HR class. Based on Table II
we know that

|z0| ≤ 1.1182. (11)

Because the input z0 = ln(R)/N , (10) and (11), we can obtain
the range of N as follow,

N ≥ ln(9.36)

1.1182
= 2. (12)

As for the CORDIC of LV class, since

max

(∣∣∣∣
y0

x0

∣∣∣∣
)

= ln(9.36)

2
= 1.1182 ≤ 2,

the constraint in Table II for LV has been automatically met.
In summary, the convergence range of this primitive archi-

tecture can be specified as in (10) and (12). The range of N has
the lower bound 2, which satisfies the definition of Nth root.
However, the range of R is too narrow to meet the requirement,
so it is necessary to expand it.

III. THE ARCHITECTURE WITH IMPROVED CORDIC

In this section, we aim at expanding the convergence range
of the proposed primitive architecture. Because the proposed
architecture is developed based on the CORDIC, we take
several measures to extend the convergence range of the
Hyperbolic and the Linear CORDIC. An improved CORDIC-
based architecture for computing Nth root, which has the
flexibility in both precision and convergence range, will be
presented and tested in the following.

A. Ways for Expanding the Convergence Range of CORDIC

The Linear CORDIC is the simplest algorithm of the
CORDIC classes. As described in the paper [28], we could
choose to expand the set of iteration indexes from
i = 0, 1, 2, · · · , n to i = −m,−m + 1, · · · , n and maintain
the same basic iterative formulas of (3). Then instead of the
constraint for LV described in Table II, the new convergence
range is given by

| y0

x0
| ≤ 2m+1. (13)

For the Hyperbolic CORDIC described by (1) and (2),
we can also expand the iteration indexes to include non-
positive numbers as i = −m,−m + 1, · · · , n. However,
the iterative formulas of (1) and (2) can’t be maintained the
same for i ≤ 0. As mentioned in [28], all the terms 2−i

in (1) and (2) need to be replaced by (1−2−2−i+1
) when i ≤ 0.

As a result, for the non-positive iteration indexes, the iterative
formulas of Hyperbolic CORDIC are given as follows.

The iterative formulas of HV for i ≤ 0:

xi+1 = xi − sign(yi )(1 − 2−2−i+1
)yi , (14a)

yi+1 = yi − sign(yi )(1 − 2−2−i+1
)xi , (14b)

zi+1 = zi + sign(yi ) tanh−1(1 − 2−2−i+1
). (14c)

TABLE III

THE FEATURES OF THE IMPROVED HYPERBOLIC CORDIC

The iterative formulas of HR for i ≤ 0:

xi+1 = xi + sign(zi )(1 − 2−2−i+1
)yi , (15a)

yi+1 = yi + sign(zi )(1 − 2−2−i+1
)xi , (15b)

zi+1 = zi − sign(zi ) tanh−1(1 − 2−2−i+1
). (15c)

The convergence range of the above improved Hyperbolic
CORDIC depends on the max value of the summation of the
rotation angles, which can be defined as

θmax =
∑0

i=−m
tanh−1(1−2−2−i+1

) +
∑n

i=1
tanh−1(2−i ).

(16)

In (16), the repeated iterations (i = 4, 7, 10, 13 . . .) are
accumulated twice. For instance, when i = 4,

θmax = θmax + tanh−1(2−4) + tanh−1(2−4).

Then, the constraint of the HV shown in Table II can be
updated by | tanh−1( y0

x0
)| ≤ θmax and that of the HR can be

updated by |z0| ≤ θmax .
In the proposed architecture, 1/Kh is a constant input to

the CORDIC of HR class, so it is necessary to compute this
number in advance. After including the additional non-positive
indexed iterations, the scale-factor Kh can be redefined as

Kh = �0
i=−m

√
1 −

(
1 − 2−2−i+1

)2
�n

i=1

√
1 − (

2−i
)2

. (17)

In (17), the repeated iterations need to multiply twice.
Consider the iteration indexes as i = −m,−m + 1, · · · , 20.

Now, based on (16) and (17), the features of the improved
Hyperbolic CORDIC can be concluded in Table III. Based
on Table III, we can see that the convergence range of the
Hyperbolic CORDIC can be dramatically expanded by adding
limited number of additional iterations.

B. Improved CORDIC-Based Architecture

In Section III.A, we have elaborated on how to expand the
convergence range of the CORDIC. Now, we will detail an
example to show how the improved CORDIC applies to our
architecture. After that, we will present the CORDIC-based
architecture for computing Nth root systematically.

Let’s go through our example. Consider the max positive
iteration index as 20 for all the CORDIC used in our archi-
tecture.

First, choose m=2 for the Hyperbolic CORDIC. Based on
the constraint of HV and the θmax provided in TABLE III,
we have∣∣∣∣tanh−1(

y0

x0
)

∣∣∣∣ ≤ θmax = 6.935111921623039.
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Then, we have the following inequality.∣∣∣∣
y0

x0

∣∣∣∣ ≤ tanh(6.935111921623039)

= 0.999998106488676. (18)

According to (6) and (18), we can obtain that

R ∈ [ 1

1.056 × 106 , 1.056 × 106]
= [9.467 × 10−7, 1.056 × 106]. (19)

Next, we pay attention to the CORDIC of HR class used in
the proposed architecture. Since m = 2, from Table II and III
we have

|z0| ≤ θmax = 6.935111921623039. (20)

Considering the input z0 = ln(R)/N , (19) and (20), we can
calculate the range of N as

N ≥ ln
(
1.056 × 106

)

6.935111921623039
= 2. (21)

Finally, the CORDIC of LV class needs to be addressed.
The inputs of LV are that x0 = N , y0 = ln(R) and z0 = 0.
Combining with (13), (19) and (21), we can derive that

max

∣∣∣∣
ln (R)

N

∣∣∣∣ = ln(1.056 × 106)

2
≤ 2m+1,

i.e., m ≥ 2. So we can choose m=2 for the CORDIC of LV
class. Up till now, an example of our proposed architecture
for computing Nth root has been clarified.

Now, it is time to show the proposed CORDIC-based archi-
tecture for computing Nth root in a general way. Consider the
iteration index i for various CORDICs used in the architecture
has the same range, i = −m,−m + 1, · · · , n. Then we
denote the proposed architecture as Arch.(m, n), in which m
represents the maximum non-positive iteration sequence num-
ber while n means the maximum positive iteration sequence
number. When the iteration index is non-positive, Hyper-
bolic CORDIC in Arch.(m, n) adopts the iterative formulas
described by (14) and (15), otherwise it adopts the formulas
described by (1) and (2). As for the CORDIC of LV mode in
Arch.(m, n), it always adopts the iterative formulas (3).

Therefore, above derivation has clarified a special case
Arch.(2, 20). When choosing other value of m, the features
of Arch.(m, 20) can also be calculated in the same way as
the above process. Table IV summarizes the detail features of
Arch.(2, 20) and Arch.(3, 20). We can see that the lager value
of m, the lager convergence range of R is. In other words, m in
Arch.(m, n) indicates the flexibility in convergence range of
R in our proposed architecture. Actually, n in Arch.(m, n)
indicates the flexibility in precision, which will be shown
in Section III.C. According to the extensive calculations,
the lower bound of N in our proposed architecture always
keeps as 2, which satisfies the definition of Nth root. The
top-level architecture keeps the same as Fig. 1. The structure
of each CORDIC is different from conventional CORDIC
since we apply the improved CORDIC [28] to our design.
The pipelined structure of our proposed architecture will be
detailed in Section IV.

TABLE IV

FEATURES OF THE EXAMPLE ARCHITECTURES

C. Software Test for the Proposed Architecture

Before implementing our example architecture in hard-
ware, it is essential to create the benchmark via software
simulation. We code the Arch.(m, n) on MATLAB and
simulate their relative errors. First, we test the features of
Arch.(2, 20) and Arch.(3, 20) to justify the correctness of our
proposed architecture. Then, we test Arch.(0, n), Arch.(2, n)
and Arch.(3, n) with different n, to show the flexibility in
precision of our proposed architecture.

The relative error is defined as

Errr = | T − C

T
|. (22)

In (22), T means the true value of the Nth root and C
represents the result derived from the proposed architecture.

Suppose that the number of the Nth root we will test
is denoted as Num. Then another important criterion for
measuring the proposed architecture is the average value of
the relative error, which is given by

Avg_Errr =
∑Num

j=1 Errr

Num
. (23)

The final significant criterion defined in this paper is the
max relative error which is described by

Max_Errr = max{Err}r . (24)

After the introduction of the criteria for measuring the
proposed architecture, we set the Nth root to be 1 million
for eachArch.(0, n) and Arch.(2, n) test, and 5 million for
each Arch.(3, n) test. The inputs R and N are generated by
random number. Actually, there is no upper bound for input N.
For the convenience of software test, we set that upper bound
to be 1002.

Table V presents the test results for the Arch.(2, 20)
and Arch.(3, 20). The probability distribution of the rel-
ative error is also included in this table. The relative
errors are mostly located near the Avg_Errr and the max
value of relative error all approaches 3 × 10−6. Thus, the
software test results have proven the correctness and the
accuracy of the proposed architecture for the Nth root
computation.

Table VI shows the tests of average value of relative error
for Arch.(0, n), Arch.(2, n) and Arch.(3, n), where n is
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TABLE V

SOFTWARE TEST FOR Arch.(2, 20) AND Arch.(3, 20)

TABLE VI

SOFTWARE TEST FOR Arch.(mn)

set as different numbers. By massive calculations like the
process provided in Section III.B, we find that different n
in Arch.(m, n) results in nearly the same convergence range
of R, as long as m is fixed. For instance, the convergence
range of R in Arch.(0, n) always keeps the same as [0.015,
66.77], and that in Arch.(1, n) always keeps as [4.838×10−4,
2.067 × 103]. Therefore, in Table VI, input range of R is the
same when m is fixed. From Table VI, it is evident that dif-
ferent n leads to different precision (Avg_Errr ) and different
m leads to different convergence range of R. It makes sense
that we conclude the proposed CORDIC-based architecture
for computing Nth root, has the flexibility in both preci-
sion and convergence range. When each sub-module of our
proposed architecture is implemented in a pipelined manner
(refer to Section IV.A), the corresponding latency (refer to
Section IV.B) for Arch.(m, n) is also presented in Table VI.
By observation, it is clear that the lower m or n is, the lower
latency is. In hardware implementation, Table IV explains the
trade-off between precision (or convergence range of R) and
latency (or area, power, frequency).

IV. HARDWARE IMPLEMENTATION

In this section, to prove the feasibility of the proposed
architecture, the special case Arch.(2, 20) is coded in Verilog

HDL for the fixed-point implementation. In order to achieve
high sampling rate, a pipelined structure is adopted. Instead of
the conventional pipelined structure for the standard CORDIC,
we propose an innovative one for the additional iterations of
the improved Hyperbolic CORDIC without lengthening the
critical path. We also leverage the nature of the very different
range of the input data of each CORDIC to design different
input word lengths for each cascaded CORDIC, which can
massively reduce the area consumption. In the following,
details of the hardware design, timing analysis, results of
the implementation, transistor count analysis, and the error
analysis are presented.

A. Details of the Hardware Design

The top-level architecture stays the same as illustrated
in Fig. 1. For the improved CORDIC of LV class, the iter-
ative formulas maintain the original form as (3). Therefore,
the pipelined structure for this case is consistent with the
conventional methodology. However, the improved Hyperbolic
CORDIC has different iterative formulas when the iteration
index is non-positive as given by (14) and (15). So it is neces-
sary to design a new iteration structure for them. Fig. 2 depicts
the pipelined structure for the CORDIC of HR class used in
Arch.(2, 20). All the elements of the CORDIC of HR class are
cascaded with each other to form a pipelined structure. When
the iteration index i> 0, the conventional iteration structure
is adopted as shown in the lower right of Fig. 2. When
the iteration index i ≤ 0, the proposed structure for (15) is
shown in the lower left of Fig. 2. It is well known that the
critical path of the conventional CORDIC is a shift and an add
operations, while (15a) or (15b) needs one shift and two add
operations, which lengthens the critical path by an additional
add. Table IV tells that the number of non-positive indexed
iteration is much less than that of positive indexed iteration,
so it is not worth sacrificing speed due to a small number of
non-positive indexed iteration. As a result, we add one-stage
pipeline for the implementation of (15) to maintain the critical
path as one shift and one add operations as it is shown in the
lower left of Fig. 2. Observing (14) and (15), it is intuitive
to find that the only difference between them is the judge
condition, or the sign function, resulting in the nearly same
implementation in hardware. Replacing sign(zi ) with sign(yi )
in Fig. 2, we can get the pipelined structure for the CORDIC of
HV class. Up till now, the pipelined structure of the proposed
CORDIC-based architecture for computing Nth root has been
clarified.

Next, we analyze the required input word length for each
improved CORDIC used in Arch.(2, 20). In order to meet
the average precision (10−7) and the lower bound of input
radicand R(shown in Table IV: 10−7), we set the fractional part
of every input dada to be 27 bits. For the first CORDIC of HV
class illustrated in Fig. 1, the input data is R. Observing from
Table IV we know that the upper bound of R is 1.056 × 106,
so we set the integral part of R to be 20 bits which limits the
max value of Rlower than 220+1 = 1, 048, 577. Then consider
the input data of second CORDIC of LV class, N and ln(R).
The max value of ln(R) approximates ln (1048577) = 13.863,
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Fig. 2. Pipelined architecture for the improved CORDIC of HR class. When i = 4,7,10,13…, the iteration should be cascaded twice. For instance, when
i=19, the iteration is cascaded twice as shown in this picture.

TABLE VII

WORD LENGTH SETTING

a small number. Thus, the integral part of the input data for
the second CORDIC depends on N . In practice, we do not
require N to be very large. Therefore, we set the integral part
of N and ln(R) to be 10 bits, which limits the max value of
N lower than (210 + 1 = 1025). For the last CORDIC of HR
class shown in Fig. 1, the max value of the outputs sinh(·)
and cosh(·) all approach

exp
(

max
(

ln(R)
N

))

2
=

exp
(

ln(1048577)
2

)

2
= 512.00024.

Based on the above analysis, it seems to make sense to set the
integral part of the input data to be 10 bits. However, due to
the add operations in (15a) and (15b), the outputs may exceed
10 bits. Thus we actually set the integral part of the input data
to be 11 bits for the last CORDIC. Except the fractional part
and the integral part, a sign bit is added in front of every input
data. The word length setting for every CORDIC and the final
adder is outlined in Table VII. By the means of setting different
word length for each CORDIC, almost one fifth hardware area
can be saved comparing with setting all data 48 bits.

B. Timing Analysis

Consider a general design of the proposed pipelined archi-
tecture denoted as Arch.(m, n). So the iteration indexes of

the improved CORDIC used in our architecture are all set as
i = −m,−m + 1, · · · , n. First, the CORDIC of LV mode
maintains the standard iterative formulas described by (3),
so that each stage of LV requires one clock cycle. The total
stages of LV are (m +n +1). As a result, we need (m +n +1)
clock cycles to complete the division task. Then, every Hyper-
bolic CORDIC requires (m+1) non-positive indexed iterations.
As shown in the lower left of Fig. 2, each non-positive indexed
iteration needs two clock cycles because we have performed
one-stage pipeline technique. Consequently, the entire non-
positive indexed iterations need (2m+2) clock cycles. For
the positive indexed iterations of Hyperbolic CORDIC as
shown in the lower right of Fig. 2, each cascaded stage
requests one clock cycle. Considering that repeated iterations
(i = 4, 7, 10, 13 . . .) are cascaded twice (example: i = 19
in Fig. 2), so that there are (n+� n−1

3 �) stages for the pos-
itive indexed iterations of Hyperbolic CORDIC, which also
means we need (n+� n−1

3 �) clock cycles in this situation.
In summary, every Hyperbolic CORDIC used in Arch.(m, n)
requests (2m + 2 + n+� n−1

3 �) clock cycles. As Fig. 1 depicts,
additional add operations outside the CORDIC also demand
2 additional clock cycles. To sum up, the total latency of the
proposed architecture is given by

Tall = TH V + TLV + TH R + 2

=
(

2m + 2 + n+
⌊

n − 1

3

⌋)
+ (m + n + 1)

+
(

2m + 2 + n +
⌊

n − 1

3

⌋)
+ 2

= 5m + 3n + 2

⌊
n − 1

3

⌋
+ 7. (25)

As described in Section III.C, in (25), m determines the
convergence range of the radicand R, the larger the m is,
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the larger the convergence range; ndetermines the computing
precision, the larger the n is, the higher the precision.

For the implemented special case Arch.(2, 20), consider
m = 2, n=20, and (25), the latency can be computed as

Tall = 5 × 2 + 3 × 20 + 2

⌊
20 − 1

3

⌋
+ 7 = 89 clock cycles.

A detail latency requirement for general Arch.(m, n) is out-
lined in Table VI. It tells us that if we do not dictate
large convergence range of radicand R and high precision
of computing in Arch.(m, n), the latency can be massively
reduced. Accordingly, the frequency will increase since the
word lengths are going to decrease for lower precision com-
puting and lower range of R, which leads to the shorter carry-
chain (significant part of the critical path) for adders.

As for the critical path, it only consists of one shift operation
and one add operation. Assuming the time of a shift operation
is ts ns and that of an add operation is ta ns, the sampling
rate (MSPS: Million Samples Per Second) of the pipelined
structure for the proposed architecture can be computed as

1000

ts + ta
MSPS.

If the system does not require high processing speed, we can
use partially folding technique to further save the area. Assume
the folding factor is F , then the sampling rate is given by

1000

F(t s + ta)
MSPS.

For example, consider the CORDIC of LV mode in a special
case Arch.(1, 2). The iteration index is i = −1, 0, 1, 2. So the
CORDIC of LV used in Arch.(1, 2) requires 4 cascaded stages
as shown in the left of Fig. 3. Now, as shown in the right of
Fig. 3, we perform the partially folding technique with folding
factor F as 2. With folding technique, 4 stages of CORDIC
lowers to 2 stages, which can save almost half area. However,
since we can only get the results at odd clock cycle, the folded
structure also halves the sampling rate (frequency stays the
same).

C. Implementation Results

The special case Arch.(2, 20) of the proposed architecture
is coded in Verilog HDL and synthesized under the TSMC
40-nm CMOS technology. The top-level architecture can be
seen in Fig. 1 and the pipelined structure of sub-modules
can be seen in Fig. 2. The word length setting is outlined
in Table VII. This is the first time that a general Nth root
computation architecture has been implemented in hardware,
so we cannot find any counterpart to compare with the perfor-
mance of our implementation. The prior attempts [17], [18] all
require the multiplication operations, thus, we decide to use
a multiplier as the benchmark. In reality, it may be better to
choose a well-known multiplier, such as Conventional Array
Multiplier (CAM), in this way most of the readers can directly
recognize the performance of our architecture. But the critical
path of CAM may be too long to keep up with the frequency
of our implementation. Though Vedic and CAM are both
constructed by Ripple Carry Adders (RCA), the critical path

Fig. 3. Example of partially folding with folding factor F=2. The folded
structure inputs a sample and outputs a result at every odd clock cycle. Two
angles (constants) are pre-stored in each CORDIC of LV mode for the folded
structure. At even clock cycle, the outputs of each CORDIC are returned to
the input interfaces of this CORDIC to reuse the circuits.

of Vedic is shorter than CAM. Consequently, we select a
48-bit fixed-point Vedic multiplier capable of achieving high
frequency, as the benchmark. The design details of Vedic can
be found in [29]–[31]. In Section IV.D, we also theoretically
compare the area of our example circuits with that of CAM,
in case some readers may not be familiar with Vedic.

In order to evaluate the performance of our circuits, some
criteria need to be specified. When the circuits of Arch.(2, 20)
and Vedic are running at the same frequency, we define three
criteria. The first one is the area ratio Ar . Assuming the area of
Arch.(2, 20) and Vedic are AI and AV respectively, then Ar

can be given by

Ar = AI

AV
.

Ar denotes at a certain frequency, how much area the special
case Arch.(2, 20) occupies compared with a Vedic multiplier.
The second criterion is the power ratio Pr . Assuming the
power of Arch.(2, 20) and Vedic are PI and PV respectively,
then Pr can be given by

Pr = PI

PV
.

Pr denotes at a certain frequency, how much power the special
case Arch.(2, 20) consumes compared with a Vedic multiplier.
The third criterion is the power ratio per unit area Pr/Ar , due
to the equation

Pr

Ar
= ( PI

PV
)

( AI
AV

)
= ( PI

AI
)

( PV
AV

)
.

Pr/Ar denotes at a certain frequency, how much power per
unit area of the special case Arch.(2, 20) consumes compared
with per unit area of a Vedic multiplier.

Another criterion is the sampling rate per watt of
Arch.(2, 20). Assuming the frequency is f GHz, then the
sampling rate equals 1000 × f MSPS (Million Samples Per
Second). We further assume that the power is w mW. Thus, the
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TABLE VIII

Arch.(2, 20) VERSUS VEDIC MULTIPLIER

TABLE IX

SAMPLING RATE PER WATT FOR Arch.(2, 20)

sampling rate per watt can be given by

(1000 × f )M S PS

(w)mW
= 106 × f

w
M S PS/W. (26)

The circuits are synthesized by Design Complier and the
results are presented in Table VIII. The highest frequency
of the special case Arch.(2, 20) is up to 2.083GHz, which
means it can process 2.083 billion Nth root per second. At the
highest frequency, the area consumption of Arch.(2, 20) is
3.725 times than that of a Vedic multiplier; while the NR
method needs many multipliers when computing higher order
Nth root. With frequency increasing, area ratio Ar , power
ratio Pr , and the power ratio per unit area Pr/Ar , all decline,
compared with a Vedic multiplier. So we can conclude that the
higher frequency the proposed architecture runs at, the higher
area and power efficiency it has when compared with those
architectures requesting multiplication operations.

According to the frequency and power provided
in Table VIII and the formula (26), we calculate the sampling
rate per watt for Arch.(2, 20) and present the results
in Table IX. Table IX indicates the different energy efficiency
when Arch.(2, 20) runs at different frequency. It tells that
at the frequency 1.89GHz, the energy efficiency is better
than the other two situations. It can process 19.484 billion
Nth root per second and per watt, i.e., 19.484 billion Nth
root per joule. Although at highest frequency, Arch.(2, 20)
can provide the highest sampling rate (processing speed),
the corresponding energy efficiency is not the best. As a
result, if we pursue the highest energy efficiency, we may not
let our proposed architecture Arch.(m, n) run at its highest
frequency.

D. Transistor Count Analysis

In the following, we perform the transistor count (TC)
analysis for Arch.(2, 20) and compare with Vedic multiplier

TABLE X

TRANSISTOR COUNT (TC) ANALYSIS

and Conventional Array Multiplier (CAM) as shown in [24],
in case some readers are not familiar with Vedic. A b-bit
Ripple Carry Adder (RCA) requires 24b transistors and a b-bit
CAM needs 6b(5b-6) transistors (refer to [24]). So TC respect
to a 48-bit CAM can be computed as

T CC AM = 6 × 48 × (5 × 48 − 6) = 67392.

As for TC respect to a 48-bit Vedic, it is a little bit complex.
According to the structure of Vedic (see [31]), a 48-bit Vedic
consists of 4 24-bit Vedic multipliers and 2 48-bit RCA adders.
A 24-bit Vedic consists of 4 12-bit Vedic multipliers and 2
24-bit RCA adders. A 12-bit Vedic consists of 4 6-bit Vedic
multipliers and 2 12-bit RCA adders. A 6-bit Vedic consists
of 4 3-bit Vedic multipliers and 2 6-bit RCA adders. A 3-bit
Vedic consists of 6 full adders. The transistor number of a
3-bit Vedic equals that of a 6-bit RCA adder. Consider TC
of a 12-bit RCA equals that of 2 6-bit RCA adders, TC of a
24-bit RCA equals that of 4 6-bit RCA adders, and TC of
a 48-bit RCA equals that of 8 6-bit RCA adders. Therefore,
a 48-bit Vedic can be seen as using following number of 6-bit
RCA adders.

4 (4 (4 (4 + 2) + 2 × 2) + 2 × 4) + 2 × 8 = 496.

Thus, TC respect to a 48-bit Vedic is

T CV edic = 496 × 24 × 6 = 71424.

Here comes the TC of Arch.(2, 20). First, we assume adders
used in Arch.(2, 20) are RCA adders just like Vedic and
CAM. By counting the number of different bit adders used in
Arch.(2, 20), there are 182 48-bit RCA adders, 92 38-bit RCA
adders, and 181 39-bit RCA adders (refer to Fig. 1, Fig. 2 and
Table VII). To sum up, TC respect to Arch.(2, 20) is

T C Arch.(2,20) = (182 × 48 + 92 × 38 + 181 × 39) × 24

= 462984.

Table X summarizes the results of transistor count analysis.
It shows that TC of Vedic is only a bit more than that
of CAM, which results in nearly the same values of TC
ratio between Arch.(2, 20) and multiplier. Comparing with
Table VIII, we can find that at low frequency 1 GHz, the TC
ratio (6.48) between Arch.(2, 20) and Vedic almost equals
the area ratio Ar (6.081). While increasing the frequency, Ar

drastically decreases. At highest frequency, Ar lowers to 3.725.
This is caused by different critical paths between Arch.(2, 20)
and Vedic. Due to the shorter critical path of the proposed
architecture, its area increases slower than that of Vedic when
increasing the frequency (the constraints become tighter).
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TABLE XI

RESULTS OF THE HARDWARE TEST

Fig. 4. Bit position error.

E. Error Analysis

The accuracy of the special case Arch.(2, 20)is evaluated
by comparing the outputs from ModelSim with MATLAB’s
“R1/N ” function. Two sets of 200,000 randomly generated real
numbers for N and R are taken as the inputs to the example
circuits. First, as mentioned in the software test, we adopt
the relative error to judge the accuracy of the circuits. The
results are concluded in Table VIII. According to the results
of the hardware test, the feasibility of the proposed architecture
Arch.(m, n) has been proven. Comparing Table XI with
Table V, we can find out that the order of magnitude for
Avg_Errr and Max_Errr keeps the same for both hardware
and software tests. As for the distribution of relative error,
almost 2.5% transfers from the order of magnitude −7 to that
of −6, which is mainly incurred by finite word length setting
in hardware.

Another commonly used metric for measuring the error is
the “bit position error” [24]. The output of our circuits is
39-bit fixed-point data as shown in Table VII. Fig. 4 presents
the results of the “bit position error” experiment. It is evident
from Fig. 3 that precision up to 31 out of 39 bits is somewhat
accurate. Although the bit error probability of the rest 8 bits
all approach 0.5, it does not demonstrate those bits can be
removed without affecting the precision of the implementation.

Fig. 5. Top-level architecture for Arch∗ .(m, n).

The sub-modules of the architecture need those bits to resist
the propagation of error. For the other 31 bits, the most
significant 14 bits are absolutely accurate. The remaining
17 bits has a possibility of being wrong. These characteristics
match with that of CORDIC. In practical situation, we may
only select the front 31 bits as the output, because the other
8 bits are useless in the next module or application.

V. DISCUSSION

In this section, we discuss about the existing methods for
Nth root calculation and try our best to make comparison with
the proposed Arch.(m, n). Digit-recurrence method [16] and
NR method [17] cannot guarantee a fixed VLSI implementa-
tion to compute arbitrary Nth root. Therefore, when targeted at
a given N and implemented in VLSI system, we analyze their
algorithms and estimate their possible hardware complexities
as well as latency. Paper [18] proposes a top-level architecture
for Nth root computation but is vague on details of sub-
modules and lacks experiment results. Despite all this, its top-
level architecture inspires us to provide a second version of
Arch.(m, n) which can save the latency of LV (see Fig. 5) by
introducing a multiplier.

A. Discussion About Digit-Recurrence Method

Digit-recurrence method has the characteristic of producing
a new digit on the completion of each iteration and it is
absolutely correct for the computed bit. The mathematical
essence is based on the concept of completing Nth power.
Assuming S is the value of Nth root, i.e., S = R1/N , then we
set a iteration formula as

w (i) = R − S(i)N .

In each iteration, we regulate S(i) to let w (i) approximates
to zero more. After several iterations, the value of Nth root
S(i), can meet the precision requirement. Above is a simple
explain for this method. According to paper [16], the practical
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iteration formulas for radix-2 are

S (i) = S (i − 1) + si 2
−i , (27a)

w (i) = (R − S (i)N )2i , (27b)

where si ∈ {1, 0,−1}. The selection of si is determined by
the intervals that w (i − 1) belongs to. For different Nth root,
the selection intervals are different accordingly (see [16] for
more details). The convergence range of R for this method is
very narrow to be [2−N , 1]. From (27b), it is clear that for dif-
ferent order of Nth root, this method requires different number
of multiplication operations. In addition to this, the selection
intervals also change respect to different N. Hence, a fixed
VLSI implementation for this method can only address the
Nth root of a given N.

Here comes the hardware complexity analysis and latency
analysis. For each iteration, (27) requires two adders and N-1
multipliers. Assuming the iteration number is M, then we need
2M adders and M(N-1) multipliers. For high order Nth root
and high precision computation, the hardware complexity of
this method is too large to deserve. In order to shorten latency,
we assume the structure of multiplication operations for each
iteration is constructed as multiplier tree (just like adder tree).
Thus, the latency of multiplications reduces to

⌈
logN

2

⌉
. Taken

the latency of other two add operations into consideration, the
latency for each iteration is 2 + ⌈

logN
2

⌉
. For M iterations,

we need M(2 + ⌈
logN

2

⌉
) clock cycles.

Now, we try to compare with our example circuits
Arch.(2, 20). According to TABLE XI, the average value of
relative error of the example circuits approximates ×10−7.
It requires almost 20 iterations for digital-recurrence method
to achieve this precision, i.e., M=20. Consider a high order
Nth root as N=64. Then the latency of this method is

20
(

2 +
⌈

log64
2

⌉)
= 160 clock cycles,

while Arch.(2, 20) only requires 89 clock cycles for arbitrary
order of Nth root. As for hardware complexity, it requires
20 adders and 1220 multipliers, which is much more complex
than our example circuits.

B. Discussion About Newton-Raphson Method

NR method has somewhat similarity with digital-recurrence
method. Compared to evaluating inverse Nth root, direct
using NR method for Nth root will double the number of
multiplication operations and introducing a division operation
in each iteration (see paper [17] for details). Therefore, [17]
first calculates inverse Nth root ( 1

R1/N ) using NR method and
then performs the division operation to compute Nth root via
NR method again.

Assuming S = 1
R1/N , then the iterative formula can be

given as

Si+1 = Si (
1 + N − RSN

i

N
). (28)

Performing several iterations, Si will converge to inverse Nth
root (refer to paper [17] for details). After the computation
of inverse Nth root denoted as S, [17] uses NR method to

calculate Nth root denoted as Y. The iterative formula for the
division operation is

Yi+1 = Yi (2 − SYi ). (29)

Yi will converge to 1
S through several iterations. In other

words, Yi will converge to Nth root R1/N . For the same reason
like Digit-recurrence method, NR method cannot compute
arbitrary order of Nth root through a fixed VLSI implementa-
tion.

Following presents the hardware complexity analysis and
latency analysis. For each iteration, (28) needs one adder and
N+1 multipliers. If using multiplier tree to reduce latency,
in parenthesis of (28), we need �logN+1

2 	 clock cycles to
complete multiplication operations and one clock cycle to
perform the add operation. Outside the parenthesis, one more
clock cycle is needed for multiplication. In total, (28) needs
2 + �logN+1

2 	 clock cycles. For each iteration, (29) requires
one adder and two multipliers. It also needs 3 clock cycles
to complete the iteration. Assuming iteration number for (28)
and (29) is both M, then NR method needs 2M adders and
M(N+3) multipliers. The latency is M(5 + �logN+1

2 	).
In paper [17], the input range of R is set as [0.5, 1.5], and

initial guess is between [0.95,1.05]. By software test provided
in [17], setting iteration number as 5 for both processes
produces the absolute error value as ×10−8. If setting iteration
number as 4, the absolute error increases to ×10−6. Thus,
in order to match the precision of our example circuits (10−7),
we consider the iteration number M for (28) and (29) both as
5. When computing 64text th root (N=64), NR method needs
10 adders and 335 multipliers for a pipelined VLSI imple-
mentation, which is much more complex than Arch.(2, 20).
As for latency, it requires

5
(

5 +
⌈

log64+1
2

⌉)
= 60 clock cycles.

Benefited from NR method’s quadratic convergence, its
latency is less than our example circuits (89).

In reality, the computing precision of NR method is
unstable for different initial guesses and different radicands
R. Paper [17] is too ideal narrowing the input range of R as
[0.5,1.5] and initial guess between [0.95,1.05]. If the input
range of R is much larger, in order to achieve a certain
precision, the iteration number (latency) is uncontrollable,
especially for high order Nth root.

C. Second Version of the Proposed Architecture

The mathematical essence of paper [18] comes from the
equality R

1
N = 2( 1

N )logR
2 , which is much like ours. Therefore,

its top-level architecture is similar to Fig. 1 except paper [18]
computes logarithm and reciprocal in a parallel manner fol-
lowed by a multiplication. Neither detailed architectures of
sub-modules nor experiment results were provided. Thus,
no comparison with this work is given in this paper.

The difference of our top-level architectures is an excellent
example of trade-off in VLSI design domain. Compared to
Fig. 1, paper [18] sacrifices area (introduce a multiplier) in
hardware to achieve lower latency. Inspired by paper [18],
we also present a second version of our proposed architecture,
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which is denoted as Arch∗.(m, n). Fig. 5 shows the top-level
architecture of Arch∗.(m, n). Comparing Fig. 5 to Fig. 1, it is
clear that the latency of LV has been saved by introducing a
multiplier.

Following analyzes the latency of Arch∗.(m, n). According
to Section IV.B, the latency of LV is less than that of HV.
Therefore, the latency of Arch∗.(m, n) can be computed by
formula (25) subtracting the latency of LV and adding the
latency of a multiplier. Supposing the latency of a multiplier
used in Fig. 5 is one clock cycle, we can calculates the latency
of Arch∗.(m, n) denoted as T ∗

all .

T ∗
all = Tall − TLv + Tmult iplier

=
(

5m + 3n + 2

⌊
n − 1

3

⌋
+ 7

)
− (m + n + 1) + 1

= 4m + 2n + 2

⌊
n − 1

3

⌋
+ 7. (30)

If our example circuits Arch.(2, 20) are implemented using
Arch∗.(2, 20) shown as Fig. 5, with the penalty of introducing
a multiplier, its latency will reduce to 67 clock cycles.

VI. CONCLUSION

In this paper, based on the improved CORDIC [28], we have
proposed a CORDIC-based architecture Arch.(m, n) for the
general computation of Nth root and implemented the example
circuits in hardware to prove its feasibility and efficiency.
Under the TSMC 40-nm CMOS technology, the example
circuits can achieve a frequency up to 2.083 GHz with
3.725 times the area than that of a Vedic multiplier [29]–[31].
Compared to the existing works, this is the first time that a
fixed VLSI implementation can compute arbitrary Nth root
with acceptable area and latency. The proposed architecture for
the Nth root computation is beyond the conventional concept,
because the N of R

1
N is real number rather than only integer.

As shown in Table VI, the proposed architecture has the flex-
ibility in both convergence range and precision. Changing the
max positive iteration index (n) results in different precision.
Changing the number of non-positive iterations (m+1) leads
to different convergence range. Therefore, the proposed archi-
tecture is easy to adjust for fitting the different requirements.
In hardware, if speed can be compromised, a folded architec-
ture can be chosen to save area. If high speed is required,
parallel and pipelined architecture can be implemented to
achieve high sampling rate. If low latency is expected, second
version of the proposed architecture Arch∗.(m, n) offers an
alternative.

The weakness of the proposed architecture is the long
latency for low order Nth root computation. The example
circuits require the latency of three cascaded CORDICs.
Conventional CORDIC-based square root computation only
contains one CORDIC, which results in smaller latency. While
computing a high-order Nth root, the fixed latency becomes a
merit since prior attempts such as digit-recurrence method [16]
needs much more clock cycles to generate the first output.

High order Nth roots are needed in some special areas such
as volume shading for computer graphics, atmospheric models,
radiance and luminance and so forth [15]. Our proposed

architecture and its second version offer promising hardware-
based solutions for those problems.
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