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ABSTRACT In this paper, a proactive and reactive multi-project scheduling problem is addressed. This
problem is related to the influences of uncertain factors, which leads to a deviation between actual
scheduling and baseline scheduling, and a recovery strategy is established in order to generate a baseline
scheduling scheme. This paper introduces a proactive multi-project scheduling sub-model. When the activity
is interrupted, the proactive scheduling scheme is used as the baseline scheduling scheme, which is embedded
in the reactive scheduling, and then, the reactive scheduling sub-model is established. The proposed model
can be used to generate alternative schedules, and to meet this need, a genetic simulated annealing algorithm
is proposed. A buffer change operator (SC) and a crossover operator are designed in a genetic simulated
annealing algorithm so that in the early stages of the algorithm, an optimum individual is produced and
protected. The performance comparison shows that the genetic simulated annealing algorithm significantly
outperforms the previous algorithms.

INDEX TERMS Multi-project scheduling, proactive and reactive scheduling, genetic simulated annealing

algorithm, optimization model.

I. INTRODUCTION
During the execution of a project, the baseline scheduling
plan is often affected by uncertain factors, which cause the
start time of activities to be postponed and the supply of
resources to be interrupted. For example, the duration of an
activity is modified temporarily, a new activity is introduced
during the project execution, and the original activity is can-
celled, all of which affected the total duration of the project.
The baseline scheduling plan is adjusted, which is caused
by uncertain factors during the project execution. Therefore,
the scheduling process of the whole project became difficult
to control.

The deterministic resource-constrained multi-project
scheduling problems have been studied [1]-[3]. Each activ-
ity in the scheduling scheme has a definite beginning and
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ending time. When an emergent event occurs, the scheduling
scheme deviates from the actual scheduling scheme, which
may bring risks to the completion of the project. Inter-
ference incidents is refer to some uncertain factors in the
scheduling execution, such as equipment failure, bad weather,
resource change and so on. The uncertain factors in multi-
project scheduling are mainly divided into two categories.
The first kind is the uncertainty caused by the external envi-
ronment. The number of activities are increased because of
the customers increased the orders temporarily, the duration
is delayed due to the uncertainty information or activities
cannot be executed normally because of the factors such as
climate or weather [4]. The second kind is the uncertainty
of the production factors, which can also be called the uncer-
tainty of the resources. The most common uncertainties of
production factors are the temporary shortage of resources
and equipment failure. In multi-project scheduling, the influ-
ence of uncertainty factors on the scheduling scheme are

VOLUME 7, 2019


https://orcid.org/0000-0002-6001-5744

W. Wang et al.: Proactive and Reactive Multi-Project Scheduling in Uncertain Environment

IEEE Access

more complex. The influence of uncertain factors on the
scheduling system may occur at any time in the execution
process [5]. Therefore, the completion time of each activ-
ity cannot be accurately grasped, when making a multi-
project scheduling plan, which weakens the performance of
multi-project reference scheduling. According to the impact
of uncertain factors on multi-project scheduling, frequent
changes to scheduling plans affect the robustness of schedul-
ing seriously and greatly increases the risk of the delayed
duration.

The research on proactive and reactive scheduling methods
in the existing literature indicate that scheduling stability is
enhanced by a setting time buffer or resource buffer, because
of the constraints concerning resource availability and the
time window during the scheduling process. Irrespective of
how robust, proactive and reactive the scheduling is, it is
impossible to determine the influence on project scheduling
with certainty. Ma et al. [6] and Deblaere et al. [7] proposed
that reactive scheduling involves optimizing the scheduling
process, random interferences were found, and a response
scheduling plan was proposed, which affect the normal base-
line scheduling with a fixed time scale or time drive, so that
scheduling continuity and stability are maintained. Reactive
scheduling can be divided into predictive—reactive schedul-
ing, full reactive scheduling, and local reactive scheduling.
These models are solved by heuristic algorithms, multi-agent
simulations, or other artificial intelligence algorithms [8].
Based on the superiority of reactive scheduling, proactive
and reactive scheduling were combined, and the baseline
scheduling scheme was repaired or re-optimized by reactive
scheduling, so that the influence of uncertain factors on the
scheduling process was reduced.

Based on the uncertainty of operation in project scheduling
and its requirements for scheduling timelines, this chapter
focuses on the problem of proactive and reactive scheduling
in uncertain environments. Part 2 describes the model vari-
ables involved in this chapter. Part 3 analyzes the optimization
objectives of multi-project scheduling in uncertain environ-
ments. Part 4 establishes proactive and reactive multi-project
scheduling models. Part 5 designs a simulated annealing
algorithm to solve the problem. In part 6, the conclusions of
this paper are presented.

II. LITERATURE REVIEW

In the literature, previous papers on proactive and reactive
scheduling mainly focused on project scheduling, produc-
tion scheduling, port scheduling and so on. For exam-
ple, He et al. [9] analyzed four methods of proactive
and reactive scheduling with uncertain disturbances and
pointed out that one of the central problems was consid-
ering the robustness and quality robustness of solutions in
this field simultaneously. Aiming at the robustness of the
quality and solution robustness, Zhao et al. [10] studied
the flow-shop scheduling problem with random failure by
the proactive and reactive scheduling theory. Chu et al. [11]
studied the proactive and reactive scheduling problem of
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emergency rescue, transforming the problem into the sta-
tionary scheduling problem of flexible job shops and
designing a genetic algorithm (GA) to solve the prob-
lem. Francesco et al. [12] studied the proactive and reac-
tive path optimization problem of uncertain information
and designed a tabu search algorithm (TSA) to solve the
problem. Wu and his collaborators [13] studied the pro-
duction scheduling problem with uncertain working hours,
analyzed the influence of an uncertain duration of key work-
ing processes on stability, formulated a proactive and reac-
tive scheduling strategy, established a two-stage proactive
and reactive production scheduling model with an uncer-
tain project duration to maximize the robustness of produc-
tion scheduling, and designed a search algorithm to solve
this problem. Lamas and Demeulemeester [14] studied a
proactive and reactive scheduling method for the resource-
constrained project scheduling problem, the rescheduling
strategy is designed which consider the uncertainty project
duration. Van eral. [15] studied the proactive and reac-
tive scheduling problem with uncertain project duration.
The robustness of the scheduling solution was enhanced
by setting the buffer time reasonably, and the model of
proactive and reactive scheduling with stochastic activity
duration was established. Deblaere ef al. [7] studied the
resource-constrained proactive and reactive project schedul-
ing problem, and used a proactive and reactive schedul-
ing policy to predict interference incidents to minimize
the negative impact of interference incidents on schedul-
ing costs. Elshaer and Yamamoto [16] studied the time
buffering problem of resource-constrained proactive and
reactive project scheduling, which copes with multiple
interruptions of project scheduling in uncertain environ-
ment. Schatteman et al. [17] studied proactive scheduling
and risk management in construction projects under uncer-
tain environment and designed a heuristic algorithm to
obtain the basic plan of proactive scheduling. Olivier and
Erik [18] analyzed the influence of interference incidents
on the project duration and cost, and time-cost trade-off of
stochastic resource-constrained proactive scheduling is stud-
ied. De et al. [15] studied the project scheduling problem
with multiple interferences, the interferences are recovered
by setting the buffers, and the multi-interference proactive
project scheduling model is designed. Deblaere et al. [19]
studied the proactive and reactive strategy of resource-
constrained project scheduling and made a proactive and
reactive scheduling strategy, based on satisfying the resource-
constrained and logical relationship, which minimized the
uncertain disturbances in relation to the duration and cost of
the project. Aiming at the robustness of the optimization of
scheduling, Davari and Demeulemeester [20] analyzed the
proactive and reactive resource-constrained scheduling prob-
lem and indicated that the contribution of the buffer-based
reactions is important. Ning ef al. [21] proposed the proac-
tive and reactive project scheduling problem, aiming at
minimizing the maximum cash flow gap of contractors.
A proactive and reactive scheduling optimization model for
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time buffers, added to the baseline scheduling, was estab-
lished, and a Tabu-simulated annealing search (Tabu-SA) and
variable-neighborhood tabu search (VNTS), as well as two
hybrid metaheuristic algorithms, were designed to solve this
problem. Shen et al. [22] studied the proactive and reac-
tive scheduling problem of software developmento’o projects
and established a multi-objective dynamic scheduling model
considering scheduling cost, duration, robustness and stabil-
ity, and designed a multi-objective evolutionary algorithm
to formulate a proactive and reactive scheduling scheme.
Li et al. [23] studied a proactive project scheduling problem
for stochastic discrete time and cost, a proactive scheduling
model is established, based on the robust optimization theory.

Ivanov and Ivanov [24] studied the optimization prob-
lem of reactive scheduling, and the adaptive scheduling
was designed in order to feed dynamic changes back into
the scheduling process. Liu et al. [25] analyzed the impact
of the disruption of the scheduling process in the supply
chain environment and designed an event- driven and cycle-
driven hybrid rescheduling method and a Pseudo-polynomial
reactive programming algorithm, based on the perspective
of multi-objective optimization. Vitoriano et al. [26] used
the goal planning method to study the reactive schedul-
ing problem. Cost, response period, priority rules and secu-
rity were considered, which affect the scheduling plan,
and a multi-objective optimization model was established.
Leung and Chen [27] used delay time and the minimization
of the number of vehicles delivered as the goal to study
the problem of the reactive scheduling of production and
distribution. Battarra et al. [28] studied vehicle allocation
and dynamic path optimization based on cluster customer
service. Xia et al. [29] studied the reactive scheduling of
transportation and the freight volume matching optimization
problem, which considered minimal carbon emissions as the
goal. A joint optimization model of vehicle loading and path
planning was constructed by Manzini [30], and the problem
of just-in-time reactive material distribution scheduling of a
mixed flow assembly line was studied. Miao ez al. [31] stud-
ied the problem of vehicle transportation scheduling, with a
fixed path, under a multi-transit system, with a time window.
Chen et al. [32] analyzed energy-efficient scheduling for
real-time tasks in an uncertain cloud computing environment.

All the analysis shows that, firstly, by taking the stability
of scheduling as the research object, some scholars strive to
minimize the deviation between the actual plan and the base-
line plan formulated in the uncertain environment. Buffers
of the reasonable setting activities are used as the proactive
scheduling and reactive scheduling strategy to increase the
stability of the project, and multiple heuristic algorithms are
used to solve the problem. Secondly, by taking the resource
uncertainty of scheduling as the research object, under ran-
dom resource-constrained, proactive scheduling strategy or
reactive scheduling strategy is formulated in order to min-
imize costs in uncertain environments, which disturbances
of duration and cost is minimize under uncertain factors.
Thirdly, by taking the robustness of scheduling as the research
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object, effective buffers are designed in an uncertain envi-
ronment, so that scheduling efficient is better. On the basis
of meet the requirements of active resource constraints and
logical relationships. The proactive scheduling and reactive
scheduling strategies are designed to minimize interferences
of duration and cost in multi-project scheduling.

IIl. THE BUFFER SETTING STRATEGIES

Based on these analyses, we could determine that proactive
and reactive scheduling was based on the historical data,
predict the possible uncertain factors in scheduling, and
construct the corresponding recovery strategy in advance.
In order to improve the robustness of the scheduling system,
the proactive and reactive scheduling policy was used to
analyze the multi-project scheduling problem in uncertain
environments. The countermeasure to deal with an uncertain
environment was to set up the reasonable buffer resource and
buffer time, so as to deal with interference incidents quickly
and minimize the disturbance deviation of multi-project
scheduling costs and duration. First, multi-project scheduling
problems belong to the resource-constrained project schedul-
ing problems, and the impacts on the resource constraints
of a scheduling scheme should be taken into account when
making decisions. In view of the uncertain factors in project
scheduling [33]-[36], the historical data was analyzed by
prediction methods [37], and countermeasures to the causes
of interference incidents were formulated. Secondly, it was
necessary to determine whether the resource substitution or
the resources buffer was allowed in the scheduling scheme
in the proactive and reactive scheduling strategy. When there
were the buffer resources in the multi-project scheduling
system, the availability of resources in multi-project schedul-
ing could be reduced, the buffer resources were allocated in
the initial stage, which can effectively deal with the project
interference caused by the resource shortage. Finally, one
or more time buffers are inserted between the activities of
the project to avoid the conflict of resources, and the multi-
project scheduling problems with multi-factor disruptions can
be effectively solved. Figure. 1 displays the decision-making
tree of multi-project proactive scheduling.

Buffer resource setting. Suppose there is a renewable
resource, this kind of renewable resource can cause resource
interruption, which depends on the duration deviation and the
distribution of the recovery scheduling time, after the inter-
ruptions. Therefore, it is necessary for the reference schedul-
ing to set a certain buffer resource (or relaxation resource)
in order to maintain the continuity of the project. If the
buffer source is formulated, the interruptions of one or more
resources will not necessarily cause the project schedule to
be interrupted. The setting of the resource buffer depends on
the historical data. It is necessary to statistically analyze the
distribution of available resources and make the reasonable
buffer resource according to the data. The buffer resource
calculation is as follows:

Plax =)) = <C}k>Aj;; (1 — A% ey
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Proactive scheduling policy

minimize the project total duration

minimize the project total cost

\ \ \
Resources buffer Without Resources Without
resources buffer buffer resources buffer
\ \ \ \
Time Without Time Without Time Without Time Without
buffer time buffer buffer time buffer buffer time buffer buffer time buffer

FIGURE 1. Decision-making tree of multi-project perturbation scheduling.
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E (Xx) represents the distribution of the anticipated
interruption time; E (Yy) represents the distribution of the
anticipated recovery time. When the discrete probability dis-
tribution of the resource is known, the expected value of
the available amount of resources can be determined, and the
available amount of the buffer resource is smaller than the
maximum amount of used resources. Therefore, it is neces-
sary to establish a scheduling mechanism to limit the maxi-
mum of the buffer resource. If the buffer resource exceeded
the upper limit of resource availability, the scheduling scheme
will be infeasible.

Time buffer setting. If the method of increasing the buffer
resource is not adopted, another method is to increase the
buffer time. The buffer time is set before the slack time
and is then used to proactively and reactively deal with the
influence of potential disturbances, such as the interruption of
resources or changes in activities in the multi-project schedul-
ing scheme. In order to make the starting time of the activity
as early as possible, it is necessary to use the method of
iterative right shift in a feasible reference scheduling scheme.

To achieve the minimization of the instability of the project
to meet a deadline, the buffer time /; is inserted before the
corresponding activity j. The buffer time is calculated as

follows:
Ii= Z wjj max {0, sigj—1) +dig—1)+E (Ai(/—1)+sij)} 3)
Jj=PRED

The symbols used in this article are defined as follows:

IV. ESTABLISH THE MIODEL OF PROACTIVE AND
REACTIVE MULTI-PROJECT SCHEDULING
A. OPTIMIZATION SUB-MODEL OF PROACTIVE
MULTI-PROJECT SCHEDULING
Based on the particularity of proactive and reactive schedul-
ing and its demand for scheduling timeliness, its core goal is
to minimize the deviation of scheduling and fully consider the
influences on time and cost. According to the above analysis,
the proactive multi-project scheduling model is established in
uncertain environments as follows (1)—(11), as shown at the
bottom of this page.

Formula (4) is an objective function that represents
the minimization of the disturbance deviation between the

l
minG=nY E(Af-¢f +A;

P
S ) A=) )Y IS — sy

4
i=1 i=1 j=1

s.t. spo = 0; (5)

sij = Ajj+ max (si—1) +dij), s <8, YieN, Vje{l,J}; (6)

Eij—ny+1<Ej;, VieN,Vjell,J}; @)
N J

er;j( <RP, VieN,Vje({l,J}, Yk € R°, Vm; € M; )
i=1 j=1
N J

YD r <R, VieN,Vje(l,J}, Vp R, Vm; € M;; ©)
i=1 j=1

YD ol ok <Wj, ¥p €R', Vk €K; (10)
ieN jeJ

ZZ’”;W - Wimp = W;p, Yv € {0, dim; — 1}, Vp € RY; (11)
ieN jeJ
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TABLE 1. The symbols used in this article.

i indicates that there are i subprojects in multi-projects

j indicates that the number of activitoes in each subproject

A . indicates that the deviation between the actual

g

completion time and the planned completion time

Sl,j represents the actual start time of the activity j in the

subproject i

s; represents the planned start time of the activity j in the

subproject i

¢, represents the additional cost caused by the deviation of
the construction period

¢, represents the decreased cost caused by the deviation of
the construction period

O represents the project’s deadline

A, indicates that the deviation between the completion time

and the deadline is negative in the subproject i

A" indicates that the deviation between the completion time

and the deadline is positive in the subproject i

., indicates that demand of resource K in activity 4;
i

R/ (k=1,2,--- k) indicates that the available amount of
renewable resources k

RI‘; (p=12,---,p) indicates that the total amount of non-

renewable resources p

I’[ﬁ{ indicates that the demand amount of renewable

resources of the activity j in the subproject i

I”i]; indicates that the total amount of non-renewable

resources of the activity j in the subproject i

I ; represents the inserted time buffer of the activity ; in the
subproject ¢

E(X,) represents the distribution of the desired interruption

time

E(Y, ) represents the distribution of the expected recovery

time

d, indicates the duration of the activity j of the subproject i

7

Eij represents the earliest start time of the activity j of the

sub-project i

Vi indicates that the activity j of the sub-project i non-

renewable resource requirements under the execution mode
m

w,,, indicates that the sub-project 7 is divided into k stages

imy

under the execution mode m, which is at the corresponding
stage @,, =1

@, indicates that the sub-project i is divided into p stages

under the execution mode m , which is at the corresponding

=1

stage Do

Wlﬁ indicates that the demand quantity of activity j of the

sub-project i cannot update the demand for resources
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TABLE 1. (Continued.) The symbols used in this article.

Wl_ji’ indicates that the demthe activity j of the sub-project i

cannot update the demand for resources
J represents the number of activities in each subproject

A indicates that the deviation between the actual

completion time and the planned completion time is negative
+
i

represents the additional cost of the increased caused by
the deviation of the construction period

(e . .
U represents the additional cost of the reduction caused by
the deviation of the construction period

5 represents the buffer resource of the activity j in the
subproject i

500 indicates that the start time of the multi-project
scheduling activity is zero

Wf indicates that renewable resource requirements of the
il

activity j in the subproject i

v

i» indicates that non-renewable resource requirements of
the activity j in the subproject i

P

e .

mk - indicates that renewable resource requirements under
the execution mode m of the activity j in the subproject i

@, indicates that the subproject i is divided into k stages
under the execution mode m, which is at the corresponding

stage @y, =1

@,,, indicates that the subproject i is divided into p stages
under the execution mode m, which is at the corresponding

stage @y, =1

P Lo
' represents the buffer resource of the subproject i

v.
Y indicates that the added resources of the activity j in the
subproject { when interruption occurs

duration and the cost of multi-project scheduling in uncertain
environments. The optimization goal is transformed into the
effect of minimizing the disturbance on the duration of the
multi-project scheduling, when n = 0. The optimization goal
is transformed into the effect of minimizing the disturbance
on the cost of the multi-project scheduling, when n = 1. The
value range of 7 is from O to 1, which represents the trade-off
decisions, made by decision-maker, between the two objec-
tives of the multi-project scheduling. Formula (5) indicates
that the starting time of the multi-project scheduling activity
is zero. Formula (6) indicates that the completion time of the
multi-project scheduling is before or equal to the deadline of
the project. Formula (7) represents the immediate predecessor
and successor relationship of the activity, that is, the starting
time of the subsequent activity is not equal to the ending time
of the immediate predecessor activity. Formula (8) and (9)
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represent the restrictions on the non-renewable resources
and the renewable resources, respectively. Formula (10) indi-
cates that the demand for non-renewable resources by activ-
ities cannot exceed the resource demand Wifk given in each
stage. Formula (11) indicates that the demand for renewable
resources cannot exceed the resource demand WijV , given in
each stage. In each stage p, for all ongoing activities, the total
demand for any kind of resource cannot exceed the available
amount of that resource.

B. OPTIMIZATION SUB-MODEL OF REACTIVE
MULTI-PROJECT SCHEDULING

In reactive scheduling, with the execution of the project, the
activity duration upwards to a fixed value and the fixed value
may deviate from the expected value in the proactive and
reactive schedule, leading to the actual start time of the activ-
ity being inconsistent with its baseline start time. Inevitably,
the baseline plan will be adjusted. Reactive scheduling can
be expressed under the premise of a baseline scheduling plan,
which is given, and the actual start time is determined based
on the actual duration, minimizing the total amount of buffer
resources due to delays of the activity start time. The model
established is as follows:

N J
Min Y% c (s — Si) (12)

i=1 j=1

st. Sp =S8}

ij» ViEN; (13)

J
Y rj<Pi VieN (14)
j=1

Formula (12) represents the minimization of the total cost
of added buffer resources due to the delay of the activity start
time. Formula (13) indicates that the start time of the current
activity is the start time of the baseline schedule, that the
baseline plan is adjusted when each interruption occurs, and
that the baseline start time S l-lj’- of the activity should be updated
to the new start time Si]T‘ . Formula (14) indicates that the added
resources amount is less than the amount of resource buffers.
Equations (8)-(11) in the proactive and reactive scheduling
model are still applicable in the reactive scheduling model.

The above two sub-models are related through the baseline
scheduling. The proactive and reactive model generates a
baseline start time for time-buffered activities, which, as a
known parameter, is inputted into the reactive model, and
an original benchmark is provided to determine the actual
start time. According to the actual schedule change, baseline
scheduling is adjusted by reactive scheduling in order to make
the scheduling feasible.

V. DESIGN GENETIC SIMULATED

ANNEALING ALGORITHM

Leus and Herroelen [38] proved that under the uncertain
conditions, the stability problem based on the project dead-
line and discrete interruption is NP-hard. Kolisch et al. [39]
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proved that multi-mode resource-constrained project schedul-
ing problem is also NP-hard. The genetic algorithm and
simulated annealing algorithm have been widely used in
many research fields [40]-[43], but their defects have also
been found in the process of research. For example, in the
early stages of the genetic algorithm, a large difference in
population individuals led to premature convergence. In the
later stage of the algorithm, the small individual difference
of population led to the superior individual entering the next
generation population, without an obvious advantage in the
evolutionary process. Therefore, it was easy to prematurely
converge, and the ability of local optimization was poor,
which was a disadvantage of the genetic algorithm. However,
the simulated annealing algorithm could make up for its
defects. The simulated annealing algorithm could effectively
avoid falling into the local optimal solution and find the
global optimal solution of the objective function by using the
Metropolis criterion to optimize the process. Because of its
dependence on the initial temperature and other parameters,
the global convergence required a higher temperature in
the removal process, and the evolution rate was also slow.
In this paper, a genetic simulated annealing algorithm was
designed by combining the genetic algorithm with the simu-
lated annealing algorithm. The simulated annealing algorithm
could control the convergence of the algorithm and avoid
falling into the local optimal solution. The two algorithms
were combined to form a parallel genetic simulated annealing
algorithm, in which only one solution was reserved for each
unit of time in the operation to avoid the interference of use-
less information and historical data in the search process. The
combination of a simulated annealing algorithm and genetic
algorithm could improve the evolutionary ability, optimiza-
tion performance and search ability of both. In the genetic
simulated annealing algorithm, the crossover and mutation
operation preserved the superior individuals of the parents
and increased the diversity of the population. The simulated
annealing process effectively controlled the convergence of
the algorithm, enhanced the global optimization capability of
the algorithm and improved the performance of the algorithm.
Based on the above analysis, in view of the complexity of
the proactive and reactive multi-project scheduling problem
in uncertain environments, the genetic simulated annealing
algorithm could not only obtain the global optimal solution,
but also accelerate the solution speed and efficiency of the
algorithm.

To ensure the robustness of the scheduling, which carries
on the optimized scheduling aimed the cost and duration
minimization. In this chapter, the simulated annealing algo-
rithm and genetic algorithm were integrated effectively, and
the genetic simulated annealing algorithm was designed to
solve the problem, which improved the performance of the
genetic algorithm. In the initial stage of the genetic algorithm,
the population of the genetic algorithm was diverse, a partial
adjustment is made in the population of the simulated anneal-
ing algorithm. In the later stage of the genetic algorithm,
When the population is convergent, the search of the genetic
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algorithm has hysteresis. The simulated annealing algorithm
preserved the diversity of the population and avoided prema-
ture convergence, caused by the genetic algorithm. Therefore,
on the basis of genetic diversity, that is adjusted adaptively
according to population diversity. In the genetic simulated
annealing algorithm, the probability of selection is deter-
mined by the temperature parameter, the higher the temper-
ature parameter, the higher the probability of acceptance.
With an increase of the population diversity, the temperature
parameters of the population would decrease. The design
procedure of the genetic simulated annealing algorithm is
shown in Figure 2.

Genetic Simulated Annealing Algorithm
inputs:population-size, number-generations, Pc,Pm, number-interations,a-
cooling factor
outputs:non-dominated-solution-set
procedure
population=generate-initial-population(population-size);
generation-1;
while (generation<number-generations) do
simulated-annealing-stage(population,number-interations,a);
mating-pool=parent-selection-process(population);
offprings=crossover-process(mating-pool,Pc);
mutation-process(offsprings,Pm);
population=suvival-selection-process(population,offprings);
generation=generation+1;

end while

non-dominated-solution-set=get-non-dominated-solutions-

return non-dominated-solution-set;

FIGURE 2. Genetic simulated annealing algorithm design.

The steps of the genetic simulated annealing algorithm are
as follows:

Coding design: in this paper, multiple sets of coded
chromosome structures are selected. The chromosome genes
correspond to the activity numbers, and the genes value corre-
spond to a priority list. Natural coding represents the activity
priority, and the priority is a natural number between 1-m.
The higher the value of the priority, the greater the priority is.
In order to ensure the validity of the chromosomes, the one-
to-one correspondence between the priority of the activity
with the gene must be established, satisfying the requirements
of the uniformity of the spatial distribution of the solution and
the searching generality.

In order to improve the efficiency of the algorithm, all ini-
tial solutions must be feasible solutions, when generating the
initial solution. Each feasible solution (AL™, ML™  SL")
is generated according to the representation method of the
above solution, in which AL™ indicates that a list of activity
orders is randomly generated under logical relationship con-
straints; SL™ means that, on the time margin list, all &; are
defined as 0; and ML™ indicates that each activity randomly
selects an execution mode.

Fitness function: the fitness function reflects the quality of
the solved feasible solution. The fitness function is designed
as fit (t), fit (1) = G (¢), in which the target value of the
individual is represented by G (¢), so the larger the fitness
function value, the better the individual.
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Selection operator: the parental selection process is used
to decide a feasible solution that constitutes the crossing
pool population, which is used to generate new feasible
solutions in the selection operator. Two feasible solutions in
the population are selected randomly, and the better of the
two is incorporated into the crossing pool. To achieve this,
repetitive operation should be performed, until the number of
populations in the crossing pool reaches M, where M is the
population size.

Crossover operator: the crossover probability P, is set, and
two insertion points C; and Cr, 1 < C; < C; < N,
are selected randomly, exchanging the substring between two
points. After deleting the same location coding of the parental
activity list, we copy it onto the offspring in accordance
with the original coding sequence. If an offspring activity list
coding that violates the constraint is generated, the cross-in
position will be adjusted.

Mutation operator: for the mutation operation of a given
list of activities, the location of the activity is set as p =
1,---,N — 1. If there is no predecessor and successor rela-
tionship between p and p + 1, we need to select the location
of p and p + 1 with the mutation probability P,,, performing
the mutation operation. Performed by the mutation proba-
bility P,, by mutating the activity sequence at any position,
the mutation operation for the priority of the activity is a
random reset process, generating a new activity sequence.

Buffer change operator: For the current buffer list SL™,
select an activity to set its buffer value ¢; to a value in
the interval [0, L;;,, — E;,]. The adjacent vertex SL™ of the
current solution is generated, and ML™ and SL™ remain
invariant, which are denoted by ALYmd and pMLdmd,

Annealing process: the optimal feasible solution of the
activity will be preserved during this process. The parental
population is replaced with the new population, generated
by the operation, and the fitness value of the chromosome
is recalculated. If the fitness value of the new population is
higher than that of the best, the chromosomes corresponding
to the new fitness value will be replaced with the original
optimal chromosomes.

The acceptance probability of the annealing process: the
proportional cooling method is used in this paper. The anneal-
ing cooling function is #;4+1 = # - r, and the decay factor is
r = 0.95. We assume that the solution p is the current solu-
tion, of which the solution g is the neighborhood solution, and
Af is the incremental target value. If Af < 0, the algorithm
moves from p to ¢; and if Af > 0, the probability P, is used
to determine whether it moves or not.

Termination condition: when the annealing temperature is
tr = 60°C, the annealing process reaches an inner equilib-
rium state, and the operation stops.

VI. EXPERMENT AND SIMULATION

A. SIMULATION TESTS

The actual case data is analyzed to study the proactive and
reactive and reactive scheduling problem in this chapter.
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FIGURE 3. Genetic simulated annealing algorithm flow.

TABLE 2. Duration and cost information on proactive and reactive
multi-project scheduling.

Activity  dj; C  Activity dj C  Activity d; C
Ay 3 15 Ay 1 6 As 2
A 2 10 Ax 2 8 Ax 2 8
Az 3 9 Ax 2 11 Ass 3 12
Ay 2 12 Ay 3 9 Ay 2 15
Ais 2 4 Ass 2 14 Ass 3 12
Ajs 1 6 A 3 8 Ase 3 15
Ay 3 9 Ay 2 13
Axg 3 15
Ay 4 7
Asig 3 12

The optimization model of proactive and reactive and reactive
scheduling is established in uncertain environments, and the
genetic simulated annealing algorithm is used to simulate
the experiment. Each activity represents the corresponding
working procedure, and the relevant information of the activ-
ity is shown in table 2, which includes 28 activities, virtual
start activities and virtual end activities. There are 7 kinds
of resources, including 4 kinds of renewable resources and
3 kinds of non-renewable resources. The relationship between
multi-project activities is shown in figure 4. The budget of
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FIGURE 4. Multi-project network diagram.

the proactive and reactive multi-project scheduling is 260, the
duration of the proactive and reactive scheduling is D = 20,
and the weight proportion is = 0.5, between the two objec-
tives of the total cost and the total duration in multi-project.

TABLE 3. Time buffer and resource buffer of proactive and reactive
multi-project scheduling.

activity P I activity P I activity P

Ay 5 6 Az] 2 4 Az 5

A 5 5 Azz 2 5 Az 5

S~ B~ s~

Az 8 0 Ax 2 5 Asz 5

Ay 5 Ay 2
Axg 2 7
A 2 0
Azig 2 3

The genetic simulated annealing algorithm is programmed
by MATLAB, and the established model is solved. The total
cost of the proactive and reactive multi-project scheduling
project is 236. The total duration of the multi-project schedul-
ing meets the prescribed deadline and remains within the
limit of the total budget of 260. Table 1 displays duration
and cost information relating to the proactive and reactive
multi-project scheduling. Table 3 shows the buffer time
and buffer resources of the activities related to the proac-
tive and reactive multi-project scheduling, which shows
that the proactive and reactive multi-project scheduling pos-
sesses good robustness, and the value of the object function
is[[=-9.8.

Due to the uncertainty of the scheduling, proactive and
reactive and reactive scheduling attaches more importance
to the total cost and total duration. The weight distribution
coefficient n of the two optimizing targets is a key parameter.
In order to analyze its impact on the proactive and reactive
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FIGURE 5. The contrast diagram of algorithm convergences.

TABLE 4. n = 0.3 Proactive and reactive multi-project scheduling
computation.

Random Based

scheduling  scheduling GASA
Without M‘g;lze 1348.55 32556 276.60
resource Minimize
: buffe
Without uffer ey 1004.60 225.60  177.90
time Minimi
buffer MMIZE 615 55 12250  112.20
Resource cost
ffi inimi
buffer  Minimize g, | 10400  76.50
duration
. Minimize
Without oot 1080.30 23450  208.35
resource Minimi
, buffer 1IZE 54620 15270 140.10
Time duration
ffi inimi
buffer Minimize 54, 1 10735 96.50
Resource cost
P L
buffer  Minimize ¢ 80.70 72.60
duration
Average 779.19 169.11  145.09

scheduling objective function in uncertain environments,
the results of the proactive and reactive multi-project schedul-
ing are analyzed, when n = 0.3, n = 0.5, and n = 0.6,
and the other parameters are invariant. Table 4, Table 5 and
Table 6 present the corresponding analysis results.
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TABLE 5. 5 = 0.5 Proactive and reactive multi-project scheduling
computation.

Random Based

scheduling  scheduling  OASA
Without M‘L‘glze 1117.40 29650  239.30
resource Minimize
: buff
Without uffer e 1011.30 24390  198.80
time Minimi
buffer MMIZE - 477 40 96.75 80.80
Resource cost
buffer  Minimize 1 4 82.90 67.80
duration
. Minimize
Without cost 707.85 141.65  121.35
resource Minimi
, buffer 1IZE 711 40 14590  128.80
Time duration
ffi inimi
buffer Minimize g3 ;5 5365 49.10
Resource cost
ffe inimi
buffer  Minimize 515 5 5540 48.00
duration
Average 635.65 139.58  116.74

TABLE 6. n = 0.6 proactive and reactive multi-project scheduling
computation.

Random Based

scheduling  scheduling GASA

Without M‘ggg‘tlze 1025.15 296.50  232.30
resource M]nlml e
. ff 7

Without buffer duration 866.30 234.40 188.00
time Minimi

buffer MMIZE 393 05 93.85 78.65
Resource cost
buff inimi

utier Minimize =5, o5 6850  55.10
duration
. Minimize

Without oot 502.20 104.35 95.90
resource M R

. buffer INHIIZE 486,40 97.10 87.60
Time duration

buffer Minimize 53 15 39.85 36.10
Resource cost

buffer  Minimize 5 o, 35.60 29.20
duration

Average 49272 12127 100.36

Based on the study of the proactive and reactive scheduling
strategy to predict the possible start time of each activity,
the effect of uncertain factors on the disturbance deviation c;j
of the cost and duration Aj; of each activity can be predicted.
Under the premise of not exceeding the project cost budget
and project deadline, the total cost and total duration are
minimized in proactive and reactive scheduling. From the
above analysis, it can be concluded that, with the increase
of cost, the duration of the project gradually decreases, and

l
with the increase of }_ E (A7 - ¢ + A7 - ¢;"), the impact of
i=1

=
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disturbance incidents on the proactive and reactive scheduling
targets shows a monotonous decreasing trend.

B. COMPARATIVE ANALYSIS OF DYNAMIC SCHEDULING
AND PROACTIVE AND REACTIVE-REACTIVE SCHEDULING
In this paper, the proactive and reactive multi-project
scheduling problem is proposed, and we download the
standard study from the project scheduling problem web-
site, http://129.187.106.231/psplib/, take PSPLIB data, J10,
J20 and J30, as examples, and use dynamic scheduling and
proactive and reactive scheduling to test them (see Table 7 for
details). MPDSP(%) (Multi-project Dynamic Scheduling
Problems, MPDSP for short) represents the average deviation
of the scheduling, based on MPDSP; MPPRSP(%) (proac-
tive and reactive multi-project and reactive scheduling prob-
lems, MPPRSP for short) represents the average deviation of
the scheduling, based on MPPRSP; Impr.(%) indicates the
improvement of the average completion time of A, relative
to B; BETTER indicates the improvement of the proactive
and reactive scheduling scheme on the dynamic scheduling
scheme; EDUAL indicates similarity between the proactive
and reactive scheduling scheme to the dynamic scheduling
scheme; WORSE indicates the degree to which the proactive
and reactive scheduling scheme is worse than the dynamic
scheduling scheme. As can be seen from Table 7, the duration
and resource availability is closely related under resource
constraints, and the duration is shortened significantly under
the proactive and reactive scheduling mode.

TABLE 7. Comparative results of dynamic scheduling and proactive and
reactive-reactive scheduling.

MRCPSP( MRI\(IJII’)-SP ( Impr. BETT EQU  WOR

%) %) (%) ER AL SE
710 32.27 31.54 0.49 47 488 1
120 17.76 17.03 0.55 99 432 23
130 13.75 13.23 0.41 108 404 40
110! 15.49 14.94 0.42 36 500 0
120! 8.27 7.61 0.53 68 486 0
130! 5.6 5.06 0.44 74 478 0

C. COMPARATIVE ANALYSIS OF ALGORITHMS

In this paper, the standard genetic algorithm, Tabu search
algorithm and genetic simulated annealing algorithm are used
to analyze the above examples in order to test the perfor-
mance of the genetic simulated annealing algorithm. The con-
vergence of the calculation results, using above algorithms,
is shown in Figure 5.

It can be seen, from Figure 5, that the Tabu search algo-
rithm has the fastest convergence rate, but it is easy to gen-
erate a local optimal solution. While the convergence rate of
the genetic simulated annealing algorithm is slower than the
Tabu search algorithm, its decreased speed of convergence
is the fastest. Therefore, its global convergence ability is the

VOLUME 7, 2019

TABLE 8. Comparative analysis of simulation resoults.

Simulation experiment results

Algorithm The Search ~ Average
. Worst .

optimal Average  Calculating  success search

value . . .

value value time rate iterations
Standard

genethic 0.809 0.1 0.643 12.2 32% 53.31
algorithm
Tabu

search 0.809 0.11 0.706 16.5 31% 25.32
algorithm
Genetic

simulated 4 659 014 0753 8.9 47% 3436
annealing
algorithm

strongest among the three. Moreover, in order to verify the
validity of the algorithm, the above example is calculated
20 times to calculate the optimal value, the worst value
and the average value, and the calculation results are shown
in Table 8.

The data of Table 8 are analyzed. It is found that the genetic
simulated annealing algorithm has the highest search success
rate, and the Tabu search algorithm has the lowest search
success rate. In the calculation results of the genetic simu-
lated annealing algorithm, the worst value and the average
value are the best of the three algorithms. This proves that
the genetic simulated annealing algorithm has the strongest
global search ability.

For the proactive and reactive multi-project schedul-
ing problem in uncertain environments, the above three
algorithms can calculate the better solution. However, inter-
ference incidents lead to activity disruption in uncertain envi-
ronments, and the buffer change operator (SC) and crossover
operator are designed in the genetic simulated annealing algo-
rithm. This means that, in the early stages of the algorithm,
the optimum individual is produced as soon as possible,
the optimum individual is protected, and the algorithm has
a strong capability of global search. Application examples
show that the genetic simulated annealing algorithm is more
efficient and robust than the two other algorithms.

VIl. CONCLUSION

In this paper, the proactive and reactive multi-project schedul-
ing problem was proposed. First, we defined the problems
studied, analyzed the interference incidents based on histor-
ical data, a baseline scheduling is formulated, the potential
interference incidents are predicted, and the recovery strategy
is formulated. The goal was to minimize the duration and
cost, which cause by the interference incidents in uncer-
tain environments. Based on the establishment of proactive
and reactive multi-project scheduling in uncertain environ-
ments, from the computed examples, a scientifically rational
buffer of multi-project scheduling is designed, so that it can
effectively recover the interference in the scheduling system.
When the activity is interrupted, the reactive scheduling mode
is adopted, and buffer resources are used, in order to quickly
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recover the project operation. It could also achieve the goal
of minimizing disturbances relating to the schedule duration
and cost, which are caused by disturbance incidents. Based on
the above analysis, the following conclusions were drawn:

First, according to the characteristics of the proactive and
reactive scheduling problem in uncertain environments, this
paper analyzed the recovery strategy of proactive and reactive
scheduling, after disturbance incidents occurred, and con-
structed an optimization model, aiming at minimizing the
cost and duration of disturbances. A proactive scheduling
sub-model is constructed. When the activity is interrupted,
the proactive scheduling scheme is used as the basement
scheduling scheme, which is embedded into the reactive
scheduling, targeting the minimization of the total cost of
adding resources, and the reactive scheduling sub-model is
established.

Second, the study shows that it is no simple linear rela-
tionship between the stability of proactive scheduling and the
total cost of the project, but it is related to the resource cost
of adding the buffer. The results show that adding buffers can
reduce the impact of interference incidents in scheduling, but
it is at the cost of increasing the resources cost.

Finally, the genetic simulated annealing algorithm was
designed to solve the problem. In the genetic simulated
annealing algorithm, the crossover and mutation operation
retained excellent individuals of the parent generation and
increased the diversity of the population. The simulated
annealing process effectively controlled the convergence of
the algorithm. The global optimization ability was enhanced,
and the performance of the algorithm was improved.
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