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A B S T R A C T

Success Likelihood Index Model (SLIM) is one of the widely-used deterministic techniques in human reliability
assessment especially when data is insufficient. However, this method suffers from epistemic uncertainty as it
extremely relies on expert judgment for determining the model parameters such as the rates and weights of the
performance shaping factors (PSFs). Besides, given an operation consisting of several tasks, SLIM calculates the
human error probability (HEP) by ignoring possible dependencies among the tasks.

The present study is aimed at using Bayesian Network (BN) for improving the performance of SLIM in
handling uncertainty arising from experts opinion and lack of data. To this end, SLIM is combined with BN to
form the so-called BN-SLIM technique. We demonstrate how BN-SLIM can consider uncertainty associated with
the rates of PSFs by using probability distributions. BN-SLIM is also able to provide a better estimation of human
error probability by considering conditional dependencies resulting from common PSFs. The probability up-
dating feature of BN-SLIM can be used to identify the PSFs contributing the most to human failure event. The
outperformance of BN-SLIM over SLIM is demonstrated via an illustrative example.

1. Introduction

Human factor is one of the main causes of accidents in nuclear
power plants, aerospace systems, marine industry, and the oil and gas
industry [1]. In the past two decades, human error consequences have
led to the environmental damage, major capital loss and noticeable
death toll. In March 2005, the BP refinery explosion in Texas City
caused 15 deaths and 180 injuries. According to the Chemical Safety
and Hazard Investigation Board (CSB) report, human factor deficiencies
were to blame for the accident [2]. In August 2006, a fatal runway
overrun in Kentucky caused 49 deaths. The final report issued by the
national transportation safety board revealed that human errors on the
part of the pilots and the air traffic controller were to blame for the
crash [3]. Therefore, it is essential to identify potential human errors
and estimate their occurrence probability in the operation of complex
systems and processes.

Human Reliability Analysis (HRA) is a systematic approach to
analyze and identify the causes and consequences of human errors in
different human-machine systems. HRA aims to diminish the likelihood
and consequences of human error by recognizing and assessing how
humans affect system safety [4]. An integral part of HRA is assessing the
Performance Shaping Factors (PSFs), i.e., the factors influencing

Human Error Probability (HEP). In other words, PSFs are environ-
mental, personal or task-oriented factors with positive or negative ef-
fects on human performance in different contexts [5].

During the last decades, a lot of research has been conducted to
improve HRA methods, resulting in two main generations of HRA
techniques. In the first generation techniques, such as Technique for
Human Error Rate Prediction (THERP) [6], Human Cognition Relia-
bility (HRC) [7], and Human Error Assessment and Reduction Tech-
nique (HEART) [8], human is considered as a mechanical or electrical
component (depending on the context) who inherently has deficiencies
[9]. These techniques focus on the characteristics of tasks much more
than the effects of the context and the environment in estimating the
HEP. The second generation techniques, such as Cognitive Reliability
and Error Analysis Methods (CREAM) [10], Standardized Plant Analysis
Risk Human Reliability Analysis (SPAR-H) [11] and Information, De-
cision and Action in Crew context (IDAC) [12], were developed to
improve the first generation techniques. In the second generation
techniques, the operator cognition and context are considered as the
major contributing factors to the HEP. However, the both generations
have some limitations such as being highly subjective, lacking a causal
mechanism to link PSFs to the operator performance [13], and not
being easily compatible with system safety assessment models [14].
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Among the HRA methods, Success Likelihood Index Model (SLIM),
proposed by Embrey et al. [15], is one of the most flexible and com-
monly used techniques for estimating HEP under a combined effect of a
set of PSFs. SLIM can afford a wide range of PSFs according to the
application of interest and thus can be used in different industries
[16–19]. On the other hand, SPAR-H and CREAM have been developed
based on specific PSFs which may not cover all the details of a per-
formance context [13].

Despite its popularity, SLIM suffers from the foregoing drawbacks of
the first and second generations techniques of HRA. One of the im-
portant shortcomings, especially in case of data scarcity, is that the
parameters of SLIM such as the rates and weights of PSFs should be
determined by experts, exposing the assessment of HEP to subjectivity
and thus varying degrees of epistemic uncertainty. To mitigate this
limitation Musharraf et al. [20] and Akyuz [21] used evidence theory
and fuzzy theory, respectively, to combine different degrees of belief
about the rates and weights of the PSFs; however, the assignment of
prior belief masses to the model parameters has still remained a chal-
lenge in these approaches [22]. Another limitation of SLIM, which is
also common in other HRA methods, is its inability in considering the
dependencies among HEPs in a number of related tasks. HEPs de-
pendencies may arise from the influence of human error of one task on
human error of the subsequent tasks [6,11,23] or from the common
PSFs involved in HEPs of two or more tasks [24].

Bayesian Network (BN) has been proposed as a promising technique
for enhancing the performance and accuracy of HRA techniques such as
SPAR-H and CREAM [14,25]. Groth and Swiler [14] transferred SPAR-
H to BN and showed how BN framework can be exploited not only for
reasoning with perfect, partial or no information on PSFs states but also
for considering the PSFs interdependencies. Kim et al. [25] combined
CREAM and BN so that the uncertainty associated with the PSFs rates
could be modeled using probability distribution functions although the
relationships between PSFs and the HEP were still deterministic. Since
no major attempts have been made so far to improve the drawbacks of
SLIM using BN, in this study we have developed an innovative tech-
nique for HEP assessment by mapping SLIM into BN, so-called the BN-
SLIM technique.

The proposed BN-SLIM can be used to alleviate the limitations of
SLIM and to improve its accuracy and performance. In the conventional
SLIM, a large amount of uncertainty is involved in estimating the values
of the rates and weights of PSFs. The probabilistic framework of BN
enables the analyst to consider the uncertainty via prior probability
distributions. It also helps decrease the uncertainty when the updated
probabilities are substituted for prior probabilities as more information

becomes available, making a priori subjective estimates tend to a pos-
teriori more objective results [26]. BN's probability updating feature
can also be exploited by analysts to determine which PSF and which
PSF rate have contributed more to the occurrence of human error. We
will apply BN-SLIM to an illustrative example to demonstrate how it
may outperform SLIM by handling dependencies among tasks with
common PSFs and by performing belief updating.

The rest of this paper is organized as follow: Section 2 provides an
overview of SLIM and BN techniques. Section 3 is devoted to the de-
velopment of the BN-SLIM. In Section 4 the application of the BN-SLIM
to a case study is illustrated and the obtained results are discussed.
Conclusions are given in Section 5.

2. Background

2.1. Success Likelihood Index Model (SLIM)

SLIM is one of the flexible techniques to estimate HEP during a task
execution. As a decision-analysis approach, it proposes a degree of
preference called Success Likelihood Index (SLI) for each task under the
combined effects of PSFs [15,27] . Although this model heavily relies on
experts judgment, it is quite practical where data is insufficient about
human error.

In conventional SLIM, weights and rates of PSFs define how each
PSF contribute to an SLI. For a given task and PSF, the rate of the PSF
shows to what extent the PSF is desirable for executing the task while
the weight of the PSF shows the relative importance of the PSF to the
task. The following steps are taken in the SLIM [27,28]:

1 Determine the set of PSFs that would influence the human error
potential in executing the task of interest.The set of PSFs can be
identified in association with the task characteristics and environ-
ment.

2 Determine the weight of each PSF. Considering that several PSFs
may contribute to the same task in a specific scenario, the largest
weight (W) is assigned to the most important PSF, and so on; where

== Wi 1i
N

1 and N denotes the number of PSFs.
3 Determine the rate of each PSF. Ri is a deterministic number be-
tween 1 and 9 (inclusive), with Ri= 1 for the worst and Ri= 9 for
the best conditions of the ith PSF.

4 Calculate the SLI of the task. Once the rates and weights of all the
relevant PSFs are determined, Eq. (1) can be employed to calculate
the SLI of the task:

Nomenclature

Acronym discerption

BN Bayesian Network
CREAM Cognitive Reliability and Error Analysis Methods
CPT Conditional Probability Table
HEART Human Error Assessment and Reduction Technique
HEP Human Error Probability
HRA Human Reliability Analysis
IDAC Information, Decision and Action in Crew context
MADE Mean Absolute Discretization Error
MV Mean Variation
PSF Performance Shaping Factor
RV Ratio of Variation
SLI Success Likelihood Index
SLIM Success Likelihood Index Model
SPAR-H Standardized Plant Analysis Risk Human Reliability

Analysis

THERP Technique for Human Error Rate Prediction

List of Symbols

Symbol Discerption
Ai Variable i in the Bayesian Network
E Observed evidence
I Number of nodes in Bayesian Network
J Number of intervals
M Number of SLI instances
N Number of PSFs
PPSF Probability mass function of a certain PSF
Ri ith rate of a PSF
RPSF Set of rates of a PSF
U Set of all possible variables in Bayesian Network
Wi Weight of the ith PSF
π Prior Probability
θ Posterior probability
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=
=

SLI Wi . Ri
i 1

N

(1)

5 Estimate the HEP in executing the task. The logarithmic relationship
in Eq. (2) can be used to convert the SLI into the corresponding HEP:

= +Log HEP a SLI b( ) (2)

where the constants a and b can be determined by two tasks for which
the amounts of HEPs and the corresponding SLIs are known.

2.2. Bayesian Network (BN)

BN is a probabilistic graphical model for reasoning under un-
certainty. The qualitative part of BN is a directed acyclic graph com-
posed of nodes and arcs. The nodes display random variables with
various states, and the arcs represent the causal relationships between
the nodes [29].

Conditional Probability Tables (CPTs) are the quantitative part of
BN which make it a powerful reasoning tool. CPTs quantify the con-
ditional dependency of a child node given all possible combinations of
the states of its parent nodes; instead of CPT, marginal probabilities are
assigned to root nodes (i.e., nodes with no parent). Regarding the chain
rule, the joint probability distribution of nodes P(U) is calculated as:

=
=

P U P A Pa A( ) ( | ( ))
i

I

i i
1 (3)

where U is a set of random variables = …U A A A{ , , , }I1 2 , Pa(Ai) is the
parent set of node Ai, and P(U) reflects the properties of BN with I
variables [30].

Using Bayes' theorem, it is possible to obtain the updated (posterior)
probability of events by observing new evidence (E) [31]:

= =P U E P E U P U
P E

P U E
P U E

( | ) ( | ) ( )
( )

( , )
( , )U (4)

In the context of HRA, the evidence can be in the form of ob-
servation of human error in a task or the occurrence of incidents in an
operation, or new information about the performance context. The
probability updating characteristic of BN is widely employed in diag-
nostic reasoning. Besides the unique capability of BN in diagnostic
reasoning, it enables to marge data from different resources, considers
multi states variables, and models cause-effect relationships between
factors [32]. These aspects of BN have received increasing attention in
the field of HRA, for instance, in modeling the relationship between
PSFs [4,33], assessing human failure events dependencies [24], and
extending and improving the available HRA methods [14,25].

3. BN-SLIM

To estimate the HEP in SLIM, the rates and the weights of the PSFs
must be determined. In the absence of relevant data, which is usually
the case, subjective measuring of rates and weights by experts can in-
crease the uncertainty of the estimated HEP. Moreover, given several
tasks in an operation, SLIM estimates the HEP of each task separately,
disregarding the dependencies between human failure events in the
tasks (e.g., due to common PSFs) which could lead to inaccurate esti-
mation of the total HEP. To alleviate this drawback, we have developed
an innovative technique, so-called BN-SLIM, by mapping SLIM into an
equivalent BN. The benefit of doing so, is twofold:

(I) An operation may include a number of tasks to be fulfilled in par-
allel or series. Since tasks may share common PSFs, there would be
dependencies among the SLIs of the tasks. Such dependencies, if not

taken into account (as is the case in SLIM), can lead to an over-
estimation or underestimation of the total HEP. BN-SLIM, thanks to
the capability of BN in considering dependencies, is expected to
address this drawback of SLIM.

(II) BN-SLIM enables experts to express their uncertainty about the
rates of PSFs in the form of probability distributions instead of
deterministic point estimates. Given new evidence about HEP, the
probability distribution of the rates can be updated; this, in turn,
can help decrease the uncertainties and provide acumen for a
proactive approach for preventing error under different contextual
conditions.

In Sections 3.1 and 3.2, through an illustrative example, we will
show how the initial results of the SLIM (i.e., the identified PSFs and
their respective weights and rates) can be used to develop the BN,
which together with the SLIM forms the proposed BN-SLIM metho-
dology.

3.1. Model development

Following the steps of the original SLIM in Section 2.1, it is assumed
that a set of N PSFs affecting the execution of a particular task along
with their corresponding rates and weights has already been identified
by subject matter experts. To develop the BN version of SLIM (i.e., BN-
SLIM), the first step is building the structure of the BN, specifying the
nodes and the arcs as conditional relationships between the nodes.
According to the original SLIM, the effect of different PSFs on the HEP is
modeled through the SLI variable (see Eq. (1)). Thus, two functions are
needed for estimating the HEP value: One for modeling the relationship
between the PSFs and the SLI, and the other for calculating the HEP
using the SLI. So a BN with N+2 nodes would be required: N nodes for
representing the N PSFs and 2 nodes for representing the SLI and the
HEP variables.

To better explain the model development, consider a case where
training and experience are the only PSFs affecting the human perfor-
mance in a task, i.e., N=2. The BN for estimating the HEP given the
task and its PSFs is depicted in Fig. 1, generated using AgenaRisk
software [34].

Each PSF node would have several states to represent its rates. Since
according to Eq. (1) each PSF directly impacts the amount of SLI, causal
arcs are drawn from the PSF nodes to SLI node. The number of states of
SLI node is equal to the number of possible combinations of the rates
(states) of PSFs nodes. For the sake of simplicity, consider only three
rates “R1=1”, “R5= 5” and “R9=9” as the states of PSF nodes
“Experience” and “Training”. The weights of 0.2 and 0.8 are considered
for Experience and Training, respectively. As such, =3 92 different
values can be calculated for the SLI according to Eq. (1) as:

= × + × = ×

+ × =

SLI R R0.2 0.8 0.2 {1, 5, 9}

0.8 {1, 5, 9} {1.0, 1.8, 2.6, 4.2, 5.0, 5.8, 7.4, 8.2, 9.0}
Exprience Training

(5)

Each value of the SLI can be presented as a state of SLI node.
Furthermore, according to Eq. (2), SLI node should be the only parent of
HEP node. This node has two states, that is, human error occurs
(HEP=Yes) and human error does not occur (HEP=No).

Completing the structure of the BN in Fig. 1, CPTs should be as-
signed to SLI and HEP nodes to quantify the effects of the PSF nodes.
The marginal probability distributions assigned to each PSF node en-
codes the analyst's uncertainty about the rates of the PSF node. For
illustrative purposes, assume that the probability distribution of the
states of Experience node can be presented as PExperience (R1, R5,
R9)= (0.4, 0.4, 0.2). This probability mass function may indicate that
during the operation the probability that the task is executed by an
operator with no experience (i.e., Experience=R1) is 0.4, with at least
5 years of experience (i.e., Experience=R5) is 0.4, and with more than
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10 years of experience (i.e., Experience=R9) is 0.2.
In a similar way, the probability distribution of the states of

Training node is assumed as PTraining (R1, R5, R9)= (0.6, 0.1, 0.3). The
probability distributions of the rates (states) make it possible to con-
sider the uncertainty associated with the rates of PSFs whereas in
conventional SLIM only one rate for each PSF should be specified.

The SLI node as an intermediate node in the BN makes a link be-
tween the PSFs and the HEP. The CPT of SLI node in Table 1 shows
which combination of the rates of Training and Experience results in
which state (amount) of the SLI.

To build the CPT of HEP node, the conditional error probability is
assigned by direct application of the logarithmic formula in Eq. (2).
where =a 0.348 and =b 0.128 have been calculated assuming that
two pairs of corresponding SLIs and HEPs are known for the tasks as
(SLI= 1, HEP= 0.6) and (SLI= 9, HEP= 10−3). Having the values of a
and b determined, the CPT to estimate the HEPs for possible values of
the SLI can be presented in Table 2.

However, it should be noted that since two pairs of corresponding
SLIs and HEPs are identified by subject matter experts with respect to

the error context of interest, they are subjective and could vary from
case to case [17,20,21,27]. For example, Kirwan [27] considered
(SLI= 4, HEP=0.5) and (SLI= 6, HEP=10−4) for identifying a and
b while Islam et al. [17] calculated a and b assuming (SLI= 1,
HEP=0.15) and (SLI= 9, HEP=10−5). It should be noted that the
present study is not aimed at resolving the uncertainty arising from
such subjectivity, and thus the provided values are merely for demon-
stration purposes.

This information on the probability distributions of the PSFs rates
can be ideally obtained from historical and empirical data or provided
by subject matter experts when empirical data is not available or suf-
ficient. Therefore, depending on the available data and expert knowl-
edge, the rates of the PSFs could be identified probabilistically, de-
terministically, or both [14,25]. Given the previous rates and weights,
as can be seen in Fig. 1, P(HEP=Yes)= 0.244. As shown in Fig. 2, the
developed BN-SLIM is also capable of estimating the HEP when the
rates of Training and Experience are given deterministically (as is the
case in conventional SLIM), for instance due to exact knowledge.

It is noteworthy to mention that BN-SLIM can provide a quick es-
timation of HEP for a variety of cases with no need to perform all
calculations needed in SLIM. This capability makes BN-SLIM a suitable
alternative for conventional SLIM, especially when it is essential to
estimate the HEP instantly, including decision making in the marine
operations [17] or in emergency response actions where time is critical.

Fig.1. BN-SLIM structure.

Table 1
CPT of SLI node with 9 states and two PSFs, Experience and Training, as its
parents. The weights of 0.2 and 0.8 have been considered, respectively, for
Experience and Training.

Training → R1 R5 R9
SLI↓ Experience→ R1 R5 R9 R1 R5 R9 R1 R5 R9

1.0 1 0 0 0 0 0 0 0 0
1.8 0 1 0 0 0 0 0 0 0
2.6 0 0 1 0 0 0 0 0 0
4.2 0 0 0 1 0 0 0 0 0
5.0 0 0 0 0 1 0 0 0 0
5.8 0 0 0 0 0 1 0 0 0
7.4 0 0 0 0 0 0 1 0 0
8.2 0 0 0 0 0 0 0 1 0
9.0 0 0 0 0 0 0 0 0 1

Table 2
CPT of HEP node given the states (values) of SLI node.

HEP↓
SLI→

1.0 1.8 2.6 4.2 5 5.8 7.4 8.2 9.0

Yes 0.600 0.317 0.167 0.046 0.024 0.013 0.004 0.002 0.001
No 0.400 0.683 0.833 0.954 0.976 0.987 0.996 0.998 0.999

Fig. 2. BN-SLIM with deterministic PSF rates, representing the conventional
SLIM.
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3.2. Model refinement

To make the BN-SLIM more compatible with the conventional SLIM,
the model can be refined so that the rates of PSF nodes could vary from
1 to 9 (see Section 2.1). Having a wider range of PSF rates could lead to
a better modeling of uncertainty. Moreover, it would enable the
modeler to predict the HEP while considering all possible performance
conditions derived from different combinations of PSFs rates.

However, increasing the number of the rates to 9 and having n PSFs
as the parents of SLI node would increase the size of the CPT of SLI node
to 9N ×9N cells to fill in: 9N rows to present the states (values) of SLI
node and 9N columns to present the combinations of the states of PSF
nodes. To handle this complexity, SLI values can be discretized into a
limited number of states using equal frequency discretization method
[35]. Discretization is a common approach in machine learning to
handle the large size of continuous values which otherwise may con-
siderably slow down the inference. Equal frequency discretization
technique groups continuous numeric values into discrete intervals so
that each interval would contain approximately the same number of
values.

To demonstrate the application of equal frequency discretization
method, consider 81 SLI values resulted from the combination of nine
rates (1≤ Ri≤9) of Experience and Training, with identified weights
of 0.2 and 0.8 as in Section. 3.1. The suggested number of intervals (J)
and also the frequency of numbers in each interval are both equal to

M , where M is the number of possible SLI instances [36]. Obviously,
the higher the number of intervals the lower the discretization error.
Equal frequency discretization technique sorts all SLI instances in an
ascending order, and then divides the range into a specified number of
intervals, in such a way that every interval contains the equal number
of sorted SLI instances.

If several SLI instances happen to have the same value, the first
interval can contain more than nI instances. The following intervals are
determined with the same method, so that the last interval may contain
less than nI instances. The last interval will be merged with the pre-
ceding interval if its frequency is less than half the mean frequency
interval [37]. Each interval of SLI is considered as a state of SLI node.
Therefore, considering 81 possible SLI instances (given two PSFs each
with 9 rates), the optimal number of states for SLI node would be

81 =9; by sorting the SLI values the upper and lower bounds of each
state of SLI node can be determined. The allocated SLI instances to each
interval are listed in Table 3. As shown in the second row of Table 3, the
first interval contains more than 9 instances because two instances has
the same value of 2.2.

The CPT of SLI node contains ones and zeros to model the re-
lationship between the combinations of rates and the corresponding SLI
states. For instance, the row of state [1.0 2.2] in the CPT of SLI node
can be populated as:

= =

= = +

P SLI Expeience Ri

Training Rj if Ri Rj
else

[1.0 2.2] | ,

) 1
0

1.0 0.2 0.8 2.2
(6)

Where Ri and Rj are the rates of Experience and Training, respec-
tively, for 1≤ i≤9 and 1≤ j≤9. Other rows of the CPT are filled in
the same way. The CPT of HEP node is populated as explained in
Section 3.1 using the average value of each SLI state (interval).

It is worth noting that there are always some discretization errors
when continuous data is discretized into intervals. It means that dis-
cretization of SLI values may lead to slightly different HEPs in BN-SLIM
from those obtained from conventional SLIM. The Mean Absolute
Discretization Error (MADE) can thus be computed to find out the ex-
pected difference between the results of BN-SLIM and SLIM as:

= =MADE
HEP HEP

M
i
M

i
SLIM

i
BN SLIM

1
(7)

where HEPi
SLIM and HEPi

BN SLIM are the calculated HEPs using SLIM
and BN-SLIM, respectively, for all M possible values of SLI. Given the
foregoing example with two PSFs “Experience” and “Training” each
with 9 rates, M=92=81 is the number of the SLIs that may result
from the combination of the PSFS rates; thus the MADE of the proposed
discretization is calculated as 0.01 which could be improved by in-
creasing the number of intervals.

4. Model application

4.1. Case study

Developing the BN-SLIM step-by-step through a simple example of
only two PSFs and one task (and one HEP) in the previous section, the
model can be applied to a more complicated example consisting of more
PSFs and tasks. As such, the application of BN-SLIM to improving the
HEP estimation can be demonstrated for cases where various error
contexts during carrying out tasks can lead to human errors.

The illustrative example is composed of three sequential tasks. For
Task 1 and Task 2, experience and training were considered as the main
PSFs influencing the success likelihood of performance while for Task 3,
training and fatigue were considered as the main PSFs. The normalized
weights of PSFs for each task are listed in Table 4. Besides, based on
collected data and experts judgement, the probability mass distribu-
tions of the levels (rates) of experience, training, and fatigue of the
operators are assumed to nearly follow exponential, uniform, and
normal distributions, respectively (the root nodes in Fig. 3). The mean
values and standard deviations of the foregoing prior distributions are
listed in Table 5.

Fig. 3 depicts the BN-SLIM extended to estimate the HEPs of the
three tasks as HEP 1, HEP 2, and HEP 3. According to the methodology
described in Section 3 for developing the BN part of BN-SLIM, the
probabilities of the states of each HEP can be calculated. Since the tasks
should be performed sequentially (in series), OR gate can be used to
calculate the Total HEP. The CPT of the nodes were populated

Table 3
Discretization of SLI instances into 9 states (intervals) using equal frequency
discretization technique.

SLI Interval SLI instances

[1.0 2.2] 1.0, 1.2, 1.4, 1.6, 1.8, 1.8, 2.0, 2.0, 2.2, 2.2
(2.2 3.0] 2.4, 2.4, 2.6, 2.6, 2.6, 2.8, 2.8, 3.0, 3.0
(3.0 3.8] 3.2, 3.2, 3.4, 3.4, 3.4, 3.6, 3.6, 3.8, 3.8
(3.8 4.6] 4.0, 4.0, 4.2, 4.2, 4.2, 4.2, 4.2, 4.6, 4.6
(4.6 5.4] 4.8, 4.8, 5.0, 5.0, 5.0, 5.2, 5.2, 5.4, 5.4
(5.4 6.2] 5.6, 5.6, 5.8, 5.8, 5.8, 6.0, 6.0, 6.2, 6.2
(6.2 7.0] 6.4, 6.4, 6.6,6.6,6.6, 6.8, 6.8, 7.0, 7.0
(7.0 7.8] 7.2, 7.2, 7.4, 7.4, 7.4, 7.6, 7.6, 7.8, 7.8
(7.8 9.0] 8.0, 8.0, 8.2, 8.2, 8.4, 8.6, 8.8, 9.0

Table 4
Weights of the PSFs for Tasks 1, 2, and 3.

Task Experience Training Fatigue

Task 1 0.55 0.45 –
Task 2 0.2 0.8 –
Task 3 – 0.15 0.85
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according to the explanations in Sections 3.1 and 3.2. The CPTs of
nodes Total HEP and HEP1 and part of the CPT of node SLI1 are given
in the appendix.

4.2. Results and discussion

Given a number of related tasks during an operation, SLIM calcu-
lates the HEP of each task separately, ignoring the dependencies among
the HEPs due to common PSFs. BN-SLIM, on the other hand, can con-
sider such dependencies thanks to the modeling features of BN. As can
be seen from Fig. 3, using BN-SLIM the probability of the total human
error has been calculated as = =P Total HEP yes( ) 0.226. However,
ignoring conditional dependencies among the HEPs (which is the case
in SLIM) would have resulted in an overestimation of the total HEP as

= =
= =

= =
=

P Total HEP yes
P HEP P HEP

P HEP

( ) 1
(1 ( 1 yes))(1 ( 2 yes))

(1 ( 3 yes)) 1
(1 0.105)(1 0.100)(1 0.058) 0.241

.

One of the exclusive abilities of BN-SLIM over SLIM is diagnostic
reasoning, aimed at updating the probability distributions of the PSF
rates given some evidence. For instance, if it is known that human error
has occurred, BN-SLIM can identify both (i) the PSF which has con-
tributed the most to the error and (ii) the most likely rate of each PSF
which has been present during the error. Indeed, updating analysis
helps HRA practitioners conduct “what-if” scenarios in order to gain
better acumen and accordingly take proactive approaches for pre-
venting human errors [14].

To make the discussion more concrete, two “what-if” scenarios are
conducted below.

4.2.1. First scenario
In the first scenario, we set = =P Total HEP yes( ) 1 as evidence to

determine the most critical PSF contributing to the human error al-
though the source of error is unknown. (It is not known which tasks
were executed erroneously). Propagating this evidence throughout the
model, the posterior probability distributions of the rates of the PSFs
can be calculated (Fig. 4); the posterior mean values and standard de-
viations are reported in Table 5.

Comparison of posterior and prior probability distributions of PSFs
can be used to evaluate and rank order the PSFs based on their

Fig. 3. BN-SLIM for the calculation of individual HEPS and the Total HEP.

Table 5
Parameters of prior and posterior probability distributions of the rates of the
three PSFs (root nodes) in Fig. 3. The mean values and standard deviations of
the probability distributions are also given for the sake of clarity.

PSF Prior distribution of rates Posterior distribution of rates given Total
HEP=Yes

Mean Standard
deviation

Mean Standard deviation

Experience 3.32 2.01 2.76 1.76
Training 5.00 2.58 3.06 2.07
Fatigue 5.00 1.88 4.60 1.98
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contribution to the total human error. One of the criterion for mea-
suring the contribution of a PSF is the Mean Variation (MV) as the
difference between the prior and posterior mean values of the rates:

=
× ×

×
= =

=

MV
Ri Ri Ri Ri

Ri Ri
( ) ( )

( )
PSF

i i

i

1
9

1
9

1
9

(8)

where π(Ri) and θ(Ri) are the prior and posterior probabilities, re-
spectively, of the rates. Given the prior and posterior mean values in
Table 5, the MVs of the PSFs have been calculated as shown in Fig. 5.

As can be seen from Fig. 5, Training and Experience can be identi-
fied as the most and second most critical PSFs, respectively, given a
total human error. Among the PSFs, Training might have been expected
to have the largest influence on the total human failure due to its
contribution to all the three tasks and also its largest total weight of 1.4.
However, it could not be so easy to rank order the two other PSFs, i.e.,
Experience and Fatigue, based on their contribution: Experience is in-
volved in two tasks with a total weight of 0.75 whereas Fatigue is in-
volved only in one task yet with a higher weight of 0.85.

As can be seen in Fig. 5, MV can prioritize PSFs based on their
contribution to the overall human error which helps analyst optimally
allocate the resources in order to reduce the likelihood of human error.

Moreover, to gain more insight into the performance conditions for
this scenario, a comparison between the posterior and prior probabilities
of each rate of the PSFs can be conducted. This comparison can help
specify which rates are more likely to have contributed to the Total HEP.
To this end, the ratio of variation (RV) of each rate can be defined as:

=RV Ri Ri
Ri

( ) ( )
( )Ri

PSF
(9)

The RVs of the rates of Training, RVRi
Training, as the most critical PSF,

have been depicted in Fig. 6; as can be seen, the training rates lower
than 4 are more likely to be present in the Total HEP. Therefore, using

Fig. 4. BN-SLIM for the calculation of posterior probability of the rates given “Total HEP= yes”.

Fig. 5. Mean variation of the probability distributions of the PSFs: the higher
the MV the more critical the respective PSF.
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MV, Training is identified as the most critical PSF while using RV the
lower rates of Training (lower than 4) are identified as the most likely
conditions of Training with regard to this scenario.

4.2.2. Second scenario
In the second scenario, two pieces of evidence are applied: a human

error has occurred, i.e., = =P Total HEP yes( ) 1, and the level of ex-
perience of the operator who may have been involved in executing the
tasks has been five (e.g., five years), i.e., = =P Expereience R( 5) 1.
Considering the posterior probabilities calculated given this evidence,
the RVs of the rates of Training, as an example, have been presented in
Fig. 7.

As can be seen, R1, R2 and R3 are, respectively, the rates with the
highest RV, indicating that operators with a level of “Experience” of five
and levels of “Training” lower than 4 are more likely to have partici-
pated in the error in the context of the foregoing three tasks. This
outcome demonstrates that RV of PSF rates can be used as an effective

diagnostic criterion, reflecting more precisely the likely performance
context given a human error.

5. Conclusions

This paper has proposed a new model, so-called BN-SLIM, for im-
proving the performance of SLIM using BN. The BN-SLIM was devel-
oped by mapping SLIM in BN so that the causal links between perfor-
mance shaping factors (PSFs) and human errors as well as the
dependencies among human errors could be modeled. We demon-
strated that the BN-SLIM can effectively be applied for human error
probability (HEP) assessment as it outperforms SLIM with regard to the
following modeling aspects:

• Handling uncertainty: BN-SLIM is better able to handle uncertainties
by considering probability distributions of PSF rates in contrast to
SLIM which only adopts deterministic rates. Indeed, BN-SLIM

Fig. 6. Ratio of variation of training rates given the total human error (i.e., “Total HEP”= yes).

Fig. 7. Ratio of variation of training rates given a human error (i.e., “Total HEP”= yes) by operators with five years of experience (i.e., “Experience”=R5).
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enables practitioners to use both expert judgment and empirical
data in a probabilistic way, which could be a significant step toward
improving the performance of SLIM which relies on the determi-
nistic judgment of experts.
• Considering dependencies: Given an operation consisting of a
number of tasks, SLIM estimates the total HEP of the operation as an
aggregation of the HEPs of the tasks, ignoring the dependencies
among the HEPs due to common PSFs. BN-SLIM, on the other hand,
can consider the conditional dependencies among the tasks’ HEPs
while calculating the operation's total HEP. This capability would
result in a more accurate prediction of human performance.
• Diagnostic analysis: Thanks to the capability of BN-SLIM in prob-
ability updating, two criticality measures have been defined in the
present study. Given a HEP, the mean variation, which is defined as
the normalized difference between the mean values of the prior and
posterior distributions of PSF rates, can be used to identify the PSF
contributing the most to the HEP. Likewise, the ratio of variation,
which is defined as the normalized difference between the posterior
and prior probabilities of PSF rates, can be used to identify the most
likely PSF rate leading to the HEP. This capability could be very
effective in proactive risk assessment and management to prevent or

reduce the likelihood of human failure events.

Aside from the above-mentioned improvements made to SLIM via
BN-SLIM, there is still room to enhance the performance and accuracy
of BN-SLIM. For instance, similar to the rates, the weights of PSFs can
also be modeled probabilistically to present the experts uncertainty
about the importance of PSFs in relation to a certain task. This, how-
ever, can significantly increase the size of conditional probability tables
and make the modeling too complex and intractable.

Besides, the uncertainty associated with the constant parameters of
the logarithmic function used to calculate the HEP, both in SLIM and
BN-SLIM, still remains an open question for further research.
Nevertheless, according to the added features, we believe that the
proposed BN-SLIM is more compatible with probabilistic safety as-
sessment and management methodologies.
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Appendix

Tables A1, A2, and A3 indicate the CPTs of Total HEP, HEP1, and SLI1 nodes in Fig. 3.

Table A1
The CPT of Total HEP node.

HEP1 Yes No
HEP2 Yes No Yes No
HEP3 Yes No Yes No Yes No Yes No

Yes 1 1 1 1 1 1 1 0
No 0 0 0 0 0 0 0 1

Table A2
The CPT of HEP1 node.

SLI1 Interval→ HEP1↓ 1.00–2.55 2.65–3.45 3.55–4.15 4.20–4.70 4.75–5.25 5.30–5.80 5.85–6.45 6.55–7.35 7.45–9.00

Yes 0.3215 0.1157 0.0609 0.0377 0.0245 0.0156 0.0096 0.0050 0.0019
No 0.6784 0.8842 0.9390 0.9622 0.9754 0.9843 0.9903 0.9949 0.9980

Table A3
Part of the CPT of SLI1 node.

SLI1 Intervals → 1.00–2.55 2.65–3.45 3.55–4.15 4.20–4.70 4.75–5.25 5.30–5.80 5.85–6.45 6.55–7.35 7.45–9.00
Experience↓ Training↓

R1 R1 1 0 0 0 0 0 0 0 0
R1 R2 1 0 0 0 0 0 0 0 0
R1 R3 1 0 0 0 0 0 0 0 0
R1 R4 1 0 0 0 0 0 0 0 0
R1 R5 0 1 0 0 0 0 0 0 0
R1 R6 0 1 0 0 0 0 0 0 0
R1 R7 0 0 1 0 0 0 0 0 0
R1 R8 0 0 1 0 0 0 0 0 0
R1 R9 0 0 0 1 0 0 0 0 0
R2 R1 1 0 0 0 0 0 0 0 0
R2 R2 1 0 0 0 0 0 0 0 0
R2 R3 1 0 0 0 0 0 0 0 0
R2 R4 0 1 0 0 0 0 0 0 0
⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞
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