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Abstract: Unbalance or asymmetry in the distribution network is a well-known power quality issue. In the modern active
distribution system, with the increasing penetration of renewables, this phenomenon becomes more pronounced. In the context
of microgrids (MGs), several works have been proposed for the management and mitigation of the unbalance, for both the
sharing of unbalanced load and maintaining the voltage quality in the islanded mode and for the control of distributed generators
in the grid-connected mode during unbalanced conditions. This study comprehensively reviews, summarises, and classifies the
various strategies of the unbalance mitigation techniques for the islanded and grid-connected modes of operation for three-
phase MGs and presents the possible challenges and avenues for future investigations on the topic.

1 Introduction
Increasing concerns of global warming and higher energy demands
have led to the integration of renewable energy sources in the grid.
These systems are typically integrated at the medium and low
voltage (LV) levels, i.e. at the distribution level. The power quality
of these active distribution networks and microgrids (MGs) is an
important aspect [1, 2]. A system is said to be unbalanced if either
the currents or voltages or both of any phase in a three-phase
system are not the same in magnitude or phase difference or both
(the system is also said to be asymmetrical or imbalanced). From
an operator's point of view, a balanced system at all times is
advantageous both in terms of efficiency and protection. Unbalance
can be viewed to be caused by two reasons: (i) structural and (ii)
operational [3]. The distribution system is inherently unbalanced as
the lines are not transposed – which is a systemic/structural issue.
The transformer connections and wiring structure: three-wire or
four-wire, both of which are structures, have a vital role in the
nature and propagation of unbalance voltages and currents [4]. The

operational/functional aspect is due to the presence of single-phase
loads in the distribution system, which further adds to the degree of
unbalance. Also, renewable energy sources can be integrated across
all three phases or only at a single phase of the system which
aggravates the issue. Unbalance, beyond a limit, leads to unwanted
effects such as increased losses in the system, deteriorated voltage
profile, stresses on distribution transformer, malfunctioning of
protection equipment, adverse effects on sensitive loads, rise in
neutral currents and neutral-ground voltage and power oscillations
[5]. Owing to these problems, various standards by several
organisations to limit the degree of unbalance have been proposed,
which have been summarised as shown in Table 1. As can be seen,
the degree of unbalance is measured using various indices in
different standards such as voltage unbalance factor (VUF), phase
voltage unbalance rate (PVUR), line voltage unbalance rate
(LVUR), average percentage voltage unbalance (VU) etc. [6].
However, newer definitions such as complex VUF, unbalance
factor, unbalanced over/under and equal voltages, maximum and
total deviations, phase difference rate (for imbalance quantification
in the angle differences), percentage unbalance, approximation
functions etc. are used [3]. These definitions can be used for the
currents as well. Predominantly, the International Electro-technical
Commission (IEC) proposed a standard that negative sequence
(NS) VU factor (VUF) should be <2%, while the Institute of
Electrical and Electronic Engineers (IEEE)-1547 standard proposes
a VU limit of ±3% nominal magnitude and phase displacement to
within ±3° in case of a neutral connection.

In the context of MGs, the issue of unbalance can be viewed
from the mode of operation of the system – unbalance in the
islanded mode and unbalance in the grid-connected mode.
Conventionally the problem of unbalance was mitigated in the
distribution network by over-sizing the conductors and equipment
(to handle the larger currents during unbalance) employing tap
changing transformers, reactive power injection devices to improve
the voltage profile such as capacitor banks, active and passive
filters. With the advancements in voltage source converter (VSC)
technology, compensators such as static synchronous compensators
(STATCOMs), unified power-quality conditioners, and dynamic
voltage restorers (DVRs) were employed [7]. These could also
provide additional support in terms of harmonic and reactive power
compensation. However, these additions are costly and are
effective only when the issue is concentrated at a particular node.
With the distributed generation (DG) integration in the network
today these may not be an efficient solution. Hence, the state-of-

Table 1 Summary of standards pertaining to unbalance
Standard Limit Calculation
IEEE Std. 141-1999 <2 to 2.5% % VUF-true, definition,

% unbalance
IEEE Std. 1547-2018 ±3%, < ± 3° deviation, phase

displacement
IEEE Std. 446-1987 <2.5 to 5% % PVUR

5–30% (load
unbalance)

IEEE Std. 112-2017 <0.5% % imbalance
IEEE Std. 1159-2009 <3% %VUF
IEC 61000-2-2 ≤2% %VUF
ANSI C84.1 ≤3% %VUF
EN 50160 ≤2% %VUF
NEMA MG 1-1993 CGC,
India

<1% LVUR
≤3% <132 kV, % imbalance
≤2% <220 kV, % imbalance

≤1.5% >400 kV, % imbalance
IEC, International Electro-technical Commission; IEEE, Institute of Electrical and
Electronic Engineers; ANSI, American National Standards Institute; NEMA, National
Electrical Manufacturers Association; EN, European Standards (norms); CGC, Central
Grid code.
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the-art is to use the available capacity of the DGs themselves to
mitigate the issue (multi-functional capability). Again, these
multifunctional units can be classified according to their control
strategies into voltage control (VC), current control (CC), and
hybrid control (HC) [8] depending upon the mode of operation.
The management and mitigation of unbalances in the modern
distribution system have been a hot spot for recent research as can
be seen in Fig. 1, which shows the year-wise publications which
clearly shows an increasing trend. 

Various control techniques have been proposed by researchers
around the globe to manage the unbalance issue. Initially, studies
were focused on unbalance management at the converter level. The

unbalance compensation issue was initially investigated by Charles
P. Steinmetz in 1917 [9], and a year later the Fortescue symmetrical
component theory [10] was proposed. For linear circuits, the
superposition principle provides the opportunity for individual
sequence control of these components. Most literature on
unbalances is based on this concept, with several strategies being
proposed for the effective (fast and accurate) extraction of these
components for the control. Some power decomposition theories
such as the instantaneous reactive power theory [11] (and its
modifications), the current physical component theory (CPCT)
[12], and the conservative power theory (CPT) [13] have been
proposed over the years for defining the components of the
currents/powers for control. Fig. 2 presents these approaches which
are currently being employed for the component extractions to
achieve unbalance mitigation. Furthermore, the control can be
executed in any of the three frames: the natural abc reference frame
(NARF), the α–β stationary reference frame (STRF) or the dq
synchronous reference frame (SRF). The quantities in the former
two frames are sinusoidal and thus need proportional–resonant
(PR) or proportional–integral–resonant (PIR) controllers, while the
quantities in the SRF are DC and thus need proportional–integral
(PI) controllers. Most of the works use the decoupled dual SRF
(DDSRF) for separately controlling the positive sequence and NS
components, wherein two frames of reference in the opposite
directions along with filters are used for the component extraction.
Often along with the unbalance mitigation, multiple parallel
controllers are employed in appropriate reference frames for the
harmonic mitigation as well. For the grid-connected case, a phase-
locked loop (PLL) is essential and several methods to separate the
positive sequence and NS components of the AC grid voltages
were proposed [33]. The various challenges that need to be
addressed for both the operation modes under unbalanced
operation have been summarised in Fig. 3. This study focuses on
the aspect of unbalance management in MGs and is a first attempt
to comprehensively classify and summarise the various attempts
proposed in the literature on the aspect. The main motivation is to
provide the readers with the different approaches proposed until
now for unbalance mitigation and list down the avenues for further
work. The organisation of the paper is as follows: Section 2
categorises and discusses the various schemes for the unbalance
management in the islanded mode of operation. Section 3 discusses
the schemes for unbalance mitigation and fault ride-through
aspects for the grid-connected mode of the MG. The discussion is
presented in Section 4 wherein challenges and avenues for future
work are highlighted. Section 5 concludes the paper.

2 Unbalance mitigation in the islanded mode
The objective of the unbalance compensation or mitigation
depends upon the conditions of the MG and the operating mode
(islanded or grid-connected). Unbalance mitigation in islanded
MGs [18, 21, 22, 23, 25, 27–32, 34–218] focuses either on current
unbalance or VU mitigation in the MG lines, depending on which
quantity would congest the network. Accordingly, the control
would be directed towards better power distribution across the
three phases of the DGs, i.e. on a better unbalance sharing between
multiple DG systems or maintaining balanced voltages (good
voltage quality) at the point of common coupling (PCC). Various
approaches have been proposed such as modified droop control
strategies, modified topologies, use of virtual impedance (VI) and
advanced control techniques for addressing the issue. This section
elaborates on the unbalance mitigation approaches for the islanded
mode of operation, in which the DGs are controlled in the VC
mode. The predominant issues in this mode are overloading of the
DGs due to over-currents in the phases, unbalanced voltages at the
PCC, high-circulating currents, disproportionate power-sharing
among DGs and power oscillations. Major research focuses on
maintaining the PCC voltage balanced under unbalanced loading
conditions. In the islanded mode, the strategies can be broadly
classified into (a) injection of compensatory NS voltages/currents/
combination of both and (b) use VI/conductance control for
overcoming the line parameter effects to ensure proportional
power-sharing, and (c) improved damping in the control. The

Fig. 1  Year-wise publications on unbalancing mitigation in MGs: journals
(Journal) and conferences (Conference) for both the islanded and grid-
connected modes of operation)

 

Fig. 2  Approaches for extraction for symmetrical components in
unbalanced systems

 

Fig. 3  Challenges in MGs under asymmetrical conditions
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compensation of unbalance components always results in alteration
of the NS currents and thus there exists a compromise between the
good PCC voltage quality (balanced voltages) and accurate
unbalanced powers/currents sharing. Thus the DGs must be
controlled with both the aspects of proper power sharing and good
power quality. Some strategies, therefore, apply secondary and
tertiary control loops based on communication to achieve enhanced
performance across the system.

2.1 Droop modifications

Works have been reported which modify the conventional droop
control to achieve enhanced performance under unbalanced
conditions. The research in [34] proposed a triple droop strategy
(three voltage-real power (V versus P)) for each phase in LV MGs
resulting in accurate unbalanced current injection and minimal
circulating powers. The strategy proposed in [35] uses a frequency
droop control with an additional disturbance and VI to handle
unbalances. The drawback is that it is assumed that the load is
fixed and that the lines are inductive. A NS reactive power versus
conductance (Q versus G) droop control has been discussed in [36],
which can be integrated easily with the existing droop control to
achieve unbalance mitigation. An enhanced droop-based approach
is proposed in [37], which appends a Vdc-based loop to the
conventional frequency versus real power (ω–P) droop for
improved performance under asymmetrical conditions. An
adjustable per-phase droop control in real-time (RT) with no-load
voltage adjustment and improved reactive power versus voltage (Q
versus V) droop is discussed in [38] to restrain the impact of
voltage asymmetry. Liu et al. [39] proposed a small signal-based
unbalanced power droop strategy for the mitigation along with the
use of adaptive VI. A droop strategy based on the summation of
individual phase powers for four-leg inverter-based systems with
VI is shown to achieve good performance under unbalanced and
non-linear loads in [40]. The NS conductance versus NS reactive
power (G versus Q) droop with a NS current controller and
adaptive VI is discussed in [41], which achieves minimised
circulating current. The virtual conductance is drooped over the NS
reactive power along with an ad hoc communication network in
[42]. A new droop control for four-leg inverters using voltage
angle control for per-phase real power-sharing in the unbalanced
condition is discussed in [43]. Two conductances to control power
and VU with the (G versus Q) droop with coordinated operation
between inverters is discussed in [44].

2.2 Modifications in converter topology

Typically in LV MGs, two-level three-leg and four-leg inverters are
used. These can be modified to enhance performance under
unbalanced conditions. Full bridge converter modules are proposed
in [45] that can independently inject series voltages into each phase
to mitigate unbalances. The four-legged voltage source inverter
(VSI) is completely decoupled into three buck-converters through
analogue controllers in [46], which allows independent control
over the phases. A four-switch inverter topology with a Lyapunov
function-based non-linear controller with equal sampling and
switching frequency is discussed in [47]. A distribution static
compensator (DSTATCOM) with a small AC capacitor connected
between the negative DC bus and system neutral in [48] is shown
to achieve better unbalance compensation. On similar lines, the DC
link negative is connected to the neutral of the inductor–capacitor
(LC) filter along with a modified control strategy in [49] resulting
in better performance under unbalances at the cost of higher
stresses and device ratings. A new concept and approach for
topology control and switching based on near-optimal per-phase
topology control are discussed in [50], which proposes an approach
to coordinate smart plug-in electric vehicle charging to mitigate
unbalances. Special winding connections for distribution
transformers for DSTATCOMs with a sequence component-based
feedback controller are proposed in [51]. A dual-output inverter
operated in equal frequency mode with a lesser number of
semiconductor switches is used to mitigate unbalances in [52]. A
new algorithm is developed and tested for its performance on three

different topologies for its performance under six different types of
voltage sags at the PCC in [53]. A per phase optimised control
strategy for a modified three-phase inverter is proposed in [54] to
achieve VU mitigation.

2.3 Control strategies

Among the early efforts to control the negative and zero sequence
components in a single inverter system were attempted in [55–57],
which proposed a DDSRF employing PI controllers for the positive
sequence and NS component control, and PR control for the
independent zero-sequence voltage regulation. Notch filters (with a
notch at twice the fundamental frequency) were suggested for the
component extraction and the results showed suppressed DC-link
oscillations. The evaluation of a CPT-based four-leg compensator
is discussed in [5]. The coordinated control of three- and single-
phase inverters is suggested in [9] for a master–slave MG
architecture system to assign compensation tasks among the DGs.
Enhanced control with the three-phase droop control strategy
which provides good performance under both unbalanced and non-
linear loads is proposed in [58], which aims to control the
circulating currents and minimise the DG synchronisation
transients as well. A model predictive control (MPC) technique
that results in faster dynamics and higher damping under
unbalanced conditions based on global positioning system
synchronisation is proposed in [59]. The research in [60] discusses
a linear quadratic control approach that enables unbalanced local
load powers can be shared with utility in any desired ratio. The
strategy proposed in [61] achieves compensation through the
multiplication of the fundamental NS reactive power with a
constant unbalance compensation gain. A strategy for NS
impedance control (NSIC) is proposed in [62] for sharing NS
currents which assume that the load information is available
through a phasor measurement unit. Dynamically varying limits for
positive sequence and NS currents are proposed in [63], which
ensure that single line to fault currents are limited to 1.5 p.u.
Another secondary control scheme which discusses the stability
aspects is presented in [64]. The combination of deadbeat and
repetitive control with feed-forward terms to mitigate load
dynamics impact is discussed in [65]. A dual-loop control method
based on predictive CC is proposed in [66], which eliminates the
need for coordinate transformations. Compensation control based
on a Lagrangian function to extract factors for compensation with
the aim to reduce to reduce real power oscillations and VU is
explained in [67], which validates results for different inductive
impedance–resistance (X/R) ratios of the lines. A consolidated
control scheme to minimise real power oscillations caused due to
unbalance is proposed in [68]. A voltage-based droop (VBD)
control strategy with a negative damping resistance is discussed in
[69] for phase unbalance mitigation, which highlights that for VU
issues negative damping may lead to instability.

A load unbalance compensator including its control algorithm is
discussed in [70] for three-phase four-leg inverters. A strategy for
independent control of the fourth leg of a four-leg grid forming
VSC is proposed in [71], which uses multiple second-order
generalised integrators (SOGIs) for component extraction. Another
work [72] based on SOGIs and low-bandwidth communication
(LBC) for unbalance mitigation presents results for unbalanced and
non-linear load cases and the effect of communication delay on the
control outcome. A linear parameter varying controller based on
Fortescue component extraction is discussed in [18] using the
voltage-oriented control (VOC) approach. A novel control strategy
to reduce real power oscillations under unbalances using a
redundant interlinking converter for hybrid AC/DC MGs is
proposed in [73]. A centralised control of single-phase inverters in
four-wire MGs based on CPT is explained in [27], which does not
need the line and load information for the compensation. A
decentralised sliding mode control (SMC) based on Lyapunov
function theory and fractional order SMC based on neural networks
is suggested for compensation in [74]. A tunable sequence
impedance control strategy for four-leg converters is proposed in
[75], which considers the zero-sequence components in the
unbalance mitigation. A harmonic and NS CC technique is
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explored in [76], which uses multiple PR controllers along with
harmonic impedance and virtual NSIC loops. The coordinated
control of multifunctional inverters for unbalance and harmonic
compensation is discussed in [77], which investigates the effect of
communication delay. A hybrid AC/DC MG hierarchical control
scheme based on SMC Lyapunov function theory and harmonic VI
is discussed in [78]. A multi-input multi-output control strategy
based on the internal model principle and enhanced PLL (EPLL) is
discussed in [79] to achieve better performance. A decentralised
MPC-based scheme for VU mitigation is proposed in [80], wherein
the results are compared with a robust controller as well. A control
scheme with the capability to independently regulate powers in the
phases is discussed in [81], which uses a new transformation (x–y
frame). An expert system based on decoupled power/current
decomposition employing CPT-based indices is investigated for its
performance under unbalanced conditions in [28]. A robust
controller for the unbalance case designed using linear matrix
inequalities is discussed in [82] based on the load current
availability assumption. Single-phase inverter units are controlled
independently to achieve unbalance mitigation in [83].

A typical control scheme for addressing the issue of unbalance
in MGs is as illustrated in Fig. 4 which is based on communication
architecture. As is shown, the fundamental positive sequence droop
control is typically augmented with a VI control scheme at the
local level. Based on the PCC voltage quality measurements,
compensatory actions are taken by the secondary and tertiary
control loops at regular intervals to maintain a good voltage
quality. An analytical approach has been proposed in [84] to assess
the load ability of the network under unbalanced conditions, which
suggests injection of reactive power to counter the effect of
unbalance in the heavily loaded phases. A robust control strategy
based on the H∞ optimisation is proposed to control unbalance in
[85], which assumes that the load current is measurable and
bounded. The compensation for unbalance and harmonics using a
modified VI is discussed in [86], which elaborates on the
comparison of impedance models of the DGs under various
controls. A tertiary control strategy using a tertiary compensation
gain is proposed in [87] for unbalance compensation based on
optimisation (genetic algorithm) for mitigating the VU issue. An
adjustable VI with a variable harmonic impedance loop at

harmonic frequencies is discussed in [88] for improving the power
quality and power-sharing among DGs. A unified mathematical
model of a DG with control aspects is elaborated upon in [89],
which also suggests a new definition for the instantaneous reactive
power. To mitigate the voltage regulation problem in LV networks
with high photovoltaic (PV) penetration, work in [90] proposes an
optimal reactive power control strategy, which assumes the
presence of two-way communication in the system. A state
observer-based disturbance estimation and control algorithm is
discussed in [91], which improves performance under non-ideal
conditions. A sequence-based control strategy is discussed in [92],
which uses six PI controllers in the SRF to nullify the NS and zero
sequence voltages at the PCC. However the tuning of the
controllers is a challenge. Castilla et al. [93] discussed the
modelling and design of voltage support control schemes in which
the small-signal model of the sequence extractor has been
described. However, the zero-sequence components have not been
considered. A new control based on decoupled real and reactive
power control of individual phases is proposed in [94] using a
three-phase four-leg VSI, which provides six degrees of freedom.
A hybrid controller structure incorporating MPC and SMC with a
reduced chattering issue for a four-leg inverter for unbalance
mitigation is discussed in [95]. An adaptive neuro-fuzzy inference
system-based control strategy is discussed in [96] for unbalance
compensation, which uses a delayed signal cancellation approach
for sequence extraction.

A distributed virtual NSIC based on consensus algorithm is
used to suppress circulating currents and achieve better unbalance
compensation in [97], which does not require the line impedance
estimation. An active power oscillation cancellation strategy based
on coefficients using secondary controls is discussed in [98] for
parallel interlinking flow converters in a hybrid MG. The control
strategy for a virtual synchronous generator (VSG) for maintaining
balanced currents is proposed in [99]. A coordinated control
strategy for dual converters (one operated in voltage control mode
and other current control mode) using a negative VI is proposed in
[100] for unbalance mitigation. A high-performance second-order
controller for balanced VC using the robust negative imaginary
approach is presented in [101], which shows superior performance
over MPC and linear quadratic regulator (LQR) controllers and
provides stable performance under large parameter variations.

Fig. 4  Block diagram of a typical control scheme for addressing the issue of unbalance in the islanded mode (involving communication)
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Weighted values of currents are calculated for a HC for
instantaneous torque and power control in [102], which showed
good performance under asymmetrical conditions. A two-stage
adaptive virtual resistor control scheme employing three nested
loops for enhanced control under unbalances is discussed in [103].
A SMC-based approach for a master–slave converter system is
shown to have a black start, seamless mode transition, and good
performance under unbalances in the work presented in [104]. A
CPT-based cooperative control employing a secondary control loop
and a more robust VI loop is proposed in [29] for unbalance and
harmonic power-sharing. The model, analysis, and suppression
strategy for zero-sequence circulating currents for paralleled
inverters is discussed in [105]. A strategy to enhance the neutral
current compensation for four-leg inverters has been proposed in
[106], which is shown to achieve better unbalance sharing. An
approach to minimise unbalances in the system considering
demand-side management capability using thermostatically
controlled loads is discussed in [107] with a NS compensation loop
for the control. A SMC strategy using hysteresis switching that
eliminates the need for sensing capacitor voltage for a VSI is
elaborated in [108], which achieves robust performance under
unbalances.

Tables 2 and 3 summarise the various approaches suggested in
the literature for unbalance mitigation and control in the islanded
mode of operation of the MG. The references have been classified
according to the control strategy, reference frame, and details of the
test systems. A NS voltage component suppression strategy based

on adaptive VI is discussed in [109] with a fractional frequency
harmonic control strategy for harmonic mitigation too. The
simultaneous regulation of positive sequence and NS voltage is
achieved in [110] for a STATCOM, which uses line frequency
switching. An unbalanced SRF regulator is discussed in [111] that
is shown to have a higher stability margin than the PR controller. A
distortion-free saturation methodology for limiting the currents/
voltages is discussed in [112], which is an important aspect under
unbalanced conditions. A CPT-based strategy for improved
unbalanced load sharing is discussed in [30], which is validated on
a hardware-in-loop (HIL) platform. An instantaneous power theory
(IPT)-based strategy with the combined use of energy storage
(electric spring) is described in [21], which is aimed at minimising
the average oscillating power under unbalances. A radial basis
function neural network-based hierarchical VI-based control
scheme with a complementary control loop for small and large
signal stability enhancement is discussed in [113]. Mortezaei et al.
[31] used CPT to achieve enhanced performance under VUs and to
achieve harmonic mitigation. Over voltage and VU mitigation are
achieved through a three-phase damping control strategy in [114].
A minimally switched active power filter (APF) control method to
compensate voltages under unbalanced and non-linear loads is
discussed in [115], which results in reduced losses. A flexible
control methodology based on isochronous control, which enables
precise regulation of the output voltages and frequency of four-leg
inverters is proposed in [116]. A SMC along with iterative learning
control for compensation in four-leg inverters as discussed in [117]

Table 2 Summary of works for unbalance mitigation: islanded mode
Ref. Communication Ref. frame Controller Filter Voltage level Power level Expt. Results
[5] ✗ STRF PR L 600 V — ✓

[34] ✗ NARF/SRF PR(out) PI(in) LC 400 V — ✗

[36] ✗ DDSRF PI LC 220 V 1 kW ✓

[38] ✗ SRF PI LC — — ✓

[40] ✗ STRF PR(out) P(in) LC 380 V — ✗

[42] ✓ STRF PR LC 415 V — ✗

[44] ✗ — — LC 380 V 50 kVA ✗

[46] ✗ SRF PR(out) P(in) LC 110 V 5 kW ✓

[48] ✗ — — L 400 V — ✓

[50] ✗ STRF — — 415 V — ✗

[52] ✗ NARF PR LC 170 V — ✗

[54] ✗ — — LC — — ✗

[56] ✗ DDSRF PI L — — ✓

[58] ✗ STRF PR LC 220 V 1.5 kVA ✓

[60] ✓ — — — 11 kV — ✗

[62] ✗ STRF PR LC — 2.5 MVA ✗

[64] ✓ STRF PR + PI LC 230 V — ✗

[66] ✗ STRF PR LC 110 V 5 kW ✓

[68] ✗ DDSRF PI LCL 100 V 5 kVA ✓

[70] ✗ DDSRF PI LC 380 V 250 kW ✓

[18] ✗ — proposed control LC 200 V 1 kW ✓

[27] ✓ — proposed control LC 180Vpk — ✗

[75] ✗ STRF PIR(out) P(in) LCL 220 V — ✓

[77] ✓ STRF/SRF PI + PR LCL 230 V — ✓

[79] ✗ SRF PI LC 4.16 kV — ✗

[81] ✗ x–y frame PI LC — — ✓

[82] ✗ SRF proposed control LC 600 V — ✗

[84] ✗ — — LC — — ✓

[86] ✗ SRF PI + MPR LC 350 V — ✓

[88] ✓ STRF PI + MPR LCL 380 V — ✓ HIL
[90] ✗ — — LC 415 V — ✓

[92] ✗ SRF PI LC 300Vpk 10 kVA ✓

[94] ✗ NARF proposed control L 100 V — ✓

[96] ✗ SRF PI LC −230 V — ✓

[98] ✓ STRF PR LC 100 V 1.25 kVA ✓

[100] ✗ STRF PI(out)PR(in) LC 300 V — ✗
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results in enhanced performance under non-ideal conditions. A
three-phase damping control strategy, which behaves resistively
towards the zero-sequence and NS currents is suggested in [118]
for improved unbalance mitigation. Optimised controllers based on
the H∞ robust approach [119] are designed to achieve better power
sharing under unbalanced conditions. Zero-sequence voltage
compensation is achieved in a modular multilevel converter-based
STATCOM in [120], wherein the fourth leg is controlled as a
single-phase converter. A NS and zero-sequence current
compensation strategy based on optimisation that can be run in RT
is proposed in [121]. Small-signal sequence impedance models of
the CC and VC VSGs are analysed in [122], which concludes that
the CC VSGs are prone to instability. The participation of
distributed resources and responsive loads is suggested in [123] to
overcome unbalance, wherein an optimisation with the cost
function defined based on VUF is carried out. A hierarchical
control strategy is proposed for a four-wire MG in [124] for
compensation of both NS and zero-sequence quantities. A dynamic
phasor-based compensation technique to mitigate harmonics and
unbalanced source voltage condition is proposed in [125]. A cost
function-based method is proposed in [126] using continuous
control set MPC for simultaneously compensating the bus voltage
and negative and harmonic current mitigation. An adaptive VI-
based control scheme proposed in [127] based on the injection of a
small ac signal achieves VU mitigation without the need for
communication or feeder information. A single-phase droop
control augmented by three secondary control systems is used in

[128] to achieve cooperative regulation of imbalances in four-wire
MGs. A VC method to maintain balanced PCC voltages is
proposed in [129], which is tested through HIL. Unbalanced
current sharing in islanded LV MGs is achieved in [130] through
NS and zero-sequence VI controllers. Details of a secondary
control scheme for voltage quality enhancement are provided in
[131], which uses communication and investigates the effect of
inherent delays therein. Distributed VU compensation using a
dynamic consensus algorithm is proposed in [132]. Another
cooperative control strategy for unbalance mitigation based on
CPT is discussed in [32]. A multi-agent system-based hierarchical
scheme is elaborated in [133]. A VI-based scheme is proposed in
[134] and a LQR in [135] for reducing the effects of unbalance in
the system.

A two-level control scheme based on LBC using an unbalance
compensator is proposed in [136] that ensures good performances
under non-linear conditions as well. A LQR approach has been
discussed in [137] and validated for its performance for unbalance
mitigation using a HIL platform. An adaptive algorithm is
discussed in [138], which combines a least mean square and sign
algorithm, which is used to achieve VU in the network. Toman and
Asumadu [139] explained a distributed finite control set MPC for
the same, while the approach in [140] is to reduce NS impedance
of the inverter to improve the performance. The impedances are
synthesised separately for the sequences in [41] with a virtual
resistance for the NS part to ensure unbalance control. Discrete
LQR-based state feedback VC is discussed in [141], which shows

 
Ref. Communication Ref. frame Controller Filter Voltage level Power level Expt. Results
[9] ✓ STRF — LC 13.8 kV 75 kVA ✓

[35] ✓ STRF PR LC 380 V/115 V — ✓

[37] ✗ DDSRF PI LC 220 V — ✓

[39] ✓ SRF PI LC 53 V — ✓

[41] ✗ SRF PI LC 380 V — ✓

[43] ✗ STRF PR LC 120Vpk 3 kW ✓

[45] ✗ — — — — — ✗

[47] ✗ NARF repetitive controller L 120 V — ✓

[49] ✗ STRF PR LC 110 V — ✓

[51] ✗ DDSRF PI L 380 V — ✗

[53] ✗ STRF proposed control L 350 V — ✓

[55] ✗ DDSRF PI L — — ✓

[57] ✗ DDSRF PI + PR LC 115 V 30 kVA ✓

[59] ✓ NARF PR LC 400 V 45 kW ✗

[61] ✗ STRF PR LC 330 V — ✓

[63] ✗ DDSRF PI LC 480 V — ✗

[65] ✗ SRF PI LC 500 V — ✗

[67] ✗ STRF PR LCL 240 V 20 kW ✓

[69] ✗ NARF PR + VBD LC — — ✗

[71] ✗ STRF/SRF PI + MPR LC 400 V 2.2 kVA ✓

[73] ✗ STRF PR LCL 110 V 4 kW ✓

[74] ✓ STRF PR LCL 0.6 kV — ✓ HIL
[76] ✗ STRF PR LC 20 kV 1.8 MVA ✗

[78] ✓ STRF PR LCL 0.6 kV — ✓

[80] ✗ STRF PR L 245 V — ✗

[28] ✗ — proposed control LC 4.16 kV — ✓

[83] ✗ SRF PI L 380 V 85 kW ✗

[85] ✗ — proposed control LC 110 V 10 kVA ✓ HIL
[87] ✓ STRF PR LC 220 V 6.5 kVA ✓ HIL
[89] ✗ STRF MPR L 40 V — ✓

[91] ✗ SRF PI + state estimato (SE) LC 208 V 11 kW ✓

[93] ✗ STRF PR LC 155.6 V 2.3 kVA ✓

[95] ✗ STRF SMC LC 100 V 3 kW ✓

[97] ✓ STRF PR LCL 220 V 20 kW ✓

[99] ✗ DDSRF PI LC 220 V 15 kW ✓

[101] ✗ STRF PR L — — ✗

 

1692 IET Power Electron., 2020, Vol. 13 Iss. 9, pp. 1687-1710
© The Institution of Engineering and Technology 2020



simulation cases for induction motor starting as well, while work in
[142] is based on controllers in the negative and harmonic frames.
Research in [143] explains a controller for the parallel operation of
uninterrupted power supplies with VI control while the virtual NS
impedance loop with a unified three-phase signal processor for
component extraction is discussed in [144] and an adjustable
version is discussed in [145]. A tertiary control approach using the
artificial bee colony optimisation method for equalising
compensation efforts among DGs using IPT has been discussed in
[22]. MPC-based distributed control for the simultaneous voltage
compensation and unbalanced and harmonic current sharing is
proposed in [146]. CPT and IPT concepts are compared for their
performance for unbalance mitigation in [23]. A distributed
cooperative control based on communication for NS reactive
power voltage with the Q versus G droop is presented in [147],
which details the complete NS small-signal model of DG.
Improved virtual power decoupling technique with adaptive
adjustment of the compensation is discussed in [148]. The hybrid
inverter interface concept is explained in [149], which achieves
better VUF if the unbalanced loads are fed by a four-leg inverter
than a three-leg one. Souza et al. [150] compared three-phase

droop and per-phase droop for the performance and stresses on the
need to have proper damping in the control. The limits to the fully
decentralised droop control methods are discussed in [151].
Hierarchical control, which decomposes the traditional centralized
controller into several local secondary controllers, is proposed in
[152] while a four-leg inverter interface for the standalone system
is suggested for better unbalance mitigation in [153] and is used as
a shunt-connected compensator in [154].

The conventional droop is combined with a novel decoupling
control in [155] to address the unbalance issue based on
symmetrical component decomposition. CC structures have been
compared in [156] for their filtering, tracking, and disturbance
rejection capability in [157], while an enhanced control for grid-
forming VSCs is discussed in [158], which does not need high-
speed switching and provides the capability to track both DC and
double frequency components. A composite control strategy for a
PV–wind–diesel system, which achieves good performance under
unbalanced loads with reduced converters and sensors is presented
in [159] while another similar work is reported in [160]. A four-leg
inverter with a reduced order generalised controller and frequency
locked loop for enhanced sequence decomposition is discussed in

 
Ref. Communication Ref. frame Controller Filter Voltage level Power level Expt. Results
[102] ✗ STRF PR L 133 V — ✓

[104] ✓ SRF proposed control LC 12.47 kV — ✗

[105] ✗ STRF PI quasi-resonant LC 110 V — ✓

[107] ✗ DDSRF PI LC 11 kV — ✓ HIL
[109] ✓ SRF PI LCL 700 V — ✓

[111] ✗ STRF MPR LC 220 V — ✓

[30] ✗ NARF proposed control LC 180 V — ✓ HIL
[113] ✓ STRF MPR LCL 220 V — ✗

[114] ✗ STRF proposed control — 400 V — ✓

[116] ✓ STRF PI LC — — ✗

[118] ✗ NARF — LC — — ✗

[120] ✗ SRF PI L 24 kV 10 MVA ✓

[122] ✗ SRF PI LC 220 V — ✓

[124] ✓ SRF PI(out) P(in) LC — — ✗

[126] ✗ STRF MPC LC 200 V — ✓

[128] ✓ STRF PR LC — 3 kW ✓

[130] ✗ STRF MPR LC — 300 kVA ✗

[132] ✓ STRF PR LC 220 V 2.2 kW ✓

[133] ✓ SRF FOPID LC 311 V — ✗

[135] ✓ SRF PI LC 360 V — ✓

[137] ✗ DDSRF PI LC 318 V l–l — ✓ HIL
[139] ✗ — MPC L/LC 208 V — ✗

[41] ✗ STRF PR LC 380 V — ✓

[142] ✗ SRF PI LC 208 V 30 kVA ✗

[144] ✓ STRF PR LC 20 kV 2,5 MW ✗

[22] ✗ STRF PR LC — — ✓

[23] ✗ SRF PI LC 170Vpk 1 kVA ✓

[148] ✗ SRF PI LC 220 V — ✓

[150] ✗ NARF proposed control LC 104 V — ✓

[152] ✓ STRF PR LCL 415 V — ✗

[154] ✗ STRF PR LC 240 V 15 kW ✗

[156] ✗ STRF PIR L 90Vpk — ✓

[158] ✗ SRF PIR LC 5 kV 5 MVA ✗

[160] ✗ SRF PI LC 480 V 55 kW ✓

[162] ✗ STRF PR L 35 V — ✓

[164] ✗ STRF/SRF proposed control LC 220 V — ✓

[166] ✓ SRF PI LC 220 V — ✓

[167] ✗ SRF PI(out) P(in) LC 155.56Vpk — ✗

[57] ✗ SRF/STRF PI + PR LC 115 V 30 kVA/ph ✗

[170] ✗ SRF PI L 23 V 700 W ✓

[172] ✗ SRF H∞ LC 400Vpk — ✗
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[161]. A voltage sensorless control approach based on Lyapunov
energy function is presented in [162]. A back stepping-based direct
power control (DPC) scheme is suggested in [163] for mitigating
the VU issue. A high-performance repetitive controller is proposed
in [164] with a dual loop structure, which ensures good
performance under unbalanced voltages. State feedback-based
approach using the LQR method is shown to have good
performance for unbalanced and harmonic loads in [165] while a
self-adjusting VI is discussed in [166], while work in [25] suggests
secondary controls for changing droop parameters as well based on
CPCT component decomposition. A voltage decoupling feed-
forward path for improvement of PCC voltage quality using four-
leg inverters is discussed in [167], while Heydari et al. [168] used
PR controllers under unbalance and non-linear loads for achieving
the same. A combination of stationary and synchronous frame
controllers is proposed in [57] for four-leg inverters. Symmetrical
component-based controls in the SRF are discussed in [169, 170],

which consider the zero-sequence components as well but present
tuning challenges, while Hongbing et al. [171] add VI control to
the approach to achieve system VU mitigation. Robust controllers
based on H∞ optimisation are proposed in [172, 173] to maintain
balanced PCC voltages. Fundamental and harmonic VC structures
are discussed in [174], while injecting NS components of the
opposite sign is proposed in [175] for VU mitigation. A negative-
sequence voltage compensation strategy is discussed in [176],
while Savaghebi et al. [177] proposed VI and an unbalance
compensation block for achieving enhanced performances under
unbalances. Hierarchical schemes based on communications are
used in [178, 179] for VU mitigation.

Li et al. [180] proposed an adaptive discrete variable structure
SMC and similar work is discussed in [181]. In [182], an
optimization algorithm is used to adaptively tune controller gains
to achieve VU mitigation. Imbalance and harmonic compensation
is achieved through PR controllers in [183] while sequence-based

 
Ref. Communication Ref. frame Controller Filter Voltage level Power level Expt. Results
[103] ✓ SRF PI LC 380 V 15 kVA ✓

[29] ✓ NARF PR LC 180 V — ✓

[106] ✗ SRF PI LC 400 V — ✓

[108] ✗ NARF PR LCL 230 V — ✓

[110] ✗ SRF PI L 345 kV — ✓

[112] ✗ STRF — LC 400 V — ✓

[21] ✗ SRF proposed control LC 220 V — ✓

[31] ✓ STRF MPR LCL 180 V 5 kVA ✓

[115] ✗ STRF developed algorithm L 220 V — ✓

[117] ✗ STRF SMC LC — — ✓ HIL
[119] ✗ SRF proposed control LC 630 V — ✓ HIL
[121] ✓ NARF proposed control LC 4.16 kV — ✗

[123] ✓ NARF — LC 480 V — ✓

[125] ✗ DDSRF PI LC 120 V — ✓ HIL
[127] ✗ STRF PR LC 163 V 9 kVA ✓

[129] ✗ DDSRF PI LC 4.16 kV — ✓ HIL
[131] ✓ STRF PR(prim) PI(sec) LC 230 V — ✓

[32] ✓ SRF PI LCL 127 V — ✗

[134] ✗ SRF PI LC 220 V — ✗

[136] ✓ SRF PI LCL 230 V — ✗

[138] ✗ — adaptive L 230 V 3.7 kW ✓

[140] ✗ STRF/SRF PI(out) PR(in) LC 230 V — ✓

[141] ✗ — State feedback (SF) LC 440 V — ✗

[143] ✓ SRF PI LC 45/385 V — ✗

[145] ✗ STRF PIR LCL — — ✓

[146] ✗ SRF PI LC 200 V 10 kVA ✗

[147] ✓ SRF PI LC — — ✓

[149] ✗ SRF PI LC 415 V 10 kW ✗

[151] ✓ — — LC — — ✗

[153] ✗ SRF PI LC 112 V — ✓

[155] ✗ DDSRF PI LC 380 V 60 kW ✗

[157] ✗ STRF PR LCL 400 V 16 kW ✗

[159] ✗ STRF Anti windup proportional integrator +  anti windup
proportional resonant

LC — — ✓

[161] ✗ STRF PR LC 110 V — ✓

[163] ✗ SRF PI L 311 V — ✓

[165] ✗ — SF LCL 415 V — ✓

[25] ✓ SRF PI LCL 120 V — ✓

[168] ✗ STRF MPR(out) P(in) LC 100 V 3 kW ✓

[169] ✗ SRF PI L 230 V 70 kW ✗

[171] ✗ SRF PI LC 311 V 12 kVA ✗

[173] ✗ SRF H∞(out) P(in) LC 20 kV — ✗

P, proportional; PI, proportional integral; PR, proportional resonant; MPR, multiple frame proportional resonant; MPC, model predictive controller; FOPID, fractional order
proportional integral derivative; VBD, voltage-based droop; AW, anti-windup; SMC, sliding mode controller; HIL, hardware in the loop; L, inductor; LC, inductor capacitor; LCL,
inductor capacitor inductor; (out)(in), outer loop, inner loop; (prim)(sec) primary controller secondary controller communication: ✗-not based on Expt. results; ✓, based on Expt.
results; ✗-not presented; ✓-presented.
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controllers are used to compensate unbalances in a four-wire MG
through three- and four-leg converters in [184]. VI along with a
unified unbalance compensator is supplemented with droop control
in [185]. A neutral point clamped (NPC) converter is controlled as
to maintain the PCC voltages balanced in [186] while a two-level
hierarchical control with VI is suggested in [187] for maintaining
balanced voltages. The injection of imbalance in the local bus with
the aim to maintain a balanced voltage at remote bus is discussed
in [188]. Unbalance and harmonic controllers are used in [189],

while strategies in [190–192] use communication to achieve
unbalance compensation. An adaptive resonant control method for
variable frequency for a VSG is discussed in [193], while
Samadhiya and Namrata [194] discussed an energy management
strategy and a VC strategy for the cascaded H-bridge (CHB)
multilevel inverter-based DG source to mitigate unbalance. A
distributed MPC based on augmented Lagrangian relaxation and
auxiliary problem principle is proposed for the control of
unbalance in [195]. A decoupled current controller is designed

Table 3 Summary of works for unbalance mitigation: islanded mode
Ref. Communication Ref. frame Controller Filter Voltage level Power level Expt. results
[174] ✗ SRF PI + MPR LCL 300Vpk — ✗

[175] ✗ NARF PI(in) L 230 V — ✗

[176] ✗ STRF PI + PR LCL 380 V — ✓

[177] ✗ STRF PR LCL 300Vpk — ✓

[178] ✓ STRF PR + PI(sec) LC 300Vpk — ✗

[179] ✓ STRF PR + PI(sec) LC 300Vpk — ✗

[180] ✗ STRF SMC LC 220 V 28.9 kW ✗

[181] ✗ SRF SMC + PI LC — — ✗

[182] ✗ STRF MPR L — 2.5 MVA ✗

[183] ✗ STRF MPR + P LCL — 100 kW ✗

[184] ✗ SRF PI LCL — — ✗

[185] ✗ SRF PI — 300Vpk — ✗

[186] ✗ SRF PI LC 40 V l-l 300 kW ✗

[187] ✓ STRF PR LC — — ✓

[188] ✗ DDSRF PI L — — ✗

[189] ✗ STRF PR — 69 kV — ✗

[190] ✓ STRF PR LCL 300 Vpk — ✗

[191] ✓ — cooperative control LC — — ✗

[192] ✓ SRF PI LC 300 V — ✗

[193] ✗ SRF PI(out) P(in) LC 300Vpk 10 kVA ✓

[194] ✗ SRF MPR — 2.4 kV 1200 kVA ✗

[195] ✗ — — LC — — ✗

[196] ✓ SRF PI LCL 11 kV 500 kVA ✗

 

 
Ref. Communication Ref. frame Controller Filter Voltage level Power level Expt. results
[197] ✗ SRF PI + PR LCL 380 V 1 MW ✗

[198] ✓ — — — — — ✗

[199] ✗ SRF PI LC 300Vpk — ✗

[200] ✗ SRF PI LC 300Vpk — ✗

[201] ✗ SRF PI LCL 11 kV/420 V — ✗

[202] ✗ — — LC 225 V 620 W ✗

[203] ✗ STRF PR(out) PI(in) LCL 310 V — ✗

[204] ✗ STRF PR LC 480 V — ✗

[205] ✗ SRF PI LCL — — ✗

[206] ✗ SRF PID LC 600 V 3 MVA ✗

[207] ✓ STRF + SRF PR + PI LC 320 V — ✓

[208] ✗ STRF PR +  L 230 V — ✓

— — — repetitive control — — — —
[209] ✓ SRF PI LC 220 V — ✓

[210] ✓ SRF PI LC 105Vpk — ✓

[211] ✓ DDSRF PI LCL 200 V 2.2 kW ✓

[212] ✗ DDSRF PI L 230 V — ✗

[213] ✓ DDSRF PI LCL — — ✓ HIL
[214] ✗ STRF ROGI L 110 V — ✓

[215] ✗ SRF proposed controller LCL 540 V 130 kW ✗

[216] ✗ DDSRF PI LCL 400 V — ✗

[217] ✗ STRF PI LCL 391 V (l − n) 5 kW ✓

[218] ✓ — proposed algorithm — 480 V 530 kW ✗

PID, PI–derivative.
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using an internet of things (IoT) platform in [196] for four-leg
smart inverters to mitigate unbalances. Resonant controller and VIs
are suggested in [197], while a distributed secondary control
strategy is used in [198] for unbalance mitigation. A linear active
disturbance rejection control with a linear extended state observer
is proposed in [199], while another disturbance observer is
proposed in [200] for handling voltage asymmetries. The control
over zero-sequence currents in four-leg PV VSIs is discussed in
[201], while a VU mitigation technique using three-phase damping
control is suggested in [202]. A hierarchical control strategy
proposed in [203], a combination of three- and four-leg VSIs in
[204], switching of single-phase inverters between the three phases
with the lowest phase voltage [205], and model adaptive reference
control for an adaptive PI derivative controller [206] are some of
the other approaches that have been proposed for VU mitigation in
the network. Zhu et al. [207] proposed a coordination control
strategy for a hybrid energy storage system consisting of a battery
and ultra-capacitor, for good performance under unbalanced and
non-linear load conditions in which the battery provides the
fundamental powers, while the ultra-capacitor provides the
compensating power. A repetitive-based control scheme is
discussed in [208] for four-wire systems, which estimates the
impedance for better performance and eliminates the need for
additional sensors. A power-based coordinated control strategy is
discussed in [209] for three-wire MGs that achieve unbalance
mitigation under both the islanded and grid-connected modes.
Ninad and Lopes [210] proposed a per-phase control strategy for a
four-leg grid-forming inverter for achieving voltage balance at the
PCC without sequence extraction and is shown to have a good
performance even when the DG has to supply power through two
phases and absorb through the third one. Peng et al. [211]
presented the small-signal analysis of voltage unbalance correction
strategies for islanded MGs through a detailed state-space model
using dynamic phasors, and proposed a new compensation
technique, while Ismail et al. [212] presented a strategy based on
supercapacitor storage for improving the dynamic performance of
the system under unbalanced and non-linear loads. A control
strategy enabling seamless system transition during unbalanced
dynamic MG reconfiguration, and ensuring proportional power-
sharing using a distributed secondary control strategy is developed
in [213] for DGs with grid forming inverters in unbalanced
dynamic MGs, which is validated through HIL. A novel control
algorithm using double reduced-order generalised integrators for a
four-leg shunt converter is presented in [214], while Sedhom et al.
[215] proposed another robust H∞ based controller for unbalance
mitigation in islanded MGs. Hoseinnia et al. [216] proposed a
double SRF (DSRF) control scheme without the need for load
current sensors, while Hart et al. [217] investigated the impact of
harmonics and unbalance on the performance dynamics of grid-
forming converters modelled using the dynamic phasor approach.
A novel control demand-side management algorithm based on
voltage sensitivity is proposed in [218] as a possible solution for
unbalance mitigation for an islanded MG having thermostatically
controlled loads.

3 Unbalance mitigation in the grid-connected
mode
In grid-connected networks, the DGs are typically controlled in the
CC mode. However, alternative strategies to control the power
flow such as the VOC and DPC are also prevalent. The unbalance
mitigation majorly focuses on mitigating the unbalance provided
by the utility, i.e. current imbalance mitigation. The unbalance
control in the grid-connected mode comes into effect
predominantly during grid faults [219]. With the advancement in
grid codes, the LV ride through (LVRT) of grid-connected
renewables is an important aspect. A review of the various LVRT
techniques as per the various grid codes, generators, and turbines
specific to wind energy conversion systems is carried out in [220,
221]. Reviews of LVRT strategies for PV systems are presented in
[222, 223]. The CC of the inverters has to be done as per the
specifications of these codes to ensure voltage support and stable
operation [19]. The injection of the positive sequence currents is

needed for the voltage and frequency support while the NS current
injection ensures minimisation of the effect of the VU. The
different issues in this mode of operation are fast detection of
faults, proper synchronisation, fault ride-through control, proper
resynchronisation with a grid in case of disconnection during fault
and stable ramping up of the power after the fault. During the
stages, it is essential to ensure that the current limits of the DGs are
not exceeded and ensure protection as power electronic-based DGs
have low-overloading capacity due to thermal constraints. The
typical constraints on the DG operation under unbalances would be
imposed by the output AC voltage and current limits and the DC
bus voltage oscillation limits. Since this is a complex problem most
literature to date only focus on the control of a single grid-
connected inverter (GCI) during unbalanced grid conditions, with
very few of them looking at the parallel inverter/system
management case. The other challenges in the grid-connected
mode are the elimination of oscillations in the real and/or reactive
power (which would otherwise result in DC link voltage
oscillations) peak current limiting and maximising the power
injection to the grid. Owing to the limiting constraint imposed by
the converter rating and optimisation may be necessary to achieve
the various objectives. Furthermore, a compromise may have to be
made between avoiding the power ripples during unbalanced
voltage sags in the grid and high-current harmonic distortion. Grid
synchronisation under the unbalanced scenario is another important
aspect [224, 225]. The other important aspect is the fast and
accurate information extraction of the grid phase voltages for
which several advanced PLLs have been proposed in the literature
[226]. Fig. 5 shows a typical control scheme for the grid-connected
mode involving a secondary communication-based layer. This
section summarises the available literature [14, 15, 16, 17, 20, 24,
26, 162, 219, 226–366] on unbalance mitigation in the grid-
connected scenario of both single and multiple inverters.

A current source inverter (CSI) is proposed in [227] to achieve
good performance under unbalance using direct control with
reduced sensors and no PLL. A comparative study of three-phase
four-wire inverter topologies (split DC link, four-leg, and H-bridge
types) is carried out in [228], which concludes that the three H-
bridge inverter renders superior performance under unbalanced
scenarios. A Fortescue component-based strategy using six PI
controllers for grid-connected inverters is presented in [229] for the
unbalance control, while Suul et al. [230] proposed a virtual flux-
based voltage sensor-less approach using SOGIs for sequence
extraction. An enhanced decoupled double synchronous is
presented in [231], which simulates faulted conditions in the
network. Ivanovic et al. [232] proposed two power flow control
algorithms with current limitation validated on a HIL setup.
Different reference current generator (RCG) strategies are
compared in terms of the effects of the short-circuit ratio, angle of
the AC system impedance, and PLL parameters in [233] under
unbalances. A direct pole placement strategy from discrete state
space offering fast reference tracking capability is discussed in
[234]. Expressions for multi-objective optimisation-based RCG
schemes such as minimised active power oscillation, minimised
reactive power oscillation, minimised fault current, maximum
allowable active power injection, and maximum allowable reactive
power injection are presented in [235]. Voltage support schemes
under faults are discussed in [236], which compensate for the zero-
sequence component and consider the active power injection. A
review and comparison of the various approaches for table-based
DPC for grid-connected inverters, i.e. voltage-based DPC, resilient
voltage-based DPC, virtual flux-based DPC (VF-DPC), and the
proposed resilient VF-DPC is provided in [237], while a new DPC
strategy achieving symmetrical grid currents under unbalanced grid
voltage is discussed in [14]. An enhanced IPT-based control is
compared for its performance versus a CPT-based approach in [15]
for unbalance compensation. Another work [238] extends the IPT
in the pqr frame to achieve CC of a four-leg inverter. A new
fundamental sequence component extractor for use in distorted
utility conditions is proposed in [239] based on multiple complex
coefficient filters (CCFs) using third-order sinusoidal signal
integrators. A robust scheme for GCIs based on an internal model-
based current controller, robust PLL, and state estimator is
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demonstrated for its effectiveness under unbalances in [240], while
an improved model predictive CC scheme ensuring the fast
response is proposed in [241]. A novel control strategy to mitigate
the double grid frequency power oscillations in two-stage DGs
based on a new nominal power index is discussed in [242]. An
optimised active power control strategy in [243], a robust and fast
control strategy for load-voltage regulation in [244] and SMC-
based DPC in [245] also show enhanced performances under
unbalanced grid conditions. The issue of proper RCG under sags is
discussed in [246] while new strategies to utilise the zero-sequence
components are discussed in [247]. A simple formula is presented
in [248], which allows the estimation of the maximum real and
reactive power exchange under unbalanced grid conditions. A
flexible grid connection technique based on DPC is discussed in
[249] that incorporates multiple CCFs for component extraction. A
pole-placement-based state observer grid-voltage sensorless
strategy for synchronisation and control is discussed in [250],
which results in superior performance. Other approaches under
unbalanced conditions such as an algorithm to maximise the
converter capabilities under sags in [251], an optimal virtual flux
predictive DPC in [252], advanced dynamic voltage support
method for asymmetrical faults [253], a power decoupling strategy
to suppress oscillations in [254], energy-based control for peak
current limiting in [255], control finite state MPC in [256],
expression-based approaches to avoid oscillations and generate real
and reactive power references in [257], and a simple CC without
signal reconstruction in [258] have also been suggested.

Table 4 presents a summary of the various contributions for
unbalance mitigation in grid-connected inverters/MGs. A controller
is designed using the complex root locus method in [259], auxiliary
voltage controller for fault ride through (FRT) in [219] for
preventing over-current, and the combination of a feedback output
controller with a disturbance observer in [26] are shown to achieve
good performance under grid unbalances. An approach proposed in
[260] extends the current physical component power theory to
four-wire systems. The simultaneous active and reactive power
control is proposed in [261] based on symmetrical components
with a flexibility to achieve three objectives. A comparison of
current limiting strategies under the various reference frames is
carried out in [262] and a new strategy is proposed for superior
performance, while Bottrell and Green [263] compared CC

strategies and focused on the prevention of windup and latch-up. A
distributed strategy for synchronisation and seamless reconnection
to the grid after fault clearance is discussed in [264] and other
controls for the same objective have been discussed in [265], which
uses two adaptive filters implemented through SOGI and in [266]
the three popular PLLs: the DDSRF-PLL, the dual second-order
generalised integrator (DSOGI)-PLL, and the three-phase EPLL
have been compared for their performance. Other works about
unbalance in grid-connected mode include positive sequence- and
NS-based control strategies in [267], a four-switch three-phase
fault-tolerant structure based on finite states MPC in [268], an
improved LVRT scheme in [269], a disturbance observer-based
control in [270], an unbalanced current compensation strategy in
[271] based on fuzzy control and compensatory neural fuzzy
network with an asymmetric membership function, a new power
control strategy under faults in [272], a current limiting strategy
using sequence-based control in [273], a computationally efficient
on-purpose asymmetrical and harmonic injection current controller
in [274] to improve power quality and a novel algorithm to
calculate fault currents for different controllers in [275]. A robust
control strategy for a grid-connected MG using an adaptive
Lyapunov function-based control scheme for NS components is
discussed in [276], while Brandao et al. [277] explored how the
existing strategies for active and reactive power injection cause
variations in the short circuit ratios. An adaptive VI-based
reference generation technique for FRT is discussed in [278],
which summarises the existing strategies and proposes a sinusoidal
current reference limiter and mid-pass filtering, the performance of
which is not affected by fault severity, location or type. The control
structure proposed in [279] reduces power oscillations using the
quasi-Newton-trust region method. VU limiting is achieved by
paralleling VI in [280] while Shuai et al. [281] investigated the
fault current characteristics. Enhanced controls under unbalances
have been presented in [282] to suppress power oscillations, in
[283] for the AC/DC matrix converters, in [284] to control the
unbalanced fault current, in [285] for power oscillation
suppression, and in [286] to improve the power quality and
stability aspects. Shabestary and Mohamed [287] compared the
maximum allowable support control schemes for the performance
under unbalances and concludes that the balanced positive
sequence current strategy has the lowest maximum current. LVRT

Fig. 5  Block diagram of a typical control scheme for addressing the issue of unbalance in the grid connected mode (involving communication)
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techniques based on positive-sequence and NS current injection are
discussed in [288], while Jia et al. [289] carried out investigations
on the short-circuit responses of a combination of DGs and
synchronous condensers and proposed FRT schemes for the same.
A generalised control scheme and control algorithms for control
parameters tuning have been discussed in [290] for grid fault
control and an adaptive notch filter-based multi-purpose control
scheme for a four-leg GCI is discussed in [291] for achieving good
power quality.

The various control strategies for tackling the issue of
unbalance in MGs are summarised in Fig. 6. An adjustable strategy
for eliminating real or reactive power oscillations is described in
[292], while Kabiri et al. [293] proposed a simplified extraction
method for control under unbalances eliminating sequence
extraction. A strategy to inject balanced currents to the grid despite
the VUs is presented in [20], while Kumar and Mishra [294]
proposed an instantaneous symmetrical component theory-based
control neutral clamped three-leg VSI for superior unbalance
performance. A coordinated control strategy for parallel GCIs is
discussed in [295] for peak current limitation, while Yarmohamad
et al. [296] proposed a four-wire DSTATCOM for unbalance
mitigation. SMC is modified by adding a fuzzy function in [297]

for grid-connected VSI and a controller is designed in [298] for the
simultaneous injection of both the current sequences into the grid.
Other approaches under unbalanced grid conditions include an
integrated controller for enhanced LVRT control in [299], injection
of NS currents under sags in [300], neural network-based least
mean sixth CC technique in [301], cascaded three-loop current
controller in [302, 303], new algorithms for RCG under unbalances
in [304], proper regulation in terms of the high voltage ride through
in [305], PR-based compensation controller in [306], control of
multi-functional four-wire DGs in [307, 308], and a simultaneous
harmonic and unbalance compensation control in [309]. An
improved DPC is studied in [310] based on the inductance
estimation based on the gradient correction method. An LVRT
strategy to eliminate NS currents is discussed in [311], while
Restrepo et al. [312] proposed another DPC-based strategy. The
method to maintain balanced PCC voltage and reduce the DC link
oscillations is suggested in [313, 314], while Guo et al. [315]
provided the theoretical analysis of the oscillation phenomena
under unbalances. A study on the current limitation of the grid-
connecting converters is evaluated on a HIL platform in [295],
while an advanced NS droop control for the optimum injection of
power under two different fault types is discussed in [316]. An

Table 4 Summary of works for unbalance mitigation: grid-connected mode
Ref. Communication Ref. frame Controller Filter Voltage level Power level Expt. results
[227] ✗ STRF PR LC 80 V — ✓

[229] ✗ SRF PI L 230 V 70 kW ✗

[231] ✗ DDSRF PI LC 230 V 5.5 kVA ✓

[233] ✗ DDSRF PI L 480 V 10 MVA ✓

[235] ✗ STRF PR LC 690 V — ✓

[237] ✗ STRF direct control L — — ✗

[15] ✗ SRF PI LCL 120 V — ✗

[239] ✗ STRF PR L 415 V 15 kVA ✓

[241] ✗ STRF proposed control L 150 V — ✓

[243] ✗ STRF PR(out)P(in) LC 300Vpk 2.5 kW ✓

[245] ✗ STRF proposed control L 75 V 1 kVA ✓

[247] ✗ DDSRF PI LC 3.3 kV 10 MW ✓

[249] ✗ STRF PIR L 90Vpk — ✓

[251] ✗ — — LCL 110 V 1.1 kVA ✓

[253] ✗ — — LC 690 V 1 MVA ✓

[255] ✗ DDSRF PI LCL 380 V 100 kW ✗

[257] ✗ STRF PI(out)PR + AW(in) LCL 480 V 3.3 kW ✓

[259] ✗ SRF PI LCL 175 V — ✓

[26] ✗ STRF PR L 50 V — ✓

[261] ✗ STRF PR(out) P(in) LCL 415 V 15 kVA ✓

[263] ✗ STRF PR LCL 220 V — ✓

[265] ✗ STRF PR LC 100Vpk — ✓

[267] ✗ STRF PR LCL 155Vpk 2.3 kVA ✓

[269] ✓ SRF PI LC 400 V — ✗

[271] ✗ SRF PI LC 180 Vpk — ✓

[273] ✗ DDSRF PI LC 400 kV — ✗

[275] ✗ SRF PI LC 400 V 10 kW ✗

[277] ✗ SRF PI LC 220 V — ✗

[279] ✗ DDSRF PI L 415 V 12 kVA ✗

[281] ✗ SRF PI LCL 311 V 32 kVA ✓

[283] ✗ SRF PI LC 70 V — ✓

[285] ✗ — — — 150 Vpk 500 W ✓

[287] ✗ STRF PR LC 690 V 2.2 MVA ✓

[289] ✗ SRF PI LC 150 kV — ✗

[291] ✗ — proposed control — 350Vpk — ✓ HIL
[293] ✗ DDSRF PI LCL 110 V 5 kVA ✗

[294] ✓ NARF hysteresis L 400 V — ✗

[296] ✗ SRF PI L 100 V — ✗

[298] ✗ SRF PI LC — — ✓

[300] ✗ STRF PR LCL −220 V — ✓
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improved grid voltage-modulated control with power
compensation is explored in [317], while a sequence-decoupled
resonant control strategy is proposed in [318] for unbalance
mitigation. The comparison of fuzzy and adaptive neuro-fuzzy
controllers to control a seven-level inverter under unbalances is
carried out in [319], while a Lyapunov-based current controller
using DSOGI is proposed in [162] and the performance of a GI-
based control scheme is explored in [24]. The relationships
between maximum current amplitude and grid voltage drop and
power factor during voltage dips are analysed in [320], which
proposes a new over-current protection method based on the
maximum phase current amplitude estimation based on IPT for a
three-phase four-wire converter. A current-based droop control for
the quick recovery after faults is discussed in [321], wherein the
dynamic current limiting adjustment is combined with the power-
angle limiting method to achieve good performances under
unbalances without the need for power calculation. To overcome
the challenges associated with stability during deep voltage sags,
Wang et al. [322] developed a small-signal model of the system
and concluded that weaker grid strength, deeper voltage sags, and
higher PLL bandwidths are more likely to drive the current
controller into instability. An improved dead beat control based on

current predictive correction is used to control the GCI under
unbalanced grid voltages in [323] results in a better transient
approach and removes the uncertainties associated with the
inductor filter parameters. Sabir [324] discussed a robust control
scheme eliminating the need for a PLL for mitigating the
unbalance problem wherein the dc–dc converter is controlled by
the uncertainty and disturbance estimation controller and the dc–ac
converter uses the repetitive controller. A strategy for wind
turbines combined with a supercapacitor energy storage is
presented in [325], which uses series inductances and modified
control for better FRT performance. Miret et al. [326] proposed
control for a three-phase inverter that minimises the peak values of
injected currents under grid unbalance conditions, while an
analysis dealing with the control of positive and negative current
sequences is presented in [248], which proposes a simple
expression for the power exchange with the grid during unbalance.

Two different approaches for unbalance mitigation are
discussed in [327], wherein the inverter operates as a reactive
power compensator or a load balancer for unbalance mitigation and
the detailed expressions for the safe operating region of the inverter
are developed. Wang et al. [328] proposed optimal NS current
references for suppressing the dc-link current double-frequency

 
Ref. Communication Ref. frame Controller Filter Voltage level Power level Expt. results
[228] ✗ STRF PR LC 480 V — ✓

[230] ✗ STRF PR LC 400 V 5.5 kVA ✗

[232] ✗ STRF PR L 6 kV — ✗

[234] ✗ STRF pole placement LCL 400 V 20 kW ✓

[236] ✗ STRF/NARF — LC 690 V 1 MVA ✓

[14] ✗ SRF proposed control L 380 V 1.4 kVA ✓

[238] ✗ STRF — — 380Vpk — ✓

[240] ✗ SRF PI LC 220 V 2.5 kW ✓

[242] ✗ STRF PR LCL 381 V 2 kW ✓

[244] ✗ STRF MPR LCL 210 V — ✓

[246] ✗ SRF PI L 690 V 300 kW ✓

[248] ✗ SRF PI LC 100 V — ✓

[250] ✗ STRF SE LC 400 V — ✗

[252] ✗ STRF DPC LC 150 V — ✓

[254] ✗ — DPC LC 220 V 5 kVA ✓

[256] ✗ STRF MPC L 100 V — ✓

[258] ✗ DDSRF PI L 110 V 22.5 kW ✓

[219] ✗ STRF proposed control L 208 V l–l 2 kVA ✓

[260] ✗ SRF PI L 100 V — ✓

[262] ✗ NARF/STRF/SRF PR/PI LC 380 V 10 kVA ✓

[264] ✓ STRF — LCL 230 V — ✓ HIL
[266] ✗ STRF/SRF PR/PI — — — ✓

[268] ✗ STRF predictive control L 380 V — ✓

[270] ✗ STRF proposed control L 160 V — ✓

[272] ✗ DDSRF PI L 110 V 3.3 kVA ✗

[274] ✗ STRF PI LC — 5 kVA ✓

[276] ✗ STRF PR LC 380 V — ✗

[278] ✗ STRF PR LC 5 kV l-l 5 MVA ✗

[280] ✗ STRF PIR LC 415 V 4 kW ✓

[282] ✗ STRF Resistance-capacitor L 220 V — ✓

[284] ✗ SRF PR LCL 50 V 250 W ✓

[286] ✗ SRF proposed control L 208 V 20 kVA ✓ HIL
[288] ✗ STRF PR LCL 220 V — ✓

[290] ✗ — — — — 3 kW ✓

[292] ✗ DDSRF PI LCL 400 V — ✗

[20] ✗ NARF/SRF PI + deadbeat L 120 V 1.5 kW ✗

[295] ✗ STRF PR LCL — — ✓

[297] ✗ STRF proposed control LC 100Vpk — ✗

[299] ✗ DDSRF PI LC 415 V 56 kVA ✓

[301] ✗ STRF proposed control L 300 Vpk — ✓
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oscillations and a hybrid controller for current-source grid-
connected converters, while a detailed small-signal modelling
framework is presented in [329] with sensitivity analyses to study
the effects of parameters on the unbalanced fault characteristics. A
simple control approach eliminating the need for extra hardware
components and measurement of NS voltage and phase angle is
discussed in [330], while Montanari and Gole [16] proposed a
method to control the instantaneous power using an adaptive mno
transformation using a modified IPT. Hwang and Lehn [331]
discussed a technique to generate a space vector from a single real-
valued signal and a controller for regulating the real and reactive
powers with minimum voltage harmonics. A finite control set MPC
is proposed in [332] to enhance the stability under unbalanced grid
conditions which provides fast dynamic response and a robust
feedback linearising control strategy based on SMC is presented in
[333], which considers the dc side converter and compares the
results with a PI-based control strategy. Considering the next-
generation grid code requirements, Taul et al. [334] proposed a
general current reference strategy for asymmetrical fault control
through a direct explicit method to calculate power references and
controller gains taking into account the power limits of the
converter. The strategy discussed in [335] decouples unbalance and
harmonic compensation in the phase sequences and the frequency
domain for a grid-connected inverter and is designed to be
sequence asymmetric to achieve compensation. A new topology
and LVRT strategy for CSI-based DGs is discussed in [336], which
analyses quantitatively the relationship between steady-state DC-
link current and grid voltage and shows that LVRT cannot be
realised in a conventional CSI. A smart controller for PV-based
DGs that integrate the control for responding independently to low-
grid voltages during faults, overvoltages and during low-loading
and islanding is proposed in [337]. The performance comparison
for three different current controllers based on symmetrical
components and LQR have been presented in [338] for a NPC-

based DG for wind systems in which the evaluation is done based
on LVRT requirement fulfilment, grid-current balancing, maximum
grid-current value control and oscillating power flow. Taul et al.
[339] discussed the fundamental issue of grid-forming converter
control under grid fault scenarios and present a fault-mode
controller, which maintains the maximum converter limits. A novel
signal extraction method named as virtual input signal-based IPT is
proposed in [17], which is tested on a shunt APF for improving the
performance under unbalanced power quality issues. A feed-
forward transient compensation control strategy for doubly fed
induction generators (DFIGs) for enhanced LVRT capability under
unbalanced conditions is discussed in [340].

Shin et al. [341] proposed a new robust low-pass notch PLL-
based FRT scheme and a universal voltage sag generator for the
various grid codes with six parameters for the verification of LVRT
performances. Another study for DFIGs using a frequency-domain
modelling approach and a modified resonant controller is proposed
to improve the system response during voltage sags in [342], while
Amalorpavaraj et al. [343] proposed the use of a DVR with
combined feed-forward and feedback control for FRT improvement
of DFIG-based wind turbines. A flexible control strategy for the
operation of PV grid-connected CHB inverters during unbalanced
voltage sags is discussed in [344]. The various control schemes for
FRT schemes under unbalanced grid conditions for DFIG-based
DGs are discussed and reviewed in [345, 346]. A flexible scheme
for LVRT eliminating the need for a PLL for GCIs under
asymmetrical fault conditions is presented in [347]. A review of
RCG strategies for PV-based DGs under grid faults is presented in
[348]. An asymmetric LVRT strategy is proposed in [349] provides
allowable margins for each phase voltage magnitude rather than
controlling only the positive-sequence voltage which allows for a
seamless transition over a fault. A robust control scheme for GCIs
to compensate both positive sequence and NS powers under
balanced and unbalanced grid conditions is discussed in [350].

 
Ref. Communication Ref. frame Controller Filter Voltage level Power level Expt. results
[302] ✗ STRF PR + P L — — ✗

[304] ✗ SRF PI L 230 V 4.7 kW ✓ HIL
[306] ✓ STRF PR L 230 V — ✗

[313] ✗ DSRF PI LC 220 V — ✗

[315] ✗ STRF PR LC 221 V — ✗

[316] ✗ SRF PI LCL 250 V — ✗

[318] ✗ STRF PR LCL 230 V — ✗

[162] ✗ STRF PR L 180Vpk — ✓

[320] ✗ DDSRF PI LCL 311 V 32 kVA ✓

[322] ✗ DDSRF PI LC 220Vpk 5 kW ✓

[324] ✗ STRF proposed control L 415 V — ✓ HIL
[326] ✗ NARF proposed control L 380 V 2.5 kW ✓

[327] ✗ DDSRF PI L 380Vpk 5 kW ✓

[329] ✗ DDSRF PI L 480 V — ✓

[16] ✗ New frame proposed control LC — — ✗

[332] ✗ STRF proposed control L 380 V 15 kW ✗

[334] ✗ STRF PR LCL 400 V 7.5 kVA ✓

[336] ✗ STRF PR CL 110 V 3 kW ✓

[338] ✗ DDSRF/STRF proposed control L 37 V — ✓

[17] ✗ STRF proposed control LCL 380 V 25 kVA ✗

[341] ✗ DDSRF PI L 380 V 10 kVA ✓

[343] ✗ SRF PI — 575 V 1.5 MW ✗

[347] ✗ STRF PR LCL 220 V — ✗

[350] ✗ STRF SOGI LC 400 V 400 kW ✗

[352] ✗ STRF proposed control L 155 V (l − n) 3.5 kVA ✗

[354] ✗ STRF PR — 380 V 18.81 kVA ✓

[356] ✗ SRF — L — — ✗

[358] ✗ — — — 11 kV 1 MW ✗

[360] ✗ SRF proposed control — 6.6 kV 2.5 MVA ✗

[362] ✗ STRF PR LC 208 V 7.5 kW ✓ HIL
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Ref. Communication Ref. frame Controller Filter Voltage level Power level Expt. results
[303] ✗ SRF PI LCL 416 V — ✓

[305] ✗ — — — — — ✗

[307] ✗ SRF PI + PR LC 415 V 50 kW ✗

[314] ✗ STRF PR LC 120 V — ✗

[295] ✗ SRF PI — — — ✓ HIL
[317] ✗ SRF PI L 250 V 3 kVA ✗

[319] ✗ SRF PI L — — ✗

[24] ✗ STRF PR L 415 V 35 kVA ✓

[321] ✗ DDSRF PI LC 220Vpk — ✓

[323] ✗ STRF deadbeat L 220Vpk 10 kW ✓

[325] ✗ DDSRF PI LC 400 V — ✗

[248] ✗ DDSRF PI L 100 V — ✓

[328] ✗ SRF MPI LC 122 V — ✓

[330] ✗ SRF PI L 20 kV — ✓

[331] ✗ New frame PI + SISVC L 120 V 5 kVA ✓

[333] ✗ SRF proposed control L 45Vpk — ✓

[335] ✗ STRF PR LCL 220 V — ✓

[337] ✗ DDSRF/STRF PR LC 415 V — ✓

[339] ✗ STRF proposed control LCL 400 V 7.35 kVA ✓

[340] ✗ SRF PIR — 230 V 7.5 hp ✓

[342] ✗ DDSRF/STRF PIR LCL 230 V 25 kW ✓

[344] ✗ SRF SAW-proportional-resonant L 430 V 9 kVA ✓

[349] ✗ STRF — — 690 V 1 MVA ✗

[351] ✗ DDSRF PI + PR LC 20 kV 1 MW ✓

[353] ✗ DDSRF proposed control — 220 V 1.5 kW ✓

[355] ✗ SRF PI + PR L 400 V 50 kVA ✓

[357] ✗ STRF PR LCL 230 V 7.5 kVA ✓

[359] ✗ STRF PI + PR — 27 kV — ✗

[361] ✗ SRF PI LC 170 V 1 kW ✓

[363] ✗ STRF multiple PR LC 24.9 kV — ✗

MPI, multiple frame PI; SISVC, single input space vector controller.
 

Fig. 6  Various control strategies for tackling the issue of unbalance in MGs for both islanded and grid-connected modes
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Mirhosseini et al. [351] discussed control of a large-scale grid-
connected PV power plants operating under unbalanced grid
voltage sags without the need for phase angle synchronisation,
while a dissonant–resonant controller for negative-sequence
voltage elimination for a grid-feeding converter is proposed in
[352] and Zhang et al. [353] discussed a model predictive DPC for
DFIG under unbalanced conditions. The modelling and
experimental validation of another strategy for DFIG systems
under distorted and balanced systems is discussed in [354]. Zarei et
al. [355] proposed a control scheme to remove the third harmonic
component in the output currents of grid-following inverters, under
unbalanced grid conditions. Islam et al. [356] attempted to address
short-term voltage instability in modern distributed networks under
asymmetrical faults, while Ghahderijani et al. [357] proposed a
voltage support control strategy to mitigate the voltage imbalance
based on a minimum current approach. Oon et al. [358] aimed to
establish the various possible inverter based distributed generator
fault current characteristics, with compliance to the latest grid
codes requirements and compares five reactive current injection
techniques for their performance. Shabestary and Mohamed [359]
discussed an autonomous coordination control scheme to achieve
cooperative asymmetric low-voltage ride-through and grid support
by multiple DG units. A new smooth variable structure filter in the
DPC of inverters under unbalanced grid conditions is proposed in
[360], which eliminates NS currents and also uses an adaptive
SMC. The aspect of paper studies loss of synchronism of VSCs
during grid faults is examined in [361] and a simple PLL based on
the variable structure is proposed to improve the resynchronisation
capability. Yazdani et al. [362] proposed a current limiting scheme
for unbalanced grid conditions based on a virtual synchronous
machine for power control, while Merritt et al. [363] proposed a
unified control structure for grid connection and islanded mode
operation for a VSC to maintain the PCC voltage balanced under
unbalanced and non-linear loads. A strategy based on residential
demand response for managing unbalances for a network with
thermostatically controllable appliances is presented in [364],
while Zhou et al. [365] proposed a distributed residential direct

load control method that considers the operational constraints of
three-phase unbalanced distribution networks. Two network
reconfiguration approaches based on a look-up table-based
algorithm and a Pareto-optimisation-based algorithm have been
discussed in [366] for optimal reconfiguration in an unbalanced
active distribution network.

4 Discussion
Fig. 7 pictorially summarises the state of the various objectives and
categories for unbalance management in MGs. From the detailed
literature survey presented in this study, related to the power
quality issue of unbalance in MGs, the following points are
instructive for the islanded mode of operation:

1. Most works deal with NS control ignoring the zero sequence
components, while few studies have considered zero sequences
for individual four-leg converters, more research is necessary
for the parallel operation of these converters and the various
issues therein such as zero-sequence circulating CC, neutral
current compensation etc.

2. Most studies do not consider the full distributed energy
resource system in the studies, i.e. the DC-link voltage is
considered to be stiff. The complete system consisting of
sources, storages, and their converters along with configuration
(parallel or series connections) need to be factored in for the
analysis.

3. There is scope for research on more effective controls for the
issues such as current limitation and circulating current
suppression and protection of the system.

4. The performances of the various control schemes under
parameter variations especially the X/R ratios of the lines need
to be analysed and investigated further.

5. Flexible control strategies for improving the power quality
achieving multiple objectives such as harmonic, reactive
power, and unbalanced mitigation simultaneously, should be
researched upon.

Fig. 7  Unbalance management in MGs: a summary of objectives and strategies
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6. The effect of unbalance on the DC link is the voltage ripple.
Newer methods to eliminate this issue can be explored
especially on the DC side itself, i.e. using the controllers of the
interfacing DC–DC converters.

7. Attention needs to be focused on the architecture: four-wire
MGs can be considered for effective unbalance mitigation for
islanded MGs. Proper neutral conductor sizing and grounding
need to be carried out for the same. Controls to curb the neutral
to ground potential rise need to be devised.

8. The performance of the system under unbalanced conditions
when DGs operating with different control structures are
present in the system (combinations of different droop
techniques as a heterogeneous combination) needs to be
investigated, as researchers typically assume all the DGs in the
system work with the same control scheme (homogeneous
mix).

For the grid-connected mode of operation

1. Most studies consider only a single inverter connected to the
grid and investigate the current/ power control as per the grid
codes and protection (current limiting aspects). Multiple
parallel GCIs and MG level unbalance management in the
grid-connected mode have hardly been investigated. The
control schemes need to focus on the sharing of the unbalance
compensation goals among multiple units in the grid-connected
mode.

2. An update of the standards about unbalance faults needs to be
carried out. To date, only the German grid code has the
specifications for DG control under asymmetrical grid
conditions.

3. Efforts focusing on improved models of the DGs and systems
under unbalanced conditions are needed for efficient
imbalance/fault analysis to propose better controls and predict
fault responses and performances.

4. The available literature already reports the susceptibility of
various control strategies to parameter variations such as the
grid impedance, X/R ratios of lines etc. This needs to be
thoroughly analysed and methods to mitigate them need to be
worked upon.

5. More work needs to be carried out for multi-area MGs and
especially in hybrid AC/DC MGs. The sharing of the
unbalance mitigation efforts (and power quality enhancement
tasks) in a decentralised way between the controllers of the AC
side converters, the interlinking converters, and the DC side
converters is an aspect that needs to be researched upon.

6. Further research on effective current limitations and system-
level protection schemes is needed.

7. Control schemes ensuring fast recovery after faults, which also
ensure stable post fault operation needs to be worked upon.

8. More robust FRT schemes need to be worked upon, as existing
FRT schemes do not consider distorted waveforms which may
pose challenges in the detection of the fault inception and
clearance instances that are required for proper changing of the
control mode for imbalance management.

9. Newer strategies for the proper synchronisations with the
unbalanced grid, seamless re-connections with grid after faults
need to be explored.

10. The crucial operating aspects such as black start capability,
seamless mode transition under unbalanced grid conditions
need to be addressed.

11. The new concepts such as electric spring and soft normally
open point need to be explored for their capability to mitigate
unbalanced conditions.

12. Self-healing control strategies, reconfiguration and optimal
scheduling and management, repair and resource scheduling of
the system during and after faults and sequential service
restoration are crucial aspects that need further work.

13. Coordinated control with other power quality improvement
apparatus already existent in the system needs to be worked
upon. Furthermore, optimal control strategies for improving
the power quality achieving multiple objectives such as

harmonic, reactive power and unbalanced mitigation
simultaneously should be researched upon.

14. Further work on optimal power/load flow and dispatch
algorithms and their RT implementation under unbalanced
conditions and fluctuating renewable generation need to be
carried out.

15. Efforts need to be directed towards the unbalanced sharing and
the control and operational challenges there in between
synchronous machines, VSGs, and inverter-based DGs under
unbalanced conditions.

16. As mentioned for the islanded operation mode case, studies
need to focus on the zero sequence components flow and
control for the grid-connected system too and the issues such
as neutral-ground potential rise need to be analysed thoroughly.

In general, the works do not consider the variability in the
generation and most use only the true definition (VUF/current
unbalance factor) for the unbalance quantification without
considering the phase angle shift, which occurs under unbalanced
conditions. The issue of unbalance mitigation should also be
viewed through a systemic level and not just the control aspect.
These are some vital aspects that need to be considered in future
efforts.

5 Conclusions
Ensuring good power quality is an important aspect in the context
of active distribution and MGs today. Most works proposed in the
literature on MGs assume balanced conditions. However, with the
increasing penetration of renewables and single-phase roof-top
solar installations, the unbalance introduced in the system
increases. The management of the system under unbalanced
conditions is an important area, which has gained a lot of attention
recently. The major issues due to unbalances in the islanded mode
are overloading of the DGs due to overcurrents in the phases,
unbalanced voltages at the PCC, high-circulating currents,
disproportionate power-sharing among DGs and power
oscillations, while in the grid-connected mode, the fast detection of
faults, proper synchronisation, fault ride-through control, proper
resynchronisation with the grid in the case of disconnection during
fault and stable ramping up of the power after fault recovery, DG
power and over current limiting are the main challenges. This study
has presented a comprehensive, critical and exhaustive survey of
the various approaches which have been researched upon in this
area in the context of the islanded and grid-connected modes of
operation of MGs and individual inverter control under unbalanced
conditions. Further future directions for research have been
outlined categorically for the MG operating modes. Various control
algorithms and topology modifications have been categorised and
the work would prove to be beneficial for engineers, utility
operators, designers, researchers, manufacturers, and practitioners
in the field.
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