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ABSTRACT Vehicular Ad-hoc Network (VANET) is a significant component of intelligent transportation
system, which facilitates vehicles to share sensitive information and corporate with others. However, due
to its unique characteristics, such as openness, dynamic topology and high mobility, VANET suffers from
various attacks. This paper proposes an anti-attack trust management scheme in VANET called AATMS to
evaluate the trustworthiness of vehicles. With the help of AATMS, vehicles in VANET can avoid malicious
vehicles and cooperate with trusted vehicles. The idea of AATMS is mainly inspired by TrustRank algorithm,
which is used to combat web spams. In this paper, we calculate local trust and global trust, which indicate
the local and global trust relationships among vehicles. First, Bayesian inference is adopted to calculate local
trust of vehicles based on historical interactions. Then we select a small set of seed vehicles according to
local trust and some social factors. Once we identify the reputable seed vehicles, we use the local trust link
structure of vehicles to evaluate the global trust of all vehicles. The simulation results show that AATMS
can efficiently identify trustworthy and untrustworthy vehicles in VANET even under malicious attacks.

INDEX TERMS VANET, trust management, local trust, global trust, social factors.

I. INTRODUCTION
Vehicular Ad-hoc Network (VANET) is a self-organized net-
work, which is the key component contributing to Intelligent
Transport System (ITS) [1]. VANET contains two types of
communication, i.e., vehicle-to-vehicle (V2V) and vehicle-
to-infrastructure (V2I) communication [2], through which
vehicles can communicate directly with neighboring vehi-
cles and Road Side Units(RSUs) [3]. It brings benefits to
road safety, traffic efficiency and local services. However,
the unique characteristics of VANET, such as high mobil-
ity and dynamic connections, make it vulnerable to various
kinds of external and internal attacks [4]. Traditional security
solutions, such as certificates [5], signatures [6] and Public
Key Infrastructures (PKIs) [7], are for defensing the external
attackers, while for authorized and authenticated attackers
from internal, these solutions are useless. Hence, to against
internal attacks, trust management is proposed [8]. Trust man-
agement assesses the trustworthiness of vehicles in VANET
according to their historical interactions, then vehicles can
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choose trustworthy vehicles to corporate with and avoid mali-
cious vehicles.

Over the last few years, many trust models are proposed
[9]–[13]. They use different algorithms, such as fuzzy logic,
graph theory, D-S evidence theory and collaborative filter-
ing. And multiple factors are considered, such as direct
trust and recommendation trust. However, these models are
determined by expert knowledge to some extent and many
models are only suitable for special scenarios, such as high-
way vehicular platooning. In [14], social relationships, i.e.
direct neighborhood, indirect neighborhood and friendship,
are introduced to VANET. The weights assignation of these
three parts is very important, however, it is difficult to deter-
mine theweights. Hao et al. [15] propose the concepts of local
trust and global trust, which indicate the local and global trust
relationships among vehicles. They adopt PageRank algo-
rithm [16] used for web pages’ rank to calculate the global
trust of vehicles. Nevertheless, this scheme is vulnerable to
some threat models.

To deal with these problems, we propose an anti-attack
trust management scheme called AATMS. This scheme cal-
culate local trust and global trust of vehicles respectively.
First, we adopt Bayesian inference to calculate local trust
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values based on historical interactions. Bayesian inference
gets empirical knowledge by using historical statistical data,
therefore it is not dependent on expert knowledge. Sec-
ond, we design a novel TrustRank based algorithm to cal-
culate global trust values. TrustRank algorithm [17] is an
improvement of PageRank algorithm and has the ability of
combating spam pages, which makes our proposed scheme
attack-resistance. Besides, we introduce some social factors,
i.e. diver factors, vehicle factors and behavior factors, to help
filter untrustworthy vehicles. These social factors reflect the
degree of the public trust on vehicles. The main contributions
of this paper are summarized as follow.

• We propose an anti-attack trust management scheme
called AATMS, which can not only effectively evaluate
trustworthiness of vehicles in multiple application sce-
narios, but also be capable of resisting various attacks
and keep robust.

• A Bayesian inference based method is proposed to cal-
culate local trust values of vehicles. The local trust
values are used to build the trust link graph. Since this
graph is independent from the fast-changing topology of
VANET, it is relatively stable and can be used to do link
analysis.

• We design a novel TrustRank based algorithm to calcu-
late global trust value of vehicles. Specifically, we intro-
duce some social factors to help select reputable seed
vehicles. The trust values transfer from seed vehicles
to other vehicles along the trust link graph, which can
be treated as a Markov process. Meanwhile, in order
to prevent a vehicle’s trust value from rising rapidly
and allow it to drop quickly, we introduce an adaptive
forgetting factor and an adoptive decay factor to update
local trust values and global trust values respectively.

• Experiments are conducted by using Veins [18] simu-
lation platform. The experimental results show that the
proposed AATMS scheme can effectively evaluate the
trustworthiness of vehicles in VANET even under three
malicious attacks, i.e. newcomer attack, on-off attack
and collusion attack.

The rest of paper is organized as follow. Section II gives
an overview of related works. Section III presents the net-
work architecture and attack model of AATMS. Section IV
describes the proposed scheme AATMS in details. The sim-
ulation results and analysis of AATMS are presented in
section V. Finally, the conclusion is drawn in Section VI.

II. RELATED WORKS
We first present relevant studies on web pages’ ranking algo-
rithm, because the hyperlink structure of web pages is similar
with the trust link graph of vehicles. Then we introduce some
relevant studies of trust model in VANET.

A. RANKING ALGORITHM FOR WEB PAGES
Many algorithms are used to get the relative importance
of web pages. PageRank algorithm [16] objectively and

mechanically assigns global importance scores to all web
pages according to web pages’ hyperlink structure. In spe-
cific, a page is important when several other important web
pages point to it. However, pages can cheat to improve
their rank. For example, attackers can place many hyperlinks
pointing to the target page in portal sites, such as Sina and
NetEase. Since these portal sites are highly ranked, the target
page’s rank will become high. In order to deal with this prob-
lem, TrustRank algorithm [17] is proposed. This algorithm
introduces expert knowledge to identify the reputable seed
pages, then uses the link structure of the web to discover
other pages that are likely to be good. The techniques of
link analysis used in TrustRank algorithm are introduced to
develop AATMS.

B. TRUST MODELS FOR VANET
Trust establishment is a significant issue in VANET because
it can assist vehicles to avoid malicious vehicles and make a
wise decision to collaborate with trustworthy vehicles. With
the development of Vehicular ad-hoc network, many trust
models are proposed.

Most trust managements are based on the direct trust fac-
tors to establish evaluation model. Tan et al. [9] presented
a trust management system for securing data plane of ad-
hoc networks, which mainly collected two direct trust factors,
i.e., the data packet delivery ratio and the average delay. They
employed fuzzy logic to evaluate the path trust by using these
two trust factors. Then graph theory was adopted to assess
the node trust value. Finally, the proposed trust management
system was integrated into the optimized link state routing
(OLSR) protocol to choose the best route. Soley et al. [10]
proposed a trust model based on fuzzy logic. Many factors
related to the correctness of the received messages were
considered, such as the lifetime of the message, the expe-
rience of direct interactions and the plausibility of sender.
Besides, fog node was applied as a facility to assess the
level of accuracy of event’s location. It can be regarded as an
authoritative node, which can help detect malicious attackers
in VANET.

In trust management, except the direct trust factors, recom-
mendation and feedback are commonly considered. Besides,
more and more trust models are focusing on the security
threats in VANET. Li and Song [11] proposed an attack-
resistant trust management scheme for VANET, which can
cope with simple attack, bad mouth attack and on-off attack.
And node trust was assessed in two dimensions, i.e., func-
tional trust and recommendation trust. Xia et al. [12] com-
bined subjective trust and recommendation trust to construct
an attack-resistant trust inference model in VANET. This
model can establish secure and reliable communication paths
by selecting trusted relay vehicles. Meanwhile, trust man-
agements were proposed in some special scenarios, such
as highway vehicular platoon. Hu et al. [13] presented a
reliable trust-based platoon service recommendation scheme
(REPLACE), which can help the user vehicles to avoid choos-
ing badly behaved platoon head vehicles. It calculated the
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TABLE 1. Main existing trust models.

trust values of platoon head vehicles by using their user
vehicle’s feedback. Besides, an iterative filtering algorithm
was proposed to resist against badmouth and ballot stuffing
attacks.

In recent years, some new trust factors and trust evalua-
tion algorithms are introduced into trust models of VANET.
Lin et al. [14] introduced social behaviors into vehicu-
lar network and proposed a new concept, namely Vehicu-
lar Social Networks (VSNs). This paper considered three
social relationships, i.e., the direct neighborhood, indirect
neighborhood and friendship. Chaker et al. [19] introduced
the role of vehicles to help assign the initial trust value.
Vehicles were classified into two types, i.e. official vehi-
cles (e.g. police cars, ambulances, etc.) and normal vehicles,
and the initial trust value of official vehicles is twice as
much as that of normal vehicles. In [20], considering that
most driving decisions are made by drivers, drivers hon-
esty was used as a weighting factor to enhance the inter-
vehicle trust establishment. The experimental results showed
that the human factor consideration had clearly enhanced
the detection ratio of dishonest vehicles. Social factors used
in AATMS are manly inspired by these papers illustrated
above. Xiao et al. [15] proposed a trust model called IWOT-
V to evaluate the trustworthiness of vehicles, which presented
two algorithms, i.e., BayesTrust and VehicleRank. These two
algorithms were based on Bayesian inference and PageRank
algorithm. They were responsible for deriving the local and
global trust relationships respectively. The local and global
trust relationships used in [15] are borrowed to develop
AATMS. Ezedin et al. [21] presented a novel blockchain-
based solution to evaluate the trust values of unmanned aerial
vehicles and ensure the security of critical infrastructure.
Although they combined proof-of-work and proof-of-stack
miner selection to reduce the energy consumption and net-
work latency, this model is still not suitable for some delay
sensitive scenarios of VANET. Table 1 summarizes the char-
acteristics of existing trust models and evaluates them qual-
itatively regarding some key characteristics and evaluation
metrics.

III. NETWORK ARCHITECTURE AND ATTACK MODEL
In this section, we describe the network architecture and
attack model of our proposed scheme AATMS.

A. NETWORK ARCHITECTURE
As shown in Fig. 1, VANET consists of three major compo-
nents: vehicles equipped with On Board Unit (OBU), Road
Side Units (RSUs) and Trusted Authority (TA) [22].

• Vehicles: Vehicles can be regarded as a group of highly
mobile nodes equipped with OBUs, which allow them
to communicate with other vehicles and RSUs. In our
scheme, vehicles are responsible for evaluating local
trust values and transferring new generated local trust
values to RSUs. Unlike TA and RSUs, there are no
authorities managing vehicles, therefore some vehicles
may be untrustworthy. That’s why we need AATMS to
evaluate trustworthiness of vehicles.

• RSUs: RSUs take charge of collecting local trust values
from vehicles via wireless connections and providing
collected local trust values to TA through backbone
network. In order to collect enough trust information,
RSUs are commonly deployed at important transporta-
tion hubs, such as street intersection and high speed
exit [23].

• TA: TAplays a significant role inVANET,which verifies
the authenticity of vehicles. In our scheme, TA is also
responsible for calculating global trust values of vehicles
by using local trust values from RSUs, social factors
and old global trust values. To ensure the implement of
these functions, TA should have sufficient storage and
computing resources.

B. ATTACK MODEL
Similar to most security schemes, there are multiple
attacks against the trust management scheme itself, such
as newcomer attack, betrayal attack, on-off attack, bad-
mouthing/ballot stuffing attack and collusion attack. In this
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FIGURE 1. Network architecture.

paper, we focus on three malicious attacks illustrated as
below.

• Newcomer attack: The newcomer attack occurs when
malicious vehicles erase their bad historical interactions
by registering new IDs to re-launch [24]. In our proposed
scheme, newcomers are assigned low initial trust values
and an adoptive decay factor is introduced to prevent
trust value from rising rapidly, therefore newcomers
have to behave well during a long period to accumulate
trust. Meanwhile, we can also connect the vehicle IDs in
VANET with driving license in real world, which makes
it hard for malicious vehicles to register new vehicle
IDs [13].

• On-off attack: The on-off attack refers that malicious
vehicles behave well and poorly alternatively to avoid
being detected [25]. For example, attackers keep trust-
worthy for a period to accumulate high trust value and
launch attacks suddenly, then go back to good behav-
ior state. Since most trust management systems forget
vehicles’ past behaviors gradually, on-off attackers’ trust
values can recover again and repeat the above steps.
To handle this problem, our proposed AATMS adopts
an adaptive forgetting factor to strengthen memories of
bad behaviors.

• Collusion attack: The collusion attack means that multi-
ple vehicles form an alliance to launch attacks together
in VANET [12]. For instance, malicious vehicles always
give good feedback to their allies even their performance

FIGURE 2. The scheme overview of AATMS.

are poorly in order to improve allies’ trust level. This
kind of attack is also called ballot-stuffing attack. In con-
trast, allies give bad feedback to a well-performed vehi-
cle to decline its trust level, which is called badmouth
attack. These attacks can destroy the accuracy and truth-
fulness of the trust management system. To defense
collusion attack, social factors are introduced in our
proposed scheme to help filter untrusted vehicles.

IV. AN ANTI-ATTACK TRUST MANAGEMENT SCHEME OF
VANET
In this section, we first describe the overview of our proposed
scheme. Then we present how to calculate local trust value
and global trust value. The details are described as follow.

A. SCHEME OVERVIEW
In our scheme, wemake the assumption that TA and RUSs are
fully trusted, and we only uncertain about the trustworthiness
of vehicles. Although the network topology of VANET is
dynamically changing, the trust relationship between vehicles
is relatively stabled. And we can calculate the accumulated
global trust of vehicles through the relatively stabled trust link
graph of VANET.

The scheme overview of AATMS is depicted in Fig. 2.
First, when interactions between vehicles happen, the served
vehicles would give the serving vehicles subjective evalua-
tions. Second, when conditions meet, such as enough sample
size or specified time interval, local trust values are calculated
based on Bayesian inference by using stored evaluation data.
Third, vehicles periodically send newest local trust values
to RSUs. We assume there are always enough RSUs along
the road. Fourth, collected local trust values are stored and
periodically sent to TA through RSUs. Fifth, by using the col-
lected local trust values, TA can build the trust link graph like
Fig. 3. In Fig. 3 the directed edge from node 3 to node 5means
vehicle 3 give some local trust values to vehicle 5 according to
the interaction experience between them. While, node 7 has
no links with any nodes, maybe vehicle 7 is a newcomer and
has not enough interaction information. Sixth, based on the
trust link relationship, social factors of vehicles and old global
trust values, TA updates the global trust values of all vehicles
by using TrustRank based algorithm. Finally, the global trust
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FIGURE 3. Trust link graph among vehicles.

values are broadcasted through RSUs, then one vehicle in
VANETwill cooperate with other vehicles who has high trust
values.

B. CALCULATE LOCAL TRUST VALUE
We assume that the evaluation results among vehicles are
only two levels {trustworthy, untrustworthy} and each time
is taken as an independent process, so the evaluation results
obey binomial distribution. Supposing that vehicle vi received
nmessages from vehicle vj, and among them, k items are true.
The likelihood function is described as follow:

f (k|pij) = Ck
n p

k
ij(1− pij)

n−k (1)

where pij represents the probability that vehicle vj sends true
messages to vi. The local trust value is related to pij. Since the
conjugate prior distribution of binomial distribution is beta
distribution, we suppose the probability distribution of pij is
beta(α, β), and the prior distribution is given by:

f (pij;α, β) =
0(α + β)
0(α)0(β)

pα−1ij (1− pij)β−1 (2)

where 0 is the gamma function, parameters α, β > 0 and 0 ≤
pij ≤ 1. At first, there are no interactions between vehicle vi
and vehicle vj, and we do not have any prior knowledge, so we
assume pij obeys uniform distribution, which is a special beta
distribution with α = 1 and β = 1.

According to Bayesian Inference, the posterior distribution
is given by:

f (pij|k) ∝ f (k|pij) f (pij) (3)

By combining Eq.(1)-(3), we can describe the posterior dis-
tribution as below:

f (pij|k) =
0(n+α+β)

0(k+α)0(n−k+β)
pk+α−1ij (1−pij)n−k+β−1 (4)

which is also a beta distribution, namely beta(α + k, β +
n − k). Now we get the distribution of probability pij, and
the expected value of pij can be regarded as local trust value
mij of vehicle vj from vehicle vi.

Considering that in different application scenarios,
the sample weights of false messages and true messages
are different, therefore wrelative is introduced to indicate the
relative weight of false messages. Besides, in order to put
more focus on recent interactions and prevent vi from easily
forgetting bad behaviors of vj, we introduce a forgetting factor
γ to update α and β:

α = γ · α + k (5)

β = γ · β + (n− k) · wrelative (6)

The forgetting factor γ is an adoptive value, which is
related to last updated local trust value moldij . The equation
is described as below [13]:

γ = c · (1− moldij ) (7)

where c is a parameter to control the forgetting factor. We set
the c = 2. From Eq. (7), we can see that, when moldij > 0.5, γ
is less than 1, which means that previous good behaviors of
vj will be gradually forgotten. On the contrary, when moldij >

0.5, γ is greater than 1, and all of previous bad behaviors of
vj will be strongly memorized, then it will take longer time
for vj to build up a high trust value again. So adopting this
adaptive decay factor into our scheme can effectively defense
on-off attack, which is confirmed by the simulating results in
Section V.

finally, we get the current local trust values mij as below:

mij =
α

α + β
(8)

Since the Bayesian inference is effective only when the prior
is trustworthy, which means vehicles should interact enough
times before we first updatemij. In this paper, in order to keep
the minimum sample size nmin for the first update is greater
than the sample size of above uniform distribution, we set the
nmin = 3. For different application scenarios, we can adjust
the value of nmin.
Algorithm 1 gives a detailed description about the calcula-

tion of local trust value. And we initialize all mij = 0.5. The
output of Algorithm 1 is used to calculate global trust value
in section IV-C.

C. CALCULATE GLOBAL TRUST VALUE
After local trust values are calculated and collected to TA,
we can model the trust network among vehicles as a graph
g = (V ,E,W ) like Fig. 3, where vertex vi ∈ V denotes a
vehicle, edge eij ∈ E represents the trust link from vehicle vi
to vj, and weight wij ∈ W of the edge eij indicates the degrees
of how vi trusts vj. This section will specifically describe how
to calculate global trust value based on link analysis of this
graph and social factors of vehicles.

1) TRANSITION MATRIX
The transition matrix is a N × N matrix W representing the
trust transition among vehicles. The matrix value wij can be
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Algorithm 1 The Calculation of Local Trust Value
Input:

k ≥ 0 // number of true messages
n ≥ 0 // total number of messages
nmin > 0 // the minimum sample size of first update
wrelative > 0 // the relative importance weight
c > 0 // the parameter to control the forgetting factor

Output:
mij // local trust value of vehicle vj from vehicle vi

1: if it is the first time to calculate mij then
2: if n < nmin then
3: return null
4: else
5: set α = 1 and β = 1
6: end if
7: else
8: read α, β from local dataset
9: end if

10: read moldij from local dataset
11: calculate γ with Eq.(7)
12: α = γ · α + k
13: β = γ · β + (n− k) · wrelative
14: mij = α

α+β
15: save α, β,mij to local dataset
16: return mij

obtained by:

wij =

{
mij, if mij > 0.5
0, otherwise

(9)

where mij is the local trust value of vehicle vj from vehicle vi.
Only when local trust value is greater than 0.5, we consider
there is a trust relationship between vehicle vi and vehicle vj,
then a certain degree of trust value is transferred from vehicle
vi to vehicle vj. Otherwise, vehicle vi would not allocate trust
value to vehicle vj, i.e. wij = 0. Then we normalize wij as
below:

wij =
wij∑
j∈svi

wij
(10)

where svi is the set of vehicles serving vehicle vi. However,
vehicles that never provide trust evaluation but get allocation
of trust value from other vehicles, just like node 6 in Fig. 3,
can cause trust loss problem, because they do not distribute
their trust value at all. This generates 0 rows in transition
matrix. To address this problem, we replace 0 rows with
told , which represents the old global trust value in the last
update. It means that when a vehicle does not participate
in the subjective evaluation process, its trust value will be
allocated to all vehicles by default. And the amount of trust
values that a vehicle gets is determined by its old global trust
value.

2) SELECTING SEED VEHICLES
The goal of selecting seed vehicles is to find vehicles that will
be most trustworthy and useful in identifying other vehicles’
trust value. To achieve this purpose, we refer to the PageRank
algorithm [16] and introduce social factors of vehicles.
Step 1: We adopt PageRank algorithm to order vehicles,

which means vehicles with higher PageRank values (PR val-
ues) are more likely to be chose as seed vehicles. At first,
all vehicles have the same PR values, namely 1/N , where
N is the total number of vehicles in VANET. Then we
assume PR value consists of two parts, one is the trust value
gained through providing trustworthy service, the other is
obtained from the whole system, and the amount of second
part is determined by vehicle’s last updated global trust value.
By adding these two parts together, we can get the finalmatrix
equation form as below:

r = α1 ·W T
· r + (1− α1) · told (11)

where told is the last updated global trust vector and at first
told = 1/N · 1N , W is the transition matrix introduced above,
and α1 is dampening factor indicating the weight of the first
part, where 0 < α1 < 1. The usage of dampening factor is to
ensure convergence of Eq.(11), keeping the transition of PR
value stable and continuous. When reaching up the maximum
iteration number Cmax1, iteration process is stopped and we
get the final PR vector r .
Step 2: We sort vehicles in decreasing order according

to PR vector and select the top L composing candidate set.
Then we introduce some social factors of vehicles to select
seed vehicles from candidate set. Social factors of vehicles
reflect the degree of the public trust on vehicles. For exam-
ple, compared to private cars, the public has more faith in
public vehicles, such as bus and taxi. These public vehicles
are usually drove by experienced drivers and are managed
by trustworthy and authoritative institutions, therefore it is
difficult for them to be controlled by attackers. As show
in Fig. 4, social factors mainly come from three aspects: diver
factors, vehicle factors and behavior factors. Diver factors
reflect the characteristics of the diver, such as age, driving
age and driving license score. Vehicle factors reflect the
characteristics of the vehicle, such as vehicle type, vehicle
age, handling stability, braking performance and other vehicle
performance. Behavior factors reflect the characteristics of
vehicles’ behavior. For different application scenarios, spe-
cific behavior factors should be taken into account. For exam-
ple, when we assess the performance of driving behavior,
we can consider these factors: number of speeding, number
of running red lights, number of traffic accidents and number
of other traffic violation. We can use these social factors as
filtering conditions to get the most reputable seed vehicles
from candidate set. Since social factors reflects the driving
skill of drivers and the quality of vehicles, they are useful for
identifying untrustworthy vehicles. The filter function G is
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FIGURE 4. Social factors of vehicles.

shown as below:

G(i) =

{
1, if vi ∈ φ
0, otherwise

(12)

where φ denotes the set of vehicles passing through filtering.
After we get seed vehicles by using social factors, we keep
the PR values of seed vehicles unchanged and set others to
zero. And we get the seed vector s. Then we normalize s so
that its elements sum up to one.

3) GLOBAL TRUST VECTOR
This section shows the iteration process of global trust value.
The iterative formula is based on the belief that trust flows
out from reputable seed vehicles, and trust is reduced as a
vehicle moves further and further away from seed vehicles in
trust link graph. The formula is show as below:

t = α2 ·W T
· t + (1− α2) · s (13)

where t is the global trust vector and at first it is assigned
as vector s. α2 is dampening factor, where 0 < α2 < 1. α2
indicates the degree of trust loss when a vehicles is one link
away from seed vehicles. When reaching up the maximum
iteration number Cmax2, we stop the iteration process and get
the final global trust vector t .

In section IV-B, we introduce an adoptive forgetting factor
γ to update local trust value. It can make the vehicle’s trust
value to drop quickly when the vehicle launch attacks, but
it can not prevent trust value from rising rapidly. In order to
deal with this problem, we design an adaptive decay factor
to update global trust value. The decay method is shown as
below:

z =
tcur − told

tcur + ε
(14)

λ =
1

1+ e−θ ·z
(15)

FIGURE 5. Curve of λ with different adjustment parameter θ .

tnew = λ · told + (1− λ) · tcur (16)

where tcur is the current global trust vector; told is the last
updated global trust vector; tnew is the final updated global
trust vector; parameter λ is the decay factor, which is deter-
mined by parameters z and θ . z indicates the change rate
between tcur and told , while θ is the adjustment parameter,
and θ ≥ 0. ε is a very small value to avoid the denominator
of Eq. (14) becoming zero. Several curves of the decay factor
with different adjustment parameter θ are show in Fig. 5.
We can see that θ determines the change rate of λ. As show
in Eq. (14)-(16), when a vehicle’s trust value rises rapidly,
λ is a big value, and tnew will remain in a low level. There-
fore, adopting this adaptive decay factor into our scheme
can effectively defense newcomer attack. Besides, when a
vehicle’s trust value drops a lot, λ is a small value, and tnew
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will decrease quickly. Hence, it would not affect the function
of the adoptive forgetting factor γ .
Algorithm 2 gives a detailed description about the calcula-

tion of Global Trust Value. We initialize told = 1/N · 1N .

Algorithm 2 The Calculation of Global Trust Value
Input:

mij for all vehicles // local trust value
N > 0 // total number of vehicles in VANET
α1, α2 // dampening factor
Cmax1,Cmax2 // maximum number of iterations
θ // adjustment parameter
L // the size of candidate set

Output:
tnew // global trust vector

1: for all wij ∈ W do
2: calculate wij with Eq. (9)-(10)
3: end for
4: read told from dataset
5: replace 0 rows inW with told

6: r = told

7: for i = 1 to Cmax1 do
8: r = α1 ·W T

· r + (1− α1) · told

9: end for
10: σ = Rank({1, 2, . . . ,N }, r)//rank vehicles based on r
11: s = 0N
12: for i = 1 to L do
13: if G(σ (i)) == 1 then
14: s(σ (i)) = r(σ (i))
15: end if
16: end for
17: s = s/|s| // normalization
18: t = s
19: for i = 1 to Cmax2 do
20: t = α2 ·W T

· t + (1− α2) · s
21: end for
22: tcur = t
23: update tnew with Eq.(14)-(16)
24: save tnew to dataset
25: return tnew

V. EXPERIMENTS
This section illustrates the settings of evaluation experiments
in simulation platform and presents the evaluation results
of our proposed model. We compare our proposed scheme
AATMS with the relevant model (i.e. IWOT-V [15]) under
three malicious attacks to verify the attack resistance of
AATMS.

A. SIMULATION DSIGN
1) SIMULATION PLATFORM
We use Veins [18] as the simulation platform, which is a
hybrid framework for running vehicular network simulations.
It is composed of the network simulator OMNeT++ [26]
and the road traffic simulator SUMO [27]. OMNeT++ is

FIGURE 6. Traffic network in simulation.

an event-based network simulator, which is used to simulate
network environment of VANET. SUMO can import road
maps and generate the mobility model of vehicles. Both
simulators are bi-directionally coupled and simulations are
performed online.

2) SIMULATION SCENARIO CONSTRUCTION
Our proposed scheme is suitable for multiple trust evalua-
tion scenarios, such as the trust evaluation of road condition
messages and driving behaviors. In this paper, we apply it
to assess the driving behaviors in motorway. Specifically,
a vehicle driving over the road speed limit vroad is considered
as an untrusted vehicle, otherwise, it is trustworthy. We can
use the speed factor fi in SUMO to preset the behavior of
a vehicle, because the maximum speed vmax of a vehicle is
determined by fi ∗ vroad . For example, a vehicle with speed
factor 1.2 drives up to 20% above the speed limit whereas a
vehicle with speed factor 0.8 would always stay below the
speed limit by 20%. Therefore, a vehicle can be labeled as
good or bad according to its speed factor. In the simulation,
we set good vehicles’ speed factors fgood = 0.8 and bad
vehicles’ speed factors fbad = 1.2.

In this scenario, all vehicles are randomly spread over
the traffic network. During trips of vehicles, they observe
their neighbors’ speed and give outcome of every observation
according to the formula given below:

oi =

{
0, if vvehicle > vroad
1, otherwise

(17)

where vvehicle is current speed of a vehicle and oi is the
outcome of ith observation. After a vehicle finished its
trip, it would calculate local trust values about vehicles
who had interactions with it, then sends the local trust
values to RSUs. In order to accumulate enough inter-
actions, we simulate 30 rounds with different random
seeds and the global trust values of vehicles are updated
30 times.
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TABLE 2. Simulation parameters.

3) PARAMETERS SETUP
We select the map of an area of Beijing, China and filter OSM
data [28] to get motorways and buildings by using Overpass
turbo [29]. The traffic network is shown in Fig. 6. The study
area is 10km long and 12km wide. The red polygons in the
figure are buildings, which are obstacles in wireless commu-
nication. The blue dotted lines represent the communications
among vehicles. And the white dots are messages about speed
information. We adopt Krauss’ car-following model (Krauβ)
[30], default path loss model (SimplePathlossModel) and
default obstacle shadowing model (SimpleObstacleShadow-
ing). In order to prevent front vehicles from blocking the
vehicles behind, we set the parameter lcSpeedGain = 1, then
vehicles can change lane to gain speed. It makes sure that
most of vehicles can reach their maximum speed. In the
simulation, there are 100 vehicles and the road speed limit is
44m/s. Parameters used in Algorithm 1 and Algorithm 2 are
listed in Table 2.

4) EVALUATION METRIC
This section introduces three metrics that help us to evaluate
the efficiency of AATMS.

The first metric is the pairwise orderedness [17], which is
based on the assumption that good vehicles should be ranked
higher than bad vehicles by an ideal algorithm. Supposing
that we have already got the global trust value of all vehicles
T = t1, t2, t3, . . . , tN and the corresponding labels Y =
y1, y2, y3, . . . , yN . yi = 1 means vi is a good vehicle, while
yi = 0 means vi is a bad vehicle. P is the set of all ordered
pairs of vehicles (i, j), i 6= j. The pairwise orderedness is
defined as below:

I (T ,Y , i, j) =


1, if ti ≥ tj and yi < yj
1, if ti ≤ tj and yi > yj
0, otherwise

(18)

pairord(T ,Y ,P) =
|P| −

∑
(i,j)∈p I (T ,Y , i, j)

|P|
(19)

We can see that if pairord equals one, there are no cases
when a bad vehicle is ranked higher than a good vehicle.

FIGURE 7. Global trust values of 100 vehicles in AATMS with different
wrelative.

Conversely, if pairord equals zero, then all pairs are error
ranked.

The next two metrics are related to the threshold of trust
value. In order to classify vehicles into trustworthy or untrust-
worthy, we need to set the threshold of trust value. Since
the total trust values are allocated by selected seed vehicles,
seed vehicles will have higher trust values than other ordinary
vehicles no matter these ordinary vehicles are bad or good.
Therefore, the threshold should be set as the average trust
value of vehicles excluding seed vehicles. Supposing that at
current iterator, the number of selected seed vehicles isD and
the sum of seed vehicles’ trust values is Tseed , since the total
trust value of all vehicles is 1, the threshold is described as
below:

t̄ =
1− Tseed
N − D

(20)

Since average trust value indicates the average trust level of
vehicles, vehicle vi is trustworthy when ti ≥ t̄ and untrust-
worthy when ti < t̄ . Based on global trust value and preset
speed factor, we can assess the performance of AATMS. Two
metrics are used: True Positive Rate(TPR) and True Negative
Rate (TNR). And they are defined as follow:
• TPR: the proportion of good vehicles that are classified
as trustworthy.

• TNR: the proportion of bad vehicles that are classified
as untrustworthy.

B. TRUST MODEL PERFORMANCE COMPARISON
In order to verify the effectiveness and the attack resistance
of our scheme, we compare it with the relevant model (i.e.
IWOT-V) under three malicious attacks. Three evaluation
metrics: Pairord, TPR and TNR, are used to measure these
two models.

1) PERFORMANCE COMPARISON WITHOUT ATTACKS
At first, we simulate the scenario without malicious attacks.
We set No. 70 to No. 99 as bad vehicles. Since some social
factors, such as diver factors, are concerned with privacy
and it is very difficult to get real data, we suppose there
are 20 vehicles in VANET passing filtering, that is No. 0 to
No. 19 vehicles. These 20 vehicles compose of authority
set. The rest of vehicles are ordinary good vehicles. Fig. 7
shows the global trust values of 100 vehicles in AATMS
with different wrelative. From this figure, we can see that the
greater wrelative the lower global trust values of bad vehicles.
Therefore,wrelative represents the punishment intensity of bad
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FIGURE 8. Performance comparison under different percentage of bad
vehicles without malicious attacks. (a) 10% of bad vehicles. (b) 30% of
bad vehicles. (c) 50% of bad vehicles.

behaviors and we can control the punishment intensity of bad
behaviors in different scenarios of VANET by settingwrelative.

In the next simulation, we set wrelative = 3 and compare
our proposed model with IWOT-V. Fig. 8 shows the global
trust values of 100 vehicles in AATMS and IWOT-V under
different percentage of bad vehicles. The red and green dot-
ted lines represent the average trust value in AATMS and
IWOT-V respectively. The red and green solid lines indicate
the global trust value of each vehicle in AATMS and IWOT-V
respectively. It can be seen that the good vehicles with speed
factors less than 1 in AATMS are allocated much higher trust
values than bad vehicles, especially the seed vehicles, trust
values of which are mostly above 0.015. The reason why
some seed vehicles’ trust values are even lower than that of
some ordinary good vehicles is because these seed vehicles
give positive feedback to ordinary good vehicles frequently.
Hence, they allocate most of their trust values. In the future,
we would consider designing an incentive mechanism to
reward nodes, which give feedback positively. In IWOT-V,
the gap of trust value between good vehicles and bad vehicles
is smaller than that of AATMS, especially when there are
50% of bad vehicles in VANET. It is because that with the
increase of the proportion of bad vehicles, good vehicles’
trust values increase both in IWOT-V and AATMS, while
bad vehicles’ trust values increase in IWOT-V and remain
unchanged in AATMS. Since our proposed scheme can con-
trol the punishment intensity of bad behaviors by setting the
value of wrelative, it effectively avoids the influence of the
bad vehicles’ proportion. The simulation result shows that
when the percentage of bad vehicles increases, AATMS has a
greater threshold space to accurately distinguish bad vehicles
from good vehicles.

FIGURE 9. The average global trust value of the newcomer attackers in
AATMS and IWOT-V.

FIGURE 10. The average global trust value of the onoff attackers in
AATMS and IWOT-V.

2) PERFORMANCE COMPARISON UNDER THREE
MALICIOUS ATTACKS
In the experiments, we compare the robustness of our pro-
posed scheme and IWOT-V against three different types of
attacks. One threat is the newcomer attack. The newcomer
attackers abound old low-trusted IDs and register new IDs to
relaunch attacks. In the simulation, there are 20 bad vehicles,
60 good vehicles and 20 newcomer attackers. Newcomer
attackers are new added vehicles in VANET and behave well
during simulation process. Fig. 9 shows the average global
trust value of newcomer attackers in IWOT-V and AATMS
after they are added in VANET. We can see that in IWOT-V,
the newcomers are allocated much higher initial trust values
than that in AATMS. Besides, they gain trust values very fast
and are over the average trust value of IWOT-V on round 8.
While in AATMS, since we adopt the decay factor, it takes
longer time for the newcomers to accumulate a converged
trust value. Therefore, our proposed scheme is more robust
than IWOT-V against the newcomer attack.

We also evaluate the performance of AATMS and IWOT-V
under on-off attack. In the simulation, 20 vehicles are on-
off attackers and we simulate a total of 100 rounds, during
top 40 rounds on-off attackers behave well to accumulate
trust values and suddenly become speeding vehicles during
round 40 to 44 (number of simulation rounds starts from
0), then they back to good vehicles again. By setting speed
factors greater than 1 and less than 1, we can get bad vehicles
and good vehicles. Fig. 10 presents the average global trust
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FIGURE 11. The average global trust values of good nodes, bad nodes
and collusion nodes in IWOT-V and AATMS under different percentage of
collusion nodes. (a) IWOT-V. (b) AATMS.

value of the on-off attackers when they accumulate enough
trust values after 30 rounds. From the figure, we can find
that IWOT-V is more vulnerable to on-off attackers. Since
the attackers’ trust values just decrease about 0.002 when
they launch attack. On the contrary, in AATMS, when on-
off attackers build up high trust values and start launch-
ing attacks, their forgetting factors are small, resulting in a
steep decrease of their trust values. When the attackers stop
attack, our proposed scheme still remembers more of the
previous performance, therefore it takes longer for them to
recover. Even after 55 rounds, on-off attacker’s trust values
still remain in a low level. It shows that our proposed scheme
is very effective in protecting the trust model against on-off
attackers.

Finally, we compare the performance of AATMS and
IWOT-V under collusion attack. Collusion attack happens
when a group of malicious vehicles corporate together by
providing false feedback to other vehicles. In the simulation,
collusion attackers always provide good feedback y = 1 to
their allies regardless of whether their allies’ speed exceeding
the road speed limit or not, and always provide bad feedback
y = 0 to other vehicles. We set the percentage of collusion
nodes as 10%, 20% and 30% respectively to test the influence
on IWOT-V and AATMS. Collusion nodes are also speeding
vehicles with speed factors greater than 1. Besides, we fix the
number of bad nodes as 20. Fig. 11 shows the average global

FIGURE 12. Three metrics of IWOT-V and AATMS under different
percentage of collusion attacks. (a) Pairord of IWOT-V and AATMS. (b) TPR
of IWOT-V and AATMS. (c) TNR of IWOT-V and AATMS.

trust value of good nodes, bad nodes and collusion nodes
in IWOT-V and AATMS when the percentage of collusion
nodes varies. From Fig. 11(a), we can find that the average
global trust value of collusion nodes is higher than that of
other nodes in IWOT-V, especially when the percentage of
collusion nodes is more than 10%. It means that collusion
nodes can accumulate high trust values in IWOT-V even they
behave badly. While in AATMS, the average global trust
value of collusion nodes is lower than that of good vehicles.
Although with the increase of collusion nodes’ proportion,
the trust value of collusion nodes increases a lot, it is still
less than the trust value of good nodes. The trust value of bad
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FIGURE 13. Performance of AATMS under different percentage of collusion nodes in seed vehicles. (a) 5% of collusion nodes in seed vehicles.
(b) 10% of collusion nodes in seed vehicles. (c) 15% of collusion nodes in seed vehicles.(d) 20% of collusion nodes in seed vehicles.

FIGURE 14. Three metrics of AATMS under different percentage of collusion nodes in seed vehicles. (a) Pairord of AATMS. (b) TPR of
AATMS. (c) TNR of AATMS.

nodes is close to zero under different percentage of collusion
nodes, which means that the percentage of collusion nodes
has no influence on bad nodes.

Fig. 12 presents three metrics of IWOT-V and AATMS
under different percentage of collusion attacks. Since there
is no mechanism in IWOT-V to defense collusion attack,
the three metrics of IWOT-V are more and more poor with
the increase of collusion nodes’ proportion. When there are
30 % of collusion nodes, the pairord of IWOT-V is only 0.4,
which means only some bad nodes’ trust values are lower
than good nodes’ trust values. The TPR and TNR of IWOT-V
are 0 and 0.4 respectively, which demonstrates that all good
nodes are classified as untrustworthy nodes and all collusion
nodes are considered as trustworthy nodes. On the contrary,
when the percentage of collusion nodes is less than 30%,
AATMS can effectively identify collusion nodes, since three

metric of AATMS are all equal to 1. When the percentage
is 30%, only TPR metric decrease to 0.4. It means that part
of collusion nodes are incorrectly classified as trustworthy
nodes. The simulation results verify that the AATMS is far
more resistant than the IWOT-V when there are collusion
attackers in VANET.

The reason why AATMS can effectively defense collusion
attack is that we select a set of trustworthy seed vehicles
to distribute trust values to other vehicles. Considering the
situation that some collusion nodes may passing through the
filtering of social factors and become seed vehicles, we set
the percentage of collusion nodes in seed vehicles as 5%,
10%, 15% and 20 % respectively to test the influence on our
proposed scheme. In the simulation, we set the number of
collusion nodes as 20. Fig.13 shows the simulation results.
As we can see, when the percentage is less than 10%, our
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proposed scheme can also effectively identify collusion nodes
and assign lower trust values to them. When the percentage
becomes 15%, although the trust values of collusion nodes
are much higher than that of good vehicles in earlier rounds,
they drop quickly from 10th round and are lower than that of
good nodes after 30 rounds. However, when the percentage is
20%, the collusion nodes accumulate the most trust values
and even good vehicles’ trust values are lower than them,
which means the collusion nodes damage our proposed trust
management scheme totally. The three metrics of AATMS
under different percentage of collusion nodes in seed vehicles
is shown in Fig. 14. We can find that AATMS can effectively
defense collusion attack when the percentage of collusion
nodes in the set of seed vehicles is below 10%.

VI. CONCLUSION
In this paper, we present an anti-attack trust management
scheme calledAATMS to evaluate trustworthiness of vehicles
in VANET. Our proposed scheme adopts Bayesian inference
to calculate local trust values of vehicles. Then we design
a TrustRank based algorithm to calculate global trust val-
ues. Social trust of vehicles from real life is introduced to
select seed vehicles, which is helpful for defensing collusion
attack. We also adopt a decay factor and a forgetting factor to
resist newcomer attack and on-off attack. The effective and
robustness of our trust management scheme are demonstrated
through simulations. The results show that our proposed
scheme can effectively recognize trustworthy and untrustwor-
thy vehicles even under malicious attacks.

In the future, other link analysis algorithms will be consid-
ered to evaluate the global trust of vehicles in VANET.
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